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Classes of ProblemsClasses of Problems

Computational problems can be classified in many
different ways.  Examples of classes:

• problems solvable in polynomial time by some
  deterministic Turing machine

• problems solvable by boolean circuits having a
  polynomial number of gates

• problems solvable in polynomial space by some
  deterministic Turing machine

• problems that can be reduced to integer factoring
  in polynomial time



Commonly Studied ClassesCommonly Studied Classes

class of problems solvable in
polynomial time on a deterministic
Turing machine

P

NP class of problems solvable in
polynomial time on some
nondeterministic Turing machine

Informally: problems with efficiently
checkable solutions

PSPACE class of problems solvable in
polynomial space on a deterministic
Turing machine



Commonly Studied ClassesCommonly Studied Classes

class of problems solvable in
polynomial time on a probabilistic
Turing machine (with “reasonable”
error bounds)

BPP

L class of problems solvable by some
deterministic Turing machine that
uses only logarithmic work space

SL, RL, NL, PL, LOGCFL, NC, SC, ZPP, R,
P/poly, MA, SZK, AM, PP, PH, EXP, NEXP,
EXPSPACE, . . . 



…, #P, #L, AC, SPP, SAC, WPP, NE, AWPP,
FewP, CZK, PCP(r(n),q(n)), D#P, NPO,
GapL, GapP, LIN, ModP, NLIN, k-BPB,
PNP[log], PPP, PrHSPACE(s), S2P, C=P, APX,
DET, DisNP, EE, ELEMENTARY, mL,
NISZK, OptP, UP, UL, W[SAT], symP, SO-E,
SFk, NEE, mNL, MaxSNP, MA-EXP, FOLL,
BPHL, AH , +SAC1, …

The list goes onThe list goes on……



Quantum Polynomial TimeQuantum Polynomial Time

class of problems solvable in
polynomial time on a quantum
Turing machine (with “reasonable”
error bounds)

equivalently: problems solvable by
quantum circuits having a polynomial
number of gates (again, with
“reasonable” error bounds) plus
technical restrictions on the circuits

BQP



Diagram of Complexity ClassesDiagram of Complexity Classes
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Interactive Proof SystemsInteractive Proof Systems

• Introduced in 1985 by Babai and Goldwasser,
Micali, and Rackoff.

• Idea: two parties, called the prover and the
verifier, have a conversation based on some
common input string x.

The prover has unlimited computation power.

The verifier must run in polynomial time (and
can flip coins).

• The prover wants the verifier to believe that x
satisfies some fixed property… the verifier
wants to verify the validity of this claim.



Interactive Proof SystemsInteractive Proof Systems
x x

Verifier

polynomial
time

+
randomness

Prover

no
computational

restrictions

(two-way)
communication

channel

Output:
accept          if the verifier believes the
                     prover that x has property A 

reject            otherwise
{



Properties with interactive proof systemsProperties with interactive proof systems

A property (or language) A has an interactive
proof system if:

There exists a verifier V such that the following
two conditions are satisfied.

1. (Completeness condition)

    If          then there exists a prover P that can
    convince V to accept x (with high probability).

Ax Œ

2. (Soundness condition)

    If          then no prover can convince V to
   accept x (except with very small probability).

Ax œ



Example: Graph Non-IsomorphismExample: Graph Non-Isomorphism
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The prover wants to convince the verifier that
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Suppose the input consists of two graphs:
          and     . 2G1G



Example: Graph Non-IsomorphismExample: Graph Non-Isomorphism

The protocol:

1.  The verifier randomly chooses one of the
 two graphs, randomly permutes it, and
 sends it to the prover.

2.  The prover is challenged to identify
 whether the graph send by the verifier is
 isomorphic to the first or second input graph.

 The prover sends his guess to the verifier.

3.  The verifier accepts if the prover correctly
 guesses the correct graph and rejects
 otherwise.



Which properties have interactiveWhich properties have interactive
proof systems?proof systems?

Let IP denote the class of properties that have
interactive proof systems.

PSPACEIP =
[Lund, Fortnow, Karloff, and Nisan, 1990] + [Shamir, 1990]:

Let IP(m) denote the class of sets having
interactive proof systems where the total number
of messages sent is at most m.

2)2()( PÕ= IPmIP

[Babai, 1985] + [Goldwasser and Sipser, 1989]:

for any constant m.



NPco-NP

IP = PSPACE

PH

2P

IP(2)=IP(m)

Diagram of complexity classesDiagram of complexity classes
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Quantum Interactive Proof SystemsQuantum Interactive Proof Systems
x x

Verifier

quantum
polynomial

time

Prover

quantum,
no

computational
restriction

quantum
channel

Output:
accept          if the verifier believes the
                     prover that x has property A 

reject            otherwise
{



Formalizing the modelFormalizing the model

We use the quantum circuit model.  Example of a
circuit for a 4-message quantum interactive proof
system:

)(1 xV

)(2 xP

)(3 xV

)(1 xP

)(2 xV

verifier’s
qubits

message
qubits

prover’s
qubits

output
qubit



Facts about quantum interactive proofsFacts about quantum interactive proofs

• )3(QIPQIP =

•                  and                              for any m. QIPIP Õ )()( mQIPmIP Õ

)3(   QIPPSPACE Õfi

•                       (deterministic exponential time)EXPQIP Õ

• PSPACEPPQIPBQP ÕÕÕ )1(

same as QMA



Diagram of complexity classesDiagram of complexity classes
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Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V

1P
4V2V

2P 3P 4P

Suppose we have a quantum interactive proof
consisting of several rounds:

1 3 54 62 7

messages:



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V

1P
4V2V

2P 3P 4P

1y 7y6y5y4y3y2y

Consider the states of the system during some
execution (optimal for the prover):



1V 3V

1P
4V2V

2P 3P 4P

1y 7y6y5y4y3y2y

Message 1 (of parallelized protocol):

   The prover sends                       to the verifier.myy   ,   ,1 K

Parallelizing quantum interactive proofsParallelizing quantum interactive proofs



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V

1P
4V2V

2P 3P 4P

1y 7y6y5y4y3y2y

The verifier now needs to check that these states
are consistent with one another…
 
… this will require 2 additional messages.



