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Abstract

In this thesis, I studied two different approaches which are promising for creating macroscopic

quantum superpositions.

The first approach, which is the main focus of this thesis, is based on optomechanical sys-

tems. The basic challenge to realize quantum effects in optomechanical systems, is considered

to be the weak optomechanical coupling rate compared to the decoherence rates of the system

caused by the cavity and mechanical damping. To enhance the optomechanical coupling it has

been suggested to pump the cavity with coherent laser light [1]. By this method the strong

coupling regime in which the optomechanical coupling rate exceeds all decoherence rates has

been demonstrated very recently [2, 3]. It is also known that the optomechanical systems may

exhibit nonlinear behaviours such as bistability.

After introducing the basic ideas of optomechanical systems in chapter 1, in chapter 2 we

studied the connection between optomechanical entanglement and bistability.

In chapter 3, we studied the drawback of using a laser to enhance the interaction. We stud-

ied the effect of the laser phase noise, as an additional decoherence channel, on the optome-

chanical entanglement. We have shown that the system is very sensitive to this new source of

decoherence and the sensitivity is maximum in the bistable threshold. We discussed that our

results are independent of how we model the laser phase noise.

In chapter 4, we studied single photon optomechanics. In this regime, we proposed a

new scheme to enhance the optomechanical coupling based on post selection. Our scheme is

potentially promising to create a superposition of the massive oscillator in different motional

states. We also discussed the potential application of our scheme to test some decoherence

models.

The second approach that we consider in this thesis is based on amplifying single pho-

tons with high gain to create micro-macro superpositions . In chapter 5, we discussed the De
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Martini scheme. We then present our scheme for creating optical micro-macro superposition

and discussed its experimental realization under realistic conditions when losses are taken into

account.
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Chapter 1

Introduction to quantum optomechanics: basic principles

and potential applications

In this chapter we review some important aspects of optomechanical systems. We start by intro-

ducing the Fabry-Perot cavity in Section 1.1. Then we introduce optomechanical systems and

their basic physics in Section 1.2. In section 1.3 we derive the Hamiltonian of optomechanical

systems.

We briefly discuss some important applications of optomechanical systems such as ground

state cooling of mechanical oscillators, observing quantum fluctuations of a mechanical oscil-

lator, optomechanically induced transparency and preparing superpositions of different vibra-

tional states of a mechanical oscillator.

1.1 Basic System: Fabry-Perot Cavity

In this section we briefly review some of the properties of Fabry-Perot cavities. A Fabry-Perot

cavity consists of two reflecting mirrors with reflectivity r1, r2 and transmittivity t1 , t2 at a

distance L apart. Fig. (1.1). When the Fabry-Perot cavity is driven by an incident beam with

intensity I0 and wave number k, the intensity of the transmitted light is given by

IT = I0
T 2

(1−R)2
1

1+(2F
π
)2 sin2(δ/2)

, (1.1)

where R = |r1||r2|, T = |t1||t2| and δ = 2kL and

F =
π
√

R
1−R

, (1.2)

1



r1, t1

v	  

I0

r2, t2

IT

Figure 1.1: A Fabry-Perot cavity consists of two mirrors with reflectivity r1, r2 and transmit-
tivity t1, t2.

is the cavity finesse. The cavity damping rate is defined in terms of the cavity finesse as

κ =
πc

LF
. (1.3)

If the Fabry-Perot cavity contains a medium with a nonlinear index like a Kerr medium, the

transmitted light from the cavity may display optical bistability, i.e. for some input intensities

there are two possible values for the transmitted intensity. To show this, we assume that δ � 1,

which means the cavity is driven near resonance. In this case Eq.(1.1) can be written as

IT = I0
T 2

(1−R)2
1

1+(F
π
)2δ 2

. (1.4)

The Kerr nonlinear medium causes an intensity-dependent phase shift of the transmitted light:

δ = δ0 +δ2IT . (1.5)

We also assume that δ0 and δ2 have opposite signs, so that the field can tune the cavity through

resonance. Plugging Eq. (1.5) in Eq. (1.4) gives

T 2

(1−R)2 I0 = IT (1+(
F

π
)2(δ0 +δ2IT )

2) (1.6)

Eq. (1.6) in general has three solutions for the transmitted light (it is a third order polynomial

in IT ). Depending on the parameters in Eq. (1.6), there will be one or two real solutions for the

transmitted light. The latter case corresponds to bistability.
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1.2 Optomechanical Systems

The simplest optomechanical system (OMS) consists of a Fabry-Perot cavity in which one of

its mirrors can move under the influence of the radiation pressure of light inside the cavity, Fig.

(1.2). The basic idea with an OMS is to control and manipulate the motion of the mirror with

light inside the cavity and vice versa. This idea has been applied to a wide range of scales from

macroscopic mirrors in the LIGO [9, 10] to nano or micro mechanical cantilevers [11, 12],

microtoroids [13] and membranes [14] and optomechanical crystals [15].

A change in the length of the cavity changes the intracavity light intensity and phase. It was

pointed out by Braginsky [16] that these changes produce two main effects. The first one is

the optical spring effect, which means that the oscillation frequency of the mirror will change

because of the radiation pressure. The second is the change in the damping of the mechanical

oscillator. Both of these effects can be used to reduce the temperature of the oscillating mirror.

To see how the optical spring effect can reduce the effective temperature of the oscillating

mirror, we recall that [17]

〈q2〉= kBT
mω2

m
, (1.7)

where 〈q2〉 represents the fluctuations of the mirror position, m and ωm are the mass and

frequency of the oscillating mirror, respectively. By increasing the resonance frequency of the

mirror the fluctuations are reduced, which is similar to the effect of a decrease the temperature.

An induced change in the damping can also lower the effective temperature, this is called

cold damping. One can see this from the following expression for the mechanical oscillator

energy

d
dt
〈E〉=−γm〈E〉+ γmkBT −Γopt〈E〉. (1.8)

Here γm is the intrinsic damping rate of the mirror and Γopt is the additional damping be-

3



Figure 1.2: A typical optomechancial system consists of an optical cavity with one end mov-
able mirror, modelled as a harmonic oscillator, which moves under the influence of radiation
pressure and thermal fluctuations.

cause of the radiation pressure. From the steady state solution ( d
dt 〈E〉 = 0) of Eq. (1.8) one

sees that the effective temperature is given by

Teff =
γmT

γm +Γopt
(1.9)

For Γopt > 0 one sees that the effective temperature is smaller than the environment tem-

perature.

As a final remark for this section we note that the bistability argument given for the non-

linear medium inside the cavity is applicable to OMS. This is because the phase of the cavity

field is determined by the displacement of the movable mirror which is proportional to the

light intensity. This means that Eq. (1.5) is applicable to this case. The first observation of

optomechanical bistability has been reported in [18]

1.3 Quantum Optomechanics: the Hamiltonian

In this section we derive the optomechanical Hamiltonian [19]. We consider a Fabry-Perot

cavity with initial length L0. One of the mirrors can move under the influence of radiation

4



pressure due to the light inside the cavity. The position of the mirror at a given time t is given

by L(t) and the mirror displacement, denoted by q(t), is given by q(t) = L0−L(t). We model

the motion of the movable mirror as a mechanical oscillator with mass m and frequency ωm.

The vector potential A(q, t) of the optical field inside the cavity obeys the wave equation (c= 1)

∂ 2A
∂q2 −

∂ 2A
∂ t2 = 0. (1.10)

We assume that both mirrors are perfect mirrors so that the vector potential also obeys time-

dependant boundary conditions

A(0, t) = A(L(t), t) = 0. (1.11)

The non relativistic equation of motion for the mirror is given by

mq̈ =−∂V
∂q

+
1
2
(
∂A(q, t)

∂q
)2|q=q(t). (1.12)

the first term is the simple harmonic force −mω2
mq and the second term in Eq.(1.12) corre-

sponds to the radiation pressure force. One can understand the second term in Eq.(1.12) easily

by moving to the rest frame of the movable mirror. In this frame, the electric field on the mirror

surface is zero, as we assume a perfect mirror and the radiation pressure force is given by B′2
2 ,

where B
′

is the magnetic field on the mirror’s surface in the co-moving frame. Now when the

velocity of the movable mirror is much smaller than the speed of the light one has B
′
= B [20],

where B is the magnetic field on the mirror surface in the laboratory frame.

We can expand the vector potential in terms of a complete set of orthogonal functions

uk(x, t) which is defined as

uk(q, t) =

√
2

L(t)
sin(

πkq
L(t)

). (1.13)

The vector potential can then be expanded in terms of uk(q, t) as

A(q, t) =
∞

∑
k = 1

Qk(t)uk(q, t). (1.14)

5



Plugging Eq.(1.14) into Eq.(1.12) the equation of motion for Qk(t) can be obtained. We

then define Pk as the canonical momentum conjugate to Qk and, following the standard proce-

dure in canonical quantization, we convert the variables q,p,Qk,Pk to operators, which obey the

following commutation relations

[q̂, Q̂ j] = [q̂, P̂j] = [p̂, Q̂ j] = [p̂, P̂j] = 0, (1.15)

[q̂, p̂] = ih̄, (1.16)

[Q̂ j, P̂k] = ih̄δ jk. (1.17)

The canonical quantization is accomplished by introducing the cavity-length dependent

annihilation and creation operators

âk(q) =

√
1

2h̄ωk(q)
[ωk(q)Q̂k + iP̂k], (1.18)

â†
k(q) =

√
1

2h̄ωk(q)
[ωk(q)Q̂k− iP̂k]. (1.19)

From Eqs. (1.18, 1.19) and using standard canonical field quantization, one can obtain the

Hamiltonian [19]:

Ĥ =
(p̂+ Γ̂)2

2m
+V̂ (q)+ h̄∑

k
ω(q)[â†

k âk +
1
2
], (1.20)

where

Γ̂ =
ih̄
2q ∑

k, j
gk j(

k
j
)1/2[â†

k â†
j − âkâ j + â†

k â j− â†
j âk], (1.21)

ωk(q) =
kπ

L(t)
, (1.22)

gk j =


(−1)k+ j 2k j

j2−k2

0

k 6= j

k = j.
(1.23)
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Considering a single mode cavity, one can simplify the Hamiltonian since Γ̂= 0 in this case.

This approximation is valid if the mechanical frequency is smaller than the spacing between

the optical modes, i.e.

4ω =
π

L0
> ωm, (1.24)

physically, Eq.(1.24) means that no photon is scattered to other optical modes because of the

mirror motion.

Eq.(1.20) is a nonlinear Hamiltonian due to Γ̂. We are interested in the case for which

the potential V (q) keeps the moving mirror oscillating around an equilibrium position and the

radiation pressure acts as a perturbation, meaning that the radiation pressure force is much

smaller than V (q). One can linearize the Hamiltonian around the equilibrium point and obtain

the Hamiltonian

Ĥ =
p̂2

2m
+V̂ (q)+ h̄∑

k
ωk0â†

k0âk0−qF0−
π h̄

24(L0 +q(t))
, (1.25)

where ak0 and ωk0 denote the annihilation operator and frequency in the equilibrium position,

respectively and

F̂0 =
h̄

2L0
∑
k, j
(−1)k+ j√

ωk0ω j0× (âk0â j0 + â†
k0â†

j0 + â†
k0â j0 + âk0â†

j0), (1.26)

is the radiation pressure operator. The last term in Eq.(1.25) corresponds to the Casimir energy

which can be neglected as it very small compared to other terms. It is interesting to note that

the term qF0 in Eq. (1.25) is analogous to a dipole interaction.

One can further simplify Eq. (1.25) by assuming a single mode cavity. In this special case

the optomechanical interaction term in Eq.(1.25) simplifies to h̄ωk0
L q̂â†

k0âk0. It is interesting to

note that one can easily derive the simplified optomechanical Hamiltonian by starting from the

cavity field Hamiltonian with a variable resonance frequency, i.e.

Ĥcavity = h̄ωc(q)â†â. (1.27)

7



Noting that q(t)� L0, one can approximate Eq.(1.22) as

ωc(q) =
π

L+q(t)
' ωc(0)(1−

q(t)
L

), (1.28)

where ωc(0) is the cavity resonance frequency when q = 0. Plugging (1.28) into (1.27) one

gets

Ĥ = h̄ωc(0)â†â− h̄
ωc(0)

L
â†âq̂. (1.29)

From now on we use ωc = ωc(0) for simplicity. To get the total Hamiltonian one must add the

moving mirror Hamiltonian to Eq. (1.29).

