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Thesis: I believe that with a proper semantical (categorical) and

topological / geometrical approach of quantum computation,

one can characterize complexity classes in a brand new way and

hopefully solve some open problems in complexity theory.



Towards quantum types

1. Classical and quantum types,

2. Classical and quantum information flow,

3. Quantum types as topological carriers.



1. Classical and quantum types

Type System

A type theory is a formal system such that each data considered

within the limit of the theory is properly equipped with a type

which characterizes the data.

During this talk, I will considered the set from which the data is

taken to be the type while the elements of that set (type) will be

called terms. To this, we add a countable number of variables

{xA
i } for each type A.

For instance, just think of booleans, natural numbers, strings of

symbols etc. These are all type with their own internal structure.



Here, I give a table with basic types (i.e. which are automatically

contained in any type theory) together with their term forming

operations:

1 N PA A×B Ω
∗ 0 {x ∈ A | φ(x)} 〈a, b〉 >, ⊥

Sn a ∧ b
a ∨ b
a ⇒ b
∃xφ(x)
∀xφ(x)
a ∈ α



The question one may asks is why the types presented before
are important (or fundamental)? Well,

• The singleton type is there for structural purpose, i.e. each
term a ∈ A can be seen as a unique function a : 1 → A which
implies that type theory can be seen as a theory which is
entirely functional.

• The natural number object (which we ask to be a model of
Peano arithmetic) provides us the possibility of doing recur-
sion.

• The product type gives us the possibility to consider func-
tions with more than one input.



• The subobject classifier, in addition to provide to the type

system a logic is also used to define subtyping. Indeed, sup-

pose I want to define the subtype of even numbers; I can

define a function T : N → Ω which inputs a natural number

n and tells me if this number is even or odd. The set of all

even numbers is then a subtype of N as it is included in N .

Note that this defines: PN = ΩN , where ΩN is defined as

the set of functions of type N → Ω. In general, for a type A,

PA = ΩA.

Remark: We can describe a version of type theory with exponen-

tial types BA as a type λ-calculus with equality and entailment

relation.



Note that we can also add new types. For instance, consider that

we add to our type theory the type G with the terms a, b, c, . . .

(i.e. a formal alphabet), we can then express the notion of a

graph within our theory where a vertex of a given graph is a

term of G and an edge is a pair of type G × G.



If one do quantum computing and wants to think at a higher

level, the natural question to ask is whether or not it is possible

to develop a quantum type theory.

The way the question is asked up there is quite important, the

answer is:

|Answer〉 =
1√
2
(|Yes〉+ |No〉)

The ’no’ part is that one cannot expect a pure quantum type

theory, that is, a theory that contains only quantum types.



Why? The reasons are well known:

• First, in a type theory, we need to have a cartesian prod-
uct which means that product types comes equipped with
canonical projection but, in the quantum world, we have en-
tanglement thus, we cannot always project.

• Second, in a classical type theory, we can copy the informa-
tion (with the diagonal map). As we cannot assume that
quantum information is always perfectly known, we cannot
make this assumption in a would-be quantum type theory
(no cloning).

• Finally, we can not define a quantum analogue of the sub-
object classifier (Ω).



We then might conclude that classical and quantum information

dont really like each other, but it does not matter as we cannot

really think of a quantum computer without classical control.

The idea will therefore to augment our classical type with quan-

tum types and this will define our quantum type theory. To stay

as general as possible, I choose to work with the model of density

matrices and superoperators.



1 N PA A×B Ω ns P ⊗Q
∗ 0 {x ∈ A | φ(x)} 〈a, b〉 >, ⊥ ρ p⊗ q

Sn a ∧ b
a ∨ b
a ⇒ b
∃xφ(x)
∀xφ(x)
a ∈ α

Where ρ ∈ ns is a n× n density matrix. Thus, for all n 6= 0 there

is a type ns; hence ns is not a sort of quantum natural number

object.



Note that this structure is surprisingly minimal, it appears that

we do not need the trace, the dagger and the dualisation op-

erations. Actually, they are still present but imbedded in the

superoperator formalism (i.e. function from a type to another)

and therefore not needed at the level of types. Also, we drop the

direct sum ⊕ present in the Hilbert space formalism as a term

forming operation since it is trace increasing and thence, cannot

be defined as a superoperator.

However, even if it is minimal, the setup is complete. It remains

to define how the information flow behaves between the classical

control and the quantum processor.



2. Information flow

From now on, we assume that classical data types are of finite

cardinality, that is, there is only a finite number of terms for each

type.

What is a complete computational process in the context of

quantum computation with classical control?

Typically, the classical control initializes the quantum data. Then,

we apply a circuit, we measure and finally, we send back the re-

sult to the classical control. In details,



1. The classical control (CC) initializes quantum data through
an function Q : CC → nc. Thus, suppose we have a finite data
type A whose only terms are a1 and a2 and that we send either
term to the quantum processor, we get:

a1 7→
(

1 0
0 0

)
or a2 7→

(
0 0
0 1

)

In addition, suppose that we have a product type B = C×D then
for a B-term b = 〈c, d〉, we get Q(b) = Q(〈c, d〉) = Q(c) ⊗ Q(d).
Which tells us that the product structure in the classical type
theory is transferred to a tensor product structure in the quantum
world. This new type nc is characterised by those n×n matrices
who are 0 everywhere except at one position on the diagonal
which coincide with the term initialised.



