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Q. Information Science (QIS)
Multidisciplinary research area that combines 
chemistry, physics, mathematics, computer science, 
electrical engineering, philosophy, ….
Goal:  communication & computation that exploit 
quantum laws of nature — beyond “bits” and Boolean 
(AND, XOR, NOT, …) operations.
New technologies, materials, devices now allow 
quantum effects to extend to the nano- and meso-scale 
enabling QIS experiments and applications.
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Superposition/Entanglement
Classically: 0 and 1, and NOT flips values. 
Superposition:  0 and 1 coexist as two waves.
“Rotate” between 0 wave and 1 wave.
Refer to 0 state as |0 〉 and 1 state as |1〉.
Consider two systems in states |00〉, |01〉, |10〉, |11〉, 
or superpositions thereof.
In binary, 00=0, 01=1, 10=2, 11=3, and all four of these 
states can coexist and be simultaneously processed.
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I. On continuous variable 
quantum information 



Institute for Quantum Information Science
University of Calgary

Analogue QIS
Digital vs analogue communication and 
computing: discrete vs continuous
Qubits vs coding via amplitude modulation
Quantum optics: low decoherence, excellent 
squeezing, and homodyne detection
Challenge for analogue information: error 
correction
What is quantum? (i) Exceed vacuum noise 
limit. (ii) outperform analogue info processing



II. Logic states and 
operations 
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Analogue Quantum Information
Digital vs analogue information has a 
quantum counterpart: qubit vs ‘continuous 
variable (CV) quantum information’.
Advantage: CVQI is amenable to quantum 
optics experiments using squeezed light and 
has low decoherence.
Drawback to CVQI: lack error correction (but 
qudits can be encoded into CV).
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Logic states
For qubit, logical basis: |0〉 and |1〉.
For CVQI, logical states are |x〉 , for x real, but these 
states are not attainable physically.
Gaussian (squeezed) states approximate these logical 
states (but lose orthogonality).

Coherent state (laser output) corresponds to a=1
General state is

ϕa x( )= x ϕa =
e−x 2 / 2a 2

πa24
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Squeezed light



Institute for Quantum Information Science
University of Calgary

Measurement
The field quadratures

are measured via homodyne measurement; 
reference phase set by local oscillator.
The x distribution for density 

.sincos2/ ϕ+ϕ== π−ϕϕ pxpx

( ) . is xxxP ρ=ρ
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Resource: two-mode entangled state
Mixing a squeezed state         and its 
antisqueezed counterpart         at a beam 
splitter yields a two-mode squeezed (or 
Einstein-Podolsky-Rosen) state
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Transformations
Squeezing: 
BS:
Two-mode squeezing

QND interaction: 
General linear transformation for k modes in 
coordinate representation yields unitary 
transformation in Sp(2k,R); add displacement to 
obtain [HW(k)]Sp(2k,R)
Universal gates requires transformation outside this 
set; otherwise efficiently simulatable.

  x y a y sin θ + x cos θ y cos θ − x sin θ .

  x y a y sinh θ + x cosh θ y cosh θ + x sinh θ .

 x y a x x + y .



III. Quantum teleportation 
– a CV QI task 
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Quantum Teleportation
Example of a quantum information task

How to send a quantum state down a channel 
that is too fragile for sending quantum states?

Alice and Bob share entanglement in advance and share 
a classical information channel.
Alice is provided a q. state to send to Bob
Alice mixes q. state with her share of entangled state, 
measures, then transmits the measurement outcome as 
classical information to Bob, who uses this information 
to reconstruct q. state from his share of entangled state.



Schematic of optical 
experiment for teleporting a 

qubit encoded in the 
polarization state of a photon
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Quantum Teleportation
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Applications of Q. Teleportation
A network of quantum nodes (to distribute 
quantum keys for cryptography or a 
distributed quantum computer) may need to 
send qubits down classical channels because 
quantum channels are too fragile.
Q. teleportation allows sending of qubits if 
entanglement is shared in advance.
CV q. teleportation: Alice and Bob share two-
mode squeezed state and Alice transmits 
homodyne detection results.



