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Why Lower Bounds?

e Main question for a computer scientist:

Which problems admit quantum speed-up?

e Equivalent question:

Which problems don't?

e \We need lower bounds to answer this:
provable limits on the power of quantum
computers



Overview

1. What can we prove?

2. Black-box model

3. Methods:
e hybrid
e polynomials

e quantum adversary

4. Other stuff, open problems



What Can we Prove?

e Counting argument:
there are 20(mlogm) ,_gate circuits over
finite basis, but there are 22" different n-
bit functions = most f need m > 27/109(n)

e What about explicit functions?

e Even for classical circuits, we can prove
only linear lower bounds! (P vs NP)

e \We only know how to prove lower bounds
in the black-box model



Black-Box Computation

e We want to compute f: {0,1} — {0,1}
of input z = (z1,...,zxN)

e Input can only be accessed via queries:

e Unitary transformation: Oli, 1) = |i, 1 — x;)

e (QC can query superposition:
(\/_ZMO) \/_Z|z:cz

e Minimize the number of queries used



Example: Deutsch-Jozsa

o x = (x1,...,zn), N = 2%, either
(1) all x; are 0 (constant), or
(2) exactly half of the z; are 0 (balanced)

e Classically: %—l— 1 queries needed

e Quantum: 1 query suffices

(|0)— H H \
n < > measure

\ |O>7H O H J




Deutsch-Jozsa (continued)

After first Hadamard:

1 A | (10 =11)
- 4)
x/2_z.€{0,1}n ( V2 )

After query:

1 ;| ; 0) —[1)
= E (—1)%4) .
V2 ie{0,1}" < V2 )

After second Hadamard (ignore last qubit):

1 1 Wi
- ), (D= > (=13
\/Q_z'e{o,l}n \/Q_je{o,l}n

Amplitude of |[5) = |0...0) is

1 z: | 1 if constant
on Z (=1)™ _{ 0 if balanced
i€{0,1}"
Measurement gives correct answer



Definition of Black-Box Complexities

e D(f): # queries for deterministic algorithm
R>(f): # queries for bounded-error algo
(error probability < 1/3 for all x)

e A T-query quantum algorithm:

00— — ... — —— measure 0/1

e Qr(f): # queries for exact quantum algo
Q->(f): # queries for bounded-error quan-
tum algo (error < 1/3 for all x)



Most Quantum Algorithms are Black-Box

e Deutsch-Jozsa (constant vs. balanced):
Qe(DJ))=1vs. D(DH =5 +1

e Shor's period-finding (implies factoring):
x=((m(1),...,m(N)), where m is
a periodic function with period r
Q>(find-r) = O(1) vs. Ry(find-r) > N1/3

e Grover search:
xr = (:IS‘]_,.. .,ZIJN), find ¢ s.t. r; =1
Qo(search) =~ v/ N vs. Ry(search) ~ N

e Also: Simon, counting, ordered search,. ..

e Not: communication complexity, automata



Hybrid Method for Search (BBBV 93)

e Fix a T-query quantum search algorithm
|9ty = state before t-th query, on input e;
ol = amplitude on query i in |¢h)
Compare empty input with all other inputs

) t+1 t+1
o Easy: || ¢t — T < |l ¢h — ¢t || + 2],
1 T41 T4+1 I
so§<ll¢+ —l T <2y 1o
t=1

e Sum over all 2:

5 < Z2Zlat| = 2ZZlatl

t=1:=1

CS

< 2 Z \/N\ Z k| < 2TVN
t=1 1=1




Polynomial Method (BBCMW 98)

e Boolean function f: {0,1}" — {0,1}
polynomial p: RY - R

e p represents f if f(z) = p(x) Vz
deg(f) minimum degree of such p

e p approximates f if |f(x) —p(x)| < 1/3 Vx
deg(f) minimum degree of such p

e Example:
x1 + x> — x125 represents OR(x1, o)

221 + 5z approximates OR(z1,z2)

e Polynomial lower bounds:

deg(f) deg(f)
2 2

< Qg(f) and

< Q2(f)



Amplitudes Are Polynomials

e Final state after T" queries depends on x:

¢) = > ar(@)k)

ke{0,1}m

e op(x) are polynomials of degree < T, proof:
1. Initially (T'=0) the «aj are constants
2. O permutes [i,0) and |z,1) iff z; = 1:

O (al$,0) + B3, 1)) =

(a(1l — z;) + Bx;)|i,0)+(ax; + B(1 — x;))]d, 1)
thus O adds 1 to the degree

3. Amplitudes after U; are linear sums of
old amplitudes, cannot increase degree



Lower Bounds from Degrees

e Probability of output 1:
P(z)= Y  |a@)

k starts with 1
P(z) is a polynomial of degree < 2T

e For exact algorithms, P(z) = f(z) Vzx:

deg(f) < degree of P < 2T

= < Qgr(f)

deg(f)
2

e For bounded-error, |P(x) — f(x)| <1/3 Vx

deg(f)

5 < Q2(f)

=




Examples of Degree Lower Bounds

e deg(OR) = N = Qr(OR) > N/2
No speed-up for error-less search!

¢ deg(OR) = VN = @(OR) > V/N/2
BBBV's lower bound on Grover search!

e deg(PARITY) = N = Q»(PARITY) > N/2
No significant speed-up for parity!
(independently by Farhi ea 98)

e deg(f) ~ N for most f (Ambainis)
No significant speed-up for most f!