2. After the initialization, we apply a circuit, typically a unitary

operation U : nc → nu or a superoperator S : nc → ns where nu

is the type of all pure state n× n density matrices and ns is the

type of all mixed state n× n density matrices.

3. Finally, we reduce the wave packet via a function R1 : ns → np

(here, the domain of R1 can also be nu). The reduction of the

wavepacket is given by a diagonalisation of the matrix e.g.:

(
a b
b̄ c

)
R1−→

(
a 0
0 c

)

One can then see that the type np is then the set of n×n density

matrix with 0 everywhere except on the diagonal.



3. (contd.) After reduction, continuing with our example, we
send back data a1 to the classical classical control with probabil-
ity a and a2 with probability c. This part of the process is labeled
by the operation R2.

We summarize:

ns

R1

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B

CC
Q

// nc

S

==|||||||||||||||||||||||

U

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

np
R2 // CC

nu

R1

==||||||||||||||||||||||



It is important to note here that the classical types are still

present as an indexing system for the matrix entries! The first

observation we could make from the view point of type theory

is that quantum types are just a superposition of classical types

but it goes further... We assert the following:

Conjecture: The Quantum part of our type theory is a lineari-

sation and a quantisation of classical type theory in the sense

that most (categorical) structures present in classical type the-

ory are preserved up to a superposition provided that we satisfy

the finiteness condition specified earlier (i.e. that we consider

classical data type of finite cardinality).



3. Quantum types as topological carriers

In this section, I will show that the quantum types introduced

in the last section does not only carry typing information, but

also some geometrical / topological information which are not,

in general, present in a classical type theory.



We previously introduced the types nc, nu, np and ns. We now

give a geometrical interpretation with a toy-model: the Bloch

sphere, which corresponds to 2s (i.e. the set of all 2× 2 density

matrices).
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give a geometrical interpretation with a toy-model: the Bloch
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matrices).



You probably noted that our 4 quantum types are not disjoint,

for instance, a basis vector (in nc) is a general density matrix (in

ns). Thus, we have for a fixed n 6= 0 the following subtyping

relations:

nc � � //
� _

��

np� _

��
nu � � // ns



We now generalize the topological structures for each quantum

types.

First, for the type nc of basis vectors, there is not that much to

say. These are sets of n elements without additional structure.



Second, for the type np of probabilistic data, we have simplices.

By an n-simplex we mean the n-dimensional analogue of a tri-

angle. Here are the few first simplices:



Third, for the type nu of pure states, we have manifolds (smooth

surfaces) which are always isomorphic to CPn, the n-dimensional

complex projective plane i.e. the rays of a given Hilbert space.

Finally, for the type ns of mixed states, we have a structure of

manifolds with boundaries. Those manifolds with boundaries are

isomorphic to CPn2−1/SU(n).



The subtyping relations presented as a square before remains

valid for all n 6= 0. That is:

nc � � //
� _

��

np� _

��
nu � � // ns

This means that each n-set is included in an n-simplex which act

as a ’skeleton’ for ns, a manifold with boundary. Also, the n-set

is included in the manifold nu which is the outer strata of ns.



The key idea here is to note that superoperators are not just lin-

ear maps but also describes geometric / topological deformation

on a given structure or a passage from one topological structure

to another. How do we relate all this?



When I speak of passing from one structure to the other, I do

not only speak of passing from structures of different types for

a fixed n but also passing from one n to another m, we have:

0� // 1�
//
// 2�

//
//
// 3� . . .

Where � is either c, u, p or s. Each of these arrow represent a

way to apply the basis vectors of the type n� to the basis vectors

of (n+1)� or, in other words, to inject the first structure in the

second. The full structure of the topological transfer is there if

one add the typing square presented previously. Here, 0� is the

empty matrix.



Now, provided that we enrich our type system with an effect

algebra (i.e. the interval [0,1] ⊂ R) and that we reverse the

arrows of the previous diagram, we obtain:

0� 1�oo 2�oo
oo 3� . . .oo

oo
oo

which is exactly the diagram of the projections. Again, one can

paste to this diagram the typing square presented previously.

Remark: This type of diagram is another hint that there is

a simplicial structure present in the quantum setup and this is

usually very useful for combinatorial purposes.



Recap (types as topological carriers):

Type Topological Structure Type structure Morphisms

ns Manifolds with boundaries Density operators Superoperators
nu Manifolds Pure sates dens. ops Unitary maps
np Simplices Diagonal density ops Simplicial maps
nc Sets 1i Classical gates

Where 1i stands for n×n density matrices with zeros everywhere

except at the ii-th entry. Note that the morphisms considered

above are only those who can be characterised as superoperators.



Open questions and future work

• To recast the superoperator formalism in a topolinear con-

text, that is, to give a topological reinterpretation of the

superoperators.

• Can we speak of topological complexity? By that I mean

to recast (quantum) complexity theory in a topological /

geometrical context.

• With this analysis can we improve our current notion of QPL?

• And many others much more categorical in essence...
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