Quantum Lower Bounds

Ronald de Wolf

CWI Amsterdam

http://homepages.cwi.nl/~rdewolf

Why Lower Bounds?

• Main question for a computer scientist:

Which problems admit quantum speed-up?

• Equivalent question:

Which problems don't?

 We need lower bounds to answer this: provable limits on the power of quantum computers

Overview

- 1. What can we prove?
- 2. Black-box model
- 3. Methods:
 - hybrid
 - polynomials
 - quantum adversary
- 4. Other stuff, open problems

What Can we Prove?

- Counting argument: there are $2^{O(m \log m)}$ m-gate circuits over finite basis, but there are 2^{2^n} different n-bit functions \Rightarrow most f need $m \ge 2^{n/\log(n)}$
- What about explicit functions?
- Even for classical circuits, we can prove only linear lower bounds! (P vs NP)
- We only know how to prove lower bounds in the black-box model

Black-Box Computation

- ullet We want to compute $f:\{0,1\}^N o \{0,1\}$ of input $x=(x_1,\ldots,x_N)$
- Input can only be accessed via queries:

$$i \longrightarrow x_i$$

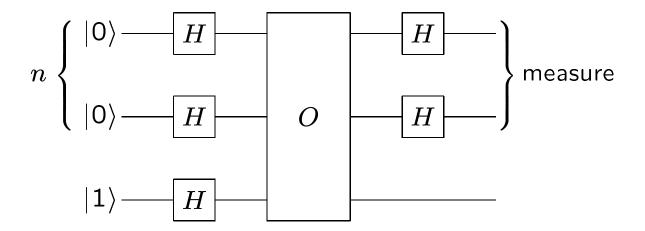
- Unitary transformation: $\begin{array}{c} O|i,0\rangle = |i,x_i\rangle \\ O|i,1\rangle = |i,1-x_i\rangle \end{array}$
- QC can query superposition:

$$O\left(\frac{1}{\sqrt{N}}\sum_{i=1}^{N}|i,0\rangle\right) = \frac{1}{\sqrt{N}}\sum_{i=1}^{N}|i,x_i\rangle$$

Minimize the number of queries used

Example: Deutsch-Jozsa

- $x=(x_1,\ldots,x_N)$, $N=2^n$, either (1) all x_i are 0 (constant), or (2) exactly half of the x_i are 0 (balanced)
- Classically: $\frac{N}{2} + 1$ queries needed
- Quantum: 1 query suffices



Deutsch-Jozsa (continued)

After first Hadamard:

$$\left(rac{1}{\sqrt{2^n}}\sum_{i\in\{0,1\}^n}\ket{i}
ight)\left(rac{\ket{0}-\ket{1}}{\sqrt{2}}
ight)$$

After query:

$$\left(rac{1}{\sqrt{2^n}}\sum_{i\in\{0,1\}^n}(-1)^{x_i}|i
angle
ight)\left(rac{|0
angle-|1
angle}{\sqrt{2}}
ight).$$

After second Hadamard (ignore last qubit):

$$rac{1}{\sqrt{2^n}}\sum_{i\in\{0,1\}^n}(-1)^{x_i}rac{1}{\sqrt{2^n}}\sum_{j\in\{0,1\}^n}(-1)^{i\cdot j}|j
angle.$$

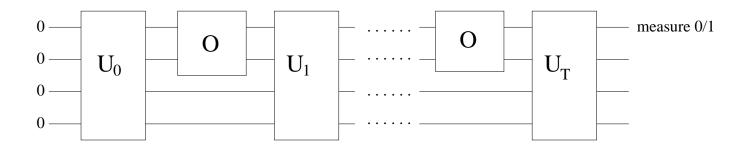
Amplitude of $|j\rangle = |0...0\rangle$ is

$$rac{1}{2^n}\sum_{i\in\{0,1\}^n}(-1)^{x_i}=\left\{egin{array}{ll} 1 & ext{if constant} \ 0 & ext{if balanced} \end{array}
ight.$$

