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Abstract

This thesis presents the experimental demonstration of an atomic source of narrowband

nonclassical states of light. Employing four-wave mixing in hot atomic Rubidium vapour,

the optical states produced are naturally compatible with atomic transitions and may be

thus employed in atom-based quantum communication protocols.

We first demonstrate the production of two-mode intensity-squeezed light and ana-

lyze the correlations between the two produced modes. Using homodyne detection in

each mode, we verify the production of two-mode quadrature-squeezed light, achieving a

reduction in quadrature variance of 3 dB below the standard quantum limit.

Employing conditional detection on one of the channels, we then demonstrate the

generation of single-photon Fock states as well as controllable superpositions of vacuum

and 1-photon states. We fully characterize the produced light by means of optical homo-

dyne tomography and maximum likelihood estimation. The narrowband nature of the

produced light yields a resolvable temporal wave-function, and we develop a method to

infer this wave function from the continuous photocurrent provided by the homodyne

detector.

The nature of the atomic process opens the door to a new direction of research:

generation of arbitrary superpositions of collective atomic states. We perform the first

proof-of-principle experiment towards this new field and discuss a proposal for extending

this work to obtain full control over the collective-atomic Hilbert space.
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Chapter 1

Introduction

This thesis describes a new method of generating narrow bandwidth non-classical light.

What it means for light to be non-classical will be explained in detail in chapter 2, but for

now suffice it to say that the defining non-classical light state is that of the single photon, a

Bosonic particle representing a discrete quantum of energy. The photon has always been

a controversial [2] and fundamentally interesting state owing, among other properties,

to its ability to distribute a highly non-local quantum state over great distances. The

famous EPR paradox, of Einstein Podolsky, and Rosen [3] was reformulated [4] and

tested [5] in terms of photons. The 1956 discovery of photon anti-bunching by Hanbury

Brown and Twiss [6] initiated the concept of characterizing a state from photon statistics

and opened the field of quantum optics, although somewhat ironically, since the effect

can be fully explained classically. Single photon indistinguishability led to quantum

interference effects such as the Hong Ou Mandel dip [7] and counterfactual interaction

free measurements [8]. The concept of photon bunching led to the concept of the squeezed

states which overcome the limit placed by the Heisenberg uncertainty principle, on the

minimum fluctuations allowed for a particular quadrature. In addition, squeezed states

can exhibit non-locality in the original sense studied by EPR [9].

In the past few decades, nonclassical light has also become a subject of considerable

practical interest. The increased precision possible with squeezed states allowed the possi-

bility of increasingly sensitive atomic time standards [10] and ultra-precise interferometry

with application to gravitational wave detection [11]. Another application has come with

the advent of quantum communication and computing. It was realized that Moore’s law

describing the number of transistors which can be placed onto an integrated circuit [12]
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must one day fail as the required transistor size approaches atomic dimensions. At this

scale, a quantum mechanical description of the circuit elements is required.

The concept of using the laws of quantum mechanics to enhance quantum computa-

tion dates back to Feynman who suggested it as a method of overcoming the complexity

of simulating quantum systems [13]. Modern day quantum computing processes infor-

mation using elements of a two-dimensional Hilbert-space known as qubits instead of

conventional bits. A good candidate for a qubit is the photon, encoded in one of its

degrees of freedom such as polarization or time. Optical qubits can travel over long dis-

tances without interacting with its environment. As an added bonus, it does so at the

speed of light.

While a quantum computer will not likely ever act as a substitute to a conventional

(classical) computer, it could greatly outperform a classical computer for several specific

operations such as quantum simulation, database searching, and integer factoring [14].

The last operation is of particular relevance since it would compromise standard RSA

encryption. The field of quantum communication solves the potential problem caused

by quantum computing by allowing the transfer of a cryptographic key which be shared

among two parties with unconditional security. The ability of an optical qubit to travel

quickly over long distances places non-classical light at the heart of these applications.

A fundamental difficulty plaguing optical quantum information processing lays in

storing, retrieving, and manipulating, the involved states. The ‘selling point” that the

optical qubit does not interact with other light while travelling creates a challenge, since

computing often requires the manipulation of one qubit conditioned on the state of the

other. One way around this is to engineer non-linear interactions with atoms that me-

diate the cross-talk between optical fields, which has been at the focus of much our

previous work [15]. Since light-matter coupling generally is mediated by an electronic

transition with a finite bandwidth ∆ν, the bandwidth of the qubit must have comparable
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bandwidth and have central frequency equal to that of the atomic resonance. Typical

bandwidths range from 10 MHz for bare atoms to several GHz for solid state materials.

For classical communication, one generally wants as large a bandwidth as possible in

order to transfer maximal information. In contrast for quantum communications, the

requirement of compatibility with atoms necessitates a source with a narrow spectral

band, on the order of atomic line-widths.

Much of the early progress in generating non-classical light came from a non-linear

optical effect known as spontaneous parametric down conversion (SPDC) which efficiently

generated single photons [16], and entangled photon pairs [17]. A drawback of this

method was that the light produced was not compatible with atomic transitions having

typical bandwidth ∆νSPDC ≈ 106∆νatom. In order to obtain light of suitable bandwidth

several approaches have been taken.

SPDC light has been spectrally filtered down to a suitable bandwidth but at the cost

of greatly reducing the number of emitted photons per unit time1 [19]. From this, a

figure of merit known as the “spectral brightness” S(ν) emerged quantifying the intrin-

sic narrowness of the source. S(ν) is typically stated in terms of number of emissions,

per second, per MHz of bandwidth. By placing the SPDC process in an optical cavity,

non-classical light sources of very high spectral brightness have been realized [20, 21].

Employing a third-order nonlinear effect known as four-wave mixing (4WM) in optical

fibers has also resulted in a high spectral brightness source [22]. Each of the above are

examples of so called heralded sources based on correlated two-photon emission. Detec-

tion of one photon of the pair heralds the existence of the other, but the pair generation

itself is probabilistic. In contrast, on-demand photon sources, acting as a “photon pistol”

have been produced using spatially confined semi-conductor devices known as quantum

dots [23], but with relatively low spectral brightness and low collection efficiency.

1This has been partially overcome by forming a waveguide-based SPDC system [18]
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Perhaps the most natural solution to generating quantum light which is compatible

with atoms is to use identical atoms to produce this light, which is the approach taken in

this work. Indeed the first demonstration of squeezed light (see chapter 2) was generated

with four-wave mixing in atoms by Slusher et al [24], but this accomplishment was soon

overshadowed by SPDC which produced a higher degree of squeezing and was plagued

with much less noise [25]. More recently, the DLCZ protocol for long distance quantum

communication (see section 6.3.1) led to the experimental demonstration of an atom-

based, on-demand photon source by the groups of J. Kimble and M. Lukin [26, 27]. This

was followed by a series of studies of this system by the group of S. Harris [28, 29]. Placing

the ensemble of atoms in a high finesse optical cavity, a photon source of unprecedented

spectral brightness was demonstrated by the Vuletic group [30]. Coming full circle since

the 1986 work of Slusher et al, the group of P. Lett demonstrated the efficient generation

of squeezed light using 4WM in atoms comparable to that of SPDC [31]. This atomic

source had the additional benefit of wide spatial bandwidth allowing for the generation

of entangled images [32].

The above photon sources inferred the purity of the generated light using photon

statistics conditioned on the arrival of the light. Such statistical methods work well if

the detected state is assumed a priori to belong to a restricted Hilbert space, but owing

to losses and extra noise, this is often not the case [33]. For example, these methods can

determine the quality of a single photon state provided that it is produced, but do not

infer the probability of generating the state in the first place. By employing a technique

known as optical homodyne tomography (see chapter 3), the full density matrix of the

light state may be measured, including the probability of its generation. This has been

accomplished for SPDC sources [19] and atomic based squeezed states [34, 35] but prior

to this work, not for atom-based photon sources.

The method of homodyne tomography is especially important for characterizing more
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complex quantum optical states. For example, the recent demonstration of an arbitrary

optical “qutrit” α |0〉+β |1〉+γ |2〉 relied heavily on OHT. In this experiment, the SPDC

source was combined with auxiliary fields before detection resulting in a controllable

superposition of 0, 1, and 2 photons [36]. Verification of the successful production of the

desired state, required full knowledge of the measured density matrix which could not be

obtained by photon statistics alone.

The generation of non-classical light using atomic ensembles opens up a new pos-

sibility: the engineering of atomic superposition states. The on-demand, “photon gun

character of the DLCZ protocol mentioned earlier is perhaps slightly dishonest: in order

to shoot the photon gun, one must first load it. This loading is accomplished by proba-

bilistically creating a single collective spin excitation (CSE) - that is a single excitation

shared across the entire ensemble. After this procedure however, one can in principle pro-

duce a photon on demand, any time later2 by converting the CSE into a single photon.

By performing conditional measurements during the loading procedure, a superposition

of CSEs may be created, akin to [36]. The collective state of the atomic ensemble could

then be written out optically, and measured via OHT. This new horizon has applications

in quantum metrology as well as a fundamental study of the interplay between analogous

Hilbert spaces of optical and collective atomic excitations.

This thesis is organized as follows: In chapter 2 we provide some basic definitions of

the non-classical light studied in this work and give an overview of criteria for labelling

a measured state as non-classical. In chapter 3, we describe the method of measuring

the quantum state of light employed in this work and describe an iterative algorithm for

reconstruction the density matrix from a set of experimental data. Chapter 4 describes

our experimental characterization of our source of non-classical light in terms of classical

gain, and non-classical properties such as intensity and quadrature squeezing. In chapter

2In practice, the ensemble decoheres over some characteristic time, after which the loading procedure
must be restarted.
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5, we describe the production of high quality narrow-band single photons compatible

with atomic Rubidium, and introduce several new methods for inferring the temporal

waveform of the produced photons. Finally, chapter 6 presents our progress towards

manipulating arbitrary superposition states of a collective atomic ensemble.
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Chapter 2

Nonclassical Light

2.1 Quantum Light

Throughout history, light has been considered to be wave-like, particle-like, and in the

past hundred years or so, both simultaneously. The wave-particle duality of quantum

objects remains a conceptual obstacle to an intuitive picture of their behaviour, but

quantum mechanics provides a sound formalism which allows us to calculate physically

relevant quantities precisely and thus in some sense forgo the need for an intuitive picture.

Quantum optics provides a quantum mechanical description of the electromagnetic field

and yields a toolkit for working with light as a quantum object.

Recall that for classical electromagnetism, we can define a spatio-temporal mode

u(x, t) which provides a complete description of the field. A simple example of such a

mode is a plane wave of some polarization1 u(x, t) = ei(k·x−ωt). More complex modes can

be written as a sum of these plane wave modes using the Fourier transform. The quantum

state of a single mode2 of the electromagnetic field is mathematically equivalent to that

of the quantum simple harmonic oscillator (QSHO) and we can associate an annihilation

operator â with a given mode having Hamiltonian:

Ĥ = ~ω
(
â†â+

1

2

)
. (2.1)

We can thus identify well-known states of the QSHO from elementary quantum theory

1A plane wave however, is unphysical in that a monochromatic beam implies an infinite temporal
width via the Fourier transform and infinite transverse extent since diffraction increases with decreasing
beam width (see appendix C). Experimentally, a laser beam propagating within its Rayleigh range is a
good approximation of a plane wave.

2A state is said to be single mode with respect to a given mode decomposition if all modes but one
in this decomposition are described by the vacuum state [37] (see sections 2.2 and 2.4).
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and explore the optical realization of these states.

2.2 Quantum States of Light

2.2.1 Quadrature States

Although the creation and annihilation operators are of fundamental importance to the

theory of quantum optics, they are not Hermitian and therefore not physically observable

quantities. We can however, use them to form the Hermitian quadrature operators:

X̂ =
â† + â√

2
(2.2)

P̂ = i
â† − â√

2

(2.3)

which represent the physically observable quadratures of the quantum field. The eigen-

states of the quadrature operators3 are in turn defined such that: X̂ |X〉 = X |X〉,

P̂ |P 〉 = P |P 〉.

Rewriting the basic Hamiltonian (2.1) in terms of the quadrature operators leads to

the expression:

Ĥ =
1

2
~ω
(
X̂2 + P̂ 2

)
. (2.4)

From the canonical commutation relation

[
â, â†

]
= 1 (2.5)

we find
[
X̂, P̂

]
= i and thus X̂ and P̂ exhibit the uncertainty relation:

3Technically, these quadrature states are not normalizable and belong to the so-called rigged Hilbert
space [38] but are included here owing to their mathematical convenience. For example, they form the
quadrature wave-functions ψ(x) ≡ 〈X|ψ〉 which are physically measurable and are of high relevance to
this work.
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〈
∆X2

〉 〈
∆P 2

〉
≥ 1

4
. (2.6)

Any state for which equality holds in the above relation is known as a minimum uncer-

tainty state.

2.2.2 Fock States

We define the number operator as

n̂ ≡ â†â (2.7)

which represents a physical observable corresponding to the number of excitations of the

field. The eigenstates of the number operator are known as Fock states |n〉 defined for

n ≥ 0. The Fock states form an orthonormal basis

〈m|n〉 = δmn (2.8)

and form the canonical basis for representing arbitrary quantum optical states in this

work. The creation and annihilation operators acting on Fock states add and remove an

excitation from the field respectively via:

â†|n〉 =
√
n+ 1|n+ 1〉 (2.9)

â|n〉 =
√
n|n− 1〉 . . . n > 0

= 0 . . . n ≤ 0

From the Hamiltonian (2.1) we see that each excitation has energy ~ω and the vacuum

state of the field |0〉 has non-zero energy ~ω/2.
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The quadrature expectation value for any Fock state is identically zero4 and the

variance is then5

〈
∆X2

〉
=
〈
∆P 2

〉
= 〈n| n̂+ 1/2 |n〉 = n+

1

2
. (2.10)

Note that the Fock states obey the Heisenberg uncertainty relation, with equality holding

only for the vacuum state |0〉.

In the following sections it will be useful to express the wave-function of a Fock state

in a particular basis. In the quadrature basis they are [39]:

ψn(X) = 〈X|n〉 =
e−

X2

2√
2nn!
√
π
Hn(X) (2.11)

where Hn(X) is the Hermite polynomial of order n.

2.2.3 Coherent States

Classically, we expect that the mean quadratures of a harmonic oscillator evolve in time

as6
〈
X̂(t)

〉
= X̂(0) cos(ωt) + P̂ (0) sin(ωt) and similarly for

〈
P̂ (t)

〉
. Fock states certainly

do not fit this description since the mean quadrature vanishes at all times. We then

seek a pseudo-classical quantum optical state which behaves like a harmonic oscillator

in the classical limit. Such a state was discovered by Schrödinger [40], fully described in

terms of quantum optics by Glauber [41], and is known as a coherent state. Formally, a

coherent state is defined as an eigenstate of the annihilation operator:

â |α〉 = α |α〉 (2.12)

where α is a complex number describing the amplitude and phase of the state. The

coherent state has several important properties which are of relevance to this work.

4〈n| â± â† |n〉 =
√
n 〈n|n− 1〉 ±

√
(n+ 1) 〈n|n+ 1〉 = 0

5Using
(
â± â†

)2
= â2 + (â†)2 ± (ââ† + â†â) = â2 + (â†)2 ± (2n̂+ 1).

6Where, for example X̂ is the rescaled position mωx and P̂ is the classical momentum p.
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First, in contrast to the Fock states, coherent states do not contain a definite photon

number, We can express a coherent state in the Fock basis as

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 . (2.13)

from which we see the photon number probability follows a Poissonian distribution. The

mean photon number of a coherent state is:

〈n〉α = 〈α| â†â |α〉 = α∗α 〈α|α〉 = |α|2 (2.14)

and the photon number variance is7:

〈
∆n2

〉
= |α|2 . (2.15)

Note that the relative uncertainty in photon number decreases monotonically as the mean

photon number increases: 〈∆n〉 / 〈n〉 = 1/
√
〈n〉 which one expects for a classical beam

which has a does not experience intrinsic intensity fluctuations. Finally, coherent states

are minimum uncertainty states satisfying equality in equation 2.6:

〈
∆X̂2

〉
|α〉

=
1

2
(2.16)

meaning that the coherent states can be seen as a vacuum state which has been displaced

in phase space. To this end, one can write a coherent state in terms of the displacement

operator as |α〉 = D̂(α) |0〉, where:

D̂ (α) = exp
(
αâ† − α∗â

)
. (2.17)

D̂(α) has the following properties [39]:

7
〈
n̂2
〉
− 〈n̂〉2 =

〈
â†ââ†â

〉
−
〈
â†â
〉2

=
〈
â†â†ââ+ â†â

〉
−
〈
â†â
〉2

= |α|4 + |α|2 − |α|4 = |α|2
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D̂ (α)−1 = D̂ (−α) (2.18)

D̂ (α)† âD̂ (α) = â+ α.

Coherent states are of high experimental relevance since a standard laser operating

above threshold produces a state which is in close approximation, a coherent state. This

statement, although widely regarded as fact is still a subject of debate. Poissonian photon

number distribution was verified experimentally shortly after the discovery of the laser

[42]. In this experiment, photon statistics of a laser source operated well below, near, and

well above threshold were observed to make a transition from a thermal to a Poissonian

distribution. However this determines only the diagonal terms of the density matrix of

the emitted state of light. The off-diagonal coherence terms turn out to be more subtle

and objections have been raised [43] as to whether a laser in fact, produces a statistical

mixture of photons or equivalently, a phase randomized coherent state:

ρ̂ =

∫ 2π

0

|α〉 〈α| dθ = e−|α|
2 |α|2n

n!
|n〉 〈n| . (2.19)

However, apart from particular cases involving non locality [44] the experimental results

do not seem to differ whether equation (2.12) or (2.19) is used since most experiments

do not require a particular coherent state with a particular global phase but rather any

coherent state. Having thus absolved my conscience of this subtlety, we assume for the

remainder of this thesis that a source of coherent states is provided from the lasers in

the experiment.

2.2.4 Thermal State

As opposed to the coherent state which is generated from a coherent source and thus

contains coherences ρnm = e−|α|
2 αn(α∗)m√

n!m!
, light from a thermal source such as a heated
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filament is incoherent and is represented by a statistical mixture of photons. Such a

state, known as a thermal state is given by [45]:

ρ̂ =
1

G

∞∑
n=0

(
G− 1

G

)n
|n 〉〈n| (2.20)

where G ≡ n̄ + 1, n̄ being the mean photon number of the field. The photon number

variance of the thermal state is 〈∆n2〉 = n̄2 + n̄ and the quadrature variance is 〈∆X2〉 =

n̄+ 1/2.8

2.2.5 Squeezed State

So far two minimum uncertainty states - namely the vacuum state |0〉 and the coherent

state |α〉 both satisfy
〈

∆X̂2
〉

=
〈

∆P̂ 2
〉

= 1/2. However it is only the product of these

two values which are bound by inequality (2.6) - we could have a state with
〈

∆X̂2
〉
< 1/2

as long as
〈

∆P̂ 2
〉

is increased accordingly. Any state which for some quadrature Q̂

satisfies
〈

∆Q̂2
〉
< 1/2 is known as a squeezed state.

In terms of photon number, a squeezed state consists of pairs of correlated photons.

Sources of squeezed states thus involve processes which emits photons in pairs but have

suppressed single photon emission. Each photon in a pair can exist in the same spatio-

temporal mode, producing a single-mode squeezed state or in different modes, yielding a

two-mode squeezed state (TMSS), described by the operator:

Ŝab(ζ) = exp
[
ζ
(
âb̂− â†b̂†

)]
. (2.21)

The TMSS is of particular relevance, not only to this work, but also to fundamental

physics since non-local correlations between quadratures may be quickly separated by

great distances. In the limit ζ → ∞, the TMSS becomes the EPR state described by

the original paper by Einstein, Podolsky, and Rosen which challenged the validity of the

8Derivation of these properties is found in Appendix B.
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quantum mechanical description of reality [3]. The non-local character of the quadrature

correlations inspires the definition of the so-called joint quadrature operators:

X̂± =
X̂a ± X̂b√

2
(2.22)

P̂± =
P̂a ± P̂b√

2
(2.23)

where X̂a = (â† + â)/
√

2 is the operator describing the quadrature in mode a etc. The

squeezing operator 2.21 transform the creation and annihilation operators according to

the Bogoliubov transformation:9

Ŝ†âŜ = â cosh(ζ)− b̂† sinh(ζ) (2.24)

Ŝ†b̂Ŝ = b̂ cosh(ζ)− â† sinh(ζ)

Ŝ†X̂±Ŝ = X̂±e
∓ζ

Ŝ†P̂±Ŝ = P̂±e
±ζ . (2.25)

A special case of a TMSS state is the so called (two-mode) squeezed vacuum: |ψ〉ab =

Ŝab(ζ) |0〉a |0〉b which in the Fock basis, equates to [46]:

|ψ〉ab =
∞∑
n=0

tanh(ζ)n

cosh(ζ)
|n〉a |n〉b . (2.26)

2.3 The Wigner Function

Given a quantum optical state |ψ〉 described in the last section, one would like to visualize

and characterize its properties. Classically, we can characterize a state of a system by its

phase space trajectory. Furthermore, given an ensemble of similarly prepared objects, we

9See appendix A for derivation of these properties.
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can define the classical phase space density function Wc(X,P ) which describes the proba-

bility of finding the particle in the region R of phase space via PR =
∫∫

R
Wc(X,P )dXdP .

Having the interpretation of probability, the phase space density function is necessarily

real and non-negative. Experimentally, we can measure a coordinate of phase space,

say position X repeatedly and observe the statistical distribution of results. For large

enough measurement sets, we build up the marginal distribution Pr(X) corresponding

to the measured coordinate. We can relate the probability density to the marginal dis-

tribution through the relation:

Pr(X) =

∫ ∞
−∞

Wc(X,P )dP (2.27)

Pr(P ) =

∫ ∞
−∞

Wc(X,P )dX.

Note that equation (2.27) also serves to relate the marginal distributions for different

coordinates.

In quantum mechanics, we are forbidden to define such a phase space picture since

position and momentum are not simultaneous observables and follow the uncertainty

relation (2.6). We can however, given an ensemble of identically prepared quantum

states, make a series of measurements of a particular coordinate which could be X, P ,

or in general, a linear combination of the two:

X̂θ ≡ X̂ cos θ + P̂ sin θ =
(
â†eiθ + âe−iθ

)
/
√

2. (2.28)

From these measurements we obtain the marginal distribution for each angle in phase

space. Analogous to the classical case, a function exists which relates the marginal

probability distributions of different coordinates as in (2.27).This function, known as the

Wigner function [47], is defined as:
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Wρ(X,P ) =
1

2π

∫ ∞
−∞

eiPQ
〈
X − Q

2

∣∣∣∣ ρ̂ ∣∣∣∣X +
Q

2

〉
dQ. (2.29)

The Wigner function shares many similarities with the classical probability density

function. The marginal probability distribution for a given coordinate Xθ can be obtained

via the Radon Transform:

Pr(Xθ) =

∫ ∞
−∞

W (Xcos(θ)− P sin(θ), P sin(θ) +X cos(θ))dX. (2.30)

which is a generalization of (2.27). As in the classical case, the Wigner function is real

and normalized:
∫∞
−∞W (X,P )dXdP = 1. By definition it is linear with respect to the

density matrix so the Wigner function of a statistical mixture of states is represented as

the sum of the Wigner functions of the constituent pure states. The Wigner function

uniquely defines a quantum optical state, and the density matrix elements in a given

basis may be obtained via [39]:

〈n| ρ̂ |m〉 = 2π

∫ ∞
−∞

W|ψ〉(X,P )Wn,m(X,P )dXdP (2.31)

In contrast to the classical probability density function, the Wigner function may take

on negative values and thus cannot be interpreted as a probability. Owing to equation

(2.30) however, each negative dip must be surrounded by a positive hill so that the

resultant marginal distribution is necessarily non-negative.

