Amplitude Amplification and Appplications

Peter Høyer www.cpsc.ucalgary.ca/~hoyer

June 26, 2003, University of Calgary PIMS-MITACS Summer School on Quantum Information Science Breathtaking bargain

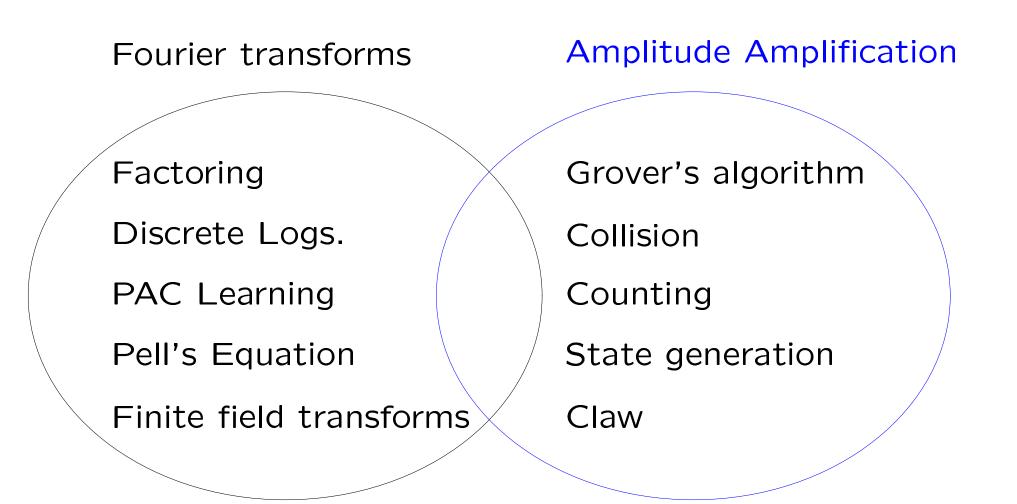
Work as little as $O(\sqrt{m})^*$ Compare at O(m)

Call 1-800-amplampl now,

or visit us online at www.amplampl.com.

* Actual running time on a quantum computer might be uncomparable to running time of a classical computer. Availability of quantum computers is limited. Additional error correction not included. Not applicable in conjunction with measurements. Verifier required.

Classification of quantum algorithms



Super-polynomial

Quadratic speed-up

Amplification

- A = some algorithm
- p = success probability of A

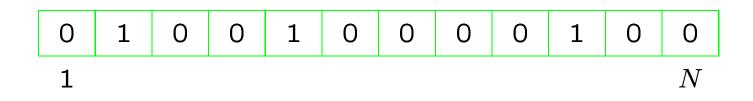
m repetitions \Rightarrow succ. prob. $\approx m \cdot p$

(provided $m \cdot p \leq 2/3$, say)

Solutions must be verifiable!

Grover (1996) Brassard, Høyer (1997) Brassard, Høyer, Mosca, Tapp (1998) Buhrman, Cleve, de Wolf, Zalka (1999)

Example 1: Grover searching



Suppose t solutions Success prob. = $p = \frac{t}{N}$

Classically: $\frac{1}{p} = \frac{N}{t}$ queries Quantumly: $\sqrt{\frac{1}{p}} = \sqrt{\frac{N}{t}}$ queries

General Setting

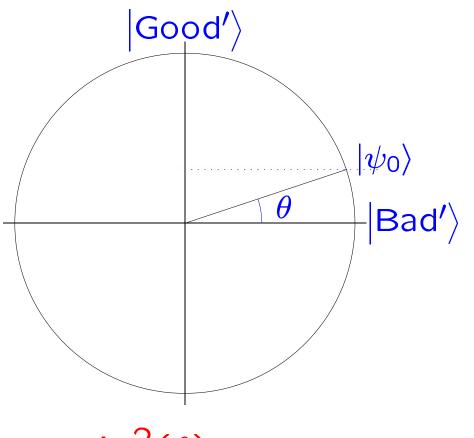
Quantum alg. A, $A |0\rangle = |\psi_0\rangle = \sum_i \alpha_i |i\rangle$ Verifier χ , $\chi : \mathbb{Z} \to \{Good, Bad\}$

Let
$$|\text{Good}\rangle = \sum_{\substack{i:\chi(i)=\text{Good}\\ |\text{Bad}\rangle} \alpha_i |i\rangle} \alpha_i |i\rangle$$