Measurement gives correct answer

Definition of Black-Box Complexities

- D(f): # queries for deterministic algorithm $R_2(f)$: # queries for bounded-error algo (error probability $\leq 1/3$ for all x)
- A T-query quantum algorithm:



• $Q_E(f)$: # queries for exact quantum algo $Q_2(f)$: # queries for bounded-error quantum algo (error $\leq 1/3$ for all x)

Most Quantum Algorithms are Black-Box

- Deutsch-Jozsa (constant vs. balanced): $Q_E(\mathrm{DJ}) = 1$ vs. $D(\mathrm{DJ}) = \frac{N}{2} + 1$
- Shor's period-finding (implies factoring): $x=(m(1),\ldots,m(N))$, where m is a periodic function with period r $Q_2(\text{find-}r)=O(1)$ vs. $R_2(\text{find-}r)\geq N^{1/3}$
- Grover search:

$$x=(x_1,\ldots,x_N)$$
, find i s.t. $x_i=1$ $Q_2(\text{search}) \approx \sqrt{N}$ vs. $R_2(\text{search}) \approx N$

- Also: Simon, counting, ordered search,...
- Not: communication complexity, automata

Hybrid Method for Search (BBBV 93)

- Fix a T-query quantum search algorithm $|\phi_i^t\rangle=$ state before t-th query, on input e_i $\alpha_i^t=$ amplitude on query i in $|\phi_0^t\rangle$ Compare empty input with all other inputs
- Easy: $\|\phi_0^{t+1} \phi_i^{t+1}\| \le \|\phi_0^t \phi_i^t\| + 2|\alpha_i^t|$, so $\frac{1}{2} \le \|\phi_0^{T+1} \phi_i^{T+1}\| \le 2\sum_{t=1}^T |\alpha_i^t|$
- Sum over all i:

$$\frac{N}{2} \leq \sum_{i=1}^{N} 2 \sum_{t=1}^{T} |\alpha_i^t| = 2 \sum_{t=1}^{T} \sum_{i=1}^{N} |\alpha_i^t|$$

$$\stackrel{\text{CS}}{\leq} 2 \sum_{t=1}^{T} \sqrt{N} \sqrt{\sum_{i=1}^{N} |\alpha_i^t|^2} \leq 2T\sqrt{N}$$

$$\Rightarrow \frac{\sqrt{N}}{4} \leq T$$

Polynomial Method (BBCMW 98)

- ullet Boolean function $f:\{0,1\}^N o \{0,1\}$ polynomial $p:\mathbb{R}^N o \mathbb{R}$
- p represents f if $f(x) = p(x) \ \forall x$ deg(f) minimum degree of such p
- p approximates f if $|f(x) p(x)| \le 1/3 \ \forall x$ $\widetilde{deg}(f)$ minimum degree of such p
- Example:

$$x_1 + x_2 - x_1x_2$$
 represents $OR(x_1, x_2)$ $\frac{2}{3}x_1 + \frac{2}{3}x_2$ approximates $OR(x_1, x_2)$

Polynomial lower bounds:

$$\frac{deg(f)}{2} \le Q_E(f)$$
 and $\frac{\widetilde{deg}(f)}{2} \le Q_2(f)$

Amplitudes Are Polynomials

• Final state after T queries depends on x:

$$|\phi\rangle = \sum_{k \in \{0,1\}^m} \alpha_k(x) |k\rangle$$

- $\alpha_k(x)$ are polynomials of degree $\leq T$, proof:
 - 1. Initially (T=0) the α_k are constants
 - 2. O permutes $|i,0\rangle$ and $|i,1\rangle$ iff $x_i=1$:

$$O\left(\alpha|i,0\rangle+\beta|i,1\rangle\right)=$$

$$(lpha(1-x_i)+eta x_i)|i,0
angle+(lpha x_i+eta(1-x_i))|i,1
angle$$
 thus O adds 1 to the degree

