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OverviewOverview

So far, we have been using a simple mathematical
framework for discussing quantum information:

In many situations that arise when studying 
quantum information, this framework is either
inconvenient or inadequate…

quantum state unit vector in a Hilbert space

evolution unitary operators

measurement projections



OverviewOverview

We extend this formalism by considering a
different way of representing quantum states:

This extension has various advantages over the
simpler formalism (in many situations) as we
will see… 

quantum state a matrix (or operator)
acting on a Hilbert space



““KetKet”” vectors vectors

Suppose we have a superposition on n qubits:
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Let H  be a space corresponding to n qubits…

     is a unit vector in H.y

Terminology:      is a pure state.y

known as a “ket”



““BraBra”” Vectors Vectors

The corresponding “bra”:
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The names come from the fact that a “bra” plus
a “ket” form a “bracket”:
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Density MatricesDensity Matrices
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The density matrix corresponding to       is:
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Density MatricesDensity Matrices

Now suppose we have a collection of pure states:

{ }  , , , 21 kyyy K

  
and we imagine randomly choosing a state; choose
 yj   with probability pj for each j=1,…,k.
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y
doesn’t make sense…
the pj values are
probabilities not
amplitudes.



Density MatricesDensity Matrices

Now suppose we have a collection of pure states:

{ }  , , , 21 kyyy K

  
and we imagine randomly choosing a state; choose 
 yj   with probability pj for each j=1,…,k.
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For density matrices it works:
this is called a
mixture 
(or ensemble)



ExamplesExamples

1
2

1
0

2

1
+=+ ˜

˜
¯

ˆ
Á
Á
Ë

Ê

1

1

2

1

++ ˜
˜
¯

ˆ
Á
Á
Ë

Ê

11

11

2
1

1
2

1
0

2

1
-=- ˜

˜
¯

ˆ
Á
Á
Ë

Ê

-1

1

2

1

-- ˜
˜
¯

ˆ
Á
Á
Ë

Ê

-

-

11

11

2
1



ExamplesExamples
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Same thing with states      and     :0 1
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Mixtures vs. density matricesMixtures vs. density matrices

It is not an accident that different mixtures
can give the same density matrix…

…two mixtures can be distinguished if and only if
they yield different density matrices.

Density matrices describe mixed states.  For
instance, 
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describes a mixed state.
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It is equal to



Facts about density matricesFacts about density matrices

• Every density matrix has trace equal to 1:
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• Every density matrix is positive semidefinite
  (Hermitian, with all eigenvalues nonnegative.)
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where                        is an orthonormal set. { }  , , 1 mjj K

Implies that every density matrix r comes from
a mixture of orthogonal pure states:



Quantum TransformationsQuantum Transformations

The class of physically realizable transformations
is easily characterized:
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Equivalently, T is completely positive and trace
preserving.



MeasurementsMeasurements

Any collection                  of matrices satisfying{ }  , , 1 kEE K

defines a measurement.
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and the state becomes

If r is measured, the outcome j results with
probability
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(incorrect
during talk)



Relation to simpler modelRelation to simpler model

Note: from an algorithmic point of view, there
is nothing to be gained from these more general
transformations and measurements…

…can simulate general transformations and
measurements with unitary gates and projective
measurements.



Fidelity and Trace-DistanceFidelity and Trace-Distance

Natural notions of closeness between mixed
states exist:

Fidelity: rxrxr   Tr),( =F

Trace distance: xrxr -=-  Tr
tr



Bipartite SystemsBipartite Systems

Alice Bob

y

…but Bob decides to leave town.

A B

What is Alice left with?

ySuppose Alice and Bob share some state     …

Answer: a mixed state.

BAƒŒyCombined state:



Bipartite SystemsBipartite Systems

Alice Bob

y

…but Bob decides to leave town.