 $\sum_{\substack{i:\chi(i)=\text{Bad}\\ i:\chi(i)=\text{Bad}}} \alpha_i |i\rangle$

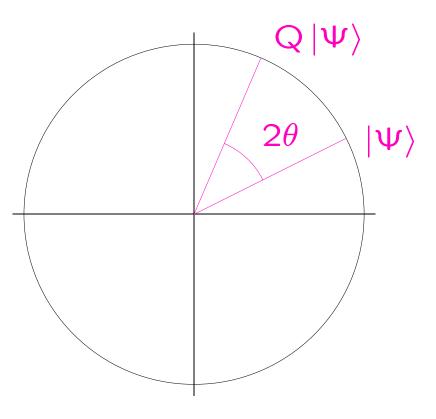
 $A |0\rangle = |\psi_0\rangle = |Good\rangle + |Bad\rangle$ Success prob. of $A = p = \langle Good|Good \rangle$

2-dimensional subspace



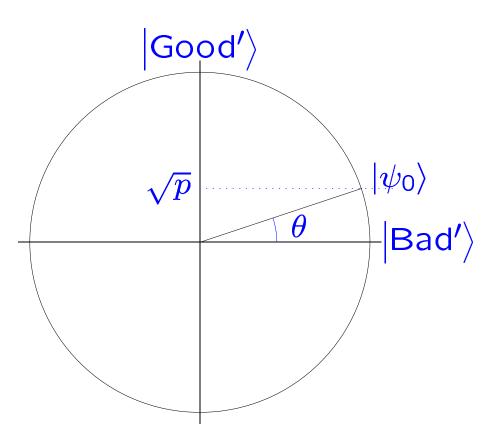
 $\sin^2(\theta) = p$

Rotation on



Operator Q rotates by angle 2θ

Amplitude Amplification

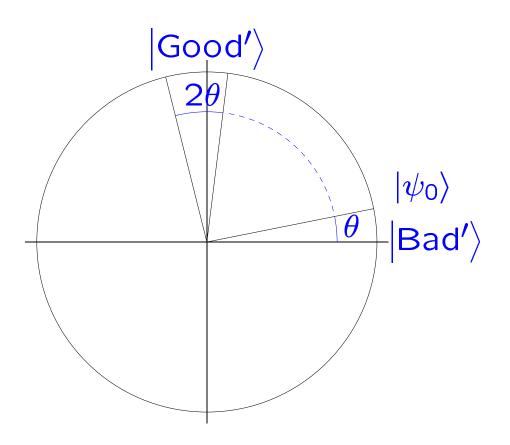


 $\begin{array}{l} \mathsf{A} \left| \mathsf{0} \right\rangle = \left| \psi_{\mathsf{0}} \right\rangle \\ = \left| \mathsf{Good} \right\rangle + \left| \mathsf{Bad} \right\rangle \end{array}$

Succ. prob = p= $\langle \text{Good} | \text{Good} \rangle$

p unknown: solution in expected time $\sqrt{\frac{1}{p}}$

p known: solution with certainty in $\sqrt{\frac{1}{p}}$

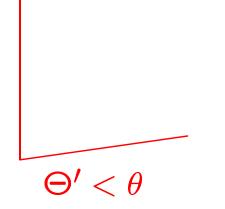


After *m* rotations : state $Q^m | \psi_0 \rangle$ angle $\angle = (2m + 1)\theta$ $\sin^2(\theta) = p$ $\theta \approx \sqrt{\frac{1}{p}}$

Maximizing the success prob. (p known)

$(2m+1)\theta \approx \pi/2$, thus $m \approx \frac{\pi 1}{4\theta} \approx \frac{\pi}{4}\sqrt{\frac{1}{p}}$ Then Prob[Bad] $\leq \sin^2(\theta) = p$

De-randomization (p known)



If $(2m + 1)\theta$ is slightly more than $\pi/2$, then choose slightly smaller angle Θ' such that $(2m + 1)\Theta'$ IS equal to $\pi/2$

Example 2: 100% success prob

Have:
A :
$$|000\rangle \mapsto \frac{1}{\sqrt{3}}(|000\rangle + |010\rangle + |111\rangle)$$