3. Amplitudes after U_j are linear sums of old amplitudes, cannot increase degree

Lower Bounds from Degrees

• Probability of output 1:

$$P(x) = \sum_{k \text{ starts with 1}} |\alpha_k(x)|^2$$

P(x) is a polynomial of degree $\leq 2T$

• For exact algorithms, $P(x) = f(x) \ \forall x$:

$$deg(f) \leq degree of P \leq 2T$$

$$\Rightarrow \frac{deg(f)}{2} \le Q_E(f)$$

• For bounded-error, $|P(x) - f(x)| \le 1/3 \ \forall x$

$$\Rightarrow \frac{\widetilde{deg}(f)}{2} \le Q_2(f)$$

Examples of Degree Lower Bounds

- $deg(OR) = N \Rightarrow Q_E(OR) \ge N/2$ No speed-up for error-less search!
- $\widetilde{deg}(OR) = \sqrt{N} \Rightarrow Q_2(OR) \ge \sqrt{N}/2$ BBBV's lower bound on Grover search!
- $\widetilde{deg}(\mathsf{PARITY}) = N \Rightarrow Q_2(\mathsf{PARITY}) \geq N/2$ No significant speed-up for parity! (independently by Farhi ea 98)
- $\widetilde{deg}(f) \approx N$ for most f (Ambainis) No significant speed-up for most f!

Tight Bounds for Symmetric f

- f is symmetric if f(x) depends only on Hamming weight |x| of x (OR, PARITY, Threshold,...)
- Can "symmetrize" its acceptance probability to single-variate P(|x|) of degree $\leq 2T$

- Paturi 92: $\widetilde{deg}(f) \ge \sqrt{N(N \Gamma(f) + 1)}$
- Upper bound from quantum counting

D(f) and $Q_2(f)$ Polynomially Related

• Block sensitivity:

max # disjoint blocks B s.t. $f(x) \neq f(x^B)$ Measures influence of changes in x on f(x)

- 1. $\sqrt{bs(f)} \leq \widetilde{deg}(f)$ (Nisan & Szegedy 94)
- 2. $D(f) \leq bs(f)^3$ for total f (BBCMW 98) (i.e., no promise on N-bit input)
- $\Rightarrow D(f) < Q_2(f)^6$ for all total f
- For all total functions in the black-model:

quantum bounded-error computation is at most polynomially better than classical deterministic computation

Lower Bound for Collision Problem

- Given $f:[N] \rightarrow Z$, either 1-to-1 or r-to-1 Problem: determine which
- $(N/r)^{1/3}$ quantum queries suffice (BHT 97)
- Aaronson 02 (improved by Shi):
 - 1. Clever symmetrization gives degree-2T 2-variate polynomial P(s,m) such that $P(1,m)\approx 0$, and $P(s,m)\approx 1$ if s|m
 - 2. This must have high degree
- Gives $N^{2/3}$ bound for element distinctness

Adversary Method (Ambainis 00)

- Generalization of hybrid method
- If A computes f, then it must distinguish inputs x and y whenever $f(x) \neq f(y)$; otherwise correct output of A on x implies the same (incorrect) output on y.
- ullet Distinguishing many (x,y)-pairs is hard
- Need some measure of progress to see how well we're distinguishing all (x, y)-pairs

More Precisely

- Let X and Y be sets of inputs such that $f(x) \neq f(y)$ whenever $x \in X$ and $y \in Y$
- Let $|\phi_x^t\rangle$ be state of the algorithm before t-th query on input x, then $|\langle \phi_x^T | \phi_y^T \rangle| \leq \frac{1}{2}$ (else measurement can't distinguish them)
- $W_t \stackrel{def}{=} \sum_{x \in X, y \in Y} |\langle \phi_x^t | \phi_y^t \rangle|$
- Initially: $W_0 = |X| \cdot |Y|$
- ullet At the end: $W_T \leq \frac{1}{2}|X|\cdot |Y|$
- If we can show $W_t W_{t+1} \leq \Delta$, then

$$Q_2(f) \ge \frac{W_0 - W_T}{\Delta} \ge \frac{\frac{1}{2}|X| \cdot |Y|}{\Delta}$$