IV. Sharing secrets —
background 
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Classical Secret Sharing
Cryptographic protocol for sharing 
information with players who are unreliable 
or not trustworthy.
Trust in numbers: players must collaborate.
Only authorized subsets (access structure) can 
extract secret; unauthorized subsets 
(adversary structure) learn nothing about 
secret.
(k,n)-threshold secret sharing: in a set of n 
players, any subset of k or more players can 
extract secret.
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Background
Liu’s combinatoric problem:  document locked 
in safe with many locks, and keys distributed 
to players who must collaborate to open safe.
Shamir (polynomial interpolation) and 
Blakley’s (projective spaces) threshold secret 
sharing, which replaces locks and keys by 
mathematical problem that can only be solved 
by collaborating.
Quantum version of threshold secret sharing.
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Motivation for sharing quantum secrets

Quantum cryptography: Alice and Bob share a 
quantum key, then distribute to other players.
Quantum computation: partially calculated 
quantum computer output shared in 
distributed quantum computation system.
Entanglement sharing schemes.
Quantum error correction.
Robust storage of states in a network.



V. Shared quantum 
secrets: theory & 

experiment 
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(k=2,2k-1=3) Threshold QSS with Qutrits

  

Encode a secret qutrit into three qutrits (Cleve et al,PRL 1999):

ψ = α 0 + β 1 + γ 2 a Φ = α kkk
k=1

3

∑ + β 012 + 120 + 201( )

                                                     + γ 021 + 102 + 210( )
Single share yields no information: Trjk Φ Φ = ˆ I .
Unitarily combine first two shares by (i) adding value of first share to
second, then (ii) adding resultant value of second share to first:

Φ a ′ Φ = α 0 + β 1 + γ 2( )⊗ 00 + 12 + 21( ).
Shareholders 1 and 2 have collaborated to reproduce the secret in shar

Shareholder 3 has no information about the secret:  Tr12 ′ Φ ′ Φ = ˆ I .
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Sharing a quantum state

|ψ>

DealerDealer

AdversaryAdversary AccessAccess

|ψ>

|ψ>
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Characterization of QSS
Due to finite squeezing and other effects, 
access structure obtains degraded secret and 
adversary structure obtains part of secret.
Characterize QSS by fidelity (squared) for 
access and adversary structures.

Exceeding vacuum limit: F > 0.5

F = ψ in ρout ψ in
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(2,3) CV q. secret sharing
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Encoding/Reconstruction

(a) Dealer creates and 
combines modes 1 and 2 at a 
50/50 BS to produce 

(b) Players 1 and 2 combine shares 
at a 50/50 BS to obtain

(c) Players 1 and 3 combine shares 
at a squeezing device to 
recover

231
Θψ

.
1

ψ

.Φ

.
1

ψ



For players {2,3}, p quadrature of secret state reproduced at 2:1 BS for 
appropriate phase choice, and x noise correlated with other BS output.  
Resultant photocurrent used to displace x quadrature (AM = amplitude 
modulator) by gain G, ideally so that product of x and p gains is unity.
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Experimental setup
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Share 1

Share 2

Share 3

Experimental setup
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Reconstructed 
secret

Local Oscillator

Fat Beam

Experimental setup
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Input state

Experimental setup
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Adversary

Experimental setup
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EPR 2

or 

½ SQZ 1

or 

½ SQZ 2

Experimental setup
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Experimental properties

Laser source: Nd:YAG at 1064 nm
OPA pumped at 532 nm
Secret state by AM and PM at 6.12 MHz
Squeezing 4.5 dB
Homodyne detection efficiency 0.89
Visibility of 1:1 beam splitter is 99.2%
Resolution bandwidth: 1 kHz
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Experimental Fidelity results
The best experimental 
fidelity for the 
collaborating player is 
F=0.646±0.009 for a 
gain of G+=2.96 ±0.05 
The fidelity of the 
access structure is 
F=0.050±0.016 
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Generalization to (k,n)
CV sharing of q. secrets can be generalized to the 
arbitrary (k,n) case.
Dealer begins with
where

Dealer encodes via GL transformation on 
coordinates so that any k players can undo 
transformation
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Extraction of the q. secret
The players all know the linear canonical point 
transformation to reconstruct secret q. state.
k players use a symplectic interferometer to perform

Of course
Provided that the vectors {gi} are chosen such that any 
k vectors from the set {f1 ≡x1, ζ1 ,…,ζn} are linearly 
independent, and a is large, any k players can extract 
the secret q. state.

kig ii >∀= ξ

gi → ξ i = ξ ij
j

∑ f j



V. Conclusions 
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Conclusions
CV QI yields imperfect but deterministic QI tasks.
Recent experimental demonstration of (2,3) threshold 
sharing of secret quantum states with fidelity F>0.5 
corresponding to quantum domain.
General theory of CV (k,n) threshold sharing of secret 
states, with state extraction by players requiring at 
most two squeezers.
Mathematical methods for interferometers with 
squeezers that are applicable to general, complex 
quantum optical systems.
Threshold state sharing allows robust sharing of 
quantum states within a network.
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