Given a quantum state ψ written in the Fock basis: ρ̂ =
∑

n,m ρmn |m〉 〈n| the Wigner

function may by calculated by combining equations (2.11) and (2.29) as

Wρ(X,P ) =
∑
m,n

1

2π

∫ ∞
−∞

eiPQψ∗m(X − Q

2
)ψn(X +

Q

2
)dQ.

=
∑
m,n

1

2π3/2

∫ ∞
−∞

eX
2+iPQ+Q2

2

√
2n+mn!m!π

Hm(X − Q

2
)Hn(X +

Q

2
)dQ. (2.32)
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which may be quickly calculated analytically using a symbolic computing program (or

tediously by hand if preferred). Wigner functions corresponding a number of quantum-

optical states are shown in figure (2.1):

Although we primarily consider the Wigner function in this work, there are sev-

eral commonly used quasi-probability distributions in quantum optics. The Glauber-

Sudarshan P function [41, 48] is defined as the deconvolution of the Wigner function

with the Wigner function of a vacuum state:

Wρ(X,P ) =

∫∫ ∞
−∞

Pρ(X
′, P ′)W|0〉〈0|(X −X ′, P − P ′)dX ′dP ′. (2.33)

The P function can also be described as the function which diagonalizes the density

matrix in the basis of coherent states. This property can be summarized by the optical

equivalence theorem10:

ρ̂ =

∫∫ ∞
−∞

P (X,P ) |α〉 〈α| dXdP. (2.34)

The P function usually exists in highly singular form. From equation (2.33) it is apparent

that the P function of a coherent state is a delta function P|α〉〈α| = δ2(α) and for many

other states P is even more pathological. As a result, there is no convenient way to

reconstruct the P function from experimental data, and experimentalists tend to prefer

the Wigner function representation.

Another distribution - the Husimi Q function is defined as the convolution of the

Wigner function with the Wigner function of a vacuum state:

Q(X,P ) =

∫∫ ∞
−∞

W (X ′, P ′)W|0〉〈0|(X −X ′, P − P ′)dX ′dP ′. (2.35)

10The are several distinct but equivalent forms of this theorem, the stated version may be found in
[39] and others may be found in, ex. [49].
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Figure 2.1: Wigner functions of various states discussed in sec. 2.2: (a) Vacuum state
|0〉. (b) Coherent state |α〉 with α = 3eiπ/6. (c) Squeezed state Ŝ(ζ) |0〉 with ζ = 2. (d)
Thermal State with n̄ = 2. (e) Single photon Fock state |1〉. (f) Arbitrary Superposition
state |ψ〉 = (1 |0〉+ 2 |1〉+ 3 |2〉+ 4 |3〉) /

√
30. Insets for each plot are the corresponding

density plot.
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Unlike the Wigner function, the Q function is non-negative and in fact may be interpreted

directly as a probability distribution11. The Q function of a state is identical to the

Wigner function of the same state that has undergone a 50% loss up to a scaling of the

coordinates.

2.4 Quantum Optical Modes

Thus far we have restricted the analysis to a single spatio-temporal mode12. In general,

full information of a quantum optical state may occupy several eigenstates of a chosen

basis and are thus considered multimode. For the purpose of this work, light can be

multimode in either spatial or temporal degrees of freedom[50]. Spatially multimode

light requires more than one orthogonal transverse basis state for a full description. For

example, laser light produced in a spherical optical cavity is bound by the orthonormal

cavity eigen-modes TEMmn (see chapter 5.2). Often, lasing can occur within several

TEM modes producing spatially multimode light.

Continuous wave optical states such as a narrowband coherent state can be well

described by a single temporal mode. We can represent this mode by the creation operator

for the instant of time t: â(t). In a similar fashion we can isolate a particular frequency

sideband of the steady state field â(ω). The support of the state in frequency space is

described by its spectral power density S(ν). In contrast to the steady state situation, a

heralded quantum state is formed by partial measurement defining an instant of time t at

which the state is transformed. Clearly here, the single temporal mode is inappropriate.

For such states, the temporal mode is defined by its temporal coherence function

Γ(τ) =
〈
â†(t)â(t+ τ)

〉
(2.36)

11See for example chapter 6 in [39]
12With the exception of the two-mode squeezed state, for which this medication was straightforward.
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which is distributed over some envelope ψ(t). From this weighting function, we can write

a pure temporal state corresponding to ψ(t) in terms of instantaneous modes as

âψ ≡
∫ ∞
−∞

ψ(t)â(t)dt. (2.37)

Temporal and frequency modes are related through the Wiener-Khintchine theorem

which states that the spectral power density is the Fourier transform of the temporal

coherence function (2.36):

S(ν) =

∫ ∞
−∞

Γ(τ)e−2iπντdτ. (2.38)

2.5 Quantum Light vs. Nonclassical Light, Nonclassicality Criteria

Quantum optics deals with a quantum mechanical treatment of the electromagnetic field.

In this sense, all states of light in this formalism are quantum states of light but we wish

to distinguish states that have a classical analogue and those that do not. To paraphrase

Sir Peter Knight [51], who was, in turn, paraphrasing George Orwell [52], “all states are

quantum, but some are more quantum than others.” As we have seen, the coherent state

has the properties one would expect from a classical oscillator and it makes sense that

we would classify this as a classical state. In fact, it is the classical state of light in terms

of the following definition:

Definition. A quantum optical state is said to be classical is it can be expressed as a

statistical mixture of coherent states. A state is non-classical if it cannot.
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2.5.1 Negativity of P function

From the optical equivalence theorem (2.34), it is apparent that an equivalent definition

for classicality is a positive definite P function13 since P (α) then acts as a weighting

function for a given coherent state α. Indeed this has been shown more rigorously by

Hillery [53] for the case of pure states. As mentioned, P functions are not conveniently

inferred from experimental data, and so a number of non-classicality criteria exist which

provide sufficient, but not necessary conditions on non-classicality:

2.5.2 The Squeezing Criteria

For the coherent state, 〈∆X2
θ 〉 = 1/2 for all θ such that (2.6) is satisfied. Squeezed states,

while still subject to inequality (2.6), have 〈∆X2
θ 〉 < 1/2 for some θ. This leads to the

following criterion: Any state for which there exist a phase-space coordinate Xθ satisfying

〈∆X2
θ 〉 < 1/2 is non-classical under the squeezing criterion. For a pure squeezed state this

follows from the definition of the P -function: Since the Fourier transform of a convolution

of functions is the product of the Fourier transforms of the respective functions, equation

(2.33) gives:

F(PS(ζ)(X,P )) =
F(W|0〉〈0|(X,P ))

F(WS(ζ)(X,P ))
(2.39)

The Fourier transform of a Gaussian of variance σ2 is a Gaussian of variance 1/ (2πσ2),

and since both the squeezed state and vacuum state have Gaussian Wigner functions,

F(PS(ζ)) must diverge along the (Fourier-transformed) squeezed quadrature and hence is

more singular than a delta function14. In general since any classical state is a statistical

mixture of coherent states each having quadrature variance 〈∆X2
θ 〉 = 1/2, the sum of all

states must have variance 〈∆X2
θ 〉 ≥ 1/2, with equality holding only in the case that each

state is identical, i.e. a coherent state. Finally, note that the squeezing criterion does

13For the purposes of this thesis, a delta function is considered to be positive definite.
14The Fourier transform of a simple delta function is a complex phase eikx0
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not require a minimum uncertainty state, but only that for at least one quadrature the

variance is less than that of a coherent state.

2.5.3 The Intensity Squeezing Criteria

The definition of classicality in terms of coherent states also sets a limit on the level of

photon number fluctuations, or equivalently intensity fluctuations, for a classical state.

Recall that according to equations (2.14) and (2.15), a coherent state follows Poissonian

statistics: 〈∆n2〉 = 〈n〉. A state with 〈∆n2〉 < 〈n〉 follows sub-Poissonian photon number

statistics and is said to be non-classical according to the intensity squeezing criterion.

In terms of experimentally measurable quantities, the intensity squeezing criterion states

that any state for which the photon number fluctuations are lower than that of a coherent

state of the same intensity is intensity squeezed. The reason that intensity squeezing is

considered to be a non-classical effect can be seen by noting that we can write 〈∆n2〉 =

〈n〉 +
(〈
â†2â2

〉
−
〈
â†â
〉2
)

. The rightmost term can be re-expressed in terms of the P

function as
∫
P (α)

[
|α|2 −

〈
â†â
〉]2

d2α [51] so that:

〈
∆n2

〉
− 〈n〉 =

∫
P (α)

[
|α|2 −

〈
â†â
〉]2

d2α. (2.40)

Clearly then, 〈∆n2〉 < 〈n〉 implies that P (α) must take on negative values in at least some

regions of phase space and the intensity squeezed state is thus by definition, non-classical.

2.5.4 Negativity of Wigner Function

The Wigner function of a coherent state
∣∣∣α = X+iP√

2

〉
is a displaced Gaussian centred at

(X,P ). Furthermore, the linearity of the Wigner function implies that for any classical

state ρ̂ =
∑

n cn |αn〉 〈αn| has a Wigner function which is the sum of Gaussians and is

necessarily positive definite. If the Wigner function of a state takes on a negative value at

any point (X,P ) then that state is non-classical. As an example, the single photon Fock
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state is highly negative at the origin W|1〉〈1|(0, 0) = − 1
π
. Not all nonclassical states have

negative Wigner functions however. For example the squeezed vacuum Wigner function

is Gaussian, yet non-classical by the squeezing criterion.

2.5.5 Anti-Bunching Criteria

The intensity squeezing criterion classifies a state as non-classical based on sub-Poissonian

statistics. Other non classicality criteria may be formulated in terms of photon counting

statistics. This is especially relevant in experimental quantum optics at the few photon

level where single photon counting modules are frequently employed15. The first is based

on the second order correlation function:

g(2)(τ) =

〈
â†(t)â†(t− τ)â(t)â(t− τ)

〉
〈â†(t)â(t)〉2

. (2.41)

which gives the probability of finding a second photon at a fixed delay τ from an initial

photon at time t. Here, â†(t) describes the annihilation operator in the mode correspond-

ing to time t, as described in section 2.4. If g(2)(τ) is at a maximum at τ = 0 then we

have photon bunching (i.e. decreasing probability of finding a photon at later times)

whereas a minimum g(2)(0) implies photon anti-bunching. Anti-bunching is closely re-

lated to sub-Poissonian statistics described in section 2.5.3, but the two criteria are not

equivalent [54].

For a coherent state

g(2)(0) =
〈α| â†â†ââ |α〉
〈α| â†â |α〉2

=
α∗α∗αα

(α∗α)2 = 1. (2.42)

which set the classical limit: Any state for which g(2)(0) < 1 is said to be non-classical

by the anti-bunching criterion. As an example, a Fock state |n〉 has g(2)(0) = 1 − 1/n

whereas for a thermal state, g(2)(0) = 2.

15See chapter 3.
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An equivalent anti-bunching criterion is a negative Mandel Q parameter:

Q =
〈∆n2〉 − 〈n〉
〈n〉

< 0. (2.43)

To see the equivalence of the above criteria, note that we can re-write (2.41) at zero time

delay in terms of photon number as:

g(2)(0) =

〈
â†(ââ† − 1)â

〉
〈â†â〉2

=
〈n̂2〉 − 〈n̂〉
〈n̂〉2

=
〈∆n2〉 − 〈n̂〉+ 〈n〉2

〈n̂〉2
=

Q

〈n〉
+ 1. (2.44)

Clearly then, g(2)(0) < 1 if and only if Q < 0. From the definition (2.43) it is evident

that for sub-Poissonian light, Q < 0, for a coherent state Q = 0, and for super-Poissonian

light, Q > 0.

2.5.6 Criteria for Specific Density Matrix Elements

Suppose that we are given a density matrix of an unknown quantum state and we wish

to know whether or not it is non-classical16. First, the probability of finding a specific

number of photons n in a coherent state is non-zero (Prn = |〈n|α〉|2 = e−|α|
2 |α|2n

n!
). A

statistical mixture of coherent states thus has Prn > 0. Any state ρ having a vanishing

diagonal element ρnn = 0 is non-classical17. Consequentially, any non-vacuum state with

a finite Fock state decomposition is non-classical.

We can also look at particular density matrix elements. For a coherent state, equation

(2.13) gives ρ11 = e−|α|
2 |α|2 = n̄e−n̄ where n̄ ≡ |α|2. Note then d

dn̄
ρ11 = (1 − n̄)e−n̄ = 0

when n̄ = 1, i.e. the highest possible single photon component of a coherent state occurs

with a coherent state of mean photon number 1 for which ρ11 = e−1 ≈ 0.37. For a

statistical mixture, ρ =
∑

α cαρα, ρ11 =
∑

α cαρα,11 ≤ max[ρ11]
∑

α cα = e−1. Therefore,

any state with ρ11 > e−1 is non-classical.

16This is of particular relevance to this work since we extract the density matrix of a quantum optical
field from data acquired using optical homodyne detection

17The trivial exception being the vacuum state
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Chapter 3

Detecting Nonclassical Light: Quantum State Tomography

3.1 Quantum State Detection

3.1.1 Intensity Detection

The simplest way to detect light is by use of a detector which measures photon flux,

that is, the number of photons per second incident on the detector’s active area. Such

a device, known as a photodiode, accomplishes this by converting each incident photon

into an electron with probability η, known as the quantum efficiency. In the near infra-

red band, commercial Silicon PIN photo-diodes have η > 90% with specialized models

reaching 99.8% [55]. Since even a small optical power corresponds to a large photon flux1,

a beam of light on a photodetector is measured as a current which may be amplified and

measured on an oscilloscope.

The signal from the photodiode is linear only over a small range of input powers,

after which saturation causes a reduced response. This linear photo-current is typically

weak and furthermore, depends on the impedance of the output load. To circumvent

these limitations, a layer of electronics is typically placed between the photodetector

and the measurement device. To extend the linear range and to decrease the response

time of the diode, a reverse bias voltage is placed across the junction [56]. In order to

provide isolation between the photodiode and the measurement device, and to produce a

measurable signal level, an amplification stage consisting of a transimpedance amplifier 2

1At λ = 795nm, each photon has an energy of hc/λ = 1.56 eV = 2.50×10−19J. The conversion factor
is then 4× 1018photons/second per Watt. The smallest signal detectable by a photo-diode (1 nW or so)
still corresponds to about one billion photons per second.

2An inverting op-amp with no input resistance is said to be in transimpedance configuration. In this
case, the amplifier acts as a current to voltage converter with gain measured in Ohms.
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followed by several op-amps is employed. This stage limits the bandwidth to some cut-off

frequency fc avoiding electronic nonlinearities [57], and sets the gain to be constant for

all frequencies less than fc.

In this work, as in many experiments in quantum optics, we were primarily interested

in the “noise” of the detected light. What is meant by noise in this context is a fluctuation

in some property the light which is quantified by the variance of this property at a

given frequency. As mentioned in section 2.5.3, a coherent state exhibits fundamental

uncertainty in the number of photons in the field at a given time. When measured on

a photodiode, this noise is converted to an electronic signal known as shot noise. Of

course, the light could contain additional sources of noise due to amplitude or phase

modulation of the source. This noise is typically known as technical, or classical noise.

The electronics which amplify the photo-current also invariably add some noise to the

signal, and it is important to distinguish between shot noise and the technical noise due

to the equipment.

The shot, electronic, and technical noise can be measured using two identically con-

structed photodetectors as depicted in figure 3.1. A beam is split on a 50 : 50 beam-

splitter and sent to each detector, where the variance of the sum and difference of the

outputs is monitored on a spectrum analyzer. When the light is blocked, the base level

of noise gives the electronic noise floor. When the beam is unblocked, the difference port

subtracts away all technical noise due to signal modulation and all that is left is the shot

noise and electronic noise. Since the electronic and shot noise are uncorrelated, they add

in quadrature so that the displayed clearance above electronic noise is the shot noise of

the beam. Finally, the sum port is equivalent to directly measuring the signal with a

single detector and the clearance above the difference signal gives the technical noise on

the beam. A beam for which the sum and difference powers are equal is said to be shot

noise limited.
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Figure 3.1: Experimental setup to determine the electronic (black), shot (green), and
technical plus shot (red) noise components of a signal.

Given a single detector, it is also possible to tell whether or not the beam is shot noise

limited based on the scaling of the measured noise with frequency. Recall that for the

coherent state, 〈∆n2〉 = |α|2, i.e, the variance scales linearly with intensity. In contrast,

technical noise is proportional to the electric field amplitude and thus scales quadratically

with the electric field. The quadratic component of the scaling of the variance at a given

frequency with power therefore determines the amount of technical noise on the beam.

3.1.2 Photon Counting

In order to measure signals below the resolution of the standard photodiode a modifica-

tion of the above photodiode known as an avalanche photodiode (APD) may be used. In

addition to the photosensitive surface region of a photodiode, an APD has a multiplica-

tion region in which a strong electric field increases the kinetic energy of the photoelectron

to the extent that it will create further electron-hole pairs as it collides with other atoms.

The APD is thus a specialized photodetector with an internal gain mechanism controlled

by a strong reverse bias. If the reverse bias is placed above the breakdown voltage of the

diode, the APD is said to be in “Geiger mode” in which a single photo-electron in the

multiplication region will create a self sustaining avalanche. A Geiger mode APD thus
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serves as a single photon detector. After an avalanche has started, the current must be

quenched so that the detector can respond to the next photon. This is accomplished by

reducing the voltage below Vbias for a period ∆t known as the dead-time. During the

dead time, the APD no longer responds to incident photons.

Often, the Geiger-mode APD and the quenching circuitry is placed together forming

a single photon counting module (SPCM) which outputs a logical pulse for each photon

event. SPCMs can identify individual photon events with a temporal resolution of a few

hundred ps and are ideal for heralding the presence of a partner photon in a biphoton

pair. Unfortunately, there are two major limitations of SPCMs: First, the quantum

efficiency3 is much less than for a Si photodiode, typically less than 50%. Second, the

dead-time places a limitation on the maximum photon flux measurable and there is

always a probability of losing information during this time. Finally, SPCMs are not

number resolving as the ’S’ in the acronym implies. Instead, they detect the presence

of at least one photon but can not distinguish between 1, 2, or 10 simultaneous photon

events.

3.1.3 Quadrature Detection: The Homodyne Detector

Intensity and SPCM measurements described above give information about photon num-

ber distributions. In the Fock basis, these measurements determine only the diagonal

elements but can not distinguish between the state |ψ〉 = α |0〉 + β |1〉 and the mixture

ρ = |α|2 |0 〉〈 0|+ |β|2 |1 〉〈 1|. The difference between the two cases lays in the coherence

which describes a fixed phase relation between the two states. Since the phase of a typical

optical mode oscillates at several hundred THz, we have no hope of measuring the field

oscillations directly but rather measure the time averaged field squared, which erases

phase information.

3Strictly speaking, the quantum efficiency of the diode in the SPCM is as high as mentioned earlier,
but the electronic layer leads to a photon detection probability of 50% or lower.
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Figure 3.2: Basic configuration for homodyne detection. The state â|ψ〉 is mixed on a 50:50
beam-splitter and each port is monitored by a photodiode. The resultant photocurrent is
subtracted producing a signal proportional to the quadrature of |ψ〉. The piezo-electric
transducer attached to the mirror scans the optical phase of the local oscillator.

A clever technique to directly measure the quadratures of a quantum state exists

and is known as balanced homodyne detection (BHD). In BHD, a strong classical field

is overlapped with the weak quantum state in question on a symmetric beam splitter

(figure 3.2). Each output port is aligned incident on a linear photodiode to produce a

photocurrent. The photocurrent from each arm of the beamsplitter is then subtracted

and the difference in the photocurrent gives a signal that is proportional to the quadrature

of the input state. The strong classical field, known as the local oscillator is assumed

to be phase stable with the quantum state. We assume a coherent state |α〉 =
∣∣|α| eiθ〉

for which the phase can be experimentally set by introducing a small delay via a mirror

attached to a piezo-electric transducer.

That the BHD measures the quadrature of the quantum state can be seen as follows:

first note that as described in the last section, the photocurrent from each detector

gives a signal which is proportional to the photon flux of the incident field î(t) = gn̂(t).

The beamsplitter transforms the input fields as â1(2) → 2−1/2 (â1 ± â2) . Since the local
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oscillator is bright (|α| � 1) we neglect its fluctuations and describe it solely by its

amplitude so that â1(2) → 2−1/2 (â± α). The number of photons in each channel is thus

n̂1(2) = â†1(2)â1(2) = 1
2

(
n̂1 + n̂2 ∓ |α| (âeiθ + â†eiθ)

)
. Identifying the right-most term as

the phase dependent quadrature, the difference in photocurrent îHD ≡ î2 − î1 becomes:

îHD(t) = γq̂θ(t). (3.1)

where γ ≡
√

2 |α| g.

Here we see the essential features of BHD. First, the classical noise is completely

cancelled out so that technical noise does not pollute the measurement. Second, the

local oscillator amplifies the phase of the quantum state to a measurable level so that

extremely weak signals (〈n̂〉 < 1) can be detected. Third, the high quantum efficiency

of Si photodiodes allow for low-loss detection of the quantum state. Although the above

calculation was on the “hand-wavy” side, more sophisticated treatments yield the same

result [58].

There are several experimental caveats that must be made in stating equation (3.1).

First, the inefficiency of real photodiodes must be taken into account. Second it may

not be possible to perfectly match the spatio-temporal mode of the local oscillator to

the quantum state in question. The degree of “mode-mismatch” can be quantified by

the visibility V which is measured by interference contrast4. Each of these degrading

effects may be modelled as a beam splitter of transmissivity T with vacuum applied

to the perpendicular port. For detectors with quantum efficiency η, T = η [39], for

mode-mismatch, T = V2 [45].

Equation (3.1) describes an instantaneous measurement of the quadrature correspond-

4If two states of equal intensity I0 occupy the same mode and the relative phase between the two
is scanned, the resultant intensity will periodically vary from Imin = 0 to Imax = 4I20 . If they do not
occupy the same mode, the amplitude of intensity modulation will be reduced and perfect cancellation
will no longer be present, i.e. Imin > 0. This can be quantified by the visibility V = Imax−Imin

Imax+Imin
.
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ing to an instantaneous temporal mode described in section 2.4. To reconstruct the

quadrature of a temporal mode described by φ(t), we define the quadrature akin to

equation (2.37) as

Q̂ψ ≡
∫ ∞
−∞

q̂(t)φ(t)dt. (3.2)

From equation (3.1) we can then obtain a quadrature value from integrating the pho-

tocurrent by the temporal mode function.

In reality, the relation between the homodyne current is complicated by the presence

of electronic noise and limited bandwidth of the detector. The electronic noise current

ie(t) has some variance
〈

∆Q̂2
e

〉
which adds in quadrature to the photocurrent. The

bandwidth is limited by the response function of the detector r(t) in that faster signals

become averaged out from the detectors inability to follow the changes. Ideally r(t) is a

Dirac delta function but in reality, has some width. The maximum measurable frequency

scales as the inverse of this width through the Fourier relation. What is measured on a real

detector is then the convolution of the detectors response function with the photocurrent

plus the electronic noise.