A B

What is Alice left with?

ySuppose Alice and Bob share some state     …

Answer: a mixed state.

yy TrB

Alice’s state (after Bob leaves town):

Partial trace



Partial TracePartial Trace

Alice Bob
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A B

( ) ( )jIjI
j

ƒƒ= Â    Tr yyyyB

or

( )ABA   TrB Tr =ƒB
(and extend to all
matrices by linearity)



ExampleExample
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ExampleExample
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Bell BasisBell Basis
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They all look the same to Alice:



Schmidt DecompositionSchmidt Decomposition

Alice Bob

y

A B

Suppose we have orthonormal bases for A and B:

{ }  , , 1 ngg K { }  , , 1 mdd KA: B:

It is possible to write
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for some choice of complex numbers          .{ }  ,kja



Schmidt DecompositionSchmidt Decomposition

Alice Bob

y

A B

The Schmidt decomposition says that there exist
particular choices of orthonormal bases

{ }  , , 1 ngg K { }  , , 1 mdd KA: B:

( )

j

mn

j
jjp dgy Â

=

=
,min

1

 

for some choice of        .  { }  jp

(depending on      ) such thaty

No cross terms!

eigenvectors of

yy TrB



Schmidt DecompositionSchmidt Decomposition

Alice Bob

y

A B

The Schmidt decomposition says that there exist
particular choices of orthonormal bases

{ }  , , 1 ngg K { }  , , 1 mdd KA: B:
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for some choice of        .  { }  jp

(depending on      ) such thaty

No cross terms!

eigenvectors of

yy TrA



Schmidt DecompositionSchmidt Decomposition

Several interesting facts follow.  For instance…

The (nonzero) eigenvalues of the reduced states 
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are the same.
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PurificationsPurifications

The previous fact is often used in conjunction
with the fact that every mixed state has a
purification:
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Given a mixed state r, there is an orthonormal

basis                     such that{ }  , , 1 ngg K
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Schmidt DecompositionSchmidt Decomposition

BAƒŒjy  ,

Suppose      and      are bipartite quantum statesy j

that look the same to Alice:

jjyy BB Tr    rT =

Then there exists a unitary operator    acting only
on B such that
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Another interesting consequence of the Schmidt
decomposition…



Schmidt DecompositionSchmidt Decomposition

Alice Bob

y

A B

Suppose now that Bob doesn’t leave town,  but
instead decides he wants to change the state he
shares with Alice to some other (pure) state.

What are his choices?

ja

                                   He can change the state
to any state      for whichj

jjyy  Tr Tr BB =



Superdense CodingSuperdense Coding

Alice Bob

11
2

1
00

2

1
+=+j

A B

In superdense coding Alice and Bob share an
entangled state…

…suppose Bob wants to communicate 2 classical
bits to Alice by sending only one qubit.



Superdense CodingSuperdense Coding

Alice Bob
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Superdense CodingSuperdense Coding

Alice Bob
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All Bell states look the same to Alice…

…so Bob can convert between them as he chooses.



Bit CommitmentBit Commitment

The same principle can be used to show that
an interesting task—bit commitment—is
impossible.

Bit commitment works as follows:

Alice has a bit               and she wants to
commit to this bit…

{ } 1 ,0 Œb

…but she doesn’t want Bob to know the bit
until later when she decides to reveal it.

Two requirements: binding and concealing.



Bit CommitmentBit Commitment

We can imagine implementing bit commitment
in the following way:

1. When Alice wants to commit her bit a, she
    writes a on a piece of paper, locks it in a safe,
    and sends the safe to Bob.  (Alice keeps the
    key.)

BobAlice



Bit CommitmentBit Commitment

We can imagine implementing bit commitment
in the following way:

1. When Alice wants to commit her bit a, she
    writes a on a piece of paper, locks it in a safe,
    and sends the safe to Bob.  (Alice keeps the
    key.)

BobAlice



Bit CommitmentBit Commitment

2. When Alice wants to reveal her bit, she sends
    Bob the key.

BobAlice



Bit CommitmentBit Commitment

2. When Alice wants to reveal her bit, she sends
    Bob the key.

BobAlice



Bit CommitmentBit Commitment

Quantum bit commitment schemes were proposed
in the early 1990’s… they were originally thought
to be secure.

But it turns out that they were not secure after
all…

…moreover, we now know that quantum bit
commitment is impossible using any scheme.

Information-theoretically secure bit commitment
is impossible classically.