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V

1P
4V2V

2P 3P 4P

1y 7y6y5y4y3y2y

The verifier randomly chooses 2 consecutive
states to test for consistency.

Case 1: states are separated by a verifier
            transformation.



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V

1P
4V2V

2P 3P 4P

4y3y

The verifier randomly chooses 2 consecutive
states to test for consistency.

Case 1: states are separated by a verifier
            transformation. Easy



Swap testSwap test

Suppose we have two (pure) quantum states:

j yand

Want to know if they are close together or far
apart.

H H

swap
j

y

0 measure



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V

1P
4V2V

2P 3P 4P

5y4y

Case 2: states are separated by a prover
            transformation.



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V

1P
4V2V

2P 3P 4P

1+tyty

Messages 2 and 3 (of parallelized protocol):

Verifier sends the message and private
prover qubits of       to the prover… the
prover is challenged to convert      to       .

ty
ty 1+ty



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

It turns out that this works…

2m
c

A cheating prover will be caught with probability
at least

for some constant c.

Parallel repetition can be used to reduce soundness
error to be exponentially small… still only use 3
messages.

Proof is highly nontrivial—must take into account
cheating prover strategies that use entanglement. 



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

So what is the difference between quantum and
classical that allows this to work?

It seems that it is because the verifier can
check that two mixed quantum states are close
together (with the help of the prover)…

… not possible to do classically with probability
distributions (at least in the way that would be
required). 



Multi-prover quantum interactive proofsMulti-prover quantum interactive proofs

Just about everything is open…

We do not know any of these things for
the quantum case, even when the verifier
is classical.

Classical case: MIP = NEXP, only 1 round is
needed, parallel repetition works, …



Multi-prover quantum interactive proofsMulti-prover quantum interactive proofs

Prover 1 Prover 2

Verifier

communication

entanglement



Bell Inequalities and Multiple ProversBell Inequalities and Multiple Provers

Any upper bound on the probability with
which multiple provers can convince a verifier
to accept a given input is analogous to a
Bell inequality.

Such upper bounds are not valid if the provers
initially share entanglement.



Bell Inequalities and Multiple ProversBell Inequalities and Multiple Provers

What we need are upper bounds on the probability
that entangled provers can convince the verifier
to accept.

These are analogous to Tsirelson Inequalities. 
These tend to be much harder to prove…

Allowing entangled quantum provers, we could
have any of the following:

MIP = NEXP
MIP strictly weaker than NEXP
MIP strictly stronger than NEXP
MIP incomparable with NEXP

Similar for the quantum verifier case.



Example: 3SATExample: 3SAT

An instance of 3SAT is an AND of ORs where
each OR consists of 3 literals (variables or
negations of variables).

( ) ( ) ( ) ( )321421432431 xxxxxxxxxxxx ⁄⁄Ÿ⁄⁄Ÿ⁄⁄Ÿ⁄⁄

Example:

Problem: determine if there exists a boolean
assignment to the variables that causes the
formula to evaluate to true.

This problem is NP-complete.



Simple proof system for 3SATSimple proof system for 3SAT

Randomly choose a clause (OR of 3 literals):

( )421 xxx ⁄⁄

( )421 ,, xxxs =

Ask prover 1 to give an assignment to the
variables appearing in the clause:

{ }3  1 ,0 Œa

Randomly select one of these variables, and
ask prover 2 to give an assignment:

2xt = { } 1 ,0 Œb

Accept if clause is satisfied and answers are
consistent, reject otherwise.



Simple proof system for 3SATSimple proof system for 3SAT

This proof system works, assuming the provers
play classically:

If the formula is satisfiable, they can win with
certainty.

If the formula is not satisfiable, their probability
of winning is bounded away from 1.

This is an example of a general technique
sometimes called oracularization: randomly
ask prover 2 one of the questions asked to
prover 1 to force prover 1 to play non-adaptively.



Simple proof system for 3SATSimple proof system for 3SAT

Quantum case: the proof system does not work!

We can find a 3SAT formula that is not satisfiable,
but for which the provers can win the associated
game with certainty.

Based on the “Magic Square” [Aravind, 2002],
[Mermin, 1990]. 



How Powerful are Multi-proverHow Powerful are Multi-prover
Interactive Proofs?Interactive Proofs?

Oracularization is one of the starting points for
the study of (classical) multi-prover interactive
proof systems…

… but the method is not sound against quantum
strategies.

We currently do not know how to fix this problem,
and we know very little about the power of
multi-prover interactive proofs when the provers
can use quantum strategies.



Other Variants of Interactive ProofsOther Variants of Interactive Proofs

      There are many variants of (classical) interactive proof
systems:
• interactive proofs with stronger restrictions on the

verifier (or on the prover). 
• competing provers
• probabilistically checkable proofs

     General problem:

    How do quantum versions of these proof systems
    compare to the classical case?


