Physical "Implementations" of Quantum Computing II - Ion Traps

PIMS/MITACS summer school– June, 2003

Brian King

Dept. Physics and Astronomy, McMaster University http://physserv.mcmaster.ca/~kingb/King_B_h.html

Building Quantum Computers:

Need:

- 1. qubits
 - two-level quantum systems
 - superpositions \Rightarrow isolated from outside world
 - confined, characterizable, scalable
- 2. preparation
 - prepare computer in standard start state
- 3. read-out
- 4. logic gates
 - controllable interactions with outside world!
 - single- and two-qubits gate sufficient (not nec.!)

Ion traps for quantum computing:

- store quantum information inside atoms
- need way to hold atoms in place and "protect" them
- ion traps:

G. Werth, *Progress in Atomic Spectroscopy*, H.J. Beyer, H. Kleinpoppen, *eds*

Ion Traps:

- want electric field pointing inwards everywhere
 ⇒ positive charges trapped!
- problem: Gauss' Law

Ion Traps - initial micromachining:

- DC: $U_0 \approx 10 V$ • RF: $V_0 \approx 750 V$
- • $\mathbf{F} = \mathbf{k} \cdot \mathbf{z}$: harmonic oscillator

McMaster

- $\Omega \approx 230 \text{ MHz}$ $\Rightarrow \omega_{HO} \approx 10 \text{ MHz}$
- single ion lifetime: > 10 h. (up to 100 days...)

0.2 mm

Putting it all together...

Ion Motion in Trap:

- single ion:
 - like a mass on a spring

- multiple, cold ions:
 - "normal modes" the string moves as one...

Trapped-lon QC (Cirac, Zoller('95) Phys. Rev. Lett. 74, 4091)

- a collection (string) of trapped atomic ions:
 - qubits: (1) internal atomic levels

• "data bus:" (2) common-mode motion

Ion Qubits:

• orbital energy of outer electron:(Be⁺, Mg⁺, Ca⁺, Sr⁺, ...) $|0\rangle$ $|1\rangle$

2. long-lived the elevents in the elevent of the elevent is $(\tau > 10 \mu 0 0 0 y.)$

McMaster

• vibrational energy of ions in trap:

Qubits:

• long-lived electronic states:

Qubits:

• ground-state hyperfine levels:

 $(\tau > 10,000 \text{ y.})$

State preparation:

- atoms "come" in thermal equilibrium
 - distribution of levels...
- must prepare in definite quantum state
- <u>electronic:</u>
 - optical qubit: $kT \Rightarrow$ free!
 - hyperfine "optical pumping"
 - polarized light carries angular momentum
 - "pumps" atom into sub-level of highest (quantized) L

State preparation:

- vibrational: "laser cooling"
 - light carries momentum

- $p = k \quad V_{ion}$
- photon "kicks" can slow atom
 - re-emission is symmetric

(Wineland and Itano, Phys. Rev. A 20, 1521 (75), Phillips, Cohen-Tannoudji, Chu, Rev. Mod. Phys. 70 #3 (98).)

McMaster University

100

1000 COP

State Detection:

• cycling transition

Coupling qubit levels:

• oscillating field induces dipole moment

•
$$H_{I} \propto \mu \quad E_{0} e^{i(kx - \omega_{L}t)}$$

• can change electronic level (resonance?)

- if ion vibrates, interaction strength modulated
 - $H_{I} \propto \mu \quad E_{0} e^{i(kx_{o} \cos(\omega_{x}t) \omega_{L}t)}$

• can change motion $(k x_0 \sqrt{n_{vib}} \sim [x_0 / \lambda] \sqrt{n_{vib}})$ (... and resonance...)