Impossibility of Bit CommitmentImpossibility of Bit Commitment

Suppose we have a scheme where Alice sends
Bob half of some entangled state:

Alice Bob

0  state    0 y=fi=b

1  state    1 y=fi=b

If the scheme is perfectly concealing, Bob cannot
distinguish the two states:

1100  Tr Tr yyyy AA =



Impossibility of Bit CommitmentImpossibility of Bit Commitment

Suppose we have a scheme where Alice sends
Bob half of some entangled state:

Alice Bob

0  state    0 y=fi=b

1  state    1 y=fi=b

This gives Alice the freedom to change her mind:

( ) 10   yy =ƒ IU (for some U)

so the scheme cannot be binding.



EntanglementEntanglement

The notion of entanglement has been mentioned
several times so far this week.  

Archetypal example of an entangled quantum
state:
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Entanglement is useful for various tasks:

• teleportation
• superdense coding
• quantum communication protocols
• quantum computation?

Entanglement is (arguably) not well understood…



EntanglementEntanglement

What is entanglement?

Given a pure state of a bipartite system:

BAƒŒy

We say that       is a product state if
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If       is not a product state, then it is entangled.y



EntanglementEntanglement

If r is not separable, then it is entangled.

Mixed state case: r is separable if
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for               and               mixed states of the
first and second system, respectively.
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(Given a density matrix r, it is a very difficult
computational problem to test whether it is
entangled.)



EntanglementEntanglement

For example, the following state is not entangled:

11

So is this state:

111010010 99 -- -+

while this state is entangled:
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Which one is
more entangled?



Measures of EntanglementMeasures of Entanglement

There are many ways to measure entanglement.

Two natural measures:

• Entanglement cost.

• Distillable entanglement.

how much does
it cost to create?

how much can you
get out of it?



Local quantum operationsLocal quantum operations
 + +

 classical communication classical communication

Alice Bob

r

Alice and Bob share some entangled state r.

Any transformation they can perform on r that
does not require them to send quantum
information is said to be an LOCC transformation.



Entanglement CostEntanglement Cost

Suppose Alice and Bob want to share N copies
of r (where N is very large), but they only share
copies of      .+j

It is always possible for them to convert kN
copies of       into N copies of r (approximately)

via some LOCC transformation for some k.

+j

( )rCE = entanglement cost of r

The entanglement cost of r is the infimum
over all values of k for which this is possible.



Distillable EntanglementDistillable Entanglement

Suppose Alice and Bob share N copies of r
(where N is very large), and they want copies
of      .+j

( )rDE = distillable entanglement of r

Distillable entanglement is essentially the 
opposite…

The distillable entanglement of r is the
supremum over all values of k for which they
can extract kN copies of       from N copies
of r.

+j



The von Neumann EntropyThe von Neumann Entropy

In the case of pure states, these quantities are
always equal:

( ) ( ) ( )yyy        EEE DC == def

and this quantity is given by the von Neumann
entropy of Alice’s (or Bob’s) reduced state:

( ) ( ) ( )yyyyy BA TrTr SSE ==

where
( ) ( )rrr log Tr-=S



The von Neumann EntropyThe von Neumann Entropy

Proof starts by looking at the Schmidt decomposition
of      :y
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A large number of copies N of this state behaves
in a very similar way to N independent samples
from a random source with respect to the bases

{ }  , , 1 mgg K { }  , , 1 mdd Kand

Distillation and formation are very similar in
spirit to compression and decompression…



Mixed state entanglementMixed state entanglement

Things  become much more complicated (and
more interesting) for mixed states… for instance:

• The task of testing whether a given density
   matrix is entangled or separable is NP-hard 
   (with respect to Cook reductions).

)()(0 rr CD EE <<

• There exist states r for which

0)( =rDE

• There exist entangled states r for which

   (“bound entangled” states).



Diagram of bipartite statesDiagram of bipartite states
all states

entangled separable

distillable

PPT

NPT

anything
here?



ExampleExample
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Is this state distillable?

(It is an NPT state, and is conjectured to be
undistillable.)



ConclusionConclusion

The purpose of this talk has been to give an
introduction to the mathematical foundations
of quantum information.

There are many other interesting topics in
quantum information theory.  For example:

• many other aspects of entanglement (such
   as multiparty entanglement)

• quantum channel capacities, additivity
   questions.

• quantum error correction