1.4 Why is quantum optomechanics attractive?

To study quantum effects in optomechanical systems it is useful to define the position oper-

ator of the mirror in terms of creation and annihilation operators as q̂ = xzp f (b̂+ b̂†) where

xzp f =
√

h̄
2mωm

is the zero point fluctuation of the mechanical oscillator. The optomechnical

Hamiltonian Eq.(1.29) becomes

Ĥ = h̄ωcâ†â+ h̄ωmb̂†b̂− h̄G0â†â(b̂+ b̂†), (1.30)

where G0 =
ωc
L0

xzp f is the single photon optomechanical coupling. The first and second terms

are the Hamiltonians of the cavity field and the moving mirror, respectively. The general

Hamiltonian should also contain the pumping term. For the case in which the cavity is pumped

with coherent light, the pumping term reads

Hpump = ih̄E(â†e−iωLt− âeiωLt), (1.31)

where E is proportional to the amplitude of the pumping field and ωL is the frequency of the

pump. In the presence of a strong driving field one can linearize the optomechanical interaction

by expanding the cavity field and the mirror displacement around their steady state values:

â = αs +δ â and b̂ = βs +δ b̂ where αs and βs describe the steady state behaviour of the cavity

8



field and the mechanical oscillator, respectively, and δa and δb are the fluctuation around these

steady states. Without loss of generality we assume that αs is real. With these approximations

the optomechanical interaction becomes[1] (see also the Eq.(2.7))

Ĥopm =−h̄G0αs(δ â+δ â†)(δ b̂+δ b̂†) (1.32)

One notes that the enhancement of the optomechanical coupling by a factor of αs. This is

analogous to the enhancement of the atom-field interaction in an atomic ensemble.

The optomechanical interaction as shown in Eq. (1.32) consists of two well-known in-

teractions in quantum optics. The term δ âδ b̂† + δ â†δ b̂ is a beam splitter like Hamiltonian.

This term describes the energy exchange between the cavity field and the mechanical oscilla-

tor, which allows cooling of the mechanical oscillator. This is because of the fact that photons

eventually leak from the cavity and hence remove one quantum of mechanical oscillator energy.

This is a powerful way for cooling a macroscopic object as it allows ground state cooling of

the mechanical oscillator in the so-called resolved sideband regime which occurs when the me-

chanical frequency (ωm) is larger than the cavity damping (κ). The resolved sideband condition

is necessary to ensure that photons interact with the mechanical oscillator before leaking out of

the cavity. It also can be understood in term of Stokes and anti-Stokes scattering of light to the

motional sideband. The moving mirror scatters pump photons with frequency ωL to ωL−ωm

and ωL +ωm. In the red detuned regime (ωL < ωc), the Stokes process (ωL → ωL +ωm) is

favoured over the anti-Stokes (ωL→ ωL−ωm) because the density of optical mode available

for the Stokes process is higher than for the anti-Stokes, see Fig. (1.3). The resolved sideband

condition guarantees that the probability of the anti-Stokes process is negligible, see Fig. (1.3).

The second part of the optomechanical Hamiltonian δ âδ b̂+δ â†δ b̂† is the squeezing Hamil-

tonian. This term can be useful for preparing the mechanical oscillator in a squeezed state

which is important for precise measurement. This term can also produce entangled state of the

mechanical oscillation and the cavity field [21, 1] starting from classical states for mechanical

9
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Figure 1.3: Basic principle of ground state cooling. ωm > κ guarantees that optomechnaical
cooling (corresponding to Stokes scattering, ωL+ωm) dominates over optomechanical heating,
(corresponding to anti-Stokes scattering, ωL−ωm).
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oscillator and the cavity field. This aspect of optomechanical systems is especially important

because it may shed some light on the problem of the quantum-classical transition and quantum

gravity [22, 8, 23, 24]

1.4.1 Zero-point fluctuation of a mechanical oscillator

Ground state cooling of the mechanical oscillator using the aforementioned method has been

realized by different groups [25, 26]. Having reached the ground state cooling regime it is pos-

sible to observe some intrinsic quantum effects. For example the zero-point fluctuation (ZPF)

of the mechanical oscillator has been observed recently [27]. The experimental observation of

ZPF relies on the fundamental asymmetry between absorption and emission [28]. The equation

of motion of a harmonic oscillator for the position operator in the Heisenberg picture is

q̂(t) = q̂(0)cos(Ωt)+
p̂(0)
mΩ

sin(Ωt). (1.33)

A quantity which is usually measured in experiments is the spectral density, defined as

Sqq(ω) =

∞∫
−∞

dt〈q̂(t)q̂(0)〉e−iωt , (1.34)

using Eq. (1.33) we obtain

〈q̂(t)q̂(0)〉= 〈q̂2(0)〉cos(Ωt)+
〈p̂(0)q̂(0)〉

mΩ
sin(Ωt). (1.35)

By writing q̂ and p̂ in terms of the harmonic oscillator ladder operators, one can show that

in the thermal equilibrium, the identities

〈q2(0)〉= x2
zpf(2n̄+1), (1.36)

(with n̄ = 1
exp( h̄ωm

kBT )−1
) and

〈p(0)q(0)〉= −ih̄
2

, (1.37)
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hold. Using Eq.(1.36) and Eq.(1.37) in Eq.(1.35) we obtain

〈q̂(t)q̂(0)〉= x2
zpf{eiΩt(n̄+1)+ e−iΩt n̄}, (1.38)

from which we obtain the spectral density as following

Sqq(ω) = x2
zpf[n̄δ (ω +Ω)+(n̄+1)δ (ω−Ω)] (1.39)

In the classical limit where n̄ >> 1 Eq.(1.39) simplified to

Sqq(ω) = x2
zpfn̄[δ (ω +Ω)+δ (ω−Ω)] (1.40)

which means that the spectral density is a symmetric function of frequency. On the other hand,

close to the ground state the quantum prediction becomes different from the classical predic-

tion. In the Safavi-Naeini et.al experiment [27], the asymmetry in the spectral density, which

is a signature of ground state fluctuations of the mechanical oscillator, has been observed.

1.4.2 Optomechanically Induced Transparency

It is well-known from atomic physics that coherent light-atom interaction can lead to quantum

interference between atomic excitations. A prominent example of such effects is electromag-

netically induced transparency (EIT) [29]. In EIT, the destructive interference between two

pathways causes the medium to become transparent for a weak probe field for a certain win-

dow of frequency. It has been predicted theoretically [30] and observed experimentally [25, 31]

that the analogous effect can happen in optomechanical systems. The basic idea is to drive the

cavity with a strong coupling field (control field) with frequency ωc and a weak probe field

with frequency ωp. In the presence of the strong control field, which is red-detuned with

respect to the cavity frequency (ωc < ωcavity), the beam-splitter like Hamiltonian in the op-

tomechanical interaction is the dominant interaction. The probe field then interacts with this

linearized Hamiltonian. Now if the photons from the control field which have been scattered
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to the ωc +ωm channel have almost the same frequency as the probe field, the optomechanical

system becomes transparent for the probe field. This transparency can be understood in terms

of destructive interference between the scattered photons and the probe field.

1.4.3 Optomechanical superpositions

How does the classical world emerge from quantum mechanics? The standard answer to this

question is given by environmentally induced decoherence (EID) theory. According to EID,

the interaction of the system with its environment destroys the quantum nature of the system as

the environment measures the system. This can be easily understood in terms of the following

example. Let us assume that we have a two-level atom which is initially prepared in a super-

position of excited and ground states and the environment in the state |E0〉, so the initial state

of system-environment is

|ψ(0)〉= (cg|g〉+ ce|e〉)⊗|E0〉 (1.41)

At a later time the system-environment interaction makes the total state an entangled state

like

|ψ(t)〉= cg(t)|g〉|Eg〉+ ce(t)|e〉|Ee〉 (1.42)

The state of the system can be obtained after tracing out the environment degrees of free-

dom. Now if 〈Ee|Eg〉 = 0, it means that the environment measures precisely the system state,

so the density matrix of the system becomes a statistical mixture of the ground state and the

excited state. Accordingly, one needs to isolate properly the quantum system from its environ-

ment to keep the quantum coherence. This isolation gets harder and harder as the size of the

system increases.

It is interesting to study the transition from quantum superposition to statistical mixture in

different systems. Tracking the quantum to classical transition for massive objects is specially
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Figure 1.4: The proposed scheme in [8]. A single photon sent to the beam splitter to prepare
an entangled state |0〉A|1〉B+|1〉A|0〉B√

2
. The movable mirror in arm A is prepared in the ground

state. If the photon goes into arm A, it will displace the movable mirror and so it prepares the
mirror in superposition of vibrational states. The mirror superposition can then be observed by
measuring the visibility of the interference in the detectors D1 and D2.

interesting, as there are some speculations that describe such transitions as a result of a modified

Schrodinger equation. For example Diosi [7] and Penrose [6] emphasized the role of gravity in

destroying quantum effects.

Here we describe a scheme due to Marshall et.al [8], which suggested the use of optome-

chanical systems for probing quantum superpositions of a massive object. The basic idea is

to use a Mach-Zehnder interferometer with one Fabry-Perot cavity in each of its arms, see

Fig.(1.4).

In arm A, one of the mirrors is replaced with a tiny mirror on a micromechanical cantilever.

It is assumed that this mirror is cooled close to its motional ground state. Here we assume

ground state cooling for simplicity. A single photon is sent to the interferometer to prepare the

superposition

|ψ(0)〉= (
|0〉A|1〉B + |1〉A|0〉B√

2
)⊗|0〉m (1.43)
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Figure 1.5: Interference visibility as a function of time over one period of the mirror oscillation
for κ = 1, T = 1mK and T = 60µK.

which means that the photon either takes path A or B. If the photon takes path B the tiny

mirror is not affected, while if it takes the other path the radiation pressure of the single photon

displaces the mechanical oscillator. The magnitude of displacement depends on the ratio of the

single photon coupling and the mechanical oscillator frequency, i.e. G0/ωm.

Before proceeding we need to define coherent states. A coherent state is an eigenstate of

the annihilation operator and is defined as [32]

|γ〉= e−|γ|
2/2

∞

∑
n=0

γn
√

n!
|n〉 (1.44)

It is also possible to define coherent states in term of the displacement operator

D̂(γ) = exp(γa+− γ
?a) (1.45)

In this case, the coherent state is defined as

|γ〉= D(γ)|0〉 (1.46)

We will use the second definition of the coherent states in Chapter 5.

As a result of optomechanical interaction, the tiny mirror is now in a superposition of the

ground state and a coherent state whose amplitude is proportional to G0/ωm. The state of the

system at time t is given by [33, 8]
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|ψ(t)〉= 1√
2
(|0〉A|1〉B|0〉m + eiφ |1〉A|0〉B|(

G0

ωm
)(1− cosωmt)〉m) (1.47)

where φ = (G0
ωm

)2(ωmt− sinωmt). Using Eq. (1.47) one can calculate the interference visibility

seen by the two single photon detectors D1 and D2, see Fig. (1.4). The expression for the

visibility is given by

v(t) =
1
2

exp[−(G0

ωm
)2{1− cos(ωmt)}] (1.48)

One sees that this expression reaches its minimum for t = π/ωm, which corresponds to the

maximum displacement of the mirror. This can be understood intuitively in term of the distin-

guishability of the two paths. The important feature of the visibility is its periodicity, which

can be seen in Fig. (1.5). This periodicity is the main feature which differentiates EID from

other collapse models.

In the realistic case where the mirror is not exactly in the ground state due to the finite tem-

perature of the surrounding environment, the visibility revival is not complete and the modified

expression for the visibility is given by [8]

v(t) =
1
2

exp[−(G0

ωm
)2(2n̄+1){1− cosωmt}] (1.49)

The effect of finite temperature is the narrowing of the revival peaks by a factor of
√

n̄.

This can be seen by noting that 1−cos(ωmt) = 2sin2(ωmt/2)∼ (ωmt)2/2 for small t in (1.49).

The experimental requirements to realize the aforementioned proposal are the following. First

the system needs to be in the resolved sideband regime to ensure the ground state cooling.