î(t) =

∫
r(t− t′)q̂(t′)dt′ + îe(t) (3.3)

If we measure the temporal mode ψ(t), we find

Q̂meas ∝
∫ ∞
−∞

î(t)ψ(t) (3.4)

= γ

∫ ∞
−∞

∫ ∞
−∞

q̂(t′)ψ(t)r(t− t′)dtdt′ +
∫ ∞
−∞

îe(t)ψ(t)dt

= γ

∫ ∞
−∞

q̂(t′)ψ′(t′)dt′ + Q̂e

where ψ′(t′) ≡
∫∞
−∞ ψ(t)r(t − t′)dt and Q̂e =

∫∞
−∞ îe(t)ψ(t)dt. From this, we see that if

we choose a temporal mode φ(t) such that ψ′(t) = φ(t), we can completely correct for
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the degrading effects of limited bandwidth. This deconvolution is difficult to perform

accurately for arbitrary response functions. However, if our detector bandwidth is much

larger than the inverse time scale of the quantum state’s temporal mode, r(t) approxi-

mates a delta function and does not significantly alter the measured state. The efficiency

of reconstructing the state with true temporal mode ψ(t), in some mode φ(t) is given by

[59]:

1− ηbw =
1

N

∣∣∣∣∫ ∞
−∞

ψ′(t)φ(t)dt

∣∣∣∣ (3.5)

where N =
∫∞
−∞ |ψ

′(t)|2 dt. Figure (3.3a) displays ηbw for a quantum state of Gaussian

temporal shape ψ(t) = e
−
(
t−t0√

2σ

)2

, in this mode (φ(t) = ψ(t)) as a function of detector

bandwidth. We see that in order to faithfully reconstruct the quantum state, we need

a bandwidth at least the same order of magnitude as the inverse temporal width of the

signal.

Electronic noise also reduces the effective measurement efficiency of the reconstructed

state. With signal and electronic noise variance
〈

∆Q̂2
〉

and
〈

∆Q̂2
e

〉
respectively this

quantified as

1− ηe =
〈∆Q2

e〉
〈∆Q2〉

. (3.6)

Experimentally we can view the electronic and photocurrent at all frequencies by

monitoring the homodyne output on a spectrum analyzer. To the extent that the spec-

trum of the detector is constant over the bandwidth of the detector, we can write equation

(3.6) as (see appendix E.1) as:

1− ηe =
Se (ν0)

S (ν0)
. (3.7)

where ν0 is within the bandwidth of the detector.5 The quantity on the right hand side

5If the electronic noise is not constant, equation (3.7) provides an lower bound on the efficiency.
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Figure 3.3: (a) The detection efficiency of a wide-band state with a limited bandwidth
detector. In order to accurately measure a signal, the response of the detector should
be at least as fast as the inverse signal bandwidth. (b) The spectrum of the homodyne
detector used in the single photon experiments of chapters 4 and 5. The clearance ranges
from 10 dB to 18dB over the 100 MHz bandwidth. The peaks around 100 MHz correspond
to classical noise peaks which were not fully suppressed by the detectors common mode
rejection ration (CMRR).

is known as the clearance. The clearance increases as the square root of local oscillator

power6 and so the degrading effects electronic noise become less significant with increasing

local oscillator strength. However, the saturation intensity of the photodiodes puts an

upper bound on the maximum obtainable clearance. In practice, the local oscillator

intensity is set just below saturation7.

From equation (3.7) we see that the degradation of the precision of a real homodyne

detector is simply the inverse shot to electronic noise ratio, and as such special care needs

to be taken to minimize electronic noise in the circuit. The additional requirement of

high bandwidth is often incompatible with low electronic noise so homodyne detector

design is a careful balance of bandwidth and low-noise amplification [59].

6Note that in the parlance of the last section, we are simply measuring the shot noise.
7Of course, saturated or not saturated isn’t a binary question, but we can place a limit on the

acceptable degree of nonlinearity. The data sheet for the particular photo-diode will state the saturation
intensity for which the deviation from linearity is below a stated value.
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Figure (3.3b) shows the performance of the detector used in the experiments described

in chapters 4 and 5. The detector has a 3 dB bandwidth of approximately 100 MHz with

a flat response over this range. In this trace a 12 mW local oscillator was split at a

polarizing beam splitter yielding a clearance ranging from 10 dB to 18 dB over the

spectral support of the detector. From equation (3.7) this corresponds to an efficiency

ηe of 0.90 to 0.98.

3.2 Iterative Maximum Likelihood Estimation of Quantum States

Homodyne detection gives us the marginal distribution Pr(qθ) corresponding to any phase

angle θ. From this set of projections, we then need to faithfully reconstruct the original

state that produced them. Historically, this was accomplished by tomographic reconstruc-

tion akin to medical computed tomography (CT) scanning where a three-dimensional

object is reconstructed from a set of two-dimensional projections [60].

In optical homodyne tomography we are given a set of marginal quadrature distribu-

tions, and aim to invert the Radon Transform (2.30) to extract the Wigner function [61].

From the Wigner function, the density matrix in any basis is directly computed from the

Fourier relation (2.31). A drawback to this method is that numerical implementations

of the inverse Radon transform must invoke low-pass filtering owing to a singularity of

the integration kernel [33]. This filtering necessarily results in the loss of accuracy and

the chosen cut-off frequency is somewhat arbitrary. This can be partially overcome by

the method of pattern functions [62] in which individual density matrices are directly

sampled from the quadrature data. The cut-off is now applied directly to the maximum

photon number of interest rather than the spatial frequency which is usually the more

well-known quantity. This method however contains another serious drawback: since

the density matrix elements are individually sampled, the resultant density matrix as a
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whole can be unphysical, often containing negative diagonal elements.

To avoid the drawbacks of the above inverse transform techniques, a method of sta-

tistical inference may be used known as maximum likelihood estimation. Very roughly,

maximum likelihood determines the physically observable density matrix that fits the

observed data with the highest probability. From the density matrix, the Wigner func-

tion may be directly computed from equation (2.29). Maximum likelihood guarantees a

physical density matrix which does not suffer from numerical artifacts associated with

filtering and experimental fluctuations.

3.2.1 Maximum Likelihood Estimation

Suppose we have a source of pure single photons that are transmitted across a long optical

fiber. Either the photon makes it through the fiber, in which case ρ = |1 〉〈 1|, or it does

not, ρ = |0 〉〈 0|. The optical state at the output of the fiber may then be described as a

mixture ρ = (1− η) |0 〉〈 0| + η |1 〉〈 1|, for some 0 ≤ η ≤ 1. We then perform homodyne

measurement and determine the marginal distributions along each quadrature8 and ask,

what is the density matrix of my state? We can try different values of η and eventually

we could find a good fit but experimental uncertainties will guarantee that we will never

find a perfect fit. We thus seek a function which quantifies the “goodness” of our guess.

One such function is known as the likelihood function. The likelihood supposes that

each measurement xi is drawn from some distribution (the sum of vacuum and single

photon marginals in the above example) which is described by some set of parameters

(η here): Prη(x). Assuming independent measurements, the probability that the dis-

tribution Prη(x) produced the measurements {xi}i is just the product of the individual

probabilities:

8Actually, any quadrature will give the same distribution in this example so we need not check them
all.
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L(η) =
N∏
i=1

Prη(xi). (3.8)

The principle of maximum likelihood provides a estimation of the parameters of the

parent distribution which maximize the likelihood of the measured data. The parameter

set η which maximizes L is called the estimator. In practice the log-likelihood is max-

imized which converts the product to a sum. For simple cases as above, the analytic

expression for the estimator may be obtained directly by differentiation with respect

to η. For an n-dimensional density matrix with order n2 parameters the condition for

maximum likelihood estimator must be found numerically.

3.2.2 An Iterative Algorithm Maximum Likelihood Estimation of Homodyne Data

An optical homodyne detection measurement samples the continuous variable qθ at a

fixed angle θ which is also continuous over [0, 2π]. To calculate the measured probability

distribution at a given quadrature angle, we distribute the data over Nθ bins and calculate

probability for the quadrature corresponding to the jth bin as the frequency of occurrence

of a quadrature measurement laying in this range:

fj,θ =
Nθ,j

Nθ

. (3.9)

The experimental data we wish to estimate then consist of a quadrature histogram

{Nj} for each angle θ. The log-likelihood is thus:

ln [L(ρ)] = ln

[∏
j,θ

Pr
Nθ,j
θ,j

]
=
∑
θ,j

Nθ,j ln (Prθ,j) (3.10)

Note that the theoretical probability of a measurement of quadrature laying in the range

[qj, qj+1] given a density matrix ρ is
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prj,θ =

∫ qj+1

qj

prθdq =

∫ qj+1

qj

Tr [ρ |qθ 〉〈 qθ|] dq = Tr
[
ρ̂Π̂θ,j

]
(3.11)

where Π̂θ,j ≡
∫ qj+1

qj
|qθ 〉〈 qθ| dq is the projection operator of the quadrature onto the

interval [qj, qj+1].

Following previous developments [63], we note that the density matrix may be written

as ρ̂ = σ̂†σ̂ where σ̂ is represented by lower triangular matrix. Maximizing the likelihood

with respect to ρ̂ is then equivalent to maximizing with respect to σ̂. The rationale

behind this representation is that ρ̂ is completely determined by its upper triangular

elements since it is self-adjoint. Allowing ρi,j and ρj,i to be determined independently

may result in unphysical density matrices.

The maximum likelihood condition is also constrained to physically realizable den-

sity matrices such that Tr(ρ) = 1. We can then formulate the condition for maximum

likelihood for realistic density matrices as a Lagrange multiplier problem:

d

dσ̂

[
lnL

(
(σ̂†σ̂

)
− λ

(
Tr
(
σ̂†σ̂
)
− 1
)]
. (3.12)

To determine λ we carry out the differentiation9 to find

d

dσ̂

(∑
θ,j

Nθ,j ln
(
Πθ,jσ̂

†σ̂
))

= λ
d

dσ̂

(
Tr
(
(σ̂†σ̂

))
(3.13)

∑
θ,j

Nθ,j

prθ,j
Πθ,jσ̂ = λσ̂

∑
θ,j

Nθ,j

prθ,j
Πθ,j ρ̂ = λρ.

9Note that if Â and B̂ are matrices, d
dÂ

Tr(ÂB̂) = B̂T [64].
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Tracing both sides we find ∑
θ,j

Nθ,j

prθ,j
Tr [Πθ,j ρ̂] = λTr [ρ] . (3.14)∑

θ,j

Nθ,j = N = λ

Having found λ, equation (3.13) now reads

[∑
θ

Nθ

N

∑
j

fθ,j
prθ,j

Πθ,j

]
ρ̂ ≡ R̂ρ̂ρ̂ = ρ̂ (3.15)

Clearly for the maximum likelihood estimator ρ0, R̂ρ = 1̂. In a similar manner ρ̂R̂ρ = ρ̂

so that since R̂ρ = R̂†ρ,

R̂ρρ̂0R̂ρ = ρ̂0. (3.16)

If we managed to guess the correct estimator ρ̂0, equation (3.16) holds and the es-

timator is unaffected. If however our estimator does not maximize the likelihood, the

operation R̂ρρ̂R̂ρ will produce a density matrix ρ̂′ that is a closer approximation to ρ̂0.

Intuitively, we can see how this works: if for a given angle, ρ̂ overestimates the jth bin,

we will have fθ,j < prθ,j and the projection operator for the corresponding bin in ρ̂′ will

be given less weight. Conversely, an underestimate in ρ̂ leads to an increased weight for

the projection operator for the corresponding ρ̂′ bin. This is the principle behind the

iterative approach to maximum likelihood estimation of a quantum state. Starting with

an initial guess, we compute

ρ̂(i+1) =
[
R̂ρ(i) ρ̂

(i)R̂ρ(i)

]
N (3.17)

until termination10. Here, N normalizes to a unitary trace which preserves positivity of

the density matrix.

10Termination here could mean (i) a fixed number of iterations, (ii) A threshold likelihood, (iii) suffi-
ciently low |ρ̂(i+1) − ρ̂(i)|, (iv) impatience.
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The above algorithm is not guaranteed to converge and at least one counterexample

has been concocted [65], but in our experience with real homodyne data, convergence is

quickly reached. Furthermore, since the likelihood for quantum tomography is a convex

function, if a maximum is found it is a global maximum so if after a number of steps the

estimator is unchanged, there is a high probability that the correct estimator has been

found. In order to test the validity of a particular reconstruction, the estimated density

matrix may be used to simulate the quadrature data via equation (2.30) which are then

compared to the experimentally acquired data.
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Chapter 4

Producing Nonclassical Light: Four-Wave Mixing in Rb Vapour

In this chapter, we describe a source of nonclassical light known as Four-Wave Mixing

(4WM) in atomic vapour. We first characterize the spectroscopic properties of the sys-

tem in terms of experimentally accessible parameters. We then go on to describe and

demonstrate the generation of relative-intensity squeezed and quadrature squeezed light.

The demonstration of a high degree of squeezing in this system was recently reported

elsewhere [31, 32, 66] and provided the initial motivation to use this system to produce

arbitrary superposition states of light as has been done with SPDC [36].

4.1 Four-Wave Mixing

Under conditions of a propagating electromagnetic field oscillating at a frequency far

from any atomic resonance, the response of a gas of atoms may be treated as a linear

dielectric [67], having response1,

P = ε0χE (4.1)

χ being the electric susceptibility of the medium [67]. In the vicinity of atomic resonance,

the response of the medium to an electric field is no longer linear. To accommodate this

nonlinearity, the susceptibility can be treated as a tensor which describes the response

to a given electric field as a function of external fields:

1Technically, no medium can respond instantaneously to an applied field so the correct form of (4.1)

is P(t) = ε0
∫ t
−∞ χ(t− t′)E(t′)dt′ [68]
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Figure 4.1: (a) Photon picture of 4WM process. Two pump photons are spontaneously
annihilated, creating a signal and an idler photon. (b) Atomic level diagram showing the
relative frequencies of the pump, signal, and idler photons. Note that both pump beams
are derived from the same laser.

P = ε0χ̃
(1)E + ε0χ̃

(2)EE + ε0χ̃
(3)EEE + · · · = ε0

∞∑
n=1

χ̃(n)En (4.2)

where χ̃(n) represents a tensor of rank n.

Since an isotropic medium such as an atomic vapour has a vanishing second order

susceptibility [68] the first non-linear term is third order:

Pi(ω) = ε0

∑
ijkl

χ
(3)
ijklEj(rj, t)Ek( rk, t)El(rl, t) + c.c. (4.3)

where χ
(3)
ijkl is the third order susceptibility tensor for field Ei, given fields Ej, Ek, and

El.

Equation 4.3 contains myriad terms2, but the terms responsible for individual pro-

cesses can be isolated based upon energy and momentum conservation. From figure (4.1),

we see that conservation of energy for this process demands that

2In general χ(3) contains 81 terms, each of which is a sum of 48 independent sums [69].
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ωi = 2ωp − ωs. (4.4)

and in terms of momentum:

ki = 2kp − ks. (4.5)

Since we can write Ej(r, t) = Eje
i(kj ·r−ωjt), we therefore identify the term describing the

creation of the idler field from equation 4.3 as:

Pi(ωi) = ε0χ
(3)E2

pE
∗
s (4.6)

where χ(3) = χ
(3)
pps.

We assume that the electric field takes on the form of a plane wave with a slowly

varying envelope amplitude along the z-axis E(z). Also, without loss of generality for our

purposes, we neglect the tensor nature of χ(3) and treat P and E as scalars. We therefore

write Ej(r, t) = E(z)je
i(kjz−ωjt). Equation (4.7) then can be written as:

Pi(ωc) = εχ(3)E2
pE∗s ei((2kp−ks)z−ωct) (4.7)

where we have used equation (4.4) and assumed propagation in the z-direction for each

field3.

In order to study the dynamics of the system, we apply the paraxial wave equation.4

solved in the steady state (all time derivatives are identically zero:)

∂zEi = i
ki

2ε0

χ(3)E2
p (z)E∗s (z)ei(2kp−ks−ki)z (4.8)

3Experimentally, the fields propagate at a small angle with respect to one another but collinearity is
assumed here for simplicity.

4i.e. we write the wave equation (∇2 − ∂2t )E = 1
c2ε0

∂2t P under the assumption that ∂zE � kE ,

∂tE � ωE so that the second derivatives vanish.
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We assume that the pump is sufficiently strong that the depletion (due to converted

photons) is insignificant and so ∂zEp = 0. Defining the phase mismatch ∆k ≡ 2kp− (ks+

ki) and the constant κ ≡ kiχ
(3)

2cε0
ε0cE2

p = kiχ
(3)

cε0
Ip, we arrive at

∂zEi = iκE∗s ei∆kz. (4.9)

Next we assume5 that ki ≈ ks and write the equivalent equation for the signal beam

(by swapping i with s) to arrive at the coupled amplitude equations for ∆k = 0:

∂zEi = iκE∗s

∂zEs = iκE∗i . (4.10)

Differentiating the first equation and plugging in the second yields:

∂2
zEi = |κ|2Ei (4.11)

yielding the solutions:

Ei(z) = Aei|κ|z +Be−i|κ|z

Es(z)∗ = Aei|κ|z −Be−i|κ|z. (4.12)

Solving for the constants A and B in terms of Ei,s(0), and defining |κ|z ≡ ζ, we arrive at:

Ei(ζ) = Ei(0) cosh(ζ) + E∗s (0) sinh(ζ)

Es(ζ) = Es(0) cosh(ζ) + E∗i (0) sinh(ζ). (4.13)

5This approximation is valid since λp ≈ λi ≈ λs in the system under study (λs−λi

λp
≈ 10−5)
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Note that by replacing the field amplitudes with annihilation operators, we arrive at the

two-mode squeezing transformation (A.5). However, in contrast to the classical case in

which the unseeded process results in no signal or idler output fields, vacuum fluctuations

can drive the process spontaneously leading to non-zero photon number in each field even

in the absence of input fields. The classical picture is used when considering macroscopic

properties such as gain and spectral characteristics, whereas the quantum formulation is

required to predict squeezing and heralded state preparation.

Equation (4.13) implies that if we seed the process by sending a weak beam into

the signal channel, this beam experiences amplification and an idler beam appears in

the direction which satisfies phase-matching. According to equation (4.4), the signal

and idler beams will occur at equal and opposite sides of the pump beam, separated in

frequency by twice the ground state splitting.

Note that in the case of seeding the process with a weak seed beam (Es(0) ≡ E0, and

Ei(0) = 0) the intensity of the seed is increased by a factor cosh2(ζ) ≡ G producing an

amplified idler, and a signal is created with intensity Is = sinh2(ζ)I0 = (G− 1)Iseed. The

ratio of idler to signal intensities is thus:

Ii
Is

=
G− 1

G
. (4.14)

4.2 Classical Characterization of the System

The first step in the work described in this thesis was to obtain evidence that we had a

system described by the above analysis. To this end we set up an experiment to observe

gain and idler beam creation in a hot atomic vapour cell. The simplified experimental

diagram is shown in figure 4.2. A weak coherent state seeds the process by overlapping

with the pump at a small angle throughout the atomic vapour cell. This angle was chosen
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Figure 4.2: (a) Simplified diagram of experiment to detect four-wave mixing. The pump
is derived from a titanium sapphire Laser while the seed originates from an ECDL. (b)
CCD image of signal and idler beams produced in the vapour cell.

large enough to spatially separate the signal and idler fields but small enough that residual

Doppler effects were negligible and phase-matching was met (discussed below). The cell

contains isotopically pure 85Rb vapour and is maintained at a temperature of roughly

130◦C inside an insulating oven. The windows are antireflection coated for λ = 795

nm and the length of 12 mm is chosen so that the seed and pump interact throughout

the entirety of the cell. The pump by was derived from a Coherent MBR 110 titanium

sapphire laser (Ti:Sa) which was fiber coupled from a separate laboratory. The e−2 radius

of the pump beam was 500 µm and the power was varied from 200 mW to 1W. The seed

beam was generated with an external cavity diode laser (ECDL) which we constructed in

the lab [70]. The beam was orthogonally polarized to the pump with radius 350 µm and

had a power on the order of 100 µW. The beams were combined on a polarizing beam

splitter and overlapped at an angle of 5 mrad at the centre of the vapour cell.

Figure 4.3a shows the spectrum of the signal beam after passing through the medium

as in figure 4.2a. The pump was tuned ≈ 1 GHz red of the
∣∣∣5S1/2, F = 2

〉
→
∣∣∣5P1/2, F ′

〉
transition6. The signal beam experienced standard absorption from the two ground to

6Due to Doppler broadening, the hyperfine levels of the 5P excited state are not resolved individually.
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excited state transitions. However, whenever the magnitude of the frequency difference

between pump and probe equaled the ground state splitting of approximately 3 GHz,

sharp gain peaks were observed which are accompanied by the creation of an idler beam

in the phase-matched direction (eq. (4.5)).

The phase-matching condition caused the gain peak to be sensitive to alignment.

Since the idler is automatically generated in the phase-matched direction, a natural

question to ask is, “what does it mean to be phase matched here”? Defining θs(i) to be

the angle between the pump and the signal (idler) and noting ck = nωω, phase matching

implies that:

niωi sin θi = nsωs sin θs (4.15)

niωi cos θi = 2npωp − nsωs cos θs

are both simultaneously satisfied. This occurs for particular values of ni,s,p which are in

turn functions of frequency and pump power. As opposed to nonlinearities in crystals

and cavities where generation can be obtained for a very small range of angles, the phase-

matching condition in the hot vapour cell was less stringent. This was primarily due to

the large Fresnel number7 configuration of our setup. The Rayleigh range of our beams

were on the order of 100 times longer than the vapour cell so that beam divergence could

be neglected and the process could be stimulated for a large range of angles. To obtain

a rough estimate of this angular range, note that approximating |k|p ≈ |k|s ≈ |k|i and

θs ≈ −θi, the phase matching condition ∆kL� 1 reads

7The Fresnel number is defined as the ratio of interaction length to the beam waist.



47

Figure 4.3: (a) Measured spectrum of the probe experiencing four-wave under high gain
conditions (Tatoms = 135◦C). The two gain peaks at a frequency difference with the pump
of the hyperfine ground-state splitting.(b) Simultaneous monitoring of the signal gain and
idler creation for lower gain conditions (Tatoms = 110◦C).

1 � 2kL(1− cos θ) (4.16)

≈ 2kL(1− (1− θ2/2)

=
2πL

λ
θ2

so that the approximate angular phase-matched range is thus

θpm ≈
√

λ

2πL
. (4.17)

With our parameters, this corresponds to θ = ±5 mrad. This is consistent with our

observations in which we found that gain was present anywhere between θs = 1 mrad to

around 10 mrad, with maximal gain occurring at θs ≈ 5 mrad.

Ideally, the gain increases dramatically with temperature: the susceptibility is linearly

proportional to number density [69], but the gain is exponential in χ(3) and number den-

sity increases approximately exponentially with temperature (see figure (4.4a)), predict-

ing super-exponential scaling. Experimentally however we found that the gain initially



48

increased exponentially, but tapered off at a temperature of about 150 ◦C corresponding

to a number density of 1014 cm−3 at which point additional nonlinear interactions began

to dominate. One such interaction was self focusing of the pump [71], which destroyed

the phase-matching as has been reported elsewhere [72].