Single-qubit logic gate:

Oppicatonasternulated Ramasinghs-ipicoton

- strong E-gradients (optical)
 - motional coupling
- RF frequency diff. coupling
- controllable strength
- RF phase stability

2-qubit logic (Cirac-Zoller, '95):

C. Monroe, et al., Phys. Rev. Lett. 75, 4714 (95).

• motion-dependent spin transitions (*conditional* logic)

$ 1\rangle_{m} 1\rangle = 1\rangle_{m}$	ed-Phase Gate ('95):			
$\left(-0\right)_{m}$		c t	c ′ t	/
$\pi/2$		$\pi/2$ (C-Phase $\pi/2$ trolled-NOT:	
		≡ Con		
(represented by $ 1\rangle_m = 1$		$ 1\rangle 1$	$\left - \left 1 \right\rangle \right $	$1\rangle$
$ 0\rangle_{m} 1\rangle = 0\rangle_{m} 1\rangle = 0\rangle_{m}$ $ 1\rangle = 0\rangle_{m}$ $ 1\rangle = 0\rangle_{m}$ $ 1\rangle = 0\rangle_{m}$ $ 1\rangle = 0\rangle_{m}$		initially $ 0\rangle_{\rm m} 0\rangle$ initially $ 1\rangle_{\rm m} 0\rangle$		
		State	Final State	
) P(↑)	P(m=1)	P (↑)
(Tomase shift)	0.02	0.01	0.09	0.16
	0.03	0.99	0.04	0.88
24	0.92	0.05	0.77	0.88
	0.94	0.98	0.88	0.19

CZ Realized - a two-ion logic gate!

• two ⁴⁰Ca⁺ ions - CZ scheme

• Boulder group 2 ${}^{9}\text{Be}^{+}$ ions – motional gate F ~ 97%

(Leibfried, et al., Nature 422, 412 (03).)

Scaling up:

- problem:
 - as N_{ions} \uparrow :
 - ion string gets heavier \Rightarrow gates get slower!
 - more motional modes \Rightarrow greater "noise"
- 1. optical multiplexing:

R. DeVoe, PRA **58**, 910 (98) J.I. Cirac, *et al.* PRL **78**, 3221 (97)

Solutions (1) - optical:

• MPQ, Garching (Ca⁺): $4 {}^{2}S_{1/2} \leftrightarrow 4 {}^{2}P_{1/2}$

G.R. Guthöhrlein, et al., Nature 414 (01)

res. $\approx \lambda/10$

• U. Innsbruck (Ca⁺): $4 {}^{2}S_{1/2} \leftrightarrow 3 {}^{2}D_{5 b/2}$

A.B. Mundt, et al., Phys. Rev. Lett. 189, 103001 (02).

- positioning: node/antinode
 - res. $\approx \lambda/100$

 differential coupling to motional sidebands

Scaling up:

- problem:
 - as N_{ions} \uparrow :
 - ion string gets heavier \Rightarrow gates get slower!
 - more motional modes \Rightarrow greater "noise"

2. <u>"quantum CCD:"</u>

"quantum CCD"

- Wineland, *et al.* J. Res. NIST **103**, 259 (98)
- D. Kielpinski, *et al.* Nature **417**, 709 (02)

Solutions (2) - physical

Boulder: M.A. Rowe, et al., Quantum Information and Computation 2, 257-271 (02)

• transporting ions between traps:

(1) Ramsey interferometer:

 $\Delta n=200$ quanta (2.9 MHz) for 10 ms sep. time (separation electrode too wide!)

Solutions (2) - physical multiplexing:

• "gold foil" traps:

• silicon traps:

• easily micro-machined, smooth

silicon

Ion Trap QC: Wither thou?...

...ion-trap QC progress:

- single-qubit logic gates ('40's) (>98% fidelity)
- single-ion 2-qubit logic gate ('95) (80% fidelity)
- 2-ion 2-qubit logic gates × 2 (80% / 97% fidelity)
 - state preparation (fidelity > 98%)
 - spin qubit
 - $t / t_{gate} > 1000*$
 - motional data bus/qubit
 - heating NIST< 1 /(4 ms), $t / t_{gate} \sim 100$
 - 1/(10 ms) IBM, 1/(190 ms) Innsbruck

NIST Boulder, MPQ Garching, IBM Almaden, U. Innsbruck, Oxford, U. Michigan, McMaster U...

http://physserv.mcmaster.ca/~kingb/King_B_h.html

Quantum Computing: Wither thou?...

the present reality

the dream...

Quantum Computing: Wither thou?...

• but, oh! the road...

http://physserv.mcmaster.ca/~kingb/King_B_h.html

Starting Points (ions):

- •Leibfried, et al., J. Phys. B 36, 599 (03)
- •A. Steane, Appl. Phys. B. 64, 623 (97)
- •Wineland, et al., J. Res. of the NIST 103, 259 (98)