Second, the single photon optomechanical coupling must be comparable to the mechanical

frequency. This condition guarantees that the displacement of the mechanical oscillator due to

the optomechanical interaction, which is proportional to G0/ωm (see Eq. (1.47)), is discernible.

Third, the single photon must remain in cavity long enough to interact with the oscillator

before leaking from the cavity. All these requirements have been met individually but it is still
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challenging to satisfy all of them simultaneously. In Chapter 5 we will present a new scheme

building on the Marshall et.al[8] proposal which alleviates some of these difficulties.
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Chapter 2

Quantum Optomechanics in the Bistable Regime

This chapter is based on [34]. In this chapter we study the simplest optomechanical system,

with a focus on the bistable regime. The covariance matrix formalism allows us to study both

cooling and entanglement in a unified framework. We identify two key factors governing en-

tanglement, namely the bistability parameter, i.e. the distance from the end of a stable branch in

the bistable regime, and the effective detuning, and we describe the optimum regime where en-

tanglement is greatest. We also show that in general entanglement is a non-monotonic function

of optomechanical coupling. This is especially important in understanding the optomechanical

entanglement of the second stable branch.

2.1 Introduction

Observing quantum effects like superposition states or entanglement at the macroscopic level

is a long standing goal. It is a widely held view that this should be possible, provided that

enviromentally induced decoherence can be sufficiently suppressed. Note however that there

are some theoretical proposals which would rule out the existence of quantum effects at the

macroscopic level, see e.g. Ref. [35]. Proposals for the experimental observation of macro-

scopic quantum effects are often based on the principle of Schrodinger’s cat, i.e. on coupling a

microscopic quantum system to a macroscopic system in a controlled way, in order to create a

macroscopic superposition state [36, 22, 8].

One particularly promising approach in this context is the use of optomechanical systems.

The most basic optomechanical system consists of a Fabry-Perot cavity with one movable end

mirror. The position of this mirror is determined by the radiation pressure inside the cavity.
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Such systems were first studied in the context of high precision measurements and gravita-

tional wave detection [9]. It was suggested in Ref. [22] that the radiation pressure of a single

photon in a high finesse optical cavity could in principle create a macroscopic superposition of

two spatially distinct locations of a moveable mirror. A potential implementation of this idea

was proposed in Ref. [8]. It is very challenging experimentally to achieve sufficiently strong

optomechanical coupling at the single-photon level, requiring a system that combines high op-

tical and mechanical finesse, low mechanical resonance frequency and ultra-low temperature.

One way to enhance the optomechanical interaction is to pump the cavity with a strong

laser. Using this technique the strong coupling regime in optomechanical systems has recently

been reached [3]. In the presence of a strong enough driving laser, the field enhancement inside

the high finesse optical cavity is large enough to trigger nonlinear behaviour of the system.

Depending on the input power and the detuning of the driving laser with respect to the cavity

resonance, optomechanical systems exhibit different types of nonlinear behaviour. For strong

enough input power, in the blue detuned regime one obtains multistability[37], instability [38]

and chaotic motion [39]. In the red-detuned regime bistability [18, 40] occurs. Here we

consider the red detuned regime. This is the appropriate regime for cooling the mechanical

oscillator close to the ground state [41, 25], which is usually seen as a prerequisite for observing

quantum effects. We are particularly interested in the relationship between bistability and

entanglement.

Optomechanical bistability can be understood intuitively as the result of a competition be-

tween the mechanical restoring force, which increases linearly when the mirror is moved from

its equilibrium position, and the radiation pressure force, which has a maximum at the cavity

resonance. For a suitable set of parameters, as in Fig.(2.1), there are three intersection points

between the two forces. The leftmost and rightmost intersection points correspond to stable

states, because the restoring force grows faster than the radiation pressure (for the rightmost

point the radiation pressure even decreases as the mirror is pushed outwards). In contrast, the
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Force

Figure 2.1: Mechanical restoring force and radiation pressure force around a cavity resonance.
The leftmost and rightmost intersection points are stable equilibrium positions, whereas the
middle one is unstable.

middle intersection point is unstable because the radiation pressure force increases faster than

the restoring force.

It is known that the optomechanical interaction can squeeze the cavity mode, and this

squeezing becomes maximal close to the bistable regime [42]. It has also been noted [43]

that under certain conditions, entanglement is maximized at the bistability threshold. This was

interpreted as being due to the enhanced optomechanical coupling strength in this region. Here

we analyze entanglement close to and in the bistable regime in detail. We show that a lot of

insight can be gained by analyzing the situation in terms of two key parameters, namely the

effective detuning and the bistability parameter, which quantifies the distance from the end

of each bistable branch. Cooling and entanglement can be studied in the same theoretical

framework based on the covariance matrix. We identify the optimal regimes for both cooling

and entanglement. We also show that, somewhat surprisingly, entanglement is in general a

non-monotonic function of the optomechanical coupling strength. (Naively one might have

expected it to always increase with optomechanical coupling strength.)

This chapter is organized as follows: Section 2.2 introduces the optomechanical system and
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describes the linearization of the equations of motion around the steady state. We also show

how bistability arises in the red-detuned regime in this framework, introduce the bistability pa-

rameter, and derive the dependence of the photon and phonon number on this parameter, which

leads us to a discussion of cooling. Section 2.3 discusses the optomechanical entanglement

and its dependence on the bistability parameter and the effective detuning. This allows us to

determine the optimum value for the detuning and the maximum achievable entanglement in

our system. We discuss the role of the optomechanical coupling constant, show how entan-

glement varies on both stable branches in the bistable regime, and discuss its robustness under

increasing temperature.

2.2 The System

We consider a high-Q Fabry-Perot cavity with decay rate κ . The moveable mirror can move

under the influence of radiation pressure and thermal noise. The moveable mirror is initially in

equilibrium with a thermal bath at temperature T which results in a mechanical damping rate

γm and a noise force ξ (t). The system is driven by a laser with frequency ωL and power P. The

general Hamiltonian of such a system is derived in [19]. In the regime of parameters that we

are interested in, the general Hamiltonian simplifies to [19, 1]

Ĥ = h̄ωcâ†â+
h̄ωm

2
(p̂2 + q̂2)− h̄G0â†âq̂+ ih̄E(â†e−iωLt− âeiωLt), (2.1)

where ωc and â are frequency and annihilation operator of the cavity mode,respectively, ωm,

q,p are the frequency and dimensionless position and momentum operators of the mirror,respectively,

and G0 =
ωc
L

√
h̄

mωm
is the coupling constant and E =

√
2Pκ

h̄ωL
, where P and ωL are the input laser

power and frequency respectively. The first two terms correspond to two free harmonic oscilla-

tors, the third term corresponds to the optomechanical coupling and the last term corresponds

to the cavity being driven by the laser.

The Heisenberg-Langevin equations of motion [44] which include the effects of mechanical
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Figure 2.2: Bistability of the intracavity power with respect to the input power. The solid and
dotted lines correspond to the stable and unstable branches respectively. The inset shows the
bistability parameter η for the two stable branches. The end of each stable branch corresponds
to η = 0.

and optical losses are

˙̂q = ωm p̂, (2.2)

˙̂p =−ωmq̂− γm p̂+G0â†â+ξ (t), (2.3)

˙̂a =−(κ + i∆0)â+ iG0âq̂+E +
√

2κ âin, (2.4)

where ∆0 =ωc−ωL, âin is the vacuum input noise of the cavity, and ξ (t) is the noise associated

with the damping of the mechanical oscillator [45]. The nonlinear Eqs. (2.3, 2.4) can be

linearized by expanding the operators around their steady state values Ôi = Oi,s +δ Ôi ,where

Ôi = â, q̂, p̂.

From Eqs. (2.2, 2.3, 2.4), the steady-state solutions are αs =
E

κ+i(∆0−G0qs)
, qs =

G0|αs|2
ωm

,

ps = 0, where αs, qs and ps are the stationary values for the cavity amplitude, position and
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momentum of the mechanical oscillator respectively. The steady state solutions for cavity am-

plitude and mechanical oscillator displacement lead to a third order polynomial equation for

αs, which has three roots. The largest and the smallest roots are stable, and the middle one is

unstable. Physically this means that the radiation pressure force is larger than the mechanical

restoring force for the middle root and this make the system unstable, while for other two roots

the restoring force is larger than the radiation pressure force, see also Fig. (2.1). Mathemati-

cally, for the smallest and largest roots, the size of the fluctuations does not grow as the system

approach these points. This is not the case for the middle root. We will return to this point

when we discuss the photon and phonon numbers, see Eqs. (2.16, 2.17). Fig. (2.2) shows the

hysteresis loop for the intracavity power. Consider Pcav initially on the lower stable branch (I

in Fig. (2.2), corresponding to the smallest root). As Pin increases past its value for the first

turning point, Pcav switches to the upper stable branch (II in Fig. (2.2), corresponding to the

largest root). For Pin larger than its value at this switch point , Pcav is given by the upper branch.

As Pin decreases below this value Pcav is still given by the upper branch until Pin decreases be-

low its value for the upper turning point. At this point Pcav switches back down to the lower

branch. We have used the the set of parameters of Ref[1], which is close to several optome-

chanical experiments[12, 46, 47, 13]. We consider Fabry-Perot cavity with length L = 1mm

and finesse F = 1.07× 104, driven by a laser with λ = 810nm and ∆0 = 2.62ωm. The me-

chanical oscillator frequency ,damping rate and mass are 10MHz, 100Hz and 5ng respectively

with environment temperature T = 400mK.

By introducing ûT (t)= (δ q̂(t),δ p̂(t), ˆX(t),Ŷ (t)) and n̂T (t)= (0,ξ (t),
√

2κX̂in(t),
√

2κŶin(t))

where X̂ = δ â+δ â†
√

2
and Ŷ = δ â−δ â†

√
2i

and corresponding noises X̂in and Ŷin, the linearized dynam-

ics of the system can be written in a compact form

˙̂u(t) = Aû(t)+ n̂(t), (2.5)
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where

A =



0 ωm 0 0

−ωm −γm G 0

0 0 −κ ∆

G 0 −∆ −κ


, (2.6)

and G =
√

2G0αs , ∆ = ∆0−G0qs are the enhanced optomechanical coupling rate and effective

detuning. It is worth mentioning that A (2.6) is anti-Hermitian. This can be understood from the

Schrodinger equation d
dt |ψ〉 = −

i
h̄Ĥ|ψ〉. Since the Hamiltonian Ĥ is Hermitian, −iĤ (which

corresponds to A in Eq. (2.5) is anti-Hermitian.

One can obtain the effective optomechanical Hamiltonian, describing the interaction be-

tween the optical and mechanical fluctuations, from Eqs. (2.2, 2.6). To do so we neglect the

damping and the noise term in Eq. (2.2, 2.6) and obtain

Ĥeff = h̄Gδ X̂δ q̂ (2.7)

which is identical with Eq.(1.32) when rewritten in terms of the ladder operators.

The solution of Eq.(2.5) is given by

û(t) = M(t)û(0)+
∫ t

0
dsM(s)n̂(t− s) (2.8)

where M(s) = eAs. Since the initial state of the system is Gaussian and the dynamical equa-

tions are linear in the creation and annihilation operators for both the cavity and mechanical

modes, the state of the system remains Gaussian at all times. A Gaussian state is fully character-

ized by its covariance matrix which is defined at any given time t by Vi j(t) =
〈ûi(t)û j(t)+û j(t)ûi(t)〉

2 .

Here we are interested in the steady-state solution for our system, which will be reached if all

the eigenvalues of the matrix A have negative real parts. In the red detuned regime of operation

(∆ > 0), the Routh-Hurwitz criterion [48] gives stability condition

ωm(κ
2 +∆

2)−G2
∆ > 0. (2.9)
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In the following we assume inequality 2.9 is valid.

From Eq.(2.8), we obtain the following expression for the covariance matrix

Vi j = ∑
k,l

∫
∞

0

∫
∞

0
dsds

′
Mik(s)M jl(s

′
)Φkl(s− s

′
), (2.10)

where Φkl(s− s
′
) = 〈nk(s)nl(s

′
)+nl(s

′
)nk(s)〉

2 .