A dramatic additional nonlinear effect was the appearance of pump-induced, incoher-

ent blue fluorescence starting at around T = 130 ◦C. We first noticed the effect when

exploring the scaling of idler power with temperature and found that near atomic res-

onance, a pump with power of several hundred mW was completely absorbed. When

viewing the oven to see if anything was obscuring the beam, we noticed the pump deple-

tion was accompanied by an omnidirectional blueish glow. Spectroscopic measurements

determined that the fluoresced light had a wavelength of 422±4nm which was consistent

with the 6P 3/2 → 5P 1/2 transition at 420 nm. One puzzling aspect of this generation

is that there is no transition in the neighbourhood of 397.5 nm, so our laser could not

be directly driving a two photon excitation. This effect has also been seen in a separate

experiment in our lab and has been mentioned in the supplementary information in [73].

The dependence on high temperature suggests the process is due to collisional-enhanced

multi-photon excitation. In this case, the excited atom cascades back down to the ground

state through 6P 3/2 → 5P 1/2. This phenomenon, known as an energy pooling process

was studied in Rubidum in 1983 by Barbier and Cheret [74], and has been exploited to

produce coherent 420 nm generation [75, 76].

From equation (4.14), we could infer the gain by noting the resultant output powers.

However, if we simply measure Psignal/Pseed we would underestimate the 4WM gain owing

to the residual absorption from atomic resonance. The idler beam however was created

much farther off resonance, did not suffer this absorption, and was thus a more reliable

indicator of 4WM gain. Ideally, the idler power was directly proportional to input power

Pi = (G− 1)Pseed.
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Figure 4.4: (a) The expected scaling of number density with temperature, where the ideal
gas approximation was assumed and the vapour pressure was modelled as described in
[1]. (b) The scaling of gain with number density over the range of temperatures used in
the experiment. Gain was inferred by the idler power and number density was obtained
as in (a).

As mentioned, one naively assumes super-exponential scaling of the 4WM gain with

temperature. However, additional process discussed above which degrade the effective

gain of the system also become more pronounced with number density and we expect less

dramatic scaling in a realistic setting. In order to quantify this scaling experimentally, we

monitored the measured gain via the idler beam power as a function of temperature. From

the temperature we could calculate the number density, as shown in figure 4.4a8. Figure

4.4b shows the measured scaling which, on a log-log plot, gives approximately linear

behaviour with slope 1.58. Over the range of temperatures accessed in the experiment,

the gain thus scaled roughly as: G− 1 ≈ N
√
N .

The dispersive nature of the lower frequency gain peak in figure 4.3 was due to the

8We use the Clausius Clapeyron relation with constants stated in [1] to determine the vapour pressure
in the liquid phase as a function of temperature. We then determine the number density directly from
the ideal gas relation N ≡ n/V = P/kBT , kB being the Boltzmann constant.
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Figure 4.5: (a) The transmission profile of the seed(idler) for increasing pump intensity.
The red region displays the gain peak while the dark blue region is Raman absorption.
(b) The transmission spectrum of the created signal where each trace corresponds to a
horizontal slice of (a).

interplay between four-wave mixing gain and Raman absorption [31], indicative of the

complicated interplay of effects present in the setup. The higher frequency gain peak was

farther from atomic resonance and did not exhibit the same complicated profile. This

implied that for the observation of correlations between signal and idler photons, it was

preferable to seed the process at a slightly higher frequency than two-photon resonance

in order to minimize the loss in the system.

The most accessible experimental parameter controlling the gain was the pump power.

Increasing the pump Rabi frequency9 Ωp more efficiently drove coherence between the

ground-states and overcame the degrading effects of population exchange. On the other

hand, the Rabi frequency broadened the line-width of two-photon transitions, which was

detrimental for the generation of quantum light compatible with atomic transitions. In

figure 4.5a, the signal spectra for a range of pump Rabi frequencies is displayed. The

gain peak is seen to shift as a result of the AC-stark effect and the Raman absorption dip

9The Rabi frequency for the |i 〉〈 j| transition is given by Ω =
dij ·E

~ , dij being the transition dipole
moment for the given atomic transition.
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Figure 4.6: (a) The idler bandwidth was seen to increase linearly with pump Rabi fre-
quency. Here the bandwidth is defined to be the full width at half-max of the idler profile
(fig 4.5b). (b) Similarly, the gain was seen to increase linearly with pump Rabi frequency.
This is in contrast with the theoretical prediction of G ∝ ec0Ω2

p implying the presence of
additional processes such as self-focusing.

becomes significantly broader. Figure 4.5b shows the generated idler spectrum for each

pump power. It is apparent that the idler creation is attenuated as a result of Raman

absorption of the signal and thus becomes asymmetric. The bandwidth of the generated

field is also seen to increase with pump power. This is an important measurement since

it is the width of the signal gain peak that ultimately determines the bandwidth of the

system. This is quantified in figure 4.6, where both the gain and the bandwidth are seen

to be linear in pump Rabi frequency. Converting the Rabi frequency back to optical

power of the 500 µm pump beam shows that the bandwidth increases as 24.28 MHz per

Watt of pump power.

Owing to the fact that the process was operated far off atomic resonance, the gain

was fairly insensitive to the one-photon detuning of the pump beam. This is fortunate as

it implies that the light generated by the 4WM system was tuneable. Although the signal

was produced far off resonant to the 85Rb system it was created in, it could be made

directly resonant to the
∣∣5S1/2, F = 1

〉
→
∣∣5P 1/2, F ′

〉
transition of 87Rb by tuning the
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pump red- instead of blue-detuned from the excited manifold. This was the configuration

which produced the most squeezing but the photon experiment was optimized for the

blue-detuned case. Consequentially, the light generated could be directly interfaced with

resonant atom-based quantum memories and logic gates employing 87Rb.

4.3 Relative Intensity Squeezing

4.3.1 A Brief Theoretical Description

The standard quantum limit (SQL) for intensity noise is set by the Poissonian limit:

〈∆n2〉 ≥ n̄. The ultimate violation of this limit is the Fock state for which 〈∆n2〉 = 0.

For two separate beams occupying modes a and b respectively, the relative intensity noise

between these modes is:

〈
∆(na − nb)2

〉
=
〈
∆n2

a

〉
+
〈
∆n2

b

〉
− 2cov(na, nb), (4.18)

where cov(na, nb) = 〈nanb〉 − 〈na〉 〈nb〉 is the covariance between the photon number in

each channel. For uncorrelated modes, this covariance vanishes and the relative intensity

noise is the sum of the individual beams’ intensity noise. Two coherent states in separate

modes thus behave as a coherent state with |α|2 = |α|2a + |α|2b and define the two mode

SQL for intensity noise.

Relative intensity squeezing was first observed in 1987 in which an optical parametric

oscillator resonant to two separate modes produced bright twin beams with relative

intensity squeezing of 1.55 dB below the SQL [77]. Relative intensity squeezed beams

have a number of practical applications include quantum imaging [78], high sensitivity

spectroscopy [79], and measurement of extremely weak optical attenuation [80].

Operationally, our 4WM system amplifies the seed beam by scattering one pump

photon into the signal channel and another into the idler channel. Whereas the mean
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photon number is increased, the relative intensity noise is unaffected since the added

light is, loosely speaking, a “two-mode Fock state” |na, nb〉.

To get a quantitative understanding, we assume that the signal channel is a coherent

state of mean photon number |α|2, the idler channel is initially vacuum, and proceed in

the Heisenberg picture:

|ψ〉 = Ŝsi(ζ)D̂i(α) |0i〉 |0s〉 . (4.19)

Using the properties of the two-mode squeezing operator in equation (A.5) and the

displacement operator in equation (2.18), we find (see appendix D for details):

〈n̂〉i = |α|2 cosh2(ζ) + sinh2(ζ) (4.20)

〈n̂〉s = (|α|2 + 1) sinh2(ζ)

In the limit of large mean photon number (even a humble 100 µW laser beam has |α|2≈

1010) this reduces to equation (4.14) from the classical calculation with G ≡ cosh2(ζ).

However, as opposed to the classical derivation the mean photon number in each channel

is nonzero and is given by sinh2(ζ) = G− 1 in the absence of input coherent state. This

vacuum-stimulated 4WM process leads to squeezed vacuum discussed in the next section

and forms the basis of the narrowband photon source presented in chapter four.

Proceeding with the calculations of the individual terms in equation (4.18), the indi-

vidual variance of each channel is:

〈∆n̂i〉2 = |α|2 cosh2(ζ)(cosh2(ζ) + sinh2(ζ)) + cosh2(ζ) sinh2(ζ) (4.21)

〈∆n̂s〉2 = |α|2 sinh2(ζ)(cosh2(ζ) + sinh2(ζ)) + cosh2(ζ) sinh2(ζ).

Note that for large α, 〈∆n̂i〉2 = |α|2G(2G− 1) whereas for a coherent state of the same

optical power, 〈∆n̂〉2 = |α|2G. Therefore, the amplified seed beam itself is no longer a
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minimum uncertainty state in terms of intensity, and carries an extra factor 2G − 1 of

extra noise. In the case of no seed |α| = 0, 〈∆n̂s〉2 = 〈∆n̂i〉2 = cosh2(ζ) sinh2(ζ).

Computing the covariance term in (4.18) and computing the sum yields:

〈
∆(ns − ni)2

〉
= |α|2 (4.22)

This is the root of the relative intensity squeezing effect - the total noise on the

difference signal is equal only to that of the input beam. Since the process results in

gain, the optical power can be much greater than that of the input state while the noise

is equivalent to that of a coherent state of much less power. In order to quantify this

effect, we can compare the noise of the twin beams to that of a coherent state of equal

optical power and obtain the relative intensity noise normalized to the standard quantum

limit for intensity noise:

RI =
〈∆(n̂s − n̂i)2〉
〈∆n̂2

CS〉
. (4.23)

Using 〈∆n̂2
CS〉 = (2G− 1) |α|2 from eq. (4.20), we obtain for the 4WM process:

RI =
1

2G− 1
. (4.24)

Note that a value of RI < 1 implies non-classicality (see section 2.5.3), an effect known

as relative intensity squeezing. Since G ≥ 1, the process always results in squeezing,

provided that there is no extra noise and the channels experience no loss. Under these

assumptions the squeezing is monotonic with gain. This is not the case when losses

are present since in the presence of gain, the individually noisy channels are carefully

balanced. Loss in one channel breaks this balance and for large gains the excess noise

quickly grows above the noise level of a coherent state of the same optical power. Loss

L ≡ 1−η can be modelled by a beam splitter with transmissivity ηs(i) in the signal (idler)
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Figure 4.7: (a) Theoretically predicted relative intensity squeezing in the presence of loss.
In the presence of loss the amount of squeezing obtained is not monotonically decreasing
with increasing gain. (b) Loss in the signal (idler) channel is modelled as a beam splitter
of transmissivity ηs(i) and a vacuum state incident on the reflecting port

channel [39]. The corresponding expression for (4.24) using this model is calculated in the

appendix D. Figure 4.7 shows the predicted relative intensity squeezing in the presence

of loss. Note that owing to the imbalance of input powers (equation (4.14)) optimal

squeezing for low gain is obtained with slight loss on the probe channel. This counter-

intuitive result has been pointed out elsewhere [81].

4.3.2 Experimental Results

A large amount of time was devoted to the observation of relative intensity squeezing.

After much experimentation, it was determined that phase stability between the pump

and seed beams was an extremely crucial parameter and even an almost unnoticeable

amount of technical noise on the input beam will be amplified to well above the standard

quantum limit. This is discussed in more detail in the next section.

Figure 4.8 displays the experimental configuration with which relative intensity squeez-
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Figure 4.8: The final configuration of the experimental setup to observe relative intensity
squeezing. The dotted path accessible by the removable mirror allows for the calibration
of the standard quantum limit.

ing was eventually observed. The pump is derived from a Tekhnoscan TIS-777 titanium

sapphire ring resonator laser (Ti:Sa) driven by a Lighthouse Photonics Sprout 8W 532

nm pumping laser. The Ti:Sa provided up to 1.3W of 795 nm light with extremely nar-

row line width (∆ν < 5 KHz). A small fraction of this light was passed to a Brimrose

GPM-400-1600 acousto-optical modulator (AOM). The first-order sideband was shifted

by about 1.5 GHz and was counter-propagated back into the AOM to produce a beam

phase-stable with an adjustable two photon detuning roughly equal to the ground state

splitting frequency of 85Rb of 3.035 GHz. This “double-pass” configuration had the

draw-back of limited seed power since the single pass efficiency was < 20% leading to a

double pass efficiency of a few percent. The small active aperture of the acoustic crys-

tal (≈ 25µrad) and the optical damage threshold of 5W/mm2 led to a maximum input

power of about 10 mW and thus a maximum seed power of about 200 µW. The AOM

also introduced elliptical divergence on the beam which required cylindrical lenses to cor-
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Figure 4.9: (a) Relative intensity squeezing. The dotted curves are the signal and idler
beams alone incident on one of the detectors, each of which is much noisier than the
measured SQL (red) However, when both beams are simultaneously incident on the
detectors, the resultant noise (green) is below the SQL. (b) Calibration of the SQL for
our detectors. Linearity of measured noise with respect to optical power implies that the
signal is not polluted with classical noise.

rect. Despite these drawbacks, the double-pass AOM configuration was the only method

by which we obtained sufficient pump-seed phase stability to observe relative intensity

squeezing.

The pump and signal beam were set to orthogonal polarizations via half-wave plates

(λ/2 in the figure) and sent at an angle of about 5 mrad through the 115 ◦C atomic

vapour cell. The pump was isolated after the cell by means of a Glan-Thompson polarizer

and the signal and idler beams were separated and directed to a Thorlabs PDB 150C

differential detector. The detector was custom designed to make use of Hamamatsu S3883

photodiodes which had a nominal quantum efficiency of 91%. Individual outputs allowed

us to observe the output power of each beam separately while the difference photocurrent

was monitored on a spectrum analyzer. The SQL was calibrated by sending the seed beam

around the cell and adjusting the power to that of the total 4WM output light. An SQL

calibration curve for the detector we used is displayed in figure 4.9b.
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Figure 4.9a summarizes the results found in the relative intensity experiment. In

this plot, the pump power was 760mW and was detuned about 800 MHz red of the

F = 1 → F ′ transition. The traces are presented on a logarithmic scale with respect

to the measured SQL for the experiment. Here the power of the signal and idler beams

was 72 µW and 78 µW respectively and the SQL was calibrated for a coherent state of

power 150 µW. The residual absorption of the near-resonant seed (see figure 4.3) led to

a signal with higher power than the idler, in contrast to equation (4.14). The intensities

of the signal and idler were individually much noisier than the SQL when incident on

the detector individually, but when both beams were incident simultaneously the noise

was dramatically reduced, reaching as far as 3 dB below the SQL. The noise peak at

around 800 kHz was due to technical noise present on the Ti:Sa beam which could not

be perfectly cancelled out by the limited common mode rejection ratio of the differential

detector. The intensity correlations extended out to 3 MHz and at higher frequencies the

difference signal was slightly above the standard quantum limit owing to uncorrelated

emission from the atomic ensemble.

4.3.3 The Effect of Technical Noise on Intensity Squeezing

The most important requirement for relative intensity squeezing was a high degree of

phase stability between the pump and seed beam and a great deal of time was spent

achieving this. An intuitive reason for this is that we are measuring correlations in the

sidebands of the relative intensity spectrum (see figure 4.9a). Phase noise manifests itself

as modulation of the carrier signal and in the frequency domain, the sidebands then

measure a bright, uncorrelated signal in place of vacuum fluctuations.

Originally, the pump beam was coupled into the experiment from a Ti:Sa in a sepa-

rate laboratory and we generated the seed beam from a separate laser which was phase

locked to the pump [82]. While this created a narrow beat frequency between the two
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beams and thus a low phase variance, the digital locking signal created spurious side-

bands which, when amplified in the 4WM system, overwhelmed the intensity noise. This

led to an initial “false positive” for squeezing: We originally configured the SQL by send-

ing the phase-locked signal beam through the atoms, split it on a 50:50 beam splitter,

and subtracted the photocurrent as in figure 3.1. However, when the signal was phase

locked, the gain property of the 4WM system amplified the lock-induced sidebands and

produced a noise level well above the case when the SQL is measured by a beam which

did not propagate through the atoms. The measured relative intensity noise between

the signal and idler, while far below the falsely-calibrated SQL, was above the true SQL.

This excess noise from the atomic gain was identified by shifting the locked pump-signal

frequency difference away from the atomic two-photon resonance determined by the hy-

perfine splitting, and is shown in figure 4.10. In order to circumvent this problem, we

moved to the double-pass AOM setup described in the last section. In this configuration,

the phase noise is eliminated since each beam stems from the same source and the relative

path difference is well within the Ti:Sa laser’s coherence length.

An additional source of noise turned out to stem from the fiber coupling the pump light

from a separate lab. At high optical powers, the fiber began to introduce uncorrelated

noise into to pump beam which could not be subtracted away by the CMRR of the

detector. This phenomenon was most likely due to 4WM process within the single-mode

which begin to appear around a few hundred mW of power [83]. Figure 4.10b shows

the evidence for this noise source: the beam was passed through the fiber for various

input powers, attenuated to a fixed level and the sum and difference photocurrent was

monitored, as described in figure 4.10. For powers above 500 mW, the fiber-induced

technical noise dominated above the shot noise level. The only way to get around this

noise source was to obtain, with some reluctance, a new titanium sapphire laser for our

lab, which finally allowed us to observe the relative intensity squeezing of figure 4.9.
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Figure 4.10: (a) The sidebands induced by the optical PLL added significant technical
noise to the seed beam. Here each trace represents a different two photon detuning from
the Raman transition between ground states δ2 ≡ ω − ωHF . The peak value of each
trace corresponds to the chosen value of δ2. (b) At high optical powers, the fiber coupled
Ti:Sa light acquired significant technical noise. Both noises in (a) and (b) destroyed the
intensity squeezing.

4.4 Quadrature Squeezing

4.4.1 Basic Theory

Just as the 4WM system produced two-channel correlations between the photon number

of the signal and idler fields, the process can also produce correlations in the joint quadra-

ture of the fields. Instead of the non-local photon number, 〈∆(n̂s − n̂i)2〉, we can observe

the non-local joint-quadratures described by equation (2.22). Since the photocurrent in

a balanced homodyne detector placed in the signal(idler) channel is directly proportional

to the single mode quadrature x̂s(i) via equation (3.1), subtracting the photocurrent from

matched homodyne detectors in each channel measures the joint quadrature. By scan-

ning the phase of one detector with respect to another we can measure the two-mode

squeezed state at all quadratures and fully characterize the output state.

As in the case of relative intensity squeezing, the quadratures of the individual chan-
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nels are noisy, but correlated with one another so that when combined, they can exhibit

noise below the standard quantum limit (2.6). The quantity measured in our experiments

was the quadrature variance, measured as the noise power in the homodyne detector.

Since the mean quadrature value of the squeezed vacuum state is zero, the variance is

just the mean-square and we see from (2.24) that

〈
∆X̂2

±

〉
sq

=
1

2
e±2ζ . (4.25)

Squeezing is frequently measured on a logarithmic scale, so that in the ideal case of a pure

squeezed vacuum, the variances of the squeezed (S) and anti-squeezed (A) quadratures

are equidistant above and below the SQL. In a linear scale, the SQL is often normalized

to 1, so that S = 1/A. Since the individual quadratures are very noisy10, the fact that

the TMSS is a minimum uncertainty state relies on careful subtraction. In the presence

of loss, this subtraction is incomplete and results in extra noise.

The quality of a measured squeezed state can be quantified directly by observing the

squeezed and anti-squeezed quadratures and introducing the generalized efficiency ηsq

[84]. This model supposes that we start with a pure squeezed state and subject it to loss

by passing it through an attenuator with transmissivity ηsq. By observing an imperfect

squeezed state in our experiment, we can then seek the equivalent transmissivity that

would give our results, supposing an initially pure squeezed state from the 4WM process.

On a linear scale, with squeezing S and anti-squeezing A,

ηsq =
A+ S − (AS + 1)

A+ S − 2
. (4.26)

Clearly, for an ideal squeezed state (AS = 1) ηsq = 1. An important figure of merit

is the amount of squeezing required for an efficiency of at least 50% regardless of the

anti-squeezing. Solving the above equation for ηsq = 1/2 yields S = A
2A−1

, which in the

10Even for a gain G = 2, the variance of an individual channel is thrice the SQL.
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Figure 4.11: The experimental setup for the two-mode squeezing experiment. The local
oscillators were produced via a separate 4WM process. The local oscillator and signal
beam for each channel were overlapped and sent to individual homodyne detectors. The
joint quadratures were extracted by subtracting the outputs of the individual homodyne
detectors on a hybrid junction.

limit A→∞ becomes 1/2 or equivalently -3 dB. Thus any setup displaying at least 3 dB

of squeezing displays a squeezed state of efficiency ηsq > 0.5 regardless of anti-squeezing.

4.4.2 Experimental Details

The experimental setup used to produce and detect quadrature squeezing is shown in

figure 4.11. In order to mode-match the frequency and transverse mode of the two-

mode squeezed vacuum state to the local oscillators required for homodyne detection, we

followed the approach of [32] and generated the local oscillators dynamically by seeding a

separate 4WM in the same atomic vapour cell. This was crucial during the initial phases



63

of the experiment since we needed to explore the multidimensional parameter space11 in

search of an suitable operating regime, and the transverse mode of the signal and idler

depended to some extent on each of the parameters. Producing the local oscillators in

the same 4WM system as the squeezed state thus allowed us to monitor the effect of

varying the experimental conditions without realigning the homodyne detection setup.

In addition the local oscillators were automatically generated in the correct frequency,

forgoing the need for additional lasers or AOMs.

We measured the joint quadratures by subtracting the output of the individual ho-

modyne detectors in each channel on a hybrid junction (M/ACOM H9sma). To ob-

serve the phase-dependent quadrature phase, we introduced a delay in the signal channel

via a piezo-electric transducer while monitoring the output of the hybrid junction on a

spectrum analyzer. The standard quantum limit was calibrated by simply blocking the

two-mode squeezed vacuum modes before mixing with the local oscillator.

In order to measure the joint quadratures, it was imperative that the electronic re-

sponse of the individual homodyne detectors were matched. To this end, we manufac-

tured two identical homodyne detectors with matched surface mount components and an

adjustable gain for fine tuning. To compensate for the imbalance in power between the

seeded signal and idler beams described in the last section, we attenuated the stronger of

the two signals so that the local oscillators had equal power. In this case equation (3.1)

gives: î− = îs − îi =
√

2γ x̂s−x̂i√
2

= γ′X̂−.

4.4.3 Experimental Results

Figure 4.12a displays squeezing obtained in the experiment. We obtained 2.9 dB of

squeezing with 5.4 dB of anti-squeezing corresponding to an efficiency of ηsq = 0.61.

Here, the 800 mW pump was tuned 800 MHz blue of the F = 1→ F ′ transition, and the

11This parameter space included formed by pump power, pump detuning, two photon detuning, cell
temperature, angle with respect to pump, and beam diameter.
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Figure 4.12: The squeezing produced experimentally. (a) We obtained up to -2.9 dB of
squeezing corresponding to an efficiency of 0.61. The data here were taken with δ = 12
MHz, ∆ ≈ 800 MHz, and Ppump = 850 mW(b) The amount of squeezing obtained
depended strongly on the two photon detuning

local oscillators were generated using a 200 mW pump, derived from the same beam. In

order to observe significant squeezing, we needed to devote most of the available pump

power to the squeezed vacuum signal, leaving only as much pump as necessary to produce

the local oscillators.