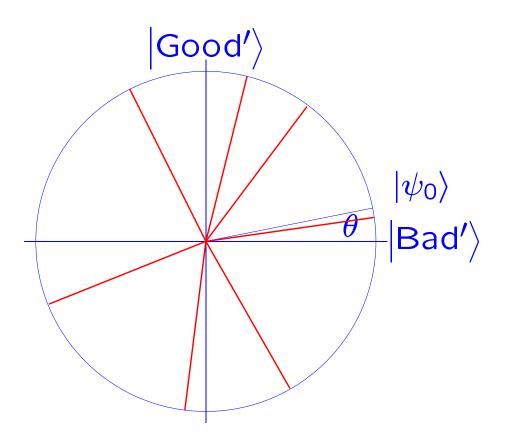
Want: D : $|000\rangle \mapsto \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$

Example 3: State generation

1)
$$\frac{1}{\sqrt{K}}\sum_{i=0}^{K-1}|i\rangle \qquad K>0 \text{ any integer}$$

K-1 $\sum_{i=0}^{n-1} |i\rangle$ 2) gcd(i,K)=1

Guessing when succ. prob p is UNKNOWN

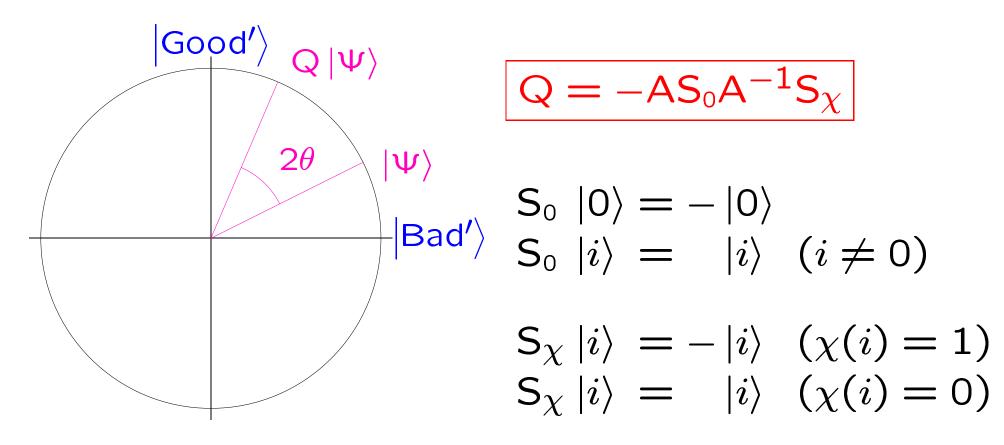


After m rotations :

state $Q^m |\psi_0
angle$ angle $\angle = (2m + 1)\theta$

A random vector yields succ. prob $=\frac{1}{2}$ Solution: obtain a near-random vector by classically randomly guessing m

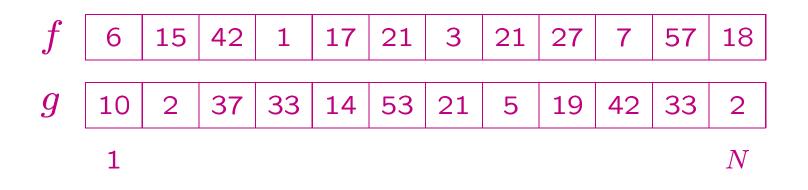
Rotation on 2-dimensional subspace



 $S_{\chi} \equiv \text{reflection around } |\text{Good}'\rangle$ -AS₀A⁻¹ \equiv reflection around $|\psi_0\rangle$

 \therefore Q \equiv rotates by angle 2θ

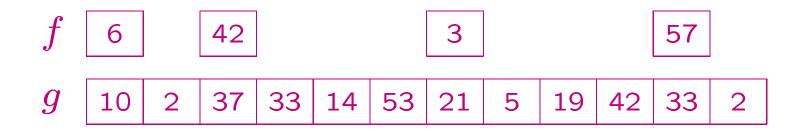
Example 4: quantum algorithm for Claw



Claw = A pair of indices (i, j) such that f(i) = g(j).