The mechanical and optical input noise operators are fully characterized by their correlation

functions which in the Markovian approximation are given by[1]

〈âin(t)â
†
in(t
′)〉= δ (t− t ′). (2.11)

〈ξ (t)ξ (t ′)+ξ (t ′)ξ (t)〉
2

= γm(2n̄+1)δ (t− t ′). (2.12)

where n = [exp( h̄ωm
kBT )− 1]−1 is the mean thermal phonon number and kB is Boltzmann’s con-

stant. From Eqs.(2.11, 2.12), we have Φkl(s− s
′
) = Dklδ (s− s

′
) with D = Diag[0,γm(2n̄+

1),κ,κ] and Eq. (2.10) becomes V =
∫

∞

0 dsM(s)DMT (s). When Eq. (2.9) is satisfied, one

obtains the following equation for the steady-state covariance matrix,

AV +VAT =−D. (2.13)

In the following we use the dimensionless bistability parameter defined as [49]

η = 1− G2∆

ωm(κ2 +∆2)
(2.14)

which is a positive number between zero and one according to Eq. (2.9) for ∆ > 0. We have

shown the bistability parameter in the inset of Fig. (2.2). As can be seen from Fig.(2.2), η

decreases when approaching the bistable regime and becomes equal to zero at the end of each

stable branch.

The stability condition Eq. (2.9) can be intuitively understood by ignoring retardation ef-

fects for the radiation pressure. Assuming that the optical field adiabatically follows the me-

chanical oscillator (i.e. setting δ̇a = 0 in Eq. (2.4)), one has δ â = 1
(κ+i∆)(

iG√
2
δ q̂+

√
2κ âin).
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Using this in Eq. (2.3) we obtain

˙δ p̂ =−(ωm−
G2∆

κ2 +∆2 )δ q̂− γmδ p̂+ξT (2.15)

where ξT = ξ +G
√

2κ( ain
κ+i∆ +

a+in
κ−i∆). From Eq. (2.15) , we see that the mechanical oscillator

is stable if the first coefficient is positive. In this case the first term in Eq. (2.15) corresponds

to a harmonic restoring force, see also Fig. (2.1) and the associated discussion. This implies

Eq. (2.9). The adiabatic approximation is equivalent to treating the response of the cavity field

to the moving mirror as instantaneous. It is well known that the delayed nature of this response

gives rise to cooling [11], which is however not essential for the above argument. We feel

that this argument helps the physical understanding of the stability condition. However, let us

emphasize that we will not make the adiabatic approximation in what follows.

In the bistable regime the fluctuations around the steady state solution diverge as one ap-

proaches the end of each stable branch. To show this explicitly we solve Eq.(2.13), from which

we can obtain the phonon and photon numbers by using n̄m = V11+V22−1
2 and n̄o = V33+V44−1

2 .

The general solution is complicated and not very illuminating. Simple relations that show the

dependence of the fluctuations on the stability parameter can be obtained by assuming a high

mechanical quality factor and low temperature environment,i.e. ωm
γm
� 1 and κ

n̄γm
� 1 . We find

n̄m =
(∆2 +κ2)(1+η)−2ηωm(2∆−ωm)

8∆ηωm
. (2.16)

n̄o =
(1−η)(κ2 +∆2)

8η∆2 . (2.17)

From Eqs. (2.16 , 2.17), it is clear that the phonon and photon numbers diverge as η approaches

zero. In order to stay within the range of validity of the linearization approximation, we have

made sure that n̄o� | αs |2 in all the results shown below.

For η ∼ 1 from Eq. (2.16), the optimum value for the detuning which minimizes the phonon

number is given by

∆opt =
√

κ2 +ω2
m. (2.18)
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Using this optimum in Eq. (13) one finds

n̄m =
1
2
(

√
κ2 +ω2

m
ωm

−1) (2.19)

which is identical to Eq. (7) in [50] . In the resolved sideband regime (ωm� κ) one sees from

Eq. (2.19) that ground state cooling can be achieved (n̄m = κ2

4ω2
m

) [51, 50]. As a final remark in

this section, we remind the reader that the photon numbers given by Eq.(2.17) correspond to

〈δa†δa〉, not 〈a†a〉.

2.3 Optomechanical entanglement

As shown in [52], for bipartite Gaussian states the Peres- Horodecki criterion [53, 54] (positiv-

ity of the density matrix under partial transposition) is necessary and sufficient for separability.

In terms of the covariance matrix formalism this criterion is called logarithmic negativity which

is defined as [55]

EN = max{0,−ln(2νmin)}. (2.20)

where νmin is the smallest symplectic eigenvalue of the partially transposed covariance ma-

trix, given by νmin =

√
Σ−
√

Σ2−4detV
2 , where Σ = detA+ detB− 2detC, and we represent the

covariance matrix (which can be obtained from Eq.(2.13)) as

V =

 A C

CT B

 . (2.21)

Equipped with this measure we go on to study optomechanical entanglement. By optome-

chanical entanglement we mean the entanglement between the fluctuations of the mechanical

oscillator and the cavity field. Fig. (2.3 (a) shows the logarithmic negativity as a function of

bistability parameter η and effective detuning ∆. We note that for η ∼ 1, which is required

for ground state cooling, there is no optomechanical entanglement. From Fig.(2.3 (a), one can

identify three different regimes depending on the effective detuning. In the first regime, corre-

sponding to ∆ < 0.1ωm in the figure, there is no optomechanical entanglement. In the second

27



Figure 2.3: Optomechanical entanglement (a) and optomechanical coupling constant (b) as a
function of bistability parameter η and normalized effective detuning ∆

ωm
, for a cavity decay

rate κ = 1.4ωm.
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regime, corresponding to 0.1ωm < ∆ < 0.3ωm in the figure, there is some optomechanical en-

tanglement but the maximum value for entanglement is attained for values of the bistability

parameter η somewhere between zero and one. This shows that for a fixed detuning, the max-

imum entanglement does not necessarily occur at the end of the bistable branch, (cf. [43]).

Finally in the third regime, ∆ > 0.3ωm in the figure, there is strong optomechanical entangle-

ment, and for each fixed value of detuning the maximum entanglement is in fact reached at the

end of the branch, i.e. for η = 0. So in short we have EN,1 < EN,2 < EN,3,where EN,i is the

logarithmic negativity in the i-th regime.

Fig.(2.3) (b) shows the corresponding optomechanical coupling in the different regimes.

From Fig.(2.3) (b) it is clear that the optomechanical coupling is a monotonically decreasing

function of effective detuning, i.e G1 > G2 > G3 where Gi is the optomechanical coupling

constant in the i-th regime. So we see that in general entanglement is not a monotonically

increasing function of the coupling constant. These observations suggest that the key variables

that determine the entanglement behaviour are the effective detuning and the bistability pa-

rameter, not the optomechanical coupling constant. A more quantitative understanding of the

different regimes for entanglement is possible by looking at the entanglement behaviour in the

vicinity of η = 0. Assuming that ωm
γm
� 1 and κ

n̄γm
� 1 one finds Σ = a+ b

η
and detV = c+ d

η
,

where

a =
∆2−3κ2 +ω2

m
16∆2 , (2.22)

b =
(∆2 +κ2)(∆2 +κ2 +5ω2

m)

16∆2ω2
m

, (2.23)

c =
2∆2(∆2 +κ2)+(∆2−κ2)ω2

m
128∆4 , (2.24)
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d =
(∆2 +κ2)(4∆4 +4∆2κ2 +4∆2ω2

m +ω4
m)

256∆4ω2
m

, (2.25)

We get these expressions by simplifying the solution of Eq. (2.13) using the Mathematica

software package. From these equations it is possible to derive a simple form for the logarith-

mic negativity. Close to the bistability region (η � 1) we have EN = max{0,α +βη} where

α =−ln(2
√

d
b ) and β = (abd−b2c−d2)

2db2 .

It is worth noting that in contrast to the phonon and photon numbers, which diverge for

η = 0, the logarithmic negativity has a finite limiting value given by α . While our linearization

approximation is not justified for the point η = 0 itself, it does apply in its close vicinity, as the

photon number drops precipitously as one moves away from the end point of the stable branch,

Eq. (2.17).

Using our expression for the entanglement close to bistability one can easily identify the

three regimes shown in Fig. (2.3). The first regime corresponds to α,β < 0. The second regime

corresponds to α < 0,β > 0 or α,β > 0 and the third region corresponds to α > 0,β < 0.

Moreover, as can be seen from Fig. (2.3), the maximum optomechanical entanglement is

reached in the bistability region (for η approaching 0) in the third regime. So the maximum

achievable optomechanical entanglement is given by α . From Eqs. (2.22 , 2.25) the optimum

value for effective detuning where entanglement takes its maximum value is

∆opt =
ωm

4

√
1+
√

16(
κ

ωm
)2 +81 (2.26)

For κ = 1.4ωm from Eq.(2.26) we obtain ∆opt = 0.85ωm. Comparing this to Eq. (2.18) one

sees that the optimum effective detuning values for cooling and entanglement are not the same.

Even more importantly, the cooling performance is optimized for η = 1, whereas entanglement

becomes maximal for η = 0. Using the optimum value for detuning we obtain the following
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Figure 2.4: Plot of the optomechanical entanglement as a function of input power for both
stable branches. The dot dashed (dashed) line corresponds to the end of the first (second)
stable branch. The parameters are the same as in Fig. (2.2).
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expression for maximum achievable entanglement in our system

EN,max =− ln

[
1
5

√
9+

128κ2

8κ2 +45ω2
m

]
. (2.27)

Note that this takes its greatest possible value for κ = 0, giving EN,max =− ln[3/5] = 0.51.

It is also interesting to look at the optomechanical entanglement for the two stable branches

and their behaviour in the bistable regime. Fig. (2.4) shows the logarithmic negativity as a

function of the input power for both stable branches. Varying the input power corresponds to

varying η , cf. Fig. (2.2). We note the persistence of entanglement in the second stable state

in a very narrow window of parameter space. As can be seen in Fig. (2.4) the entanglement

is maximum at the end of each branch, corresponding to the third regime. The fast decreasing

entanglement for the second branch is in agreement with the bistability parameter behaviour

in Fig. (2.2). The inset shows the optomechanical coupling for different stable branches. One

sees clearly that the coupling constant is not the decisive parameter for the amount of entan-

glement in our system, and in particular that the entanglement is a non-monotonic function of

the coupling constant.

Until now we studied the entanglement in terms of parameters that are natural to use from

a theoretical point of view. It is also interesting to look at entanglement in terms of parameters

that can be directly controlled experimentally. Fig. (2.5) shows the bistability parameter and

entanglement as a function of bare detuning ∆0 and laser power P. Note that as we come close

to the end of the branch for suitable detuning and large enough input power the entanglement

increases.

We have also studied the robustness of entanglement with respect to the temperature. The

result is shown in Fig. (2.6). One sees that for higher temperatures the entanglement survives

only in the vicinity of the bistable region. Finally we note that in the recent experiment [3], the

ratio of the input power to the critical power (the input power for which the bistability happen)

is about 0.5. So the bistable regime should definitely be accessible experimentally.
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2.4 Conclusion

We have studied the simplest optomechanical system using the covariance matrix formalism

with a special emphasis on bistability. We recovered the standard results on optomechanical

cooling as a special case of our general expression for the phonon number. However, our focus

was on entanglement. We identified two key parameters, namely the effective detuning and

the bistability parameter (i.e. the distance from the end of each stable branch in the bistable

regime), and we showed that there are different regimes for entanglement as a function of

these parameters. In particular we showed that maximum entanglement is achieved when the

system is simultaneously close to the red sideband (in terms of effective detuning) and close

to the end of each stable branch (bistability parameter close to zero). We also showed that the

dependence of entanglement on the optomechanical coupling is counterintuitive, and that in the

bistable regime the entanglement is particularly robust with respect to temperature increases.

It would be very interesting to see experimental explorations of the phenomena described in

the present chapter. However, it should be noted that measuring the covariance matrix, which

lies at the heart of our analysis, requires direct access to the position and momentum variables

of the mirror, not just the quadratures of the light. It seems that this would require either an

auxiliary measurement cavity, as proposed in Ref. [1], or at least an additional laser beam.