We found that as for relative intensity squeezing, the most crucial parameter for

efficiency in our setup was the two photon detuning δ2 of the local oscillator with respect

to the pump. This is most likely due to the asymmetry in the pump-induced signal

beam absorption shown in figure 4.3 and mentioned in the analysis of relative intensity

squeezing. An asymmetric loss quickly overwhelmed the squeezing and brought even the

squeezed quadrature above the SQL. We explored this by measuring the envelope formed

by the maximum and minimum quadrature noise as a function of two photon detuning

as summarized in figure 4.12b. The optimal squeezing occurred for δ2 between 10 and 15

MHz, and for negative detunings, the noise was so great that no squeezing was present

at all. We can quantify the thermal noise added to the system by taking the geometric
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Figure 4.13: (a) By modelling the produced state as a statistical mixture of thermal
and squeezed states, the excess noise on the system is plotted. (b) The Efficiency from
equation (4.26) is plotted for the corresponding data.

mean of the values in figure 4.12b.Figure 4.13a shows this figure, the behaviour of which

closely resembles the pump induced absorption in figure 4.3. From this we can conclude

that a major source of the δ2-dependent degradation in squeezing is the asymmetric

Raman absorption profile. The corresponding efficiency of the process as a function

of two-photon detuning is displayed in 4.13b. Note that the efficiency for the analysis

performed on this set of measurements is less than displayed in figure 4.12a. This is

because later alignment and improvements of the experiment yielded a higher degree of

squeezing some time after the δ2-dependence data were taken.

A key figure of merit of the source of squeezed light is the range of frequencies over

which the state can be generated. This is important since atom based applications of

squeezed light require specific frequencies which may vary from experiment to experiment.

The frequency of the output state is tuned directly by the one-photon detuning ∆ of the

pump from the excited state (see figure 4.1). Figure 4.14a shows the squeezed and anti-

squeezed quadrature noise for a one GHz scan of the one-photon detuning from 400 MHz
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to 1400 MHz blue of the F = 1 → F ′ transition. From about 650 MHz to 1100 MHz

the squeezing is roughly constant. The wide range of tuneability in this setup stems

from its off resonant nature. For larger detunings, the squeezing decreases as a result of

the decrease in χ(3) which falls off with ∆. For smaller detunings, the process becomes

dominated by additional effects such as pump scattering and losses from the Doppler

broadened resonance begin to dominate. The optimal one-photon detuning is thus a

compromise between maximizing the nonlinearity and minimizing the loss.

The dependence of temperature on squeezing was also explored. Since the squeezing

is related to the gain via equation (4.25) with ζ = cosh−1
(√

G
)

, the squeezing is ex-

pected to scale in the same manner as the gain, which increased up to around 150◦C.

Figure 4.14b displays the squeezing obtained as a function of temperature. The resultant

efficiency is included as the deviation from ηsq = 0.5 for each temperature. Although the

magnitude of quadrature squeezing increased with temperature as expected, the anti-

squeezed quadrature increased such that the efficiency remained approximately constant

for all temperatures. Since the Doppler width scales as
√
T , the inhomogenous broad-

ened line width did not increase dramatically over this range of temperatures. On the

contrary, the number density more than doubled over this temperature range and so this

sharp dependence on temperature is most likely number-density dependent. From figure

4.4 the gain should increase by approximately a factor of 4 over this range and thus

we expect a significant increase in squeezing. However additional noise-adding nonlinear

processes increase concordantly with number density and introduce excess noise which

reduces the effective efficiency of the squeezed source.
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Figure 4.14: (a) The tuneability of the absolute frequency of the squeezing process is
plotted by adjusting the one-photon detuning. (b) The effect of temperature on the
absolute squeezing, and the efficiency of the resultant state. The black, dotted line
shows the deviation of ηsq from 0.5, scaled by a factor of 10. The dip in the datum
around 131◦C was the result of accidental misalignment which was not noticed at the
time of the experiment.
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Chapter 5

An Atomic Source of Narrowband Single Photons

The historical workhorse of single photon generation is spontaneous parametric down

conversion (SPDC) [16]. SPDC photon sources exploit the fact that ideally, photons are

always emitted in pairs, into distinct channels. The measurement of a single photon

in one channel collapses the state of the other channel to a single photon Fock state.

One of the drawbacks of the conventional SPDC approach is that even if the emission

wavelength matches that of an electronic transition, the phase-matching bandwidth is

much wider than a typical atomic line-width. As a result, even SPDC sources which

operate at the desired central wavelength produce photons which have a low probability

of atomic interaction owing to spectral mismatch1. A natural solution to this problem is

to use atoms to generate the quantum state of light rather than a bulk crystal, so that

the light then naturally has the correct spectral characteristics to be efficiently mapped

into another atomic system.

Our atomic photon source operates on the principle that in the unseeded case, the

4WM system produces a two-mode squeezed vacuum state described in the Fock basis

by equation (2.26). A photon in the idler channel then implies the existence of a photon

in the signal channel as in SPDC. Defining G ≡ cosh2 ζ as in the previous chapter, we

see that the signal channel obeys thermal statistics when the idler channel is traced out:

ρ̂s =
1

G

∞∑
n=0

(
G− 1

G

)n
|n 〉〈n| . (5.1)

An important drawback lies in the fact that conditioned upon one and only one

1Quantitatively, the typical atomic transition has a line width ∆ν ≈ 101 MHz whereas a typical
SPDC process has ∆ν ≈ 107 MHz.
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photon in the idler channel the signal is the single photon Fock state |1〉. However, the

single photon counters employed in our experiment, and indeed in nearly all experiments,

do not resolve the number of photons present, but rather the presence of at least one

photon. The state conditioned on a detection event is thus not truly a pure Fock state,

but rather an approximation whose fidelity depends on the squeezing parameter. The

renormalized state in the case of at least one photon becomes:

ρ̂cnds =
1

G− 1

∞∑
n=1

(
G− 1

G

)n
|n 〉〈n| . (5.2)

The fidelity of the conditioned state is then:

f|1〉 = 〈1| ρ̂cnds |1〉 =
1

G
. (5.3)

For optimal fidelity, the gain must be kept low. However, from equation (4.20) the

mean photon number in the signal channel is given by G − 1, and so the experimental

count rate decreases with gain. Since photon counting modules exhibit false counts which

introduce vacuum and thus lower the fidelity, the gain must be sufficiently high that the

true counts greatly outnumber the dark counts. The optimal fidelity is given by the

gain that balances the trade-off between maximal single-to-multiple photon events and

true-to-false detector counts.

Using the analysis of the previous chapter, we were able to configure the system to

produce high quality single photon states. The basic experimental procedure was

as follows:

1. Operating in the low-gain unseeded regime, the signal channel was mixed with the

local oscillator and continuously monitored at the homodyne detector, resulting in

a background thermal state.
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2. The idler channel registered a photon event, heralding a signal photon at the ho-

modyne detector. This triggered an acquisition card to record the photocurrent for

a temporal window about the photon event. This trace corresponded to a single,

unprocessed quadrature datum.

3. After collecting a large number of quadrature data, each trace was integrated along

the temporal mode of the photon creating a single quadrature point as per equation

(3.2). This formed the marginal quadrature distribution.

4. A maximum likelihood estimation of the density matrix corresponding to the marginal

distribution was made, as described in section 3.2.1.

5. (Optional) The Wigner function corresponding to the density matrix was computed

using equation (2.32).

In order to ensure that the trigger event corresponded to an idler photon and not

a pump, background, or signal photon, the trigger channel required significant filtering.

This is addressed in section 5.2. An additional challenge arose in that we did not know

the temporal wave function ψ(t) of the heralded photon in advance. Without ψ(t), we

could not reconstruct the quadratures in step 2 above as described in section 3.1.3. We

developed several methods to address this challenge which are described in section 5.3.

5.1 Experimental Design

The full experiment layout is shown in figure 5.1. The pump laser was derived from

the Ti:Sa and could be seeded as in the relative intensity squeezing experiment for the

purpose of alignment. The system was operated at low gain as per equation (5.3), with

cell temperature of 97 ◦C corresponding to a gain of about 1.1. All of the alignment

was performed with a weak seed to provide a measurable signal at each mirror, and the
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Figure 5.1: Full setup for the generation of narrowband single photons.
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seed was blocked during the experimental runs. The signal channel was continuously

monitored on a homodyne detector while the output was sent to an Agilent Acquiris DP

214 digital acquisition card. The idler channel was subject to a high degree of spectral and

spatial filtering (see next section) and sent to a single photon counting module (SPCM).

Upon receiving a photon event, the SPCM triggered the acquisition hardware to save all

homodyne current within a temporal window of 180 ns for later analysis.

We initially faced the challenge of producing a phase-stable local oscillator for detect-

ing the quadrature of the signal field. We could not seed the process as in the case of

quadrature squeezing since we were operating at low gain and the resultant intensity was

very weak (on the order of 10 µW), whereas the noise equivalent power of the homodyne

detector was on the order of 1 mW. To bypass this problem we phase locked a separate

external cavity diode cavity laser (Toptica DL 100) to the Ti:Sa at a frequency separa-

tion equal to the hyperfine ground state splitting of 85Rb, thus matching the generated

signal field. The self-built optical PLL [82] which was used for an earlier experiment on

double-lambda systems [15] allowed up to 20 mW of local oscillator power, with residual

phase noise with respect to the pump of less than 10 Hz. A small fraction of this beam

was tapped off and sent through an auxiliary Rb cell for purposes of spectroscopy. A

weak portion of the pump was also tapped off and mixed with the spectroscopy beam.

The resultant beat frequency between the spectroscopy laser and the pump beam allowed

us to monitor and set the one photon pump detuning with respect to 85Rb atoms.

To compensate for the slight birefringence in the glass of the atomic vapour cell as

well as Faraday polarization rotation from the atoms, a quarter-wave and a half-wave

plate were placed at the exit of the cell. The pump was then attenuated by two successive

polarizing beam-splitters. The signal and idler channels were allowed to propagate for

some distance to allow for spatial filtration of the pump, as discussed in detail in the

next section.
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Since the 4WM process was spatially multimode [32], the mode selection was non-

trivial. The idler channel was sent to a single mode fiber, subjected to spectral filtering,

and then to a SPCM-AQR-14 Perkin Elmer single photon counting module (SPCM).

Upon detection of a single photon at the SPCM, the signal channel collapsed to well-

defined spatio-temporal mode as described by the Klyshko advanced wave model [85, 86].

According to this model, the heralded mode of the signal photon is that of the spatial filter

of the idler, namely a single mode fiber which closely approximates a TEM00 Hermite-

Gaussian mode [87]. Instead of applying spatial filtration directly to the signal channel

which would have introduce a loss, we spatially filtered the local oscillator which selected

an approximate TEM00 spatial mode without imposing any loss on the signal. Telescopes

in each channel matched the waist and origin of each of the Gaussian modes.

5.2 Filtering out the Pump Field: Monolithic Filter Cavity

Imagine a grain of red sand dispersed throughout pile of black sand the size of a large

mountain which is pouring into a container from above over the course of a second.

Now imagine we must devise an apparatus which lets only the red grain of sand into

a container and rejects all of the others. This was the order of magnitude of filtering

required in the experiment to separate the idler photons from the pump beam. Each

pump photon which made it through the filters to the SPCM caused a “false trigger”

event. Consequentially, the detected state was then the background thermal state instead

of the desired |1〉, lowering the fidelity of the reconstructed data. Clearly we needed far

fewer pump photons than idler photons in the trigger channel. Since the mean photon

number of the pump beam was on the order of 〈n〉 = 1016, whereas the signal beam had

〈n〉 ≈ 0.1 a suppression of over 170 dB was required for a SNR of at least 10:1.
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5.2.1 Polarization and Spatial Filtering

Using the fact that the pump photons were orthogonal to the signal and idler, we ob-

tained 50 dB of suppression with two successive polarizing beam splitters. Additionally,

the signal and idler beams were at a small angle with respect to the pump, we allowed

approximately 1.5 meters of free space propagation to spatially separate signal, idler and

pump photons. One might ask why we did not allow much longer free space propagation

to obtain arbitrarily large spatial separation. The reason is three-fold: First, the degrad-

ing effects of air fluctuations and mechanical motion of mirrors become more pronounced

with propagation distance. Second, some pump light is scattered directly into the mode

the idler mode and beam propagation, no matter how far, will not filter out this light.

Finally, after a propagation distance of several Rayleigh lengths, i.e. the far field, the

beam divergence and spatial separation each increase linearly and further propagation

will not decrease the mode overlap which reaches an asymptote.

The measure of spatial filtering obtained by propagation was a competition between

beam divergence and separation of the beam centres. Since θ � 1, the beam separation

∆x after a distance z from the atoms was ∆x ≈ zθ. On the other hand the beam width

for z � zR (see appendix C, was w(z) ≈ λ
πw0

z. The separation between the pump and

idler beams was then

∆xp,i = (θ − λ

π

w0,p + w0,i

w0,pw0,i

)z. (5.4)

The first term is the angular separation and the second term represents the beam diver-

gence. Clearly, for the fixed beam waist sizes in our experiment there was a minimum

angle possible, below which divergence would cause the beams to overlap after propaga-

tion. For our parameters this corresponded to approximately 1 mrad. Figure 5.2 shows

the attenuation of the pump beam for our beam parameters. From this our pump at-

tenuation was expected to be at least 70 dB after isolating the idler mode by passing it
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Figure 5.2: Spatial filtering in the setup: (a) shows the competition between beam diver-
gence and spatial separation obtained by beam propagation. In (b) the overlap between
the beams as a function of propagation is calculated for the experimental parameters:
w0p = 550µm, w0i = 400µm, θ = 4.2 mrad. The inset shows the far-field overlap which
approaches an asymptotic limit.

through a single mode fiber, neglecting pump photons which were scattered into the fiber

mode. We still needed over 50 dB of pump suppression to isolate single photons in the

idler channel. To this end, we employed a novel design for a Fabry-Perot filter cavity.

5.2.2 Fabry Perot Filter Cavities

A high quality spectral filter can be made by placing two mirrors separated by distance

l, with high reflectivity R (such that 1 − R � 1) along the optical axis as diagrammed

in figure 5.3. As light is incident upon the first mirror, a small portion of the field enters

the resonator and propagates back and forth between the mirrors. Most light incident

on the cavity is reflected, but for certain frequencies, the phase acquired through one

complete passage meets the resonance condition:

∆φ = kl = qπ, with q ∈ Z (5.5)
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and the internal field constructively interferes with the incident light, quickly building

up inside the cavity and allowing for perfect transmission. Since these resonances can

be quite narrow, light of a given frequency can be isolated from a noisy background.

To understand the transmission profile in more detail, consider a plane wave in the z-

direction Eine
ikz incident on the cavity in figure 5.3: After the first mirror and traversing

the cavity with an intensity loss of 1−η2, the field becomes ηtEine
ikL, where t is the field

transmission related to the intensity reflectivity as t2 = 1 − r2 = 1 − R. At this point

the light could either escape the cavity with amplitude t or bounce back any number of

times before exiting, picking up a factor η2r2e2ikL each time it does so. The total field at

the output is the sum of each of the escaped field amplitudes:

Eout = ηt2eikl
∞∑
n=0

(
η2R2e2ikl

)n
Ein =

ηt2eikl

1− η2r2e2ikl
Ein (5.6)

where we’ve identified the geometric series in the summation. The intensity transmission

function is defined as Iout/Iin = |Eout|2 / |Ein|2. Using
∣∣1− xeiθ∣∣ = (1 − x)2 + 4x sin2 θ

and noting that kl = nlω/c, n being the index of refraction of the intracavity medium,

we arrive at:

T (ω) =
1

σ2 + F sin2
(
nl
c
ω
) (5.7)

where F = 4R/(1 − R)2 is the coefficient of finesse and σ2 = (1 − η2R)2/η2(1 − R)2

quantifies the intracavity loss. Note that σ2 ≥ 1 with equality holding only for the case

of no intracavity loss (η2 → 1).

Equation (5.7) illustrates a number of important features of Fabry-Perot filters. First,

the transmission at resonance is σ−2 i.e. for a lossless cavity, perfect transmission is

obtained, but the maximum obtainable transmission decreases with loss. For high reflec-

tivity, this decrease in maximum transmission is sharp with loss, as shown in figure 5.4.
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Figure 5.3: Illustration of the model for a simple Fabry-Perot Cavity. Loss in the cavity
is modelled as a beam splitter with transmisivity η.

Second, the profile is periodic owing to the sin2(nlω/c) term in the denominator. The

period is known as the free spectral range (FSR):

FSR ≡ c

2nL
. (5.8)

Note that the FSR is solely a function of the cavity geometry. Transmission profile for

η = 1 and 0.995 with R = 0.97 is shown in figure 5.4.

Near resonance the small angle approximation applies and the transmission profile

approaches a Lorentzian with full width at half maximum2 (FWHM), given by ∆ν =

2
π

√
F × FSR. This motivates the definition of the finesse as the ratio between the peak

separation and the line width:

F ≡ FSR

∆ν
. (5.9)

In terms of the loss parameter and the coefficient of finesse, F = 2
√
F

πσ
, so losses degrade

the finesse and decrease the “sharpness” of the cavity profile.

2For small x, sin2 x ≈ x2 so
(
1 + F sin2(nlω/c)

)−1
becomes

(
1 + (

√
F nl

c )2ω2
)−1

, a Lorenztian with

FWHM ∆ω = 2π∆ν = 4
√
F c

2nl = 4
√
F × FSR.
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Figure 5.4: (a) Transmission spectrum spectrum for a Fabry-Perot Cavity over several
FSRs with (blue) and without (red) loss. The reflectivity was set to R = .97 and the
loss was 1 − η2 = 0.005. The lower inset displays the transmission minimum for the
normalized transmission spectra, showing the degrading effect of loss on the filter (b)
The maximum transmission (solid green) and corresponding finesse F (dotted black) as
a function of mirror reflectivity R for a cavity with a round trip loss of 0.005.

A final important note regarding equation (5.7) is that the transmission minimum

ideally scales as F−2 so a high finesse is a crucial parameter for the quality of a filter.

However, since both finesse and peak transmission scale sharply as R → 1, there is

a fundamental trade-off between peak transmission and unwanted mode rejection as

diagrammed in figure 5.4. Higher quality filters thus require low optical losses since we

require 1− L ≤ R for high transmission.

5.2.3 Spherical Fabry-Perot Cavities

The assumption of an incident plane wave in the preceding analysis ensured that wave-

front of the internal cavity field matched the mirrors at all points. This idealization can

not be met in reality for two reasons. First, imperfections in the cavity surface cause

wavefront mismatch and lower the effective fidelity. More fundamentally, plane waves

are an idealization: real beams diverge while propagating (see Appendix C), and after
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several round trips the mismatch between incident and propagating light destroys the

constructive interference causing resonance. For this reason, planar Fabry-Perot cavities

are limited to a finesse of about 100.

In order to circumvent this problem, concave mirrors can be used in place of flat

mirrors to form a spherical Fabry-Perot cavity. The resonant modes of such a cavity are

to close approximation the Hermite-Gauss modes of order (m,n) denoted TEMmn [88].

The resonance condition (5.5) is still valid but for Gaussian modes propagating through

a focus, an additional phase is acquired as compared to a plane wave, known as the Gouy

Phase. The Gouy phase of a TEMmn mode is

φG = (1 +m+ n) tan−1 z

zR
. (5.10)

Taking the Gouy phase shift into account, the condition for resonance of a TEMmn mode

in a spherical Fabry-Perot cavity of length L with radii of curvature r1 and r2 becomes

[89]

νqmn =
c

2L

[
q +

1 +m+ n

π
arccos

√
(1− L

r1

)(1− L

r2

)

]
, where q,m, n ∈ Z (5.11)

The first term represents the plane wave resonance condition and the second term is the

Gaussian beam correction.

While the refocusing effect of the spherical Fabry-Perot mirrors corrects for the beam

divergence, the focus can be made too tight such that no Gaussian beam exists for which

the radii of curvature at the cavity boundaries match the mirror surfaces. At this point,

the resonator is said to be unstable. The condition for cavity stability was studied in [88]

in which the cavity was modelled as a series of lenses separated by distance nL ≡ L′. In

this case, the resonant field is the infinite product of ray-transfer matrices which may or

may not diverge. The condition for convergence (and thus for cavity stability) can be
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Figure 5.5: (a) Cavity Stability: the lighter region meets the condition (5.12) for resonator
stability. Various configurations are displayed at their location on the stability plot. (b)
A typical spectrum of a spherical Fabry-Perot cavity with an input that is not perfectly
matched to the fundamental cavity mode. Such a spectrum displays the decomposition
of the input mode into the basis defined by the cavity.

written as:

0 <

(
1− L′

R1

)(
1− L′

R2

)
< 1. (5.12)

Defining the coordinates g1(2) ≡ (1 − nL/R1(2)), the region of cavity stability can then

be visualized as in figure (5.5a).

The resonance condition (5.11) implies that separate transverse modes are resonant

to different frequencies. The exceptions are flat mirror (r → ∞) and confocal (r = L)

cavities for which all transverse modes are degenerate. Confocal cavities are often used

to ease the mode-matching process.
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5.2.4 Our Design: A Monolithic Non-Confocal Fabry-Perot

Traditionally, filter cavities in quantum optics experiments have fallen into two categories:

solid flat-surface Fabry-Perot cavities also known as etalons, and spherical Fabry-Perot

cavities formed with separate mirrors. The solid design is highly stable and simple

to construct but suffers from limited finesse. Several successive cavities are typically

needed to obtain a high degree of filtering. In addition, tuning the resonant frequency

is a challenge and is typically accomplished by thermal expansion or tilting the cavity

at a small angle with respect to the beam. On the other hand, spherical Fabry-Perot

cavities are capable of achieving high finesse and are easily tuned, but the separation

between them must be actively stabilized. This is typically achieved by monitoring

the transmission frequency of an auxiliary beam and providing feedback to maintain a

constant transmission. However, residual phase noise from this process is never fully

suppressed and is transferred to the transmitted light. In addition, the locking beam

must then be filtered out so that it does not corrupt the signal. When the signal is a

single photon, this is a considerable challenge.

Our approach was to employ a hybrid between the two existing paradigms, a mono-

lithic spherical Fabry-Perot filter constructed by coating a standard lens substrate with

high-reflectivity coating. This had the advantage of high degree of filtration after a single

pass through the cavity while maintaining good transmission of the desired photon. The

monolithic design provided long term stability without introducing any optical locking

techniques. Operating in the non-confocal regime allowed for additional spatial filtering

since pump light in a different spatial mode than the photons will not be matched to the

cavity mode and photons which may escape the cavity at the pump frequency will not

be in the same spatial mode as the idler photons.
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Tuning was accomplished by utilizing thermal expansion of the substrate:

dL

dT
= αL (5.13)

where α is the coefficient of thermal expansion of the substrate. The shift in frequency of

the qth longitudinal mode with temperature can then be found as follows: the condition

for resonance is3 ν = q c
2nL

so that4

dν

dT
=

∂ν

∂L

dL

dT
+
∂ν

∂n

dn

dT
(5.14)

=
∂

∂L

( qc

2nL

)
αL+

∂

∂n

( qc

2nL

) dn
dT

= − qc

2nL

(
α +

1

n

dn

dT

)
= −κν

where κ ≡ α + 1
n
∂n
∂T

is the sum of the thermal expansion coefficient and the fractional

change in index of refraction with temperature and is well known for optical materials

[90].