> Classically: $N \log N$ Quantumly: $N^{3/4} \log N$

Steps 1–4, Claw algorithm

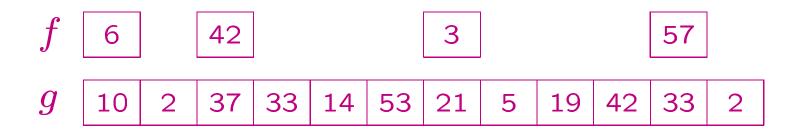


1. Pick $B \subseteq_R \{1, 2, \dots, N\}$ of size \sqrt{N}

2–4. Find claw in $f(B) \times g(\{1, 2, ..., N\})$ using $O(\sqrt{N} \log N)$ comparisons

Success prob.
$$\geq p = \frac{|B|}{N} = \frac{1}{\sqrt{N}}$$

Amplitude amplification: $\frac{1}{\sqrt{p}}$ iterations $O(\sqrt{N} \log N \times N^{1/4}) = O(N^{3/4} \log N)$ Step 1, Claw algorithm



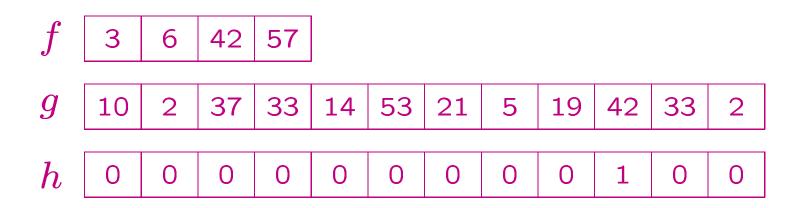
1. Pick $B \subseteq_R \{1, 2, \dots, N\}$ of size \sqrt{N}

Step 2, Claw algorithm

1. Pick $B \subseteq_R \{1, 2, ..., N\}$ of size \sqrt{N} 2. Sort *B* wrt. *f*-values

$|B| \log |B|$

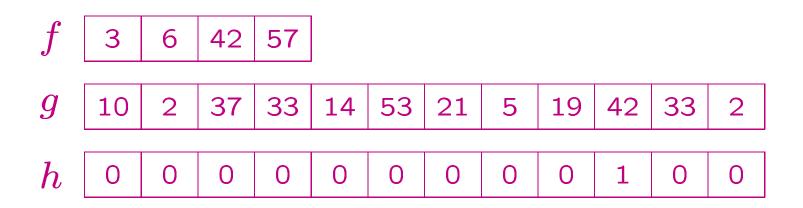
Step 3, Claw algorithm



- 1. Pick $B \subseteq_R \{1, 2, \dots, N\}$ of size \sqrt{N}
- 2. Sort B wrt. f-values
- 3. Define $h : \{1, 2, \dots, N\} \rightarrow \{0, 1\}$ by h(i) = 1 iff $g(i) \in f(B)$ (Evaluating h(i) takes $\log |B|$ compar.)

 $|B| \log |B|$

Step 4, Claw algorithm



- 1. Pick $B \subseteq_R \{1, 2, \dots, N\}$ of size \sqrt{N}
- 2. Sort B wrt. f-values
- 3. Define $h : \{1, 2, ..., N\} \to \{0, 1\}$ by h(i) = 1 iff $g(i) \in f(B)$
- 4. Compute Grover(h)

 $|B| \log |B| + \sqrt{N} \log |B| \in O(\sqrt{N} \log N)$

Algorithms using amplitude amplification

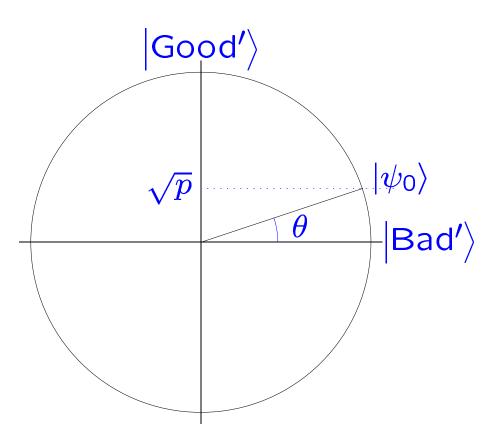
Computational Geometry Communication Complexitity

Grover's algorithm OR Threshold $_S$ Elem. Distinctness Claw

Median Majority Counting Integration Pattern Matching

Derandomization

Amplitude Amplification



 $\begin{array}{l} \mathsf{A} \left| \mathsf{0} \right\rangle = \left| \psi_{\mathsf{0}} \right\rangle \\ = \left| \mathsf{Good} \right\rangle + \left| \mathsf{Bad} \right\rangle \end{array}$

$$Q = -AS_0A^{-1}S_{\chi}$$

Succ. prob = p

p unknown: solution in expected time $\sqrt{\frac{1}{p}}$

p known: solution with certainty in $\sqrt{\frac{1}{p}}$