A detailed analysis of the resulting more complex dynamics is work for the future. In this

Chapter we focused on the entanglement characteristics of the basic system, which are already

quite rich and intriguing.
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Chapter 3

Optomechanical Entanglement in the Presence of Laser

Phase Noise

This chapter is based on [56]. We study the simplest optomechanical system in the presence

of laser phase noise (LPN) using the covariance matrix formalism. We show that for any

LPN model with a finite correlation time, the destructive effect of the phase noise is especially

strong in the bistable regime. This explains why ground state cooling is still possible in the

presence of phase noise, as it happens far away from the bistable regime. We also show that

the optomechanical entanglement is strongly affected by phase noise.

In Chapter 2 we studied optomechanical cooling (see Eq.(2.16)) and entanglement. In our

model we considered both mechanical and optical damping. For realistic values for these de-

coherence channels, we showed that the mirror motion and the cavity field become quantum

mechanically correlated or entangled. We also discussed the dependence of the optomechan-

ical entanglement on the optomechanical coupling and the bistability parameter. We showed

that the optomechanical entanglement is especially strong in the bistable regime. In contrast,

ground state cooling of the mechanical oscillator happens when the system is far from the

bistability threshold. In this Chapter we considered another decoherence channel, which is

associated with the phase noise of the input laser.

As we have shown in Chapter 2 by using the cavity with the laser light, the optomechanical

interaction was enhanced by factor proportional to the amplitude of the steady-state cavity field.

This enhancement is highly desirable as the single photon optomechanical coupling constant is

very weak compared to the decoherence channels in the problem. To reduce environmentally

induced decoherence one has to cool the mechanical oscillator close to its ground state. For
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typical optomechanical systems with the mechanical frequency in the range of MHz, cryogenic

cooling is not sufficient to reach the quantum regime. To further cool the mechanical resonator

one can use side band laser cooling by a red detuned laser [50, 51]. The laser serves both

to cool the mechanical oscillator and to enhance the optomechanical coupling constant. This

technique has been used to reach the strong coupling regime [3]. But the price to be paid is

that a new source of noise is introduced into the system, namely laser phase noise (LPN).

The conclusion of early studies of the effect of LPN [57], based on modeling it as white

noise, suggested that with the current level of LPN ground state cooling is impossible. This is

in contrast with several experiments in which low phonon numbers have been observed. This

discrepancy has been addressed in Ref. [58] by considering a more realistic model for the LPN.

Here we consider the effect of LPN on optomechanical entanglement. It turns out that

optomechanical entanglement is very sensitive to this additional source of noise particularly

in the bistable regime, where the maximum entanglement is achieved in the absence of noise

[49, 34]. We show that in this regime the LPN is the main decoherence channel.

The chapter is organized as follows: In Section 3.1 we obtain the governing equations

in the presence of LPN. In Section 3.2 we introduce the LPN model. Section 3.3 discusses

optomechanical cooling. We recover the well-known effect of LPN on the ground state cooling

as a special case of our general results. Section3.4 discusses the optomechanical entanglement

in the presence of LPN. Section 3.5 is a summary and conclusion.

3.1 The System

Our system is a high finesse Fabry-Perot cavity with one tiny end mirror. This mirror can move

under the influence of the radiation pressure inside the cavity and at the same time undergoes

Brownian motion as a result of its interaction with the environment. The system is driven by a

laser with frequency ωL and power P. The Hamiltonian of the system is given by H =H0+Hint
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where

Ĥ0 = h̄ωcâ†â+
h̄ωm

2
(q̂2 + p̂2), (3.1)

Ĥint = h̄G0â†âq̂+ ih̄E(â†e−iωLte−iϕ(t)− âeiωLteiϕ(t)), (3.2)

where Eq. (3.1) describes the free Hamiltonian of the cavity mode and mechanical oscillator,

ωc and â are the frequency and annihilation operator of the cavity mode; and ωm, q̂, and p̂ are

frequency and dimensionless position and momentum operators of the mirror. The first term

in Eq. (3.2) describes the optomechanical interaction, in which G0 = ωc
L

√
h̄

mωm
is the single

photon coupling constant. The second term in Eq. (3.2) describes the cavity pumping with a

laser whose phase variation in time is given by ϕ(t), E =
√

2Pκ

h̄ωL
, where κ is the cavity damping

rate. In the frame corresponding to a time-dependent phase ωLt+ϕ(t), the equations of motion

in the presence of damping and noise are

˙̂q = ωm p̂, (3.3)

˙̂p =−ωmq̂− γm p̂+G0â†â+ξ (t), (3.4)

˙̂a =−(κ + i∆0)â+ iâϕ̇ + iG0âq̂+E +
√

2κ âin(t), (3.5)

where âin and ξ (t) are the optical and mechanical input noise operators respectively, and ∆0 =

ωc−ωL. One notes that the laser phase noise modifies the equation of motion of the cavity

field, see also Eq.(2.4). Now we follow the same procedure as in Chapter 2 to obtain the

linearized equations of motion of the system by expanding the operators around their steady

state values. This leads to the same equation as in Eq.(2.5, 2.6) with the modified noise vector

given by

n̂T = (0,ξ (t),
√

2κX̂in,
√

2κŶin +
√

2αsϕ̇). (3.6)

The steady state covariance matrix is still given by Eq. (2.13) with the matrix element of D

given by
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Di j =
1
2

∫
∞

0
ds(Mik(s)〈{n̂k(s), n̂ j(0)}〉+M jk(s)〈{n̂i(0), n̂k(s)}〉), (3.7)

Using Eq. (3.6), we get D = Diag[0,γm(2n̄+1),κ,κ +N], where

N = α
2
s

∫
∞

0
dsM44(s)〈ϕ̇(s)ϕ̇(0)〉, (3.8)

with M44(s) = 〈4|eAs|4〉 and |4〉T = (0,0,0,1)T .

Using Eq. (2.13) with the modified matrix D and Eq. (3.8), the effect of arbitrary LPN on

the behaviour of the optomechanical system can be analyzed.

3.2 The Noise Model

The dynamics of the phase for an ideal single-mode laser far above lasing threshold is given

by [59, 60]

ϕ̈ + γcϕ̇ = ξϕ̇(t), (3.9)

where ξϕ̇(t) is a Gaussian random variable obeying[59]

〈ξϕ̇(t)ξϕ̇(t
′
)〉= 2γ

2
c ΓLδ (t− t

′
). (3.10)

Here, ΓL and γ−1
c describe the laser linewidth and finite correlation time of the phase noise.

By taking the Fourier transform of Eq.(3.9) and using Eq.(3.10), we obtain the phase noise

spectrum as

Sϕ̇(ω) = 〈ϕ̇(ω)ϕ̇(ω)〉= 2ΓL

1+ ω2

γ2
c

, (3.11)

Note that as γc→∞, one recovers the white noise case. For a finite correlation time and ω ≥ γc,

the power spectrum of the LPN is greatly reduced. This means that a white noise model may

result in an overestimation of the LPN effects. From Eq. (3.11) and by applying the Wiener-

Khinchin theorem [61], we find
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〈ϕ̇(s)ϕ̇(0)〉=
∞∫
−∞

〈ϕ̇(ω)ϕ̇(ω)〉eiωsdω = 2γ
2
c ΓLe−γcs. (3.12)

Using Eq. (3.12) in Eq. (3.8) we obtain

N = 2α
2
s γcΓL

∫
∞

0
dsM44(s)e−γcs. (3.13)

The general expression for N is very complicated and will not be included here. However,

inspection of Eq. (3.13) allows us to gain a good qualitative understanding of the behavior

of N. Recall that M44(s) is one of the elements of the matrix M(s) = exp(As). Far from the

bistable regime, all eigenvalues of A are significantly smaller than zero, and all elements of

M(s) decay with s, effectively limiting the range of the integral in Eq. (3.13). However, as one

approaches the bistable regime, one of the eigenvalues of A approaches zero, and the range of

the integral increases until it is limited only by the exponential e−γcs. One thus expects N to

take its maximum values in the bistable regime.

In Fig. (3.1), we show N/κ as a function of the effective detuning for two different laser

linewidths. We choose the same parameters as in [1], which are close to some experiments

[12, 46, 47]. One can see both from Eq. (3.11) and from Fig.(3.1) that the noise is proportional

to the laser bandwidth ΓL. The main message of Fig. (3.1) is that N/κ is maximal for η ∼ 0, in

agreement with the above simple argument. Close to the bistability threshold N can be much

greater than κ for realistic values of ΓL. In contrast, the inset of Fig. (3.1) shows N/κ and η far

away from the bistable region. One sees that in this region the effect of the LPN is negligible

for the set of parameters we used here.

Before proceeding, we would like to emphasize that the above argument is not restricted to

the specific LPN model used here. In fact our argument is based on the behaviour of M44(s),

which is independent of the LPN model. As long as the system admits a stationary solution

(this guarantees that M44(s) is a monotonously decreasing function of s), the above argument
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Figure 3.1: Plot of N/κ and η as a function of effective detuning. We consider a Fabry-Perot
cavity with length L = 1mm, and finesse F = 10700, driven by a laser with λ = 810nm and
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the bistable region.

is valid for any LPN model with a finite correlation time.

3.3 Optomechanical Cooling

For completeness, in this Section we study optomechanical cooling in the presence of the LPN.

From Eq. (2.13) one can obtain the phonon number as n̄m = 1
2〈δq2+δ p2−1〉= V11+V22−1

2 . The

quantum limit of the phonon number can be derived by assuming a high mechanical quality

factor ( ωm
γm
� 1) and low temperature environment ( κ

n̄γm
� 1). For η ∼ 1, κ�ωm and ∆=ωm,

we find

n̄m =
κ2

4ω2
m
+

N
4κ

, (3.14)

with

N =
2α2

s ΓLγc(γc +κ)

ω2
m +(γc +κ)2 . (3.15)
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For ωm� γc� κ we find

n̄m =
κ2

4ω2
m
+

α2
s

2κ
Sϕ̇(ωm), (3.16)

which coincides with Eq. (23) in Ref. [58] by adding the effect of the residual thermal occu-

pation due to the mechanical thermal bath. From Eq. (3.11) and Eq. (3.14) it is not difficult

to observe that as long as ωm� γc, the LPN effect on ground state cooling can be small. For

γc� κ�ωm by using Eq. (3.15) the second term in Eq. (3.14) becomes α2
s

2γc
Sϕ̇(ωm). Intuitively

the possibility of ground state cooling in the presence of LPN can be understood as a result of

the fact that ground state cooling happens around η ∼ 1, far from the bistability regime, and

thus in a region where the effect of LPN is small. See also the discussion of the ground state

cooling from the point of view of the bistability parameter in Ref. [56].

As a concluding remark on this section, we would like to note that in [3] the observed

phonon number was in agreement with the prediction of optomechanical cooling theory with a

noiseless laser.

3.4 Optomechanical Entanglement

In Chapter 2 we studied the optomechanical entanglement for an ideal input laser. There we

showed that the optimum regime, in which the optomechanical entanglement is maximum is

∆ ∼ 0.85ωm and η ∼ 0. We also showed that the maximum value for optomechanical entan-

glement is equal to 0.51 in the bistable regime for κ � ωm, see Eq. (2.27). In this section we

consider the effect of LPN on the optomechanical entanglement.

Fig. (3.2) shows the entanglement as a function of the bistability parameter and the detuning

for two different laser linewidths. In the absence of phase noise, entanglement is maximal in

the bistable regime (i.e. at η ∼ 0). However, it changes dramatically when the laser linewidth is

non-zero. For the parameters we used here, the entanglement goes to zero in the bistable region

for a linewidth as small as ΓL = 10 Hz. For ΓL = 100 Hz, only a small amount of entanglement
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Figure 3.2: Optomechanical entanglement as a function of the bistability parameter η and the
normalized detuning ∆/ωm for two different laser linewidths, ΓL, from top to bottom, ΓL = 0
and 100 Hz. The other parameters are the same as in Fig. (3.1).
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Figure 3.3: Plot of the bistability parameter (thin line) and the optomechanical entangle-
ment for different values of laser linewidth. The solid, dotted and dashed lines correspond to
ΓL = 0,10,50Hz. The other parameters are the same as for Fig.(3.1).

survives , and the region of maximum entanglement is relatively far from the line η = 0. It is

noticeable that for the ΓL = 100 Hz entanglement survives only for ∆/ωm > 2. This can be

understood from Fig.(3.1), because the noise term N becomes very small for these values of

the detuning.