Practically, a high value of κ meant easier tuning whereas a low κ meant a higher

tolerance to temperature drift. Our design principle was to find the highest κ (and

thus fastest tuneability) available such that the temperature fluctuations in our system

corresponded to frequency shifts of less than a cavity line-width. Of the possible optical

materials, BK7 had the highest κ with α = 7.4 × 10−6 and 1
n
dn
dT
|λ=795nm = 2.5 × 10−6

[90]. Given this, dν
dT

= 3.7 GHz/K. Since ∆ν = 0.084 GHz, we required a temperature

stability of 0.023 ◦C, which was obtainable with current technology. We could then scan

over a FSR by change in temperature of 6.24 ◦C.

We placed the cavity in a standard lens mount (Thorlabs HCS031) with a temperature

transducer (Analog Devices AD590) physically inserted into the mount. The detector was

3. . . ignoring for now, the Gaussian beam correction since typically, q � m,n
4Actually, n = n(ν, T ), but ∆ν ∂n∂ν ≈ 9 × 10−7, while ∆T ∂n

∂T ≈ 2 × 10−5 over a FSR and so the
variation of index of refraction with frequency may be safely neglected.
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Figure 5.6: (a) Mode-matching to the cavity was achieved by matching the radii of
curvature of the Gaussian beam to the cavity mirrors. (b) In order to aid the align-
ment procedure, the transverse mode structure could be monitored on a CCD camera
simultaneously with the cavity intensity transmission on a photodiode.

thermally coupled to a Peltier element with a large aluminum block serving as a heat-

sink. The Peltier element was controlled by a PID feedback-loop controller (Thorlabs

ITC-110) which maintained a constant substrate temperature to 0.01 ◦C, which was

within the desired tolerance.

The beam was matched to the fundamental mode of the cavity by matching the

radius of curvature of the input Gaussian beam to that of the mirror surfaces. Since our

cavity was formed from a plano-convex lens, the beam was focused at the planar side

(R(0) = R1 =∞.) We then required the beam to have a radius of curvature at the other

surface to be R(nL) = R2. Using equation (C.5) this yielded the required beam waist of

the fundamental cavity mode:

w0 =

√
λnL

π

√
R

nL
− 1. (5.15)

For our parameters of R2 = 40.68 mm, nBK7 = 1.51 at λ = 795 nm, and L = 5.3 mm the

fundamental mode was a Gaussian beam focused at the planar side of the cavity with

waist w0 = 64.0µm. Figure 5.6 shows the setup for matching the optical mode to the

cavity.
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5.2.5 Filter Cavity Performance

Since we needed to isolate the idler photons at frequency ωi, from both pump and signal

photons at frequency ωp ≈ ωi+3.04 GHz and ωs ≈ ωi+6.08 GHz respectively, we required

a cavity with simultaneous rejection at these frequency differences from the resonance.

To simplify this condition, we decided on a cavity for which each of these frequencies

was within a single free spectral range. Based on the availability of lens substrates, we

had six lenses coated by Lambda Research Optics, two each of center thickness d = 4.3

mm, d = 5.3 mm, and d = 7.5 mm corresponding to a FSR of 23.1 GHz, 18.7 GHz,

and 13.2 GHz respectively. Each lens had a radius of curvature R2 = 40.68 mm and was

specified to a surface flatness of λ/10 at 633 nm. The reflectivity of each surface was

R = .990± 0.0025 at λ = 795 nm leading to an ideal finesse of F = 312.

In order to investigate the performance of the filter cavities, we first focused a Gaus-

sian beam with the desired waist at the flat side of the cavity (equation (5.15)), and

simultaneously observed the output of the cavity on a photodetector and on a ccd cam-

era as diagrammed in figure 5.6. The detector allowed us to observe the transmission

spectrum and the camera displayed the transverse mode of a given transmission peak.

The cavity alignment was then optimized by making iterative adjustments to the input

focus and incident angle, maximizing the TEM00 transmission peak while minimizing all

peaks corresponding to higher order modes. We achieved a maximum transmission of

60% while suppressing all higher modes by at least 30 dB.

Figure 5.7 displays a scan of the d = 4.3 mm cavity over a full FSR. The FSR was

23.1±0.2 GHz which is consistent with the theoretical value of 23.09 GHz from eq. (5.8).

We fit the transmission profile of the TEM00 mode to a Lorentzian and found ∆ν = 83.85

MHz5. The ratio of FSR to line-width gave us a cavity finesse of 275 MHz, less than the

5This was in actuality a convolution between the laser line-width and the cavity transmission but since
the laser was narrowband with respect to the cavity transmission profile (∆νlaser ≈ 100 kHz � 83.85
MHz), this contribution was negligible.
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Figure 5.7: (a) The transmission profile of the d = 4.3 mm filter cavity over an entire
FSR. The plot was normalized to a peak transmission of 55%. Transverse profiles of
the first three peaks are shown as they appeared on the ccd camera and are identified
as the TEM00, TEM01 and TEM02 modes. The inset shows a Lorentzian fit to the
fundamental peak. (b) The same plot, but on a logarithmic scale to illustrate the rejection
of unwanted frequency modes. The spectral location of the idler, pump, and signal
photons is displayed.

ideal value as result of loss, surface defects, and imperfect mode matching as discussed

above. This imperfect mode-matching lead to several higher order transverse modes

apparent in the spectrum, but aside from these narrow peaks, a high degree of isolation

at separate frequencies was obtained. We also observed the spectrum on a logarithmic

scale in order to quantify the frequency isolation with respect to the idler photons we

wanted to isolate. The transmission for off-resonant frequencies was about 48 dB barring

discrete higher order resonant frequencies. The transmission of both the pump and signal

frequencies were constrained by this noise bound.

We investigated the temperature tuneability by observing the shift in a given reso-

nance peak for varying temperatures, as shown in figure 5.8. The slope was seen to be

linear with slope of 3046 MHz/◦C. This differed from the theoretically predicted value of

3732 MHz/◦C using coefficients from the literature. This discrepancy was most likely due

to a combination of inaccuracy in the stated values BK7 (which varied by 20% depend-

ing on the source) and the temperature calibration of our sensor. However, our primary
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Figure 5.8: (a) The calibration curve for temperature tuning the cavity resonance. Blue
dots show the frequency of the transmission peak at a given temperature. The red line
is a linear fit with slope -3046 MHz/◦C. (b) The long term frequency stability of our
system. The transmission frequency (blue squares) was measured over a 25 minute span.
The green curve shows the cavity transmission profile for scale, and the shaded area
represents the cavity FWHM.

concern was the ability to tune a particular substrate to a given frequency which was

possible from this calibration curve. In order to verify the long-term frequency stability

of our filter cavities, we monitored the frequency difference of the transmission peak with

respect to a separate laser which was stabilized to an atomic transition using saturated

absorption spectroscopy. We observed a drift of ±15.5MHz = 0.18∆ν over a two hour

span with a maximum drift velocity of 0.04∆ν/minute. Figure 5.8 displays a 15 minute

interval of this measurement.

The slight birefringence in BK7 led to a splitting of transmission peaks for horizontal

(s) and vertical (p) polarizations. Since we were using linearly polarized light, we simply

aligned the polarization to the fast or slow axis of the substrate in order to maximize the

transmission. If we were using circularly polarized photons a material with less birefrin-

gence would have been needed. The transmission for s, p and (s + p)/
√

2 polarizations

is shown in figure 5.9. Incidentally, this plot served as an accurate measurement of the

birefringence of the substrate: Since resonance implied L = qsc
2nsνs

= qpc

2npνp
for each polar-
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Figure 5.9: (a) The birefringence of the substrate led to separate peaks for s and p
polarized light. (b) The slow light effect of the cavity’s steep transmission profile gave
important timing information for the single photon experiment.

ization, and noting that for small birefringence, the peak for each polarization is the same

longitudinal mode number q, we have npνp = nsνs so that ∆ν = νs − νp = νs(1− ns
np
νs).

The birefringence is thus:

(
1− ns

np

)
=

∆ν

ν
. (5.16)

For our substrate, this corresponded to 4.79× 10−7.

Since the idler photon passing through our cavity was used to trigger a temporal

event, it was important to quantify the cavity-induced delay the photon experienced. To

this end, we created a 40 ns pulse of light which was split and sent through equal path

lengths, one containing the cavity and the other, free space. The delay, shown in figure

5.9 was found to be 4.4 ns, which corresponded to a free space delay of 1.32 m.

5.3 Inferring the Temporal Mode of the Photon

In order to reconstruct the quadrature value from homodyne detection, we required the

temporal profile as in equation (3.2). In previous single photon systems, this mode is

well defined from the characteristics of the system. For example, in the case of an optical

parametric oscillator the temporal mode is approximately a double-decaying exponential



88

[20], and in the case of pulsed SPDC, the temporal mode is defined by the pump [19]. In

contrast the 4WM source was in some sense uncharted waters The temporal mode was

not known a priori and we needed to develop methods for inferring it.

5.3.1 Method of Point-Wise Variance

Fock states are noisy. From equation (2.10), the quadrature variance of a the state |1〉

is thrice that of |0〉. By monitoring the quadrature variance from the homodyne current

as a function of delay from the trigger event, we found we could map out the magnitude

of the temporal wave function of the photon |ψ(t)|. We did this by discretizing an

interval of time surrounding the trigger event into N bins. After taking M samples, each

corresponding to an individual trigger event, we computed the variance of each given

bin individually. For a vacuum state, the variance should be constant within statistical

fluctuations at all times, the value of which defines the standard quantum limit. Similarly,

the randomly triggered signal mode should have no variation in variance with time, and

the noise level above the standard quantum limit is given by the gain (equation (B.5)).

In contrast, the trigger event in the idler channel defines a well defined temporal mode

of a given duration, surrounding the event.

The temporal duration of the photon is roughly determined by its bandwidth via

∆t|1〉 ≈ (∆ν|1〉)
−1. Since the width of the gain peak in the 4WM system was observed to

be around 2π × 10 MHz, and since the photon bandwidth is determined by the width of

this process, we predicted ∆t|1〉 to be around 16 ns. Both the SPCM and the acquisition

card we chose had temporal resolution of 0.5 ns thus allowing us to temporally resolve

ψ(t) but the finite bandwidth of the detector (∆ν−1 ≈ 10 ns) smoothed out the profile

and we observed the convolution of the detector’s response function and ψ(t).

We employed the following procedure for measuring the point wise variance: The

acquisition card sampled the homodyne current for N = 180 bins of duration 500 ps
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Figure 5.10: (a) Experimentally measured point-wise variance for the single photon ex-
periment. The SQL was set by blocking the input to the homodyne detector. The
background was obtained by randomly triggering the acquisition card. (b) We devel-
oped custom software to interface with the acquisition card, allowing us to monitor the
variance real-time, while aligning the experiment.

around each trigger event and dumped this trace to memory. This was repeated for

M = 105 samples for a given data run. Since the photon counting rate was around

250,000/second, this procedure took approximately 2 seconds. The variance of each bin

over the duration over all traces was calculated and formed one point in the point-wise

variance trace. Such a plot is shown in figure 5.10a.

In order to align the experiment to maximize the magnitude of the triggered feature,

we developed custom software to provide continuous updates of the point-wise variance

while aligning the experiment. This was crucial since subtle alignments made major

differences in the obtained efficiency. From the point-wise variance, we could obtain an

estimate of the fidelity of the retrieved state. Assuming that we have a statistical mixture

of a pure Fock state and vacuum from losses: ρ̂ = (1− η) |0 〉〈 0|+ η |1 〉〈 1| the measured

quadrature variance is then 〈∆q̂2〉 = 1−η
2

+ 3η
2
, whereas for the vacuum state it is just

〈∆q̂2
0〉 = 1

2
. If we measure the ratio of vacuum to triggered variance as r, the efficiency
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Figure 5.11: (a) The measured temporal profile of the photon for various cavity detunings.
(b) The product of a Lorentzian photon spectrum with an off centre Lorentzian cavity
profile leads to an oscillatory temporal profile.

is then:

η =
r − 1

2
. (5.17)

Experimentally the above assumptions are not met exactly: there is a finite probability

of emitting more than one pair of photons and there is a thermal background present.

Since the thermal background is uncorrelated to the trigger events, it adds in quadrature

and may be subtracted out. Also, as long as the gain is close to 1, contribution from

higher order pairs is small (5.3). This allowed an on-the-fly rough estimate of Fock state

fidelity which is displayed on figure 5.10b.

The point-wise variance displayed oscillations with a period of roughly 8 ns. Further-

more, it was found that the temporal profile, the count rate, and the measured fidelity

varied sharply with detuning of the idler photon from the resonant frequency of the

filter cavity. Figure 5.11a displays the measured point wise variance for several small

detunings with respect to the filter cavity. Note that the temporal profile of the photon

is given by the Fourier transform of the spectral profile. Assuming a Lorentzian gain
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peak, one would naively assume the temporal shape to be the Fourier transform of the

Lorentzian, which is the double-decaying exponential exp(−κ |t|). However the spectral

filtering of the lens-cavity yielded a spectral profile which was the product of the lens-

cavity and photon spectra, and the product of two Lorentzian functions is not itself a

Lorentzian. Figure 5.11b shows the expected temporal profile of a spectrally-Lorentzian

photon passed through a Lorentzian filter of the same width for various relative detun-

ings and oscillations in the temporal mode appear as in the point wise variance. This

implies that especially in the case of the idler photon being slightly off cavity resonance,

the signal photon’s spectral profile is determined in part by the spectral filter.

We found that the magnitude of the point-wise variance along with the inferred

efficiency varied dramatically with cavity detuning. For the signal beam blue detuned

with respect to cavity resonance the peak variance was maximized and the temporal

profile contained minor oscillations. On cavity resonance, the count rate was highest,

reaching 106 counts/second, and the temporal profile was wider, but the peak variance

was reduced compared to the blue detuned case. When red-detuned, the increase in

variance due to the photon was barely noticeable above the constant background noise

resulting in poor efficiency (not shown in figure 5.11). This behaviour can be understood

in terms of our findings for the two-mode squeezing, particularly in figure 4.13. When red

detuned, the 4WM process is overwhelmed by Raman absorption, resulting in scattering

of uncorrelated photons into the trigger channel. Each of these scattering events results

in a “false click” and the signal to noise ratio of the detected photons is reduced. By

adjusting the cavity to transmit light which is blue detuned with respect to two-photon

resonance, we maximized the probability that the detected photon was from the four-wave

mixing process and thus heralded a photon in the signal channel.

From the variance of thermal background as compared to vacuum, we were able to esti-

mate the mean photon number of the 4WM source. From equation (B.5),
〈

∆X̂2
thrm

〉
/
〈

∆X̂2
vac

〉
≡
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rthrm = 2n̄+ 1. Our data showed rthrm = 1.2 implying that for our source, n̄ = 0.1.

5.3.2 Method of Auto-Correlation

An initial question we faced when first analyzing the experiment was whether or not

the correlated photons were emitted in a well defined temporal wave-function. To gain

insight, we addressed the problem in the following way: suppose we have a single photon

which can be in one of infinitely many discrete time bins tm with some probability ρmm.

Denoting a single photon in the mth bin as · · · |0〉m−1 |1〉m |0〉m+1 · · · ≡ |m〉, we can write

the density matrix in the orthonormal basis defined by these time-bins as

ρ̂ =
∑
m,n

ρmn |m〉 〈n| . (5.18)

If the state is fully mixed then the density matrix will contain only diagonal terms. On

the other hand, if the photon’s temporal wave-function is a pure state |ψ(t)〉 =
∑

n cn |n〉,

then the density matrix will contain off-diagonal terms representing the coherence be-

tween the different moments in time. We thus sought a method to obtain the temporal

density matrix6. To this end we discovered a relation between the autocorrelation matrix

of the experimentally measured homodyne current and the density matrix. With the

autocorrelation matrix Â defined as

Aij = 〈i(ti)i(tj)〉 , (5.19)

where the average is taken over all experimental realizations, we have (see Appendix E.2)

Â = Re [ρ̂] +
1

2
1. (5.20)

6Note the distinction here between the usual density matrix in the Fock basis used everywhere else in
the thesis and the temporal density matrix defined in this restricted Hilbert space, consisting of a single
photon spread out in time.
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Figure 5.12: (a) The autocorrelation matrix reconstructed from an experimental run.
Here the diagonal matrix of the background thermal state has been subtracted off. (b)
Density plot of the auto correlation matrix. The high degree of symmetry about the x−y
axis implies a pure temporal mode.

Figure 5.12 displays the autocorrelation matrix of the photocurrent we measured in an

experimental run. To isolate the photon from the thermal background and the detectors

response function, we first calculated the autocorrelation of the (untriggered) background

and subtracted it from that of the triggered photon state. This also removed the identity

term from equation (5.20) leaving only Re[ρ̂]. From the top view, we found that the

central feature of Â was round in shape, and symmetric about x and y, implying that it

could be written as the product of a vector |ψ 〉〈ψ|, i.e. a pure temporal state. We then

diagonalized Â and found that the matrix had a primary eigenvalue, roughly 50 times

larger than any other eigenvalue. The eigenvector corresponding to this eigenvalue thus

represents the temporal weighting function ψ. This vector, as well as the corresponding

vector found using other approaches is displayed in figure 5.13b.

5.3.3 Method of Genetic Algorithm

Determining the correct temporal mode can be thought of as an optimization problem:

given the space of all real weighting functions ψi(t) find the particular function that max-
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imizes the quality of the reconstructed state. This could mean maximizing the variance

of the heralded quadrature distribution, or maximizing the single photon probability

〈1| ρ̂ |1〉 of the resultant density matrix. Since the problem is not necessarily convex or

linear, many optimization procedures may become stuck at a local maximum. An elegant

approach to optimization under these circumstances is the use of a genetic algorithm [91].

Genetic algorithms borrow from the concept of Darwinian evolution [92]. The func-

tion to be optimized is parameterized in terms of a bit-sequence called a genome. The

fitness of a given genome is evaluated by a fitness function f which returns a real number

that increases based on how well suited the genome is to solving the problem. Initially, a

population of random genomes is chosen and their fitness is evaluated. Parent genomes

are then chosen in pairs which “mate” by producing offspring whose genomes are formed

as combinations of the parents’ genomes. The process works as a lottery in which the

probability of being chosen as a mate increases with f . This “mating procedure” is re-

peated until a new generation is populated, and the procedure repeats. This is continued

until a satisfactory solution is found, or until manual termination of the program. In or-

der to avoid local maxima, random mutations in the genomes occur with some probability

at the beginning of each generation.

For the problem of finding the optimal wave function, the genome encoding was

chosen as the sum of n Gaussians, with standard deviation ranging from 1 to 2m, height

from 1 − 2s−1 to 2s−1 and position chosen from 2t bins evenly spaced across the chosen

temporal range of the photon, yielding a n × m × s × t-bit genome. The fitness was

chosen as a monotonically increasing (polynomial) function of either the variance, or the

single photon component of a least-squares fit to a truncated density matrix. The least

squares fit was performed by assuming a statistical mixture of photons (no off-diagonal

elements) with maximum photon number 3. The marginal distribution of the resultant

density matrix was then an analytic expression in 3 unknowns: Pr(x) = (1 − η1 − η2 −
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Figure 5.13: (a) The genetic algorithm program estimating the wave function of some ex-
perimental data. The upper panel displays the fittest genome and the lower panel shows
the marginal quadrature distribution for this temporal mode of this genome. (b) Com-
parison of the different methods for inferring the temporal wave-function of the photon.
Although the point-wise variance is positive-definite, the square of the auto-correlation
function closely resembles the point-wise variance as seen in the inset.

η3) Pr0(x) + η1 Pr1(x) + η2 Pr2(x) + η3 Pr3(x) where Prn(x) is the Fock state marginal

distribution. The least squares solution could be written directly and the fitness was

then proportional to η1.

The mating procedure used in the program was based on the “Roulette wheel” se-

lection. Here a random number x between 0 and the total fitness of the population

F =
∑
fi is chosen. The fitness of each member of the population is then added until

this sum exceeds x, at which point, the last member who’s fitness was added is chosen

for mating, and the next random number is chosen. This method has the property that

even the fittest member of the generation may not be selected. To ensure at least one

copy of the fittest gene survives, the principle of “elitism” is employed in which the fittest

member is copied automatically to the next generation. Random mutations may then

occur with some small probability to the remainder of the population and the process is

repeated. Figure 5.13a shows the program in action.
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Figure 5.14: (a) Fock (red) and vacuum (blue) quadratures for a given data run. Each
trace contains 105 points. (b) Marginal histograms for the data in (a).

We found that after a few hundred generations, the solution did not significantly

change and that most of the time, a solution was found that closely resembled the tem-

poral profiles inferred by point-wise variance and autocorrelation. On one hand this was

good in that it con fired the consistency of the above approaches, but of course was less

dramatic than a vastly different mode evolved genetically. We also noted that the profiles

that maximized ρ11 were slightly different than those that maximized the variance. We

attribute this to the fact that in the presence of the noisy thermal state, the maximal

variance is obtained not only by including the photon, but also the noisy background

at the periphery of ψ(t). In contrast, the least squares method weights the background

less since it contains 0 and 2 photon components which are included at the expense of

ρ11. Given the wave function found by one of several different methods, we could then

proceed to produce the quadrature ensemble and reconstruct the full density matrix of

the heralded state.
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5.4 Experimental results

5.4.1 Tomographic Reconstruction of Heralded Photon

Given the temporal mode of the heralded photon, we could produce the set of measured

quadratures using equation (3.2). We collected 105 quadrature samples to form the

marginal quadrature distribution which was then analyzed using an iterative maximum

likelihood program. Figure 5.14 shows the marginals for the Fock vacuum data. Note

that the marginal distribution displayed a clear dip at the origin as expected for the

single photon state. In the ideal case, the probability of measuring a quadrature value

of zero vanishes, but this is not the case here owing to the mixture of vacuum due to

loss and thermal state due to the background. The corresponding density matrix and

Wigner function are displayed in figure 5.15. As expected for the single photon, the

heralded state showed no quadrature phase dependence. We verified this by scanning

the phase of the local oscillator and observing the resultant distribution. This simplified

the experiment since small phase shifts due to mechanical vibrations did not affect the

measured state.

The high uncorrected single photon fidelity obtained here is notable since it is roughly

an order of magnitude higher than that of previous atomic sources. The diagonal den-

sity matrix elements were (ρ00, ρ11, ρ22, ρ33) = (0.424, 0.488, 0.069, 0.019), with relative

uncertainty given by the standard error of 1/
√
N = 3% [93]. The relatively high two-

photon fraction of 0.069 as compared to SPDC sources for which ρ22 ≈ 0.01 depending

on the source [94, 95], was most likely due to several effects. First, in order to obtain

high efficiency, we needed to operate at a temperature corresponding to a gain of 1.1.

