
Classical Measures and

Quantum Query Complexity on

Boolean Functions

Hongchao Zhang

August 12, 2005

INTRODUCTION

Computational Complexity Theory:

• Complexity theory is part of the theory of

computation dealing with the resources required

during computation to solve a given problem.

• The most common resources are time and

space. The time complexity of a problem is

the number of steps that it takes to solve an

instance of the problem, as a function of the

size of the input, (usually measured in bits)

using the most efficient algorithm.

The general approach of solving a hard

problem is to set the goal a little bit lower

and try to sovle a simpler problem first. The

hope is that by solving the simpler problem

we can understand the original, more difficult

problem better.

1

Decision Tree Complexity and Boolean Func-

tions

Boolean Functions:

f : {0,1}n → {0,1}. Boolean function maps a

bit string to a boolean value.

Eg.,

AND5(11111) = 1,

MAJORITY(10001) = 0

Decision Tree:

Computes a Boolean function f : {0,1}n →
{0,1} using queries to the input.

Deterministic Decision Tree Complexity:

D(f) as the minimum number of queries that

an optimal deterministic algorithm for f needs

to make on any input. This measure corre-

sponds to the depth of the binary tree that an

optimal algorithm can be described.

2

Classical measures of boolean functions:

Certificate:

Definition 1. A certificate of f at x is a subset

S ⊆ [n] of indices together with values xi for all

i ∈ S such that for all y ∈ {0,1}n with yi = xi

for all i ∈ S, we have f(x) = f(y).

Definition 2. The certificate complexity for f

at x denoted Cx(f) is the size of a smallest

certificate for f at x.

Definition 3. The certificate complexity of f

denoted C(f) is maxx Cx(f)

The 1-certificate complexity of f is C(1)(f) =

max{x|f(x)=1}Cx(f), and similarly we can de-

fine C(0)(f).

Eg., C(1)(ORn) = 1 since it suffices to set one

variable xi = 1 to force the OR-function to 1.

On the other hand, C(ORn) = C(0)(ORn) = n.

3

Sensitivity and Block Sensitivity:

Measure how sensitive a value of f is to changes

in the input.

Definition 4. The sensitivity sx(f) of f on x

is the number of variables xi for which f(x) 6=
f(xi). The sensitivity of f is s(f) = maxxsx(f).

Definition 5. The block sensitivity bsx(f) of f

on x is the maximum number b such that there

are disjoint sets B1, . . . , Bb for which f(x) 6=
f(xBi). The block sensitivity of f is bs(f) =

maxxbsx(f).

Note. Sensitivity is just block sensitivity with

the size of the blocks Bi restricted to 1.

4

Some relationships of Measures:

Proposition 1. s(f) ≤ bs(f) ≤ C(f)

Proof. Since each sensitive bit is a size 1 sen-

sitive block, we have s(f) ≤ bs(f).

Let x and B1, . . . , Bb be the input and sensi-

tive blocks that achieve the block sensitivity

of f , b = bs(f). Let C = Cx(f), for each Bi, if

C∩Bi = ∅, then even if we fix C, we can still flip

the function value by flipping Bi. Therefore,

C ∩Bi 6= ∅ for all 1 ≤ i ≤ n. bs(f) ≤ C(f).

5

Lemma 1. If B is a minimal sensitive block for

x, then |B| ≤ s(f)

Proof. Let y = xB, we have f(y) 6= f(x) since

B is a sensitive block for x. And for each bit i ∈
B, we must have that f(yi) 6= f(y) otherwise

B would not be minimal. So every bit in B is

sensitive for f in input y.

