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Big Question: Can you teleport big 
objects?



Problem: You need highly 
entangled states of dimension  

226x10236 1022
x

Can you construct these 
states without a quantum 
computer that operates in 
a Hilbert space of this 
dimension?



Quantum Chaotic Operators can 
produce more entanglement for 

larger Hilbert spaces so maybe…



Now For A Limited time… 

Decoherence Free!



Outline

• Classical Chaos
• Quantum Signatures of Chaos
• Measurement and Chaos
• Entanglement generation + Measurement
• Teleportation Fidelity for Qu-trits



Classical Chaos
• Discovered by Poincare in 1890 

by studying the stability of the 
solar system.

• Chaos occurs regularly in fluid 
dynamics, plasma physics, and 
cellestial mechanics.

• Distance between adjacent 
trajectories increases 
exponentially like d0e-λt. (λ is the 
lyapunov exponent)

• Classical chaos is technically 
deterministic, but is not 
predictable in a practical sense.
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Phase Space Distributions
• Individual trajectories separate very quickly, 

however ensembles of trajectories do not.
• Phase space dist ρ gives the probability of finding a 

particle in (x,x+dx),(p,p+dp)
• Time evolution of probability distributions is given 

by the Liouville equation: 

• This equation is linear, and thus exponential 
seperation will not occur for distributions.

• Area is also preserved under time evolution.
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Quantum Chaos
• Quantum Chaos is simply the quantum 

mechanics of Hamiltonians that are 
classically chaotic.

• Lyapunov exponents are not a defining 
characteristic of Quantum Chaos.

• The classical limit of Quantum chaos as a 
result has been debated by Zurek et al.

• The classical limit for quantum chaotic 
systems typically happens from either 
decoherence or poor measurement.



Chaotic Generation Of Random 
Matrices

• Chaotic Hamiltonians generally have 
random level spacing, and eigenvectors.

• Fidelity with random matrix theory 
increases with dimension of Hilbert space.

Yaakov S. Weinstein,  
and C. Stephen 
Hellberg

arXiv:quant-
ph/0507103



Random States

• Random states are used in, remote state 
preparation, and noise estimation in fault 
tolerant quantum computing.

• Quantum Chaotic Unitaries typically 
belong to classes of random matrices.



Generation of Pseudo-random 
States Using Quantum Chaos

Uc Uc Uc Uc 'ψψ

Simply feed a state into a sequence of chaotic time evolution 
operations, and you end up with a state that approximates a randomly 
distributed state.



Chaotic Generation of Random 
States
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Entanglement Generation

Linear Entropies for Optical 
Magnetic Lattice

Non-Chaotic Chaotic

Ghose + Sanders (2004)

Weinstein + Helberg (2005)

Linear Entropies for Quantum 
Harper’s Map and Saw-tooth 

Map



Random Matrix Theory

• Chaotic time evolution is complicated, in 
fact in many cases it is nearly random.

• Time evolution operator similar to that of a 
random matrix with same symmetry group.

Yaakov S. Weinstein,  
and C. Stephen 
Hellberg

arXiv:quant-
ph/0507103



Random Matrix Theory

• Non-Chaotic Hamiltonians do not typically 
obey random matrix theory.

• Compliance with RMT 
is from level repulsion

0 1H H Hε= +

E1

E0

Perturbation theory Predicts 
that energy levels are repelled 
under these assumptions

ε

minimum E gap

A perturbation applied to 
make the levels of H0
degenerate



Random Matrix Theory
• Regular Hamiltonian levels can cross, leading to a 

poison distribution.
• Level repulsion leads to a Wigner distribution depending 

on the symettry class of the Hamiltonian.
• The result for time-reversal symmetric systems is below.

( ) sP s e−=

2 / 4( )
2

ssP s e ππ −=

P
(s

)



Random Matrix Theory and 
Entanglement

• Random matrix theory predicts the average 
linear entropy for chaotic systems is :

• The entanglement approaches 1 as the 
dimension of the Hilbert space increases.

• To get the most entanglement, a large 
Hilbert space must be used.
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Downside to chaotic generation

• Chaotic Systems
could be more
sensitive to small
measurement errors.

• Larger Hilbert spaces tend to be more 
susceptible to decoherence.
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How Do Chaotic maps respond to coarse graining in time?

How repeatable is a chaotic map?

Is this entanglement in a useful form?



Measurement

• Can either measure a system at discrete 
times, or continuously.

• Continuous measurement is often done 
using a stochastic Schrödinger equation.

• I will focus on discrete measurement, 
because continuous measurement is 
analogous to decoherence.



Von Neuman Measurement Model
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Coarse Grained Measurements on 
Probability Distributions

• Distributions 
become more 
classical after 
coarse graining.

• The Larger the 
Hilbert space 
the more 
accurate 
measurements 
must be.

N=10000 N=3000 N=1000



How Sensitive are Systems to 
Coarse Graining?

Quantum Classical differences obey a 
power-law in resolution and size of Hilbert 
space.






Coarse Graining Temporal 
Probability Distributions

• Measurements are never perfect, and in 
reality any measurement occurs over a 
finite width in time.

• The observed probability distribution can 
be found by a convolution of its self with a 
filter function.
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Effects of Coarse Graining in time

• Probability distributions for a quantum chaotic system 
look more classical after coarse graining.
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How to Model Coarse Graining in a 
Quantum Setting

• Measurements made at different times are 
independent of each other.

• Each measurement is projective

• Here F is a filter function of unit weight.
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Poincare Sections
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Results For Kicked Spin
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Regular Versus Chaotic

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

Von Neuman Entropy of reduced density matrix
VS Kick Number for n=5

Chaotic

Regular

Vo
n 

N
eu

m
an

 E
nt

ro
py

Kick Number



What Does Coarse graining do to 
entanglement?

• Mutual information rapidly decays for higher spins.

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2

Mutual Information Versus Coarse Graining Time

N=3

N=11

N=21

N=51

M
ut

ua
l I

nf
or

m
at

io
n

Coarse Time



Observation Errors
• The sensitivity of quantum chaos to 

perturbations can limit its usefulness.
• The perturbation sensitivity applies also to 

non-chaotic sensitivity…

Purely Quantum: 

1)Hilbert space too 
small to generate 
much entanglement.

2)Entanglement 
varies rapidly from 
period to period

Hilbert space is ‘JUST 
RIGHT’ for quantum 
chaos to generate 
entanglement.

Semi classical: 

1)Lots of 
entanglement 
generated

2) decoherence and 
measurement errors 
render it useless.



Further Questions About Quantum 
Chaos

• Is the Von Neuman Entropy/Linear entropy 
measure the usable entanglement for 
chaotic systems?

• How do singlet fractions vary when 
measurement errors occur?

• Can quantum chaotic evolutions be used 
in cryptography?



Conclusions

• Quantum Chaotic operators can 
approximate random states.

• They also produce entanglement far faster 
than regular systems.

• Sensitivity to measurements limits the 
utility of quantum chaos.
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