From equation (5.1), the ratio of double to single photon probabilities was 1−1/G ≈ 9%

here. Additionally, Raman scattering of pump photons off atoms flying into the beam

contribute a thermal background. The portion of this background which is scattered
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Figure 5.15: (a) The reconstructed Wigner function of the state produced in the exper-
iment, showing the characteristic dip at the origin. (b) The density matrix recovered
from the maximum likelihood procedure showing ρ11 = 0.487. (c) Cross-section of the
recovered Wigner function displaying a negative value at the origin due to large single
photon and minor three photon components.
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into the mode of the signal photons will contribute to the two photon component of the

reconstructed density matrix.

5.4.2 Performance of the Source in Terms of Standard Figures of Merit

In contrast to previous experiments on atomic based photon sources, our tomographic

reconstruction of the density matrix gave full information of the quantum state emitted

from the atoms. This allowed us to calculate common figures of merit for single pho-

ton sources defining the state as non-classical as in section 2.5. We found that in the

uncorrected reconstructed temporal mode the second order correlation of the field was

g(2)(0) ≡ 〈â†â†ââ〉/ (n̂)2 = 0.51 < 1 and the Mandel Q-parameter is Q = −0.32 < 0 evi-

dencing the nonclassical character of our photon source. The difference between the ideal

value of g(2) = 0 and our reported figure is primarily due to the higher-number terms re-

sulting from the background thermal state. When we operated the process at much lower

gain, corresponding to a temperature of 69◦C, our two-photon component was negligible

and was bounded above only by the statistical uncertainty of our measurement (0.3%).

In this case the second order correlation was bounded above by g(2)(0) < 0.13. However,

the single photon fidelity was lower at this gain, reaching only 21%. This was most

likely due to a poorer signal to background noise ratio as the count rate was significantly

reduced at this temperature.

Another figure of merit for a heralded photon source is the conditional cross-correlation

function which quantifies the probability that a photon in the trigger channel accompa-

nies a photon at the homodyne detector, compared to the probability that the homodyne

detector detects a photon without a trigger event. For continuously monitored homodyne

current, this can be written in terms of the quadrature variance of the triggered data

〈∆X̂2
trig〉 and the thermal background 〈∆X̂2

bck〉 as [20]
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g
(2)
si =

〈∆X̂2
trig〉 − 1/2

〈∆X̂2
bck〉 − 1/2

. (5.21)

At lower temperatures we find g
(2)
si = 24.2 > 1 at zero delay whereas for higher tempera-

tures we measure g
(2)
si = 6.0.

A noteworthy aspect of our results is that the above values are not corrected for

loss, and the system is taken as-is. Our uncorrected photon efficiency, known as the

heralding efficiency is an order of magnitude higher than other atomic sources reported

in the literature. One reason for this dramatic increase was that we used homodyne

detectors which have quantum efficiency as high as 90% as opposed to the less than 50%

efficiency of the SPCMs used in previous experiments. Correcting for a modest estimate

of optical loss and imperfect detectors yields a lower bound on the photon efficiency:

ρ11 > 0.65. We also worked off atomic resonance which minimized uncorrelated photon

emission which typically cause false counts.

Table 5.1 summarizes the current state of the art for single photon sources using

various technologies.

Table 5.1: Comparison of g(2)(0) for various single photon technologies

System Reference g(2)(0) Retrieval Efficiency

Cold Atomic Cloud [96, 97] 0.25 0.2
Single Atom in Cavity [98, 99] 0.06 0.05

Quantum Dot in Cavity [100] 0.02 0.10
Waveguided SPDC [101] 0.0007 0.07

Bulk SPDC [102] .60 0.0014
4WM in Photonic Crystal Fiber [103] 0.01 0.18

This Work [104] 0.5 0.49

5.4.3 Bandwidth and Spectral Brightness

Even with a wide-band source of photons such as standard SPDC, one can always place

a narrow spectral filter in the trigger channel, resulting in photons in the signal channel
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Figure 5.16: (a) The bandwidth of the photon is inferred from the Fourier transform
of the temporal mode used to reconstruct the density matrix. The standard deviation
of the mode is 36 MHz. (b) The spectral shape of the autocorrelation mode is more
complicated, owing to modulation terms.

with a bandwidth of the spectral filter [85]. However this comes at a cost: the probability

of a generating a photon per unit frequency is a property of the source, not the filter. As

a result, the production of narrowband light comes with a greatly reduced production

rate. This is quantified by the spectral brightness S(ν), giving the counts per second,

per unit bandwidth. Given a source of spectral brightness S(ν), the bandwidth may be

narrowed with a filter to ∆νf yielding a production rate of S(ν)∆νf .

The bandwidth of a source may be obtained by observing the Fourier transform of

the temporal mode [30]. Roughly speaking, a wave-form with temporal duration σt,

will have a angular frequency spread of σ−1
t . For a Gaussian waveform, this relation is

exact and the temporal pulse is said to be transform limited. Figure 5.16a shows the

bandwidth of the temporal mode used to reconstruct the quadrature data presented in

figure 5.15. Note the waveform is not transform limited, so the frequency domain profile

falls off more slowly than a Gaussian. The e−2 width was found to be 36 MHz. Given the

count-rate of about 250,000 counts/second, this corresponded to S(ν) ≈ 7000 cts/s
MHz

. The
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Fourier transform of the autocorrelation of the point wise variance principle eigenvector

is also shown in figure 5.16. Owing to the extra oscillations present in the time domain,

the maximum is shifted from 0 frequency.

Table 5.2 displays a sample of photon sources with the highest spectral brightness to

date, including our 4WM based source.

Table 5.2: Comparison of high spectral brightness sources

Group System Reference ∆ν [MHz] λ0 [nm] S(ν)× 103 counts
MHz s

O. Benson OPO [105] 3 860 130
V. Vuletic Cavity QED [30] 1.1 795 45.4
J.-W. Pan OPO [21] 5 795 36

This Work 4WM in Rb [104] 36 795 7.0
Michler Q. Dot [23] 1000 907 5.9
Gisin SPDC [106] 1200 1550 3.1

E. Polzik OPO [20] 8 860 1.5
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Chapter 6

Engineering Arbitrary Superposition States of Light and Matter

In the last chapter we described our implementation of a narrowband source of a partic-

ular quantum state: the single photon Fock state |1〉. We could also consider creating

more complex quantum states which are compatible with atomic ensembles. We can

write any single mode state consisting of N photons in the Fock basis. The most general

such state is:

|ψ〉 =
N∑
n

cn |n〉 , (6.1)

where ideally, N →∞.

In this chapter we will describe how we accomplished an arbitrary superposition of 0,

1, and 2 photons using a conventional SPDC source and how we did a similar experiment

with our narrowband source. Creating the superposition state with an atomic ensemble

opens up a new exciting possibility: the ability to engineer arbitrary superposition states

of atomic excitations.

6.1 Arbitrary State Up To N=2: α |0〉+ β |1〉+ γ |2〉

Both SPDC and 4WM produce a two-mode squeezed state which can be written in the

Fock basis as in equation (2.26). By heralding on precisely n photons in the trigger

channel, we collapse the signal channel to the Fock state |n〉. Suppose however that we

interfere the idler with an auxiliary state with some mean photon number. Now when

we detect n photons in the idler channel we don’t know if n are from the idler, or n− 1

from the idler and 1 from the auxiliary state, and so on. We are thus left with a coherent
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Figure 6.1: (a) The setup for observing an arbitrary superposition of |0〉, |1〉, and |2〉
states. A pulsed Ti:Sa drives a LBO crystal to produce a second harmonic pulse which
in turn drives SPDC in a PPKTP crystal. This creates a two mode squeezed state.
The trigger (idler) mode is interfered with two coherent state pulses |α〉 and |β〉. Upon
two-fold coincidence, the signal state is collapsed to equation (6.2). (b) A pair of states
acquired in the setup. The upper state is |ψ〉 = 8

3
√

2
|0〉 + 1

2
|2〉. The lower state is:

|ψ〉 =
(

18
5
√

2
− i3

2

)
|0〉+ 5

4
|1〉+ 1

2
|2〉.

superposition of n photons in the signal channel. The weighting and relative phase of

the superposition state may be manipulated by adjusting the auxiliary field.

Figure 6.1a shows our implementation of this scheme for creating an arbitrary state

up to N = 2. An SPDC process driven by a pulsed Ti:Sa laser was used to produce a two-

mode squeezed state parameterized by γ ≡ ( sinh ζ
cosh ζ

)2 is in equation(2.26). Two auxiliary

coherent states |α〉 and |β〉 were tapped off from the same laser. The magnitudes of α,

β, and γ were chosen so that the probability of having more than two photons in the

system at a given time was negligible. In order to maintain phase stability between these

states and the SPDC trigger photons, calcite beam displacers were used [36] in place

of standard beamsplitters (not shown in the figure). Conditioned on a simultaneous

click in both SPCMs, the state |ψ〉 was recorded using optical homodyne tomography.

This dual-coincidence could correspond to three possibilities: A: both photons originated

from the SPDC process implying that the signal state is |2〉. This occurs with probability
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Pr2 ∝ γ2. B: Precisely one photon came from SPDC, the other from a coherent state,

leaving the signal channel in state |1〉. Owing to Hong-Ou-Mandel interference [7], the

probability of |α〉 being detected on the first SPCM vanishes, so that the probability of

this occurring is Pr1 ∝ βγ. C: Both photons came from the auxiliary coherent states, so

that the signal channel is vacuum. The probability of this is proportional to the coherent

state amplitudes.

Since the photons from the coherent states and the SPDC were made indistinguish-

able through mode-matching and narrow filtering of the PPKTP output, each of these

possibilities are indistinguishable, yielding a coherent superposition state. The constants

of proportionality in the above are calculated to be [107]:

|ψ〉 =

(
− α2

2
√

2
+
αβ

2

)
|0〉+

βγ

2
|1〉+

γ2

2
|2〉 . (6.2)

The conditioned states were reconstructed using optical homodyne tomography. Fig-

ure 6.1b displays a sample of the density matrices and corresponding Wigner functions

produced in the experiment by varying α, β, and γ. In each case, the density matrix

corrects for a loss of 55% by means of iterative maximum likelihood. A gallery of the

produced states is presented in [36].

6.2 Extension to Narrowband Light: α |0〉+ β |1〉

The above experiment succeeded in creating arbitrary superpositions of Fock states.

However, the light produced was not compatible with atomic-based experiments and

quantum information protocols. Aside from the wavelength of 791 nm, the bandwidth of

the light was 383 GHz despite spectral filtering of the trigger. Since our 4WM system can

be seen as a narrow-band alternative to SPDC, a natural step was to engineer arbitrary

states as in our SPDC experiment with this new source.
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Figure 6.2: (a) The local oscillator phase was inferred by observing the mean quadrature
value at a particular time. (b) The obtained density matrix corrected for a transmission
of η = 0.75.

As a proof of principle demonstration, we sought to produce a coherent superposition

state of |0〉 and |1〉. In order to achieve this, we weakly seeded the trigger channel with

a coherent state which had mean photon number on the same order of magnitude as

the squeezed vacuum output n̄ ≈ G − 1 ≈ 0.2. The experimental setup was identical

figure 5.1 except that the seed from the double passed AOM was unblocked and highly

attenuated. Now, a trigger event could either be due to the coherent seed (amplitude α)

or from the 4WM process (probability (G − 1)/G). The gain was kept sufficiently low

so that the probability of stimulating a second photon from the seed was much less than

the probability of spontaneous emission. The coherent state was calibrated to give the

same count rate as the unseeded 4WM process.

Unlike the Fock state generation, the coherent superposition of vacuum and photon

state was not phase insensitive and for each value, a corresponding quadrature phase was

required. To accomplish this, we noted that for the state |ψ〉 = α |0〉 + β |1〉, the mean

quadrature is
〈
X̂θ

〉
= |αβ|√

2
cos θ′ where θ′ = θ−arg(α∗β) is the difference between the local

oscillator phase and the relative phase of α and β. By tracking the mean quadrature

value throughout the course of the measurement, we extracted the phase of the local
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oscillator with respect to the generated state. Specifically, we took a running average

over several hundred successive measurements yielding a well defined mean quadrature

over the corresponding time interval X̄t. The phase was then extracted as θt = cos−1(X̄).

One such phase tracking measurement is shown in figure 6.2a.

The reconstructed density measurement of an experimental run for an approximately

equal superposition of |0〉 and |1〉 is shown in figure 6.2b. The density matrix was found to

contain strong coherence terms providing evidence that a coherent superposition, rather

than a statistical mixture was created. Quantitatively, we found the density matrix

correcting for an estimated loss of 25% to have ρ00 = .64, ρ11 = .25, and ρ01 = .24i− .03,

whereas for a pure superposition state (|0〉 + eiφ |1〉)/
√

2, ρ00 = ρ11 = |ρ01| = 0.5. The

Wigner function shows a coherent displacement as well as a non-Gaussian “dimple” near

the origin owing to the single photon component. Analogous to expression (4.26) for

squeezing efficiency, we can consider the generalized efficiency of the single-rail optical

qubit. As before, the efficiency is the transmissivity of an absorbing medium though

which a pure state propagates to obtain the experimentally measured state. In terms of

the density matrix elements, this is [108]:

ηqubit =
ρ11

1− |ρ01|2 /ρ11

. (6.3)

For the state above, the corresponding efficiency is 0.32. It is expected that this prelim-

inary result can be improved upon with increased visibility between the seed and 4WM

modes.

6.3 Coherent Superpositions of Collective Atomic Excitations

The fact that our system can be seen as an “atomic SPDC process” opens up an inter-

esting possibility: Compared to bulk materials at room temperature, the ground state
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coherence of atomic vapours is extremely long lived. This has already been utilized to

store heralded single atomic excitations [26, 27], following the protocol of Duan, Lukin,

Cirac, and Zoller [109]. By employing the conditional measurements on the heralding

photon, we could prepare arbitrary superposition states of collective atomic excitations.

We could then read-out this atomic state in the form of a corresponding optical super-

position state.

6.3.1 The DLCZ protocol

The DLCZ protocol outlines a technique for long distance quantum communication by

employing entanglement swapping between intermediate nodes. At the heart of the

DLCZ protocol is the concept of collective enhancement of photon generation owing to

constructive interference.

The basic idea is outlined in figure 6.3. We start with an ensemble of Λ configuration

three-level atoms, with meta-stable states |g〉 and |e〉 and excited state |x〉. The ensemble

is prepared in the ground state |g〉: |Ψ0〉 = |g1g2 . . . gn〉. A weak, off-resonant “write”

pulse is applied to the sample which, with some probability, scatters a “Stokes” photon

into a solid angle covered by an SPCM. At this point there is a single excitation amongst

the atoms. The detector is placed a distance from the ensemble such that it is fundamen-

tally uncertain as to which atom emitted the Stokes photon1 and the resultant state is a

superpositions all permutations of a single excitation to state |e〉. This states known as a

collective spin excitation (CSE) |Ψe〉 = N−1/2
(
eiφ1 |e1g2 . . . gN〉+ . . .+ eiφN |g1g2 . . . eN〉

)
,

where the phase terms account for the momentum kick acquired in the Raman scattering.

This excitation is now stored in the atoms and is ready to be read out.

This read-out is accomplished by means of a strong on-resonance “read” pulse which

1Operationally, this is accomplished by making the distance to the detector much larger than the
cloud dimensions. The angle between photons emitted from opposite sides of the cloud is thus sufficiently
small so that two photons emitted from any part of the cloud show good interference visibility.
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Figure 6.3: Basic sketch of the DLCZ idea. (a) An ensemble of 3-level atoms in Λ con-
figuration are prepared in state |g〉. A fixed SPCM monitors the atoms for fluorescence.
(b) An off resonant “write pulse” creates a scattered “Stokes” photon from the ensemble,
creating a single collective excitation in state |e〉. (c) Some time later, a resonant “write”
pulse pumps the atom back into state |g〉. The scattered “anti-Stokes” photon is emitted
with high probability into the direction which satisfies phase-matching.
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converts the atomic excitation back into optical form via Raman scattering of an “anti-

Stokes” photon. Owing to collective interference from the accumulation of the phase

factors, there is a strong enhancement of probability of the anti-Stokes photon being

emitted in the phase-matched direction. Specifically, the CSE may be written as:

|Ψe〉 =
1√
N

N∑
n=1

ei(ks−kw)·rn |g1 . . . en . . . gN〉 (6.4)

where ks(w) is the k-vector of the Stokes (write) photon. The creation of a CSE can also

be written in terms of a collective atomic creation operator:

|Ψe〉 = Ŝ† |g1 . . . gN〉 . (6.5)

After application of the read pulse, the anti-Stokes scattering event occurs with some

probability, causing another momentum kick ka−kr. With ∆k ≡ ks + ka−kw−kr, the

state some short time after the arrival of the read pulse is:

|Ψe〉 =

∑N
n=1 e

i(ks−kw)·rn |g1 . . . en . . . gN〉 ⊗ |0as〉+
[∑N

n=1 e
i∆k·rn

]
|g1 . . . gN〉 ⊗ |1as〉√

N + |
∑

n e
i∆k·rn|2

,

(6.6)

where |nas〉 represents the number of anti-Stokes emissions. From this we can infer the

probability per unit time of emitting an anti-Stokes photon, as a function of emission

direction, which determines ∆k. Since limN→∞
∑N

n=1 e
i∆k·rn = δ(3)(∆k), the probability

that the anti-Stokes direction satisfies ∆k = 0 goes as 1− 1
N

. Since for typical experiments

N ≈ 1013, this probability is effectively unity.

The above dynamics can be described by the Hamiltonian [110]

Ĥ = χ
(
â†Ŝ† + âŜ

)
(6.7)
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where â is the annihilation operator in the Stokes mode. Note that this Hamiltonian is

identical to that of SPDC, but describes a two-mode state between the Stokes channel

and collective atomic state.

6.3.2 Arbitrary Superpositions of Collective Spin Excitations

The experiments described in chapter 4 can be viewed as an instantaneous write-in

read-out DLCZ experiment, with the pump acting as both the read and write fields,

the Stokes as the trigger and the anti-Stokes as the signal. The results of section 6.2

thus served as a proof of principle demonstration of the creation of a superposition of

collective atomic excitations. While these experiments unitized only the first order terms

in the Hamiltonian (6.7), higher order terms can be employed as was done for SPDC

in section 6.1, and the engineering of collective spin excitations can be extended to

higher N . One way of achieving this is to employ multiple partial photon subtractions

as outlined in figure 6.4. The trigger photon passes through N stages each consisting

of a low-reflectivity beam splitter with reflection coefficient ri and an incident coherent

state with amplitude αi. At each stage, an SPCM monitors the reflected port of the

beam-splitter, and an additional SPCM monitors the final transmitted port. The state

|ψ〉 is heralded upon each reflected-port SPCM clicking and the absence of a click in the

final transmitted port.

To see how this prepares an arbitrary state, note first that each stage the click could

come from the coherent state (so that |ψi+1〉 → |ψi〉) with probability amplitude (1 −

r2
i )α ≈ α, or from |ψi〉 in which case |ψi+1〉 → â |ψi〉, with amplitude ri. Thus each

partial photon subtraction stage performs the operation Âi = (αi + riâ). After N of

these operations the state is transformed to:
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Figure 6.4: Scheme for generating the state
∑N

n=0 cn |n〉. There are N stages each consist-
ing of a low-reflection beam splitter and an incident coherent state. The state is heralded
upon a click in each of the upper detectors and a null-detection in the right-most detector.

|ψ〉 =
N∏
i=1

Âi |ψin〉 (6.8)

= (α1 + r1â) (α2 + r2â) · · · (αN + rN â) |ψin〉

=
(
β0 + β1â+ · · ·+ βN â

N
)
|ψin〉 ,

where βi = βi(r1, . . . , rN , α1, . . . , αN) are the coefficients of the resultant polynomial.

With the input state written in the basis |Stokes field〉s⊗|Atomic Excitations〉a given

by |ψin〉 =
∑

n γ
n |n〉s |n〉a, and null detection on the final SPCM, the atomic state

collapses to:

|ψ〉a = 〈0|s
∑
n,m

βmâ
mγn |n〉s |n〉a (6.9)

=
∑

m,n<m

γnβm

√
m!

(m− n)!
〈0|m− n〉s |n〉a

=
∑
n

γnβn
√
n! |n〉a

=
∑
n

cn |n〉a ,
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where the cn are functions of (ri, αi) through the βi. For a given set {ci} we can then find

the unique {ri, αi} which determine these values. We know that these values exist from

the fundamental theorem of algebra2. We thus have, at least in principle, a method to

create any collective atomic state. Technically, this will be limited by the dark count rate

and quantum efficiency of the detector. Also, for increasing N , the mean photon number

in each state must be kept sufficiently low to ensure only N photons are present for a

given realization. Thus even with perfect detectors, states with large photon numbers

will be ultimately limited by the lifetime of the experimenter3.

2The FTA states that an nth order polynomial has n roots. Since here
∑
n βnâ

n =
∏
i (αi + riâ), the

{ri, αi} are just the roots of the polynomial
∑
n βnâ

n.
3Or, at the very least, the duration experimenter’s funding.
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Chapter 7

Conclusions and Outlook

The work presented in this thesis has both practical and fundamental aspects. On one

hand, the generation of narrow-band non-classical light resonant to atomic Rubidium is

of high practical value. For example, storage and retrieval of non-classical light is a far

more convincing test of a quantum memory than a classical signal at the single photon

level, and atom based single photon nonlinearities [111] could form quantum logic gates.

In addition, a qubit formed from such a photon may be used in the myriad atom-based

examples for optical quantum computing. On the other hand, this work has looked at the

unexplored area of controllably manipulating superposition states of CSEs. This allows

us to begin to explore the isomorphism between the optical and collective-atomic Hilbert

spaces and provides a new testbed for quantum information protocols.

The natural next step in terms of the practicality of the non-classical light source

is to interface single photons with atomic ensembles, and perform simple operations. A

introductory proof-of-principle demonstration will be to observe linear absorption from a

cold atom trap. Owing to the one-photon tuneability of the source, simple spectroscopy

could be performed with individual light quanta. Once suitable light-atom coupling is

achieved, a future step will involve storing and retrieving a single photon state from

the atomic gradient echo memory (GEM) [73] in our laboratory. GEM allows for high

retrieval efficiencies of over 80% so that the non-classical character of the stored light

may be observed after retrieval. One challenge associated with this will be to match the

frequency of the quantum memory to that of the photons. This can be overcome in two

steps. In order to match the relatively narrow bandwidth (on the order of 1 MHz) of our

current GEM setup, an additional spectral filter in the trigger channel can be employed.
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The high spectral brightness of our photon source allows us to achieve this filtration while

maintaining a high experimental repetition rate. In order to operate the memory and

the source at the same absolute frequency, each pump laser can be locked to an atomic

line by means of saturated absorption spectroscopy.

Another interesting experiment to perform would be that of heralded photon amplifi-

cation. In this experiment, a single photon generated in the atomic source would be fed

into another 4WM setup or into the same cell. A photon click gated to be synchronized

with the arrival of the seed photon would herald the creation of a two photon Fock state.

Since we operate with gain G = 1.1 in our setup, this will occur at a rate approximately

10 times less than the single photon count rate. Nevertheless, the high single photon

count rates achieved (300,000 s−1 or higher) allow us to prepare Fock states up to |4〉.

This could form an alternative to measuring n > 1 Fock states by n−fold photo detection

in the trigger channel.

In terms of collective atomic superposition states, the immediate next step is to

observe a transient collective superposition state using the protocol of [36] as outlined

in section 6.3.2 but with continuous wave read/write fields. The next step will be more

challenging. To fully utilize the long-lived ground state coherence of atomic ensembles, we

will have to move to the pulsed regime, where we prepare the atomic superposition state,

wait for some time, and then verify the atomic state via optical homodyne detection.