Example: Search

•
$$X = \{(0, ..., 0)\}$$

 $Y = \{e_i : 1 \le i \le N\}$

•
$$W_t \stackrel{def}{=} \sum_{x \in X, y \in Y} |\langle \phi_x^t | \phi_y^t \rangle|$$

- Initially: $W_0 = |X| \cdot |Y| = N$
- At the end: $W_T \leq \frac{1}{2}|X|\cdot |Y| = \frac{N}{2}$
- Ambainis: $W_t W_{t+1} \leq \sqrt{N}$, hence

$$Q_2(\text{search}) \geq \frac{W_0 - W_T}{\sqrt{N}} \geq \frac{\sqrt{N}}{2}$$

General Theorem

Consider $f: \{0,1\}^N \to Z$.

If there are sets $X,Y\subseteq\{0,1\}^N$ and relation $R\subseteq X\times Y$ s.t. $f(x)\neq f(y)$ if $x\in X$, $y\in Y$

- 1. for all $x \in X$ there are at least m different y with $(x,y) \in R$
- 2. for all $x \in X$ and $i \in [N]$ there are at most ℓ different y with $(x,y) \in R$ and $x_i \neq y_i$
- 3. for all $y \in Y$ there are at least m' different x with $(x,y) \in R$
- 4. for all $y \in Y$ and $i \in [N]$ there are at most ℓ' different x with $(x,y) \in R$ and $x_i \neq y_i$

then

$$Q_2(f) \ge \sqrt{\frac{m \cdot m'}{\ell \cdot \ell'}}$$

Other Lower Bounds via Adversary

Very versatile method:

- \sqrt{N} for AND-OR trees
- ullet \sqrt{N} for inverting a permutation $\pi \in S_N$
- ullet log N for binary search
- $N \log N$ for sorting
- Recent lower bounds on graph algorithms

Searching and Sorting

• Searching N unordered elements:

Classical: $\approx N$ queries Quantum, error ε : $\sqrt{N\log(1/\varepsilon)}$

• Searching N ordered elements:

Classical: log N queries

Quantum: $\frac{1}{\pi \log e} \log N \le Q_E \le 0.526 \log N$

(Høyer-Neerbek-Shi; Farhi ea)

• Sorting *N* elements:

Classical: $N \log N + O(N)$ comparisons

Quantum: $\frac{1}{2\pi \log e} N \log N \le Q_E \le 0.526 \ N \log N$

Comparison: Polynomials vs Adversary

Cases where polynomial method is stronger:

- Search with small or zero error
- Collision-finding, element distinctness

Cases where adversary method is stronger:

- Iterated base function (Ambainis 03)
- AND-OR tree? $(\widetilde{deg} \text{ is unknown})$

Neither method is optimal. A new semidefiniteprogramming method by Barnum, Saks, Szegedy is optimal, but very hard to apply

Some Open Problems

Main question is still:

Which problems admit quantum speed-up?

(which promises give exponential speed-up?)

- Tighten general $D(f) \leq Q_2(f)^6$ bound?
- Generalize polynomials and adversary?
- Specific problems, like finding triangle in graph (upper bound $n^{3/2}$, lower bound n)

If You Want to Know More...

Polynomial method:

- Classical: Nisan and Szegedy, On the degree of Boolean functions as real polynomials, STOC 92.
- Quantum: Beals, Buhrman, Cleve, Mosca, de Wolf, Quantum lower bounds by polynomials, FOCS 98.
- Survey: Buhrman and de Wolf, Complexity measures and decision tree complexity: A survey. Theoretical Computer Science 2002
- Collision: Aaronson STOC 02, Shi FOCS 02

Quantum adversary method:

- Original: Ambainis, Quantum lower bounds by quantum arguments, STOC 2000.
- Weighted version: Høyer, Neerbek, Shi, Quantum complexities of ordered searching, sorting, and element distinctness, ICALP 2001.
- Separation: Ambainis, Polynomial degree vs. quantum query complexity, quant-ph/0305028