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ProofsProofs
A proof system should have the following
properties.

Completeness: every true statement
should have a proof.

Soundness: no false statement should
have a proof.

Usefulness: it should be easy to verify
the correcteness of a proof regardless of
how hard it might be to find one.



A simple A simple proofproof  systemsystem

{ }number composite positive a is | nnS =

qpn ,, is a proof if that n is in S if

nqnppqn <<<<= 1    ,1   ,

It might be hard to find such a proof
but it is easy to verify its correcteness.



TheThe class  class NPNP

A set (of strings) is in NP if there is a
polynomial time algorithm V such that:

true),( such that      , =$Œ" pxVpSx

false),(      , ="œ" pxVpSx

NP is the class of sets (of string) having
polinomial time chechable proof system.



World tour World tour problemproblem
The world tour (a.k.a. Traveling salesman)
problem: Given a list of cities and a cost to
travel between each pair of cities, is there a
tour that costs less than c?

IF there are n cities to be visited there are
(n-1)! possible tours. One might have to
compute the cost of every tour before finding
one with cost less than c. The set is in NP:
given a list of cities, a table of cost, a budget
and a tour, it is possible to verify the that the
tour is within the budget in polynomial time.



World tour World tour problemproblem

00330k330k260k260k310k310kTokyoTokyo

320k320k00170k170k120k120kParisParis

250k250k160k160k0040k40kCalgaryCalgary

300k300k100k100k50k50k00MontrMontrééalal

TokyoTokyoParisParisCalgaryCalgaryMontrMontrééalal

Budget 720k

Montréal 50k Calgary 160k Paris 320k Tokyo 310k Montréal=840k

Montréal 100k Paris 320k Tokyo 260k Calgary 40k Montréal=720k

There are 6 possible tours



ProblemsProblems in  in NPNP
Scheduling: Giving a list of courses with the
students attending, is it possible to produce a
schedule using k periods without any conflict?

Clique: given a graph G, is there a clique of
size at least k in G?

Quadratic residuosity: given a,b and c, is
there a x < c such that x2=a mod b?



NP-CompleteNP-Complete
A problem is in P if there is a polynomial
time algorithm to solve it.

A problem is NP-Complete if it is in NP and if
every problem in NP reduces to it in
polynomial time.

Scheduling, Clique, Quadratic residuosity,
Traveling salesman are NP-Complete.

The most important question in complexity
is:  Is P=NP?



NP NP andand  thethe quantum computer quantum computer

A problem is in BQP if there is a
polynomial time quantum algorithm to
solve it.

No NP-Complete problem is known to be in
BQP.

Using Grover’s algorithm it is possible to
obtain a quadratic speedup on the
quantum computer.



Quantum proofQuantum proof
What happens if we consider quantum proofs?

A classical proof is a string; a quantum proof has to
be a quantum state.

A classical proof is verified by a classical program.

A quantum proof would be verified by a quantum
circuit.

Classical proof systems are usualy deterministic; a
quantum proof might as well be probabilistic.

Does there exist problems that don’t have a short
classical proof but have a short quantum proof?



QMAQMA

A set S (of strings) has a quantum is in QMA
if there exists a polynomial time algorithm V
such that:

( )
3

2
true) ,(Prob such that      , ≥=$Œ" yy xVSx

( )
3

1
false),( Prob     , £="œ" yy xVSx

Is there some problem in QMA not known to
be in NP?



FiniteFinite group group
A finite group is a set G with an operation *
such that:

Closure

Associativity

Neutral element

Inverse
xxxGxG =*=*Œ"Œ$ 11  such that  1

z)(yxzy)(xGzyx **=**Œ"      ,,

1   with  , =*=*$Œ" xyyxyGx

GyxGyx Œ*Œ"      ,



ExampleExample  ofof a  a finitefinite group (1) group (1)

b
c

a
abkck,cba  is   ofrest                    mod ¤=+$¤≡

25473for        7mod425 =+⋅≡

Integer mod n with addition forms a finite group

nz)(yxzy)(x mod ++≡++

nxx mod000 ≡+≡+

nnxxnxnx mod0)()( ≡≡+-≡-+



ExampleExample  ofof a  a finitefinite group (2) group (2)
Integer mod p with multiplication forms a finite
group when p is prime.

Clearly

Fermat’s theorem says

pz)(yxzy)(x mod **≡**

pxxx mod11 ≡*≡*

pxx p mod1, 1 ≡" -

pxxxx pp mod1 22 ≡*≡* --

7mod1663524534211 ≡*≡*≡*≡*≡*≡*



The multiplication is done modulo p.

The set of all n by n invertible matrices mod p
forms a group (Matrix group).

The neutral element is the identity matrix.

ExampleExample  ofof a  a finitefinite group (3) group (3)
Modular arithmetic nicely generalizes to 
n by n matrices of integers mod p.



ExampleExample  ofof  finitefinite group group
A simple way to define a group is to consider
the subset of a group G defined by some
generators.

A group           can be defined by k
generating elements g1, g2,…,gk.

                                 is the set of elements
that can be obtained by the multiplication of
some generator.

Group membership: a natural question is:
Given generators g1, g2,…,gk, is h in the
group G’?

GG Õ¢

kgggGG ,,, 21 K=¢⊇



ExampleExample  ofof  finitefinite group group
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Consider the group G’ generated by (mod 7)

Does m belong to G’ ?
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m 3213 mmmmm ***=

In that case it is true and easy to verify.
What about the general case?



Group Group membershipmembership  problemproblem

Group membership: Given generators g1, g2,…,gk, is
h in the group obtained by multiplication of the
generators?

For all groups, group membership is in NP.

For some groups, like the matrix group, it is not
known if group non-membership is in NP.

No short proofs are known in general for non-
membership of a group.

For any group, group non-membership is in QMA.

?,,, 21 kgggh KŒ



TheThe quantum  quantum proofproof

For the group

kgggG ,,, 21 K=¢

The state

Â
¢Œ¢
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is a quantum proof for non-membership for
any h not in G’.

(Note: this state might be difficult to create.)



PropertiesProperties of of G¢

For any h in G let Â
¢Œ

*
¢

=¢
Gg

gh
G

Gh
1

Gghg ¢Œ*" ,

2121    ,, ghghGgg *≠*Œ"
Gghg ¢œ*" ,

0=¢¢ GhG1=¢¢ GhG

Gh ¢Œ Gh ¢œ



TestingTesting  membershipmembership
Knowing h, there are unitary transformations U

ghgUGg *=Œ"      ,

ghgUggUGg *=¢=¢Œ" 1     0     ,

and U’

Consider
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We apply H to the first qubit and obtain
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SoundnessSoundness

If the the state we start with is the right one,
we can test non-membership probabilistically.

Maybe in the case where h is a member there
exists a state that will succeed with some
probability.

We need a way to verify or ensure that the
state is the correct one.



IncreasingIncreasing  thethe  qualityquality  ofof  thethe  proofproof

Before we use the test to verify that h is
not in the group we will generate (using the
generator) several elements of G’ and
perform the test with them.

If the state is        then all tests will
succeed and the state will remain
unchanged. Otherwise, one of the tests will
fail or we will obtain a state almost equal to

G¢ 

G¢ 



We are provided with the state
We perform the test with element g

IncreasingIncreasing  thethe  qualityquality  ofof  thethe  proofproof
K
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The resulting state when the test succeeds is
better than the original state.