Tight Bounds for Symmetric f

e f is symmetric if f(x) depends only on
Hamming weight |z| of z (OR, PARITY,
Threshold,. ..)

e Can “symmetrize” its acceptance probabil-
ity to single-variate P(|z|) of degree < 2T

o Paturi 92: deg(f) > \/N(N = (f) + 1)

e Upper bound from quantum counting



D(f) and Q>(f) Polynomially Related

e Block sensitivity:
max # disjoint blocks B s.t. f(z) # f(zP)
Measures influence of changes in z on f(x)

1. /bs(f) < deg(f) (Nisan & Szegedy 94)

2. D(f) < bs(f)3 for total f (BBCMW 98)
(i.e., no promise on N-bit input)

= D(f) < Q>(f)® for all total f

e For all total functions in the black-model:

quantum bounded-error computation
IS at most polynomially better than
classical deterministic computation



Lower Bound for Collision Problem

e Given f:[N] — Z, either 1-to-1 or r-to-1
Problem: determine which

e (N/r)1/3 quantum queries suffice (BHT 97)

e Aaronson 02 (improved by Shi):

1. Clever symmetrization gives degree-27T
2-variate polynomial P(s, m) such that
P(1,m) ~ 0, and P(s,m) = 1 if s|m

2. This must have high degree

e Gives N2/3 pound for element distinctness



Adversary Method (Ambainis 00)

e Generalization of hybrid method

e If A computes f, then it must distinguish
inputs  and y whenever f(z) # f(y);
otherwise correct output of A on x implies
the same (incorrect) output on y.

e Distinguishing many (z,y)-pairs is hard

e Need some measure of progress to see how
well we're distinguishing all (z,y)-pairs



More Precisely

e Let X and Y be sets of inputs such that
f(x) # f(y) whenever z € X andyeY

o Let |¢l) be state of the algorithm before
t-th query on input z, then |(¢Z|¢T)| < 3

(else measurement can't distinguish them)

e W, Y S (gtlel)

r€EX,ye€y
e Initially: Wy = |X]| - |Y]
o At the end: Wr < |X|-|Y]|
e If we can show Wy — Wy < A, then

1
Wo —Wr _ 5|X]- Y]
> >
Q2(f) 2 : > :




Example: Search

e X ={(0,...,0)}
Y ={¢:1<i<N}

A B ST

reX,yeY
e Initially: Wo = |X|-|Y|=N
. 1 _ N
o At the end: Wy < 5[X|-|Y| =5

e Ambainis: Wy — Wyy1 <V N, hence

Wo — W N
Q- (search) > 0 > £

vN T 2




General Theorem

Consider f: {0,1} — Z.

If there are sets X,Y C {0,1}" and relation
RCXxY st f(z)# f(y)ifzeX, yeY

1. for all x € X there are at least m different
y with (z,y) € R

2. for all x € X and i € [N] there are at most
¢ different y with (x,y) € R and z; # y;

3. for all y € Y there are at least m' different
x with (z,y) € R

4. for all y € Y and ¢ € [N] there are at most
¢ different = with (x,y) € R and z; % y;

then

m-m

Q2(f) > 7




Other Lower Bounds via Adversary

Very versatile method:

o VN for AND-OR trees

e v N for inverting a permutation m € Sy

e log N for binary search

e Nlog N for sorting

e Recent lower bounds on graph algorithms



Searching and Sorting

e Searching N unordered elements:

Classical: ~ N queries
Quantum, error «: \/Nlog(l/e)

e Searching N ordered elements:

Classical: log N queries

Quantum: Wlége log N < Qg < 0.5261og N

(Hgyer-Neerbek-Shi; Farhi ea)

e Sorting N elements:

Classical: Nlog N + O(N) comparisons
Quantum: %%WNIOQ N < Qg <0.526 Nlog N



Comparison: Polynomials vs Adversary

Cases where polynomial method is stronger:

e Search with small or zero error

e Collision-finding, element distinctness

Cases where adversary method is stronger:

e Iterated base function (Ambainis 03)

e AND-OR tree? (deg is unknown)

Neither method is optimal. A new semidefinite-
programming method by Barnum, Saks, Szegedy
is optimal, but very hard to apply



Some Open Problems

e Main question is still:
Which problems admit quantum speed-up??

(which promises give exponential speed-up?)

e Tighten general D(f) < Q>(f)® bound?

e Generalize polynomials and adversary?

e Specific problems, like finding triangle in
graph (upper bound n3/2, lower bound n)



If You Want to Know More...

Polynomial method:

e Classical: Nisan and Szegedy, On the degree of
Boolean functions as real polynomials, STOC 92.

e Quantum: Beals, Buhrman, Cleve, Mosca, de Wolf,
Quantum lower bounds by polynomials, FOCS 98.

e Survey: Buhrman and de Wolf, Complexity mea-
sures and decision tree complexity: A survey. The-
oretical Computer Science 2002

e Collision: Aaronson STOC 02, Shi FOCS 02

Quantum adversary method:

e Original: Ambainis, Quantum lower bounds by quan-
tum arguments, STOC 2000.

e \Weighted version: Hgyer, Neerbek, Shi, Quantum
complexities of ordered searching, sorting, and ele-
ment distinctness, ICALP 2001.

e Separation: Ambainis, Polynomial degree vs. quan-
tum query complexity, quant-ph/0305028