Since we used the parameter values of Ref. [1], it is interesting to see how their results

change in the presence of the LPN. Figure (3.3) shows the bistability parameter and optome-

chanical entanglement as a function of normalized detuning for different laser linewidths. First

of all, we note that without LPN the maximum value for the entanglement happens at η ' 0.

For a laser linewidth as small as 10Hz the maximum value for entanglement is no longer

achievable. This can be understood as a result of the strong effect of the LPN in this region.

One notes that the region of non-zero entanglement splits into two parts. For larger values of

the laser linewidth the maximum entanglement decreases, and the maximum is achieved far

from the bistability threshold, as we have seen before.

To experimentally measure the optomechanical entanglement, we need to access both me-

chanical and optical information. This can be done by using an auxiliary cavity [1] or an

44



additional laser beam. Our results show that the maximum achievable entanglement in the

bistable regime is not accessible in the presence of the LPN. In order to protect the optome-

chanical system from the LPN one has to work at η ∼ 1. One possible approach is the one

proposed in Ref. [62], where the mechanical oscillator is first cooled close to its ground state

(which happens for η ∼ 1), then the detuning is switched to blue, which brings the two-mode

squeezing part of the Hamitonian into resonance, leading to the generation of entanglement.

3.5 Conclusion

In summary, we studied a generic optomechanical system under realistic conditions, taking

into account the effect of the input laser bandwidth. We found that the LPN contribution to the

decoherence, characterized by N, is significant in the bistable regime (η ∼ 0), and significantly

suppressed elsewhere. This explains why ground state cooling is still possible, as it happens

for η ∼ 1. In contrast, optomechanical entanglement in the absence of LPN is maximal in

the bistable regime. As a consequence, both the optimum region for the observation of entan-

glement and the amount of entanglement that can be achieved are strongly affected by LPN.

In this chapter we discussed the drawback of using lasers in optomechanical systems. In the

next Chapter we discuss a method for observing the optomechanical system with out using the

pumping laser.

Note added. When this work was completed, we became aware of a recent related paper[63].

In comparison, the authors of that paper use a different noise model, and they treat the laser

phase and amplitude as additional dynamical variables. In contrast we keep the number of

dynamical variables fixed and treat the LPN via an additional term in the diffusion matrix, see

Eq. (3.8). Finally, we would like to emphasize that our main results are not restricted to a

specific LPN model, but are valid for any LPN model with a finite correlation time.
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Chapter 4

Optomechanical Superpositions via Nested Interferometry

This chapter is based on [24, 64]. My contribution in this part was the idea of using post-

selection to enhance the optomechanical coupling at the single photon level. I also studied the

effect of a finite temperature on the proposed scheme here.

Optomechanical systems have been proposed as a method of achieving quantum superpo-

sition in mesoscopic systems [22, 8, 1]. However, such proposals impose several demand-

ing experimental requirements, namely: a sideband-resolved cavity for ground state cooling

[65, 50, 51, 25, 26, 66], a coupling rate faster than the mechanical frequency in order to dis-

place the mechanical state by more than its zero point fluctuation [8, 65], and strong optome-

chanical coupling to ensure photons remain in the cavity long enough to produce quantum

effects [8, 14, 3]. In practice, many of these requirements can be met individually, but they are

extremely difficult to meet simultaneously. For instance, a recent result on diffraction-limited

cavities [67] has identified restrictions on achievable optical finesse in cavities with one mi-

cromirror end.

One approach to this challenge is to use coherent pumping to reach strong coupling in a

device that would otherwise be weakly coupled [1, 14, 3, 68, 69, 70]. This poses problems of

its own, as it requires an elaborate readout scheme to distinguish a single photon from a large

coherent background [70] and is potentially vulnerable to laser phase noise [63, 56]. Another

scheme uses levitated dielectric spheres [23] in the pulsed optomechanics regime [71], but has

stringent experimental requirements including extremely high vacuum (10−16 torr) and may

need to be performed in space [72]. Other quantum effects are also possible, such as squeezing

the motion of the mechanical resonator via active feedback [73] or quadratic coupling [74].

In this chapter, we propose using nested interferometers to create and detect macroscopic
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Figure 4.1: The photon enters the first beam splitter of the inner interferometer, followed by
an optomechanical cavity (A) and a conventional cavity (B). The cavity in arm B is used to
compensate the effect of the cavity in arm A when there is no optomechanical interaction. The
photon weakly excites the optomechanical resonator. After the second beam splitter, dark port
detection postselects for the case where the resonator has been excited by a phonon.
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Figure 4.2: Creating a macroscopic superposition via postselection and observing its decoher-
ence. Note that though the two delay lines are depicted separately for clarity, in a realistic
system the same delay line might be used twice, in each polarization mode.

quantum superpositions. In the inner interferometer (see Fig(4.1)), we use postselection to

amplify the effects of a single photon in the weak coupling regime. In the no-coupling limit

photons always exit along bright port, and only when there is an optomechanical interaction

can they be detected at the dark port. Postselecting dark port events results in distinguishable

mechanical states (states with little overlap with ground state |0〉m).

Whereas “dark port detection” has already been proposed in the past, for example in the

context of gravitational wave detection [75], the main novelty of our scheme is that the inner

interferometer is nested within a Franson [76], or time-bin [77], interferometer (Fig. 4.2). A

single-photon state is split into a long and short path before entering the inner interferometer.

In the dark port detection arm a second pair of long and short paths are present before the

final detection of the photon on either detector D1 or D2. We will explain how the time-

bin interferometry allows for the investigation of the coherent properties of the mechanical

48



resonator in cavity A.

The Hamiltonian for optomechanical systems is given as follows [19], see also Eq.(1.30):

Ĥ = h̄ωoa†a+ h̄ωmc†c− h̄G0a†a(c+ c†) (4.1)

where h̄ is the reduced Planck’s constant, ωo is the optical angular frequency, â is the optical

annihilation operator, ωm is the mechanical angular frequency, ĉ is the mechanical annihilation

operator, and coupling strength G0 = (ωo/L)
√

h̄/(2mωm), with L the cavity length and m the

effective mass of the mechanical mode.

A single photon in an optomechanical cavity interacts weakly with the mechanical mode,

producing a periodic coherent displacement (see Eq.(1.44) for the definition of a coherent

state) in the mechanical state as described by Eq.(1.47) of |ψ(t)〉m = exp[iφ(t)]|α〉m with

φ(t) = κ2(ωmt − sinωmt), α(t) = κ(1− e−iωmt) and κ = G0/ωm. Since the interaction is

weak, α(t)� 1 at all times, making the displacement of the mechanical state hard to detect.

Now consider a Mach-Zehnder interferometer, where one arm contains an optomechanical

cavity, and the other contains a stationary Fabry-Pérot cavity (with annihilation operator b̂),

as in [8]. This is shown in Fig. 4.1. The optomechanical device is cooled to the ground state

using sideband-resolved cooling techniques [50, 51], and the cooling beam is switched off.

A single photon is input to the interferometer, and after the first beam splitter the state of

the system is 1√
2
(|1〉a|0〉b + |0〉a|1〉b) . The photon weakly interacts with the optomechanical

device, resulting in an overall state of:

|ψ〉= 1√
2
[|1〉a|0〉b|ψ(t)〉m+|0〉a|1〉b|0〉m]≈

1√
2
[|1a〉|0b〉e−|α|

2/2{|0〉m+α(t)|1〉m}+|0a〉|1b〉|0〉m].

(4.2)

The second beam splitter postselects for an optical state |ψ〉 f tuned such that the |0〉m

components cancel each other out. Technically, this will vary depending on how long the

photon remained in the cavity, but for |α(t)| � 1 it will always be approximately |ψ〉 f =
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1/
√

2(|1〉a|0〉b− |0〉a|1〉b). When photons exit the dark port of the interferometer, the state

|ψ〉 f is postselected, resulting in an unnormalized state of:

|ψ〉 ≈ e−|α(t)|2/2−1
2

|0〉m +
α(t)

2
e−|α(t)|2/2|1〉m. (4.3)

For |α(t)| � 1, this is approximately |ψ〉 ≈ (α(t)/2)|1〉m, or |1〉m with an |α(t)|2/4 chance

of the postselection succeeding. We have thus probabilistically amplified the optomechanical

effect of the photon (amplifying in the sense that the probability of having the mechanical

oscillator in the first excited state is larger than being in the ground state).

This aspect of our scheme is related to the weak measurement formalism [78, 79], with

the optomechanical device essentially acting as a “pointer” which weakly measures photon

number. However, it operates outside the weak measurement regime [80, 81] due to its totally

orthogonal postselection. For more discussion on this point see the Appendix. B.

We propose to use this postselection to create macroscopic superpositions and measure

their decoherence. Fig. 4.2 shows an extended optical setup, featuring an outer interferome-

ter with two delay lines of equal length, one before the inner interferometer and one after it.

The input photon is split by a polarizing beam splitter (PBS) into an early component and a

late component which enters delay line 1. The early component immediately enters the inner

interferometer and interacts with the device, and only the small component associated with

mechanical state |1〉m passes through. After this component exits the dark port of the inner

interferometer it is put into a second delay line via the polarizing beam splitter. At this point

we have an entangled state, with a large component in delay line 1 associated with mechanical

state |0〉m, and a small component in delay line 2 associated with mechanical state |1〉m, see

Eq.(4.4). The late component then exits delay line 1 and enters the inner interferometer, where

again only the component associated with |1〉m passes through. Finally, both components are

interfered with each other at the end of the outer interferometer to check for visibility.

We sort the photons detected at the end of the outer interferometer into bins by arrival time.
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If the delay lines are of equal length τd , then a photon detected at t = τd + tc after the initial

photon entered corresponding to a photon that remained in the cavities for time tc. However,

this conveys no information about whether it took the early or late path. Thus, both components

will have had the same value of α(tc), and both |1〉m components will have the same magnitude.

Thus the early and late paths will be balanced and can interfere with perfect visibility.

Conditioned on the early component leaving the dark port of the inner interferometer, we

will have an unnormalized state of:

|ψ〉 ≈ 1√
2
(|1〉d1|0〉d2|0〉m +

α(tc)
2
|0〉d1|1〉d2|1〉m), (4.4)

with d1 and d2 labeling the first and second delay lines, respectively. This shows entanglement

between the photon and the macroscopic mechanical state. Now, the components can be de-

layed for any length, optical losses allowing. After the late component has passed through the

inner interferometer, we apply a variable phase φ to the early component, in order to observe

fringes. Assuming no decoherence the state will be:

|ψ〉 ≈ α(tc)
2
√

2
(eiφ |1〉s2|0〉d2|1〉m + |0〉s2|1〉d2|1〉m), (4.5)

with s2 representing the short path of the late photon prior to the final beam splitter.

For increasing delay times, however, eventually the mechanical components will undergo

decoherence of some kind. This could be traditional environmentally-induced decoherence

due to imperfect isolation from the environment [82], or it could be a proposed novel form of

decoherence [4, 5, 83, 84, 6, 7].

After the final beamsplitter, there are two quantities that can be measured to characterize

the superposition. First, we can determine the arrival rate of photons versus time. Here we as-

sume a single photon enters the cavity at a specific time, valid in the short-pulse limit [85]. The

probability density of a photon in a cavity being released after time tc is Γc exp(−Γctc), where

Γc is the decay rate of the cavity. The probability of a successful postselection of a photon be-

ing released after tc is approximately |α(tc)|2/4 = κ2 sin2(ωmtc/2). Multiplying these results
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Figure 4.3: Solid: (unnormalized) probability density of a photon count vs. arrival time given
a successful postselection for a sideband-resolved device with ωm = Γc. Dashed: ωm = 3Γc.
Dotted: ωm = 6Γc.

in a characteristic oscillation (Fig. 4.3) in arrival rate at the mechanical frequency of the op-

tomechanical device. We can detect this oscillation by binning the photons by arrival time and

comparing arrival rates. This indicates a successful postselection involving the device, ruling

out counts on the dark port of an imperfectly aligned inner interferometer or entanglement with

some other degree of freedom. Integrating, we get the overall probability of a single photon

successfully creating a |1〉m state:

κ
2
Γc

∫
∞

0
sin2

(
ωmtc

2

)
e−Γctcdtc =

1
2

κ2ω2
m

Γ2
c +ω2

m
. (4.6)

Second, we can measure the interference visibility by varying the phase in the outer inter-

ferometer (“Var. phase” in Fig. 4.2). The visibility should not vary with arrival time in a given
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experiment; both components will have been put into the same mechanical state (Eqn. 4.5).