Theorem 2. (Nisan) C(f) ≤ s(f)bs(f)

Proof. Let B1, . . . , Bb be the sensitive blocks

for f on some input x which achieves b =

bsx(f) ≤ bs(f). Let C =
⋃b

i=1 Bi. If C is not an

f(x)-certificate then there exists some block B′

that is disjoint to C s.t. f(xB′
) 6= f(x) then B′

is also a sensitive block for f on input x, which

contradicts to b = bsx(f). So C is a certificate

for f on x. And by previous lemma, we have

|Bi| ≤ s(f) for all i. Therefore, the size of this

certificate is |
⋃b

i=1 Bi| ≤ bs(f)s(f)

6

Known Polynomial Relationships Between

Measures

From the research that have been done so far,

the main results say that all of these complex-

ity measures are polynomially related to each

other and to the decision tree complexity.

• s(f) ≤ bs(f) ≤ C(f)

• C(f) ≤ s(f)bs(f)

• bs(f) ≤ D(f)

• D(f) ≤ s(f)bs(f)2 ≤ bs(f)3

7

Quantum query algorithms

Suppose we want to compute function f . For

input x ∈ {0,1}N , a query gives us access to

the input bits:

Ox : |i, b, z〉 → |i, b⊕ xi, z〉. (1)

where i ∈ [N] = {1, . . . , N} and b ∈ {0,1}; the

z-part corresponts to the workspace.

A T -query quantum algorithm is in the form

A = UTOxUT−1 · · ·OxU1OxU0, where the Uk are

fixed unitary transformations, independent of

x. The algorithm starts in initial state |0〉. And

the output of A is obtained by observing the

leftmost qubit of the final state A|0〉

8

Quantum lower-bound method for Quan-

tum query algorithms

Weighted Scheme method:

Definition 6. Let f : {0,1}N → {0,1}, A ⊆
f−1(0), B ⊆ f−1(1) and R ⊆ A × B. A weight

scheme for A, B, R consists of numbers w(x, y) >

0, w′(x, y, i) > 0, w′(y, x, i) > 0 for all (x, y) ∈
R and i ∈ [N] satisfying xi 6= yi, we have

w′(x, y, i)w′(y, x, i) ≥ w2(x, y).

Definition 7. The weight of x is

wt(x) =
∑

y:(x,y)∈R w(x, y), if x ∈ A and wt(x) =∑
y:(y,x)∈R w(x, y) if x ∈ B.

9

Definition 8. Let i ∈ [N]. The load of variable

xi in assignment x is

v(x, i) =
∑

y:(x,y)∈R,xi 6=yi

w′(x, y, i)

if x ∈ A and

v(x, i) =
∑

y:(y,x)∈R,xi 6=yi

w′(x, y, i)

if x ∈ B.

Let the maximum A-load be vA = maxx∈A,i∈[N]
v(x,i)
wt(x).

Let the maximum B-load be vB = maxx∈B,i∈[N]
v(x,i)
wt(x).

The maximum load of a weight scheme is vmax =
√

vAvB.

10

Theorem 3. If a function f has a weight scheme

with maximum load vmax, then Q2(f) = Ω(1
vmax

).

For example, Grover’s algorithm. If we set all

the weight w, w′ to be 1, where the pair x and

y are different in only one bit, and anything

else to be 0. We can have that the algorithm

is lower bounded by
√

N , which is tight.

Another example: Two-level And-Or tree. The

method gives a tight lower bound Ω(
√

N)

11

Relation to classical measures

Theorem 4. Let f be any Boolean function.

Then any quantum query algorithm computing

f uses Ω(
√

bs(f)) queries.

We can just choose the pairs of x, y where x

is one of the inputs that archieves the block

sensitivity, and all the y’s be the inputs we op-

tain by flipping a sensitive block on x. Then

we make the weights of all these pairs to be 1.

12

Theorem 5.
√

1
vmax

≤
√

N · C (f) where C (f) =

min{C0(f), C1(f)}. C0(f) and C1(f) are the

0-certificate and 1-certificate for any boolean

function f .

Theorem 6. If f is a total function,
√

1
vmax

≤√
C0(f)C1(f).

Example: general binary And-Or tree, best

known to be O(N0.753), and the lower-bound

we get from the method is limited by
√

C0(f)C1(f) =√
N

13