One difficulty of this will be to scatter, with high probability, a Stokes photon in the

trigger channel. In traditional DLCZ experiments, the probability of scattering into

a particular spatial mode is low, and the experiment is repeated many times before a

successful “write” event heralds an atomic excitation. The gain must then be sufficiently

high to record an acceptable experimental count rate, but not so high as to increase the

number of generated excitations. Another challenge will be to obtain the high retrieval

efficiency in the pulsed regime, which was achieved in this work in the CW regime. So far,
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our experiment has achieved a heralding efficiency approximately an order of magnitude

higher than previous works, but this may be largely on account of the CW “4WM-regime”

in which we work.

The underlying accomplishment of this work was the introduction of a new source

of narrowband photons, which was built on the recent demonstrations of high quality

multi-spatial mode squeezed light [32, 66]. Combining the high efficiency of this source

with the idea of DLCZ opens up a territory in exploring the isomorphism between the

optical and collective atomic Hilbert spaces. Owing to the novelty of the system, there are

many potential avenues to explore and we can’t say for certain what will be discovered.

Although my time with the experimental setup is sadly over, it is now in the hands of

the next generation of graduate students in our lab, and ultimately the future success or

failure of the above ideas is in their able hands. I am confident that we have only seen

the beginning of the experiments which come out of this technology. I look forward to

reading about it in the future.
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Appendix A

Properties of the Two Mode Sqeezing Operator

The operator (2.21) stems from the Hamiltonian:

Ĥ = i~
(
γâ†b̂† − γ∗âb̂

)
(A.1)

The evolution of for example â is then given by:

dâ

dt
=

1

i~

[
Ĥ, â

]
(A.2)

=
1

i~

[
i~
(
γâ†b̂† − γ∗âb̂

)
, â
]

= γ
[
â†, â

]
b̂†

= −γb̂†.

Similarly,

db̂†

dt
=

1

i~

[
i~
(
γâ†b̂† − γ∗âb̂

)
, b̂†
]

(A.3)

= −γ∗â
[
b̂, b̂†

]
= −γ∗â.

Differentiating (A.2) and substituting (A.3) yeilds:

d2â

dt2
= |γ|2 â→ â = A cosh(|γt|) +B sinh(|γt|). (A.4)

For the initial conditions we have â(0) = A, dâ(0)/dt = |γ|B = − |γ| b̂†. Letting ζ =

γt and choosing ζ to be real1 we arrive at the squeezing transformation for â. The

corresponding transformation for b̂ follows from direct substitution, and â†, b̂† follow by

taking the Hermitian conjugate of above:

1Experimentally, this corresponds to choosing particular overall reference phase of the local oscillator.
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â→ â cosh(ζ)− b̂† sinh(ζ) (A.5)

b̂→ b̂ cosh(ζ)− â† sinh(ζ)

â† → â† cosh(ζ)− b̂ sinh(ζ)

b̂† → b̂† cosh(ζ)− â sinh(ζ).

The joint quadrature operators (2.22) have simple transformation properties. For

example:

Ŝ†X̂+Ŝ =
Ŝ†X̂aŜ + Ŝ†X̂bŜ√

2
(A.6)

=
Ŝ†âŜ + Ŝ†â†Ŝ

2
+
Ŝ†b̂Ŝ + Ŝ†b̂†Ŝ

2

=
â cosh(ζ)− b̂† sinh(ζ) + â cosh(ζ)− b̂† sinh(ζ)

2

+
â cosh(ζ)− b̂† sinh(ζ) + â cosh(ζ)− b̂† sinh(ζ)

2

=
â+ â† + b̂+ b̂†

2
(cosh(ζ)− sinh(ζ)) .

=
X̂a + X̂b√

2
e−ζ

= X̂+e
−ζ

and by the same analysis:

X̂− → X̂−e
ζ (A.7)

P̂+ → P̂−e
ζ

P̂− → P̂+e
−ζ
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Appendix B

Properties of the Thermal State

Defining the parameter γ ≡ G−1
G

, we can write the thermal state density matrix as:

ρ̂th =
1

G

∞∑
n=0

γn |n 〉〈n| . (B.1)

The mean photon number n̄ ≡ 〈n̂〉 is then:

n̄ = Tr [ρ̂thn̂] (B.2)

=
1

G

∑
m,n

γn 〈m|n〉 〈n| n̂ |m〉

=
1

G

∑
n,m

γnm̂δmn

=
1

G

∑
n

nγn

=
1

G

γ

(1− γ)2

= G− 1,

where we’ve noted that (1 − γ)−1 = G and the sum
∑

n nx
n = x

(1−x)2
was computed as∑

n nx
n = x d

dx

∑
n x

n = x d
dx

1
1−x = x

(1−x)2
. Similarly we can compute

∑
n n

2xn = x(1+x)
(1−x)3

.

Continuing along these lines we find:
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〈
n̂2
〉

= Tr
[
ρ̂thn̂

2
]

(B.3)

=
1

G

∑
m,n

γnm2δmn

=
1

G

∑
n

n2γn

=
1

G

γ(1 + γ)

(1− γ)3

= (G− 1)(2G− 1),

so that 〈∆n̂2〉 is

〈
∆n̂2

〉
=

〈
n̂2
〉
− n̄2 (B.4)

= (G− 1)(2G− 1)− (G− 1)2

= G(G− 1)

= n̄2 + n̄.

In a similar manner we can compute
〈

∆X̂2
〉

for the thermal state. From the sym-

metry of the Wigner function,
〈
X̂
〉

th
= 0 so that

〈
∆X̂2

〉
=
〈
X̂2
〉

th
. Thus

〈
∆X̂2

〉
=

1

G

∑
n

γn 〈n| X̂2 |n〉 (B.5)

=
1

2G

∑
n

γn(2n+ 1)

=
1

G

γ

(1− γ)2
+

1

2G

1

1− γ

= (G− 1) +
1

2

=
2n̄+ 1

2
.

Note that this is the just the quadrature variance of the Fock state |n〉.
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Appendix C

Some Properties of Gaussian Beams

Since lasers generally consist of a gain medium inside a spherical resonator, the transverse

intensity profile given by a mode of such a resonator1, namely a Hermite-Gauss Mode

of order m,n denoted TEMmn [112]. The fundamental mode TEM00 has a cylindrically

symmetric Gaussian transverse profile which may be written as:

I(r) = I0e
−2( r

w(z))
2

. (C.1)

The quantity w0 is known as the beam waist and describes the radius at which the

intensity drops by a factor of e−2. Owing to diffraction, the w(z) has a minimum value

and diverges as z →∞. Although the waist increases, the profile remains Gaussian as per

equation (C.1). For convenience, z = 0 corresponds to the minimum waist: w0 ≡ w(0).

A key parameter is the distance z over which the beam has diffracted to
√

2w0. This

distance, known as the Rayleigh range is given by:

zR ≡
πw2

0

λ
. (C.2)

The general dependence of the waist as a function of z can be written in terms of zR

as:

w(z) = w0

√
1 +

(
z

zR

)2

. (C.3)

Note that for distances well outside the Rayleigh range, the divergence is linear: w(z) ≈

θ0z, with

1i.e. a solution to the Maxwell equations subject to the spherical boundary conditions.
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θ0 =
λ

πw0

. (C.4)

Unlike a plane wave, the phase front of a TEM mode is not constant across any plane

z apart from the origin. Instead, the constant phase fronts are approximately spherical

with radius:

R(z) = z

(
1 +

(zR
z

)2
)
. (C.5)

As compared to their plane-wave counterparts, Gaussian beams acquire an additional

phase factor over an on-axis propagation distance z. This factor known as the Gouy

phase shift is given for a TEMmn by:

φG = (1 +m+ n) tan−1 z

zR
. (C.6)
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Appendix D

Relative Intensity Squeezing in the Presence of Loss (3.7)

The mean photon number of the seeded signal field after the 4WM process is

〈n̂s〉 = 〈α, 0| Ŝ†â†sâsŜ |α, 0〉 (D.1)

= 〈α, 0| Ŝ†â†sŜŜ†âsŜ |α, 0〉

= 〈α, 0|
(
â†s cosh(ζ)− âi sinh(ζ)

) (
âs cosh(ζ)− â†i sinh(ζ)

)
|α, 0〉

= 〈α| n̂s |α〉 cosh2(ζ) + 〈α|α〉 sinh2(ζ)

= |α|2 cosh2(ζ) + sinh2(ζ),

where we’ve inserted the identity operator S†S in the second step.

Along the same lines we compute:

〈ni〉 = (1 + |α|2) sinh2(ζ). (D.2)

We compute 〈n2
s〉 via 〈α| Ŝ†â†sŜŜ†âsŜŜ†â†sŜŜ†âsŜ |α〉 to obtain

〈
n2
s

〉
= |α|2 (1 + |α|2) cosh4(ζ) + (3 |α|2 + 1) cosh2(ζ) sinh2(ζ) + sinh4(ζ), (D.3)

so that

〈
∆n̂2

s

〉
=

〈
n̂2
s

〉
− 〈n̂s〉2

= |α|2 (1 + |α|2) cosh4(ζ) + 3 |α|2 cosh2(ζ) sinh2(ζ) + cosh2(ζ) sinh2(ζ)

+ sinh4(ζ)− |α|4 cosh4(ζ)− 2 |α|2 cosh2(ζ) sinh2(ζ)− sinh4(ζ)

= |α|2 cosh2(ζ)(cosh2(ζ) + sinh2(ζ)) + cosh2(ζ) sinh2(ζ). (D.4)
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so that for large α, this becomes 〈∆n̂s〉2 = |α|2G(2G− 1). We calculate the variance for

the idler channel in the same manner to obtain:

〈
n2
i

〉
= (1 + |α|2) cosh2(ζ) sinh2(ζ) + (1 + 3 |α|2 + |α|4) sinh4(ζ), (D.5)

and

〈∆n̂i〉2 = |α|2 sinh2(ζ)(cosh2(ζ) + sinh2(ζ)) + cosh2(ζ) sinh2(ζ). (D.6)

Note that in the case of no seed, 〈∆n̂s〉2 = 〈∆n̂i〉2 = cosh2(ζ) sinh2(ζ).

Similarly we find

〈n̂sn̂i〉 = (1 + 3 |α|2 + |α|4) cosh2(ζ) sinh2(ζ)(1 + |α|2) sinh4(ζ) (D.7)

so that using eqs. (D.1) and (D.2),

cov(n̂sn̂i) = 〈n̂sn̂i〉 − 〈n̂s〉 〈n̂i〉 = cosh2(ζ) sinh2(ζ)(1 + 2 |α|2). (D.8)

We can now combine equations D.4, D.6, and D.8 to obtain the solution to equation

(4.22):

〈∆(n̂s − n̂i)〉2 = 〈∆n̂s〉2 + 〈∆n̂i〉2 − 2(〈∆(n̂sn̂i)〉 − 〈n̂s〉 〈n̂i〉) (D.9)

= |α|2 cosh4(ζ) + |α|2 sinh2(ζ) cosh2(ζ) + sinh2(ζ) cosh2(ζ)

+ |α|2 sinh4(ζ) + |α|2 sinh2(ζ) cosh2(ζ) + sinh2(ζ) cosh2(ζ)

−2 sinh2(ζ) cosh2(ζ)− 4 |α|2 sinh2(ζ) cosh2(ζ)

= |α|2 (cosh4(ζ)− 2 cosh4(ζ) sinh2(ζ) + sinh4(ζ))

= |α|2 (cosh2(ζ)− sinh2(ζ))2

〈∆(n̂s − n̂i)〉2 = |α|2 .
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To calculate the effect of losses, we model a loss in a given channel as a beamsplitter

with transmissivity t =
√
η as diagrammed in figure 4.7b. The action of the beamsplitters

on a channel is given by the unitary beamsplitter formula [39]:

B̂†âsB̂ = tsâs + rsâvac,s (D.10)

B̂†â†i B̂ = tiâ
†
i + riâ

†
vac,i

and so on, where âvac,s(i) is the (vacuum) mode incident on the unused side of the signal

(idler) beamsplitter. These additional modes now must be taken into account so that

the state in (4.19) becomes:

|ψ〉 = B̂sB̂iŜsiD̂(α)s |0〉s |0〉i |0〉vac,s |0〉vac,i . (D.11)

We can calculate the transformed quantities from the previous section in the same

way. For example, equation (D.1) becomes:

〈ψ| â†sâs |ψ〉 = 〈0vac,s0vac,iαs0i| Ŝ†siB̂
†
i B̂
†
s â
†
sB̂sB̂

†
s âsB̂sB̂iŜsi |0vac,s0vac,iαs0i〉 (D.12)

= 〈0vac,sαs0i| Ŝ†si(tâ†s + râ†vac,s)(tâs + râvac,s)Ŝsi |0vac,sαs0i〉 〈0vac,i|0vaci〉

= t2a 〈αs0i| Ŝ
†
sin̂sŜsi |αs0i〉

= ηs 〈n̂s〉Ŝ

with 〈n̂s〉Ŝ being the quantity already calculated in equation D.1. We similarly express

the other previously calculated quantities in terms of the beamsplitter coefficients:
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〈n̂s〉Ŝ → ηs 〈n̂s〉Ŝ

〈n̂i〉Ŝ → ηi 〈n̂i〉Ŝ〈
n̂2
s

〉
Ŝ
→ η2

s

〈
n̂2
s

〉
Ŝ

+ ηs(1− ηs) 〈n̂s〉Ŝ〈
n̂2
i

〉
Ŝ
→ η2

i

〈
n̂2
i

〉
Ŝ

+ ηi(1− ηi) 〈n̂i〉Ŝ

〈n̂sn̂i〉Ŝ → ηsηi 〈n̂sn̂i〉Ŝ , (D.13)

yielding the following parameters used to calculate equation 4.24:

〈∆n̂s〉2 → η2
s 〈∆n̂s〉

2 + ηs(1− ηs) 〈ns〉

〈∆n̂i〉2 → η2
i 〈∆n̂i〉

2 + ηi(1− ηi) 〈ni〉

〈n̂sn̂i〉 − 〈n̂s〉 〈n̂i〉 → ηsηi(〈n̂sn̂i〉 − 〈n̂s〉 〈n̂i〉). (D.14)

Again, G ≈ 10 and |α|2 ≈ 1010 � G so that we neglect terms which do not include

α1 and consider the relative intensity squeezing in the case of losses. Equation (4.22) is

now normalized to ηs |α|2G+ ηi |α|2 (G− 1) to include these losses.

1i.e. the contributions from the (nondisplaced) vacuum input
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Appendix E

Deferred Derivations of Equations Stated in Text

E.1 Derivation of equation (3.7)

By the Wiener-Khintchine theorem the measured spectrum is the Fourier transform of

the autocorrelation of the temporal signal

S (ν) =

∫ ∞
−∞

〈
î(t)̂i(t+ τ)

〉
e2iπντdτ (E.1)

We can write the autocorrelation in terms of equation (3.3) to find

〈
î(t)̂i(t+ τ)

〉
= γ2

〈∫ ∞
−∞

∫ ∞
−∞

q̂(t′)q̂(t′′)r(t′ − t)r(t− t′′ + τ)dt′dt′′
〉

(E.2)

+2γ

〈∫ ∞
−∞

q̂(t′)r(t− t′)dt′̂ie(t)
〉

+
〈
îe(t)̂ie(t+ τ)

〉
.

Noting that the quantum noise is uncorrelated with the electronic noise and that 〈q(t)〉 =

〈ie(t)〉 = 0, the second term vanishes. Also since for the vacuum state1 q̂(t′)q̂(t′′)) =

δ(t′ − t′′), (E.2) becomes:

〈
î(t)̂i(t+ τ)

〉
= γ2

∫ ∞
−∞

r(t)r(t+ τ)dt+ 〈ie(t)ie(t+ τ)〉 (E.3)

so that equation (E.1) is:

S(ν) = γ2

∫ ∞
−∞

∫ ∞
−∞

r(t)r(t+ τ)e2iπντdtdτ +

∫ ∞
−∞

〈
îe(t)̂ie(t+ τ)

〉
dτ (E.4)

= γ2 |r̃(ν)|2 + Se(ν)

1We measure the vacuum state by simply not putting any light into the signal port of the beam-splitter
in figure 3.2.
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where the convolution theorem was used in the second line. This shows that the spectrum

is simply the sum of the electronic noise spectra and the Fourier transform of the response

function scaled by the homodyne gain.

Next, from equation (3.4):

〈
Q̂2

meas

〉
= γ2

∫ ∞
−∞

∫ ∞
−∞

q̂(t′)q̂(t′′)ψ′(t′)ψ′(t′′)dt′dt′′ +
〈
Q̂2

e

〉
(E.5)

= γ2

∫ ∞
−∞
|ψ′(t)|2 dt+

〈
Q̂2

e

〉
= γ2

∫ ∞
−∞

∣∣∣ψ̃′(ν)
∣∣∣2 +

〈
Q̂2

e

〉
= γ2

∫ ∞
−∞

∣∣∣ψ̃(ν)
∣∣∣2 |r̃(ν)|2 +

〈
Q̂2

e

〉
where Parseval’s theorem was employed from line 2 to line 3. Now we can write

〈
Q̂e

〉
as

the Fourier transform of the auto-convolution of îe(t)ψ(t), i.e.

Q̂2
e =

∫ ∞
−∞

se(ν)
∣∣∣ψ̃(ν)

∣∣∣2 dν. (E.6)

Finally, since
〈
Q̂meas

〉
= 0, we have

〈
∆Q̂2

meas

〉
=
〈
Q̂2

meas

〉
. We can then combine

equations (E.4), (E.5), and (E.6) to find:

〈
∆Q̂2

meas

〉
=

∫ ∞
−∞

S(ν)
∣∣∣ψ̃∣∣∣2 dν. (E.7)

Inasmuch as S(ν) is constant, we can pull it out of the integral and find for some

frequency ν0 in this range:

〈
∆Q̂2

e

〉
〈

∆Q̂2
meas

〉 =
Se(ν0)

∫∞
−∞

∣∣∣ψ̃∣∣∣2 dν
S(ν0)

∫∞
−∞

∣∣∣ψ̃∣∣∣2 dν =
Se(ν0)

S(ν0)
. (E.8)
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E.2 Derivation of the Autocorrelation Matrix in Relation to ρ̂

Consider a single photon which can occupy any single time bin. We write the state of a

photon occupying a given time bin in terms of the creation operator:

â†i . . . |0〉i−1 |0〉i |0〉i+1 . . . = . . .
√

1 |0〉i−1 |1〉i |0〉i+1 . . . ≡ |i〉 . (E.9)

The corresponding annihilation operator is defined similarly. We can then write the

quadrature operator for a given temporal mode as:

X̂i =
âi + â†i√

2
. (E.10)

For simplicity, we write two photons in a given mode as |2i〉 and no photons in any mode

as |0̄〉. Combining the homodyne relation (3.1) with the auto-correlation current (5.19),

we assume perfect detector resolution and find,:

Aij ∝
〈
X̂iX̂j

〉
(E.11)

= Tr

[∑
m,n

ρmn |m 〉〈n| X̂iX̂j

]
=

∑
m,n,k

ρmn 〈k|m〉 〈n| X̂iX̂j |k〉

=
∑
m,n

ρmn 〈n| X̂iX̂j |m〉

We then need to compute the term 〈n| X̂iX̂j |m〉. Since 〈n|m〉 = δmn, many terms

will not contribute to the sum:

〈n| X̂iX̂j |m〉 =
1√
2
〈n| X̂i

[
δjm |0〉+

√
2δjm |2m〉+ (1− δjm) |jm〉

]
(E.12)

=
1

2
〈n| [δjm |i〉+ 2δimδjm |m〉+ (1− δjm)(δij |m〉+ δim |j〉)]

=
1

2
(δjmδni + 2δimδjmδnm + (1− δjm)(δijδmn + δimδjn))

=
1

2
(δjmδni + 2δimδjmδnm + δijδmn + δimδjn − δjmδijδmn − δjmδimδjn)
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We can then proceed with the sum (E.11):

∑
m,n

ρmn 〈n| X̂iX̂j |m〉 = (E.13)

1

2

∑
m,n

(δjmδniρmn + 2δimδjmδnmρmn + δijδmnρmn + δimδjnρmn − δjmδijδmnρmn − δjmδimδjnρmn) =

1

2

∑
n

(δniρjn + 2δijδnjρjn + δijρnn + δjnρin − δijδjnρjn − δijδjnρjn) =

1

2
(ρji + 2δijρjj + δijTr [ρ̂] + ρij − δijρjj − δijρjj) =

ρij + ρji
2

+
1

2
δij.

Since the density matrix is self-adjoint, ρij + ρji = 2Re [ρij]. Thus

Â ∝ Re [ρ̂] +
1

2
1, (E.14)

with the constant of proportionality given by the electronic transfer function of the

homodyne detector.
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[65] J. Reháček, Z. Hradil, E. Knill, and A. I. Lvovsky. Diluted Maximum-Likelihood

Algorithm for Quantum Tomography. Physical Review A, 75(4):1–5, April 2007.

http://matrixcookbook.com
http://matrixcookbook.com


138

[66] A. M. Marino, R. C Pooser, V. Boyer, and P. D. Lett. Tunable Delay of Einstein-

Podolsky-Rosen Entanglement. Nature, 457:859–862, February 2009.

[67] E. Hecht. Optics, fourth ed. Addison Wesley, 2002.

[68] R. W. Boyd. Nonlinear Optics, third ed. Academic Press, 2008.

[69] C. W Thiel. Four-Wave Mixing and its Applications. http://www.physics.

montana.edu/students/thiel/docs/FWMixing.pdf.

[70] A. MacRae. Double Electromagnetically Induced Transparency. Master’s thesis,

University of Calgary, August 2008.

[71] R. Y. Chiao, E. Garmire, and C. H. Townes. Self-Trapping of Optical Beams.

Phys. Rev. Lett., 13:479–482, October 1964.

[72] Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau. Strong

Quantum Correlations in Four Wave Mixing in 85Rb Vapor. volume 7727, page

772703. SPIE, 2010.

[73] M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler. Uncondi-

tional Room-Temperature Quantum Memory. Nature Physics, 7(March):794–798,

2011.

[74] L. Barbier and M. Cheret. Energy Pooling Process in Rubidium Vapour. Journal

of Physics B: Atomic and Molecular Physics, 16(17):3213, 1983.

[75] A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford. Coherent and Col-

limated Blue Light Generated by Four-Wave Mixing in Rb Vapour. Opt. Express,

17(25):22861–22870, December 2009.

[76] A. Vernier, S. Franke-Arnold, E. Riis, and A. S. Arnold. Enhanced frequency

up-conversion in rb vapor. Opt. Express, 18(16):17020–17026, August 2010.

http://www.physics.montana.edu/students/thiel/docs/FWMixing.pdf
http://www.physics.montana.edu/students/thiel/docs/FWMixing.pdf


139

[77] A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy.

Observation of Quantum Noise Reduction on Twin Laser Beams. Phys. Rev. Lett.,

59:2555–2557, November 1987.

[78] V. Boyer, A. M. Marino, and P. D. Lett. Generation of Spatially Broadband Twin

Beams for Quantum Imaging. Phys. Rev. Lett., 100:143601, April 2008.

[79] P. H. Souto Ribeiro, C. Schwob, A. Mâıtre, and C. Fabre. Sub-Shot-Noise High-
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