However, we can jointly vary the delay line lengths and plot visibility versus delay time. As

delay time increases, visibility will eventually be lost due to some form of decoherence. Defini-

tively determining the cause of any observed decoherence is difficult, but it will be possible to

test its dependence on parameters like mass, frequency, environmental temperature, and me-

chanical Q, putting bounds on proposed macroscopic decoherence mechanisms.

4.1 Finite Device Temperature

Before discussing the experimental requirements for our scheme we consider the realistic case

in which the mechanical oscillator is not in the ground state. We assume that the mechanical

oscillator is initially in the coherent state |γ〉. After weakly interacting (κ � 1, |α(t)| � 1)

with the optomechanical resonator for time t, the state will be:

|ψ(t)〉= 1√
2
[eiφ |1〉a|0〉b|γ +α(t)〉m + |0〉a|1〉b|γ〉m]. (4.7)

By postselecting for photons which exit the dark port, we select the |ψ〉 f = 1/
√

2(|1〉a|0〉b−

|0〉a|1〉b) component. The state of the mechanical oscillator after post-selection is given by

|ψps(t)〉m = f 〈ψ|ψ(t)〉. Keeping to the lowest order in κ:

|ψps(t)〉m =
1
2
[eiφ(t)|γe−iωmt +α(t)〉m−|γe−iωmt〉m]≈

1
2
[e−iκγsinωmtD̂(α(t))−1]|γe−iωmt〉m(4.8)

where D(η) is the displacement operator defined by Eq.(1.45). In deriving Eq.(4.8) we used

the Eq.(1.45) to write

|γe−iωmt +α(t)〉= D(γe−iωmt +α(t))|0〉 (4.9)

then we used the following identity for coherent states[44]

D(γ1 + γ2) = eiIm(γ1γ?2 )D(γ1)D(γ2) (4.10)

using which we get

|γe−iωmt +α(t)〉= eiκγsinωmtD(γe−iωmt)|0〉 (4.11)
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In the γ = 0 case, where the resonator has been cooled to its ground state, the above sim-

plifies to a postselected state of:

|ψps(t)〉m =
α(t)

2
|1〉m. (4.12)

Thus in this case, the resonator is placed into the first excited state with probability |α(t)|2/4

(see Eq.(4.3)). The weak interaction between the photon and the device is probabilistically

amplified. Using Eq.(4.8) one obtains the overall probability of successful postselection for an

initial coherent state to lowest order in κ as:

m〈ψ|ψ〉m '
1
2
{κ2(1− cosωmt)+

1
2

κ
2
γ

2sin2
ωmt} (4.13)

Note that|〈γ(t)|ψps(t)〉|2 ≈ 1
4κ2|γ|2sin2ωmt , precisely the second term of Eqn. 4.13. Thus

the first term represents our signal, while the second term represents a background noise of

dark port events due to finite temperature rather than successfully conveying a phonon to the

device. Considering a mechanical resonator initially in a thermal state, a statistical mixture of

coherent states[44]:

ρ̂th =
1

π n̄th

∫
e−|γ|

2/n̄th|γ〉〈γ|d2
γ (4.14)

where

n̄th =
1

eh̄ωm/kBT −1
(4.15)

is the mean thermal occupation number and kB represents the Boltzmann constant. Averaging

Eqn. 4.13 over the thermal distribution Eq.(4.14), we arrive at:

〈m〈ψ|ψ〉m〉th '
1
2
{κ2(1− cosωmt)+

1
2

κ
2n̄thsin2

ωmt} (4.16)

So for the signal to be larger than the noise, we must have n̄th � 4 [sin(ωmt/2)/sinωmt]2 =

sec2(ωmt/2). This implies that the nested interferometry proposal will only be successful if

n̄� 1, that is T � h̄ωm/kB. Thus, ground state cooling is essential for the success of this

scheme. For a sideband-resolved device, this can be accomplished by driving the red (anti-

Stokes) sideband of the cavity with a coherent beam [50, 51, 25, 26]
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4.2 Experimental Requirements

We now discuss this scheme’s experimental requirements. First, the optomechanical device

must be capable of cooling to the mechanical ground state. For the low-frequency devices

considered here, cooling by conventional means, such as in [86], is impractical. This means

they must be in the sideband-resolved regime, ωm > Γc, to allow optical ground state cooling

[50, 51]. Further, they must be a few times sideband-resolved,ωm = 3Γc, in order to allow ob-

servation of the oscillations in arrival rate shown in Fig.(4.3). Many sideband-resolved devices

[87, 88, 89, 25, 26, 66] have been demonstrated, and two have been successfully cooled to the

ground state [25, 26].

The device must also have κ high enough to make successful postselections common,

though the precise value required will depend on the dark count rate of the detectors and the

stability of the setup. As shown in Eq.(4.6), a device with ωm = 3Γc will have successful posts-

elections with probability approximately 9κ2/20. The window in which the detectors will need

to be open for photons is approximately 1/Γc, leading to a requirement that the dark count rate

be lower than 9κ2Γc/20. The best silicon avalanche photodiodes (APDs) have a dark count

rate of ∼2 Hz, requiring κ ∼ 0.0009 for a 300 kHz device with ωm = 3Γc, and κ ∼ 0.007 for

a 4.5 kHz device.

However, an emerging option is superconducting transition edge sensors (TESs) [90], which

have negligible dark counts caused only by background thermal radiation [91]. Dark counts this

low would result in interferometer alignment being the limiting factor on κ . Though compared

to APDs they have low maximum count rates (∼100 kHz), poor time resolution (∼0.1 µs) and

require sub-Kelvin temperatures, none of these are problematic for the proposed experiment.

Table 4.1 shows the parameters for two resonator devices [66], representing the current state

of the art, in terms of maximizing κ . It also shows two sets of proposed parameters representing

devices with κ ' 0.001–0.005 and ωm ' 3Γc, with only slight improvements over existing

55



devices. The required finesse ranges from 300,000–2,000,000. For comparison, the highest

reported finesse in an optical Fabry-Pérot cavity is 1.9× 106 [92], and the highest reported

between micromirrors is 1.5× 105 [93]. This indicates that a sideband-resolved device with

sufficient κ for the proposed experiment is a realistic goal. For the proposed devices presented

in Table 4.1 it should be possible to collect a usable amount of data in times ranging from hours

to days. These times depend on the specific device as well as the timescale of the decoherence

being probed.

Further, the delay lines must be capable of storing the photons for multiple mechanical

periods without significant losses. For delays up to ∼100 µs simple fiber optic delay lines

are sufficient; at 1550 nm fiber optic delay lines have acceptable losses (0.2 dB/km) for this

purpose. For shorter wavelengths fiber optic losses are too high but free space delay lines such

as a Herriott cell may be used [94, 95], allowing ∼70 µs of delay. This could be increased to

tens of milliseconds with ultrahigh reflectivity mirrors and very long cell lengths (lengths up to

1 km have been demonstrated). In the future, much longer delay times may be possible using

quantum optical memory [96, 97].

In addition, the base temperature from which optical cooling starts must be low enough that

the ground state can withstand environmentally induced decoherence for multiple mechanical

periods. This requirement is given as T � TEID ≡ h̄ωmQm/kB [82, 8, 65]. This means that

mechanical quality factor Qm must be high enough that it is possible to cool below TEID prior

to optical cooling. The values of TEID for the devices in Table 4.1 are easily met by a standard

dilution refrigerator.

It is important to note that the proposed scheme is potentially useful for other types of

weakly coupled optomechanical devices, even in very different frequency regimes. For in-

stance, optomechanical crystals with ωm = 7.4Γc = 2π × 3.68 GHz and κ = 0.00025 have

been demonstrated [26]. Though the lower value of κ lowers the chance of a successful postse-

lection and places stricter requirements on the alignment of the inner interferometer, the higher
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frequency might allow experimental runs to be performed in similar amounts of time.

Device M fm L F Qm TEID κ ωm/Γc
Resonator #1 [66] 60 158 5 38,000 43,000 0.3 0.000034 2.0
Resonator #2 [66] 110 9.71 5 29,000 940,000 0.4 0.0016 0.09
Proposed device #1 1 300 0.5 300,000 20,000 0.3 0.001 3.0
Proposed device #2 100 4.5 5 2,000,000 2,000,000 0.4 0.005 3.0

Table 4.1: Effective mass of the mechanical mode (ng), mechanical frequency (kHz), cavity
length (cm), optical finesse, mechanical quality factor, environmentally induced decoherence
temperature (K), and κ = g/ωm of two recent devices with κ high enough to attempt the pro-
posed scheme. Trampoline resonator #1 has insufficient κ while #2 has insufficient finesse to be
sideband-resolved. Improved parameters for two devices with ωm ' 3Γc and κ ' 0.001–0.005
are also presented. Proposed device #2 could be used to observe novel decoherence mecha-
nisms [4, 5, 6, 7].

4.3 Decoherence

In the following section we study the possibility of probing some decoherence models using

our scheme. The basic idea is to prepare the superposition states for the mechanical oscillator

using the aforementioned method and then observe how the superposition evolves.

4.3.1 Environmentally Induced Decoherence

Most devices proposed for ground state cooling [25, 26, 66] require that the device be optically

cooled below the temperature Tenv that the surrounding environment can reach by conventional

cooling (there is one notable exception [86]). This is also true of the devices proposed in

Tab. 4.1.

In this situation, the mechanical resonator is modeled as coupled to an infinite bath of

harmonic oscillators [82, 65]. In the limit of kBTenv� h̄ωm, mechanical quality factor Qm� 1,

and a Markovian regime with no memory effects in the bath, the bath degrees of freedom can
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be eliminated and the system can be described by the master equation for the reduced density

matrix ρ̂ [82, 65, 98]:

d
dt

ρ̂ =
i
h̄

[
ρ̂,Ĥ

]
− iγm

h̄
[x̂,{ p̂, ρ̂}]− D

h̄2 [x̂, [x̂, ρ̂]] , (4.17)

with Ĥ the Hamiltonian from Eq.(4.1), the damping coefficient γm =ωm/Qm, and the diffusion

coefficient D = 2mγmkBTenv. The first term represents the unitary evolution of the system under

the Hamiltonian from Eq.(4.1), while the second term represents the damping and the third

term represents the diffusion. In the macroscopic regime the diffusion term proportional to

D/h̄2 dominates Eq.(4.17) [82, 65]. Thus the resulting time scale for decoherence is:

τEID ≈
h̄2

D(∆x)2 =
h̄Qm

2kBTenv
, (4.18)

with the superposition size ∆x =
√

h̄
2mωm

. It is helpful at this point to define an environmentally

induced decoherence temperature [65]:

TEID =
h̄ωmQm

kB
. (4.19)

We note that the inverse of the decoherence time scale is τ
−1
EID = 2ωm(Tenv/TEID). Thus for

the environmentally induced decoherence to act on a time scale slower than the mechanical

frequency it is necessary that Tenv� TEID.

We will consider EID with a base temperature of Tenv = 1 mK, obtainable with a dilution

refrigerator. For this case, with the 300 kHz proposed device, τEID ≈ 150 µs. For the 4.5 kHz

proposed device, τEID ≈ 15 ms.

4.3.2 Gravitationally Induced Decoherence

Gravitationally induced decoherence, proposed independently by Diósi [7] and Penrose [6].

In their model, the decoherence rate for superpositions scale by the difference between the

corresponding Newtonian field strengths. The time scale for such decoherence is:

τP = h̄/∆P (4.20)
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with the ∆P defined as follows:

∆P = 4πG
∫∫

(ρ1(~x)−ρ2(~x))(ρ1(~y)−ρ2(~y))
|~x−~y|

d3xd3y, (4.21)

with ρ1(~x) and ρ2(~x) the mass distributions of the two superposed states. Intuitively Eq.(4.21)

means that superpositions between two states with a larger difference between densities wii

decohere faster.

As in [65], we model the system as a set of spheres with mass m, representing nuclei. The

Penrose energy for one sphere is given by ∆0
P = 4π(E0

1,2 +E0
2,1−E0

1,1−E0
2,2), with E0

m,n =

−G
∫∫

ρm(~x)ρn(~y)/|~x−~y|d3xd3y. The spheres considered are far enough apart and displaced

little enough that their most significant interaction is with themselves, and not neighboring

spheres. This means that we can merely multiply by the number of spheres, M/m, to get the

total energy ∆P = (M/m)∆0
P = 4π(E1,2 +E2,1−E1,1−E2,2), with Em,n = (M/m)E0

m,n

For all cases, we will consider two spherical mass distributions with radii a equal to the

size of the specific mass distribution that will be chosen, separated by ∆x = x0 =
√

h̄/(2mωm),

the zero point motion of the resonator. Note that this is mathematically equivalent to the model

of one sphere at x = 0 for |0〉m, and two half-mass spheres at x =±x0 for |1〉m.

As the radius of the two spheres will be greater than x0 regardless of mass distribution used,

there will always be significant overlap in the distributions. This will greatly complicate eval-

uation of Eq.(4.21). This has no effect on the self-energy terms but does affect the interaction

terms. The 1/r potential between overlapping spheres has been evaluated previously [99]:

E1,2 =


−GMm/∆x

−GMm[12a2−5∆x2

10a3 − ∆x5−30∆x3a2

160a6 ]

∆x > 2a

0≤ ∆x≤ 2a
(4.22)

For the E1,1 and E2,2 terms, we can just plug ∆x= 0 into Eq.(4.22). This gives E1,1 =E2,2 =

−6GMm
5a . There is considerable theoretical disagreement about the proper mass distribution to

use for gravitationally induced decoherence [8, 100, 65, 101, 23]. Previous papers have used

the zero point motion of the resonator itself, the nuclear radius of the nuclei making up the
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resonator, the zero point motion of the nuclei making up the resonator, and a completely ho-

mogeneous mass with no nuclear granularity. At this point, we will define the mass distribution

to be considered in this chapter.

In the Debye model, the zero point motion of nuclei in a lattice is given (Eq.( 12.3.10) in

[102]):

a = x0,nuc =
3h̄

2
√

kBΘDM
. (4.23)

with ΘD the Debye temperature and M the atomic mass. Since the largest component of the

mass of a Ta2O5/SiO2 dielectric mirror will be tantalum, we will make the simplifying as-

sumption that the mirrors are composed of tantalum. The Debye temperature of tantalum is

ΘD = 240 K [103], and the atomic mass M = 181 amu. Thus a≈ 5 pm.

For this case, for the proposed 300 kHz device, τP ≈ 1.8×106 s. For the proposed 4.5 kHz

device, τP ≈ 28× 103 s. This type of decoherence would not be testable, as it is slower than

EID in both devices.

4.3.3 Continuous Spontaneous Localization

Continuous spontaneous localization is a proposed position-localized decoherence mechanism

in which a nonlinear stochastic classical field interacts with objects causing collapse of macro-

scopic superpositions. Proposed by Ghirardi, Rimini, Weber and Pearle [104, 83], the master

equation and decay rate for position-localized decoherence have the following form [105, 6,

104, 83, 7, 106, 5, 4]:

〈x|ρ̇(t)|x
′
〉= i

h̄
〈x|[ρ,H]|x

′
〉−Γ(x− x

′
)〈x|ρ|x

′
〉 (4.24)

where Γ is the decay rate of the coherence in the position basis given by
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Γ(x) = γ(1− exp[− x2

4a2 ])≈


Λx2

γ

x� 2a

x� 2a
(4.25)

with Λ = γ/(4a2) the localization parameter, γ the localization strength, and a the localization

distance. For the macroscopic resonators considered in tabel 4.1 we are in the x� 2a limit.

For the single nucleon case, the continuous spontaneous localization model [83] gives values

aCSL = 100 nm and γ0
CSL = 10−16 Hz based on phenomenological arguments.

Following [107, 23], the value of the localization parameter ΛCSL can be shown to be:

ΛCSL =
M2

m2
0

γ0
CSL

4a2
CSL

f (R,b,a) (4.26)

with M the resonator mass, m0 the nucleon mass, R the radius of the sphere and f (R,b,a) a

parameter depending on the geometry of the device. Disk geometry was considered in [107].

For motion perpendicular to the disk face f is evaluated (see [107], Sec. 5.2, App. A, and

Eqn. A.11):

f (R,b,a) = 4(
2a
R
)4(

2a
b
)2[1− e−b2/4a2

]
∫ R/2a

0
xdx

∫ R/2a

0
x
′
dx
′
e−(x

2+x
′2)I0(2xx

′
) (4.27)

with R the disk radius, b the disk thickness, I0(x) the n = 0 modified Bessel function of the

first kind, and a the localization distance (for CSL, aCSL = 100 nm). In the (R/2a)2� 1 and

(b/2a)2� 1 limits, applicable in this case, f ≈ (2a/R)2(2a/b)2.

Thus, for the 300 kHz device, using a thickness of ∼ 5 µm and a radius of ∼ 4 µm (values

consistent with the proposed finesse and mass), we obtain a decoherence time of order τCSL =

107 s. For the 4.5 kHz device, using a thickness of ∼ 5 µm and a radius of ∼ 40 µm, we

obtain a decoherence time of order τCSL = 1.5×105 s. This type of decoherence would not be

testable, as it is slower than EID in both devices.
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4.3.4 Quantum Gravity

It has been proposed that quantum gravity might cause a form of position-localized deco-

herence due to coupling of the system to spacetime foam. This was first proposed by El-

lis, Nanopoulos, Hagelin, and Srednicki [4] and subsequently elaborated on [106, 5] by oth-

ers. Notably, this model is phenomenologically equivalent to the CSL model with altered

values for the constants [23]: aQG = h̄mP/2cm2
0 with mP =

√
h̄c/G the Planck mass, and

γ0
QG = 4a2

QGc4m6
0/h̄3m3

P. This gives us:

ΛQG =
M2

m2
0

γ0
QG

4a2
QG

f (R,b,a) =
c4M2m4

0

h̄3m3
P

f (R,b,a) (4.28)

with f (R,b,a) as in Eqn. 4.27. However, since R� aQG and b� aQG, we can set f to 1 [107]:

ΛQG ≈
c4M2m4

0

h̄3m3
P

(4.29)

Thus, for the 300 kHz device, using a thickness of ∼ 5 µm and a radius of ∼ 4 µm, we get

a decoherence time of order τQG = 7.1 s. For the 4.5 kHz device, using a thickness of ∼ 5 µm

and a radius of ∼ 40 µm, we get a decoherence time of order τQG = 1.1 ms. This type of

decoherence might potentially be testable in the 4.5 kHz device, as it is faster than EID.

4.4 Conclusion

In conclusion we proposed a method of post-selected interferometry for the creation and inves-

tigation of macroscopic quantum superposition. This scheme has a couple of notable advan-

tages over the previous optical scheme [8]. The proposed scheme only requires weakly coupled

optomechanical systems, and the mechanical decoherence times that can be investigated are not

limited by the optical storage time within the optomechanical system but only by the optical

storage time in the external delay. We have also investigated the temperature dependence of the

scheme and find that ground state cooling is necessary for implementation. We also investigate

the time scales on which the novel decoherence mechanisms would be expected to operate.
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Chapter 5

Creating and Detecting Micro-Macro Photon-Number

Entanglement by Amplifying and De-Amplifying a

Single-Photon Entangled State

This chapter is based on [108]

The goal of pushing the observation of quantum effects such as superpositions and en-

tanglement towards the macroscopic level is currently being pursued in a number of different

fields, including trapped ions [109], superconducting circuits [110], nano-mechanics [86], mi-

crowave cavities interacting with atoms in Rydberg states [111], atomic ensembles [112], and

non-linear optics [113, 114, 115, 116]. Within non-linear optics, one can distinguish proposals

based on Kerr non-linearities [113], and proposals and experiments based on parametric down-

conversion [114, 115, 116]. The latter area has recently seen significant activity, a lot of which

was stimulated by Ref. [116], which claimed the creation and detection of entanglement in po-

larization between a single photon on one side and thousands of photons on the other. The state

was created starting from a single polarization entangled photon pair, by greatly amplifying one

of the photons using stimulated type-II parametric down-conversion (i.e. a two-mode squeez-

ing interaction involving both polarization modes). Ref. [117, 118] subsequently showed that

the evidence for micro-macro entanglement given in Ref. [116] was not conclusive, and Ref.

[119] showed that in order to rigorously prove the presence of entanglement for the state of

Ref. [116], one would need to be able to count the photons on the macro side with single-

photon resolution, which is a significant technological challenge. Several other results also

suggest that the observation of entanglement by direct measurement on macroscopic systems

generally requires very high resolution, which also implies very low photon loss in the case of
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multi-photon states [120, 121, 114, 122].

These results inspired the work of Ref. [123], which proposed to prove the existence of

micro-macro polarization entanglement by de-amplifying the macro part of the state of Ref.

[116] back to the single-photon level. As entanglement cannot be created locally, if entangle-

ment is detected at the single-photon level, this proves that micro-macro entanglement had to

exist after the amplification stage. This approach has two advantages. On the one hand, the

final measurement can be done by single-photon detection, which is much simpler than count-

ing large photon numbers with single-photon resolution. On the other hand, the entanglement

is primarily sensitive to loss between the amplification and de-amplification stages, which is

easier to minimize in practice than the overall loss, which also includes detection inefficiency.

Most of the previous work in this area was concerned with polarization (or spin) en-

tanglement [114, 116, 120, 121, 122, 123]. Here we propose to apply the amplification-

deamplification approach to create and detect a different - quite striking - type of entanglement,

namely micro-macro entanglement in photon number. Instead of starting from a polarization

entangled photon pair, we propose to start from a single-photon entangled state, which can

be created by sending a single photon onto a beam splitter [124, 125, 126, 127]. The pres-

ence of single-photon entanglement can be proven experimentally by homodyne tomography

[125], and also by a combination of interference and single-photon detection [128]. Using

single-photon entanglement as a starting point, one can create a micro-macro photon-number

entangled state by amplifying one side via stimulated type-I parametric down-conversion (i.e.

a single-mode squeezer). The resulting state is a superposition of two components with largely

different mean photon numbers. This distinguishes our proposal from another recent pro-

posal, where micro-macro entanglement is created by displacing (rather than squeezing) one

half of a single-photon entangled state [129]. In that case the mean photon numbers of the

two superposed components are very similar. Micro-macro photon number entanglement as

suggested here could in principle be used to test proposals for fundamental decoherence in
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energy [130, 131, 132]. In the next section we describe De Martini’s proposal [133] and its

experimental realization[116].

5.1 The De Martini Proposal

In 1998, De Martini suggested a scheme for creating the optical superposition of micro-macro

state based on amplifying an initial micro state [133, 116]. The first step in the De Martini

scheme is to prepare an entangled pair of photons by pumping a non linear crystal with a

strong UV pulse as shown in Fig.(5.1). The entangled photon creates in spontaneous down

conversion (SPDC) process, where a photon from the pump with frequency ω p splits to two

photons with smaller frequency ωs and ωi called the signal and idler, respectively. In order for

this process to happen, the two following conditions called phase matching conditions, should

be satisfied:

ωp = ωs +ωi (5.1)

−→
k p =

−→
k s +

−→
k i (5.2)

These conditions guarantee the conservation of energy and momentum, respectively. There

are two type of phase matching in terms of polarization. In type I the signal and idler have

the same polarization while in type II they have orthogonal polarizations. In the De Martini

scheme type II phase matching is used to create the state

|ψ〉AB =
|H〉A|V 〉B−|V 〉A|H〉B√

2
(5.3)

The photon in arm A is directly measured and the photon in arm B amplified using the op-

tical parameter amplifier (OPA). The amplification by an OPA is described by the Hamiltonian

Ĥ = ih̄χ(â†
H â†

V − âH âV ) (5.4)
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Figure 5.1: Schematic of the De Martini experiment. A nonlinear crystal creates the initial
state(5.3). The photon in mode A is directly measured. The photon in mode B is amplified
by pumping another nonlinear crystal (C2) to create many imperfect copy of the the original
photons. The ”orthogonality filter” (OF) is used in mode B to discriminate the two macroscopic
states in this mode. The correlation between micro macro sates is then inferred by coincidence
statistics.
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The fact that Hamiltonian (5.4) describes the amplification process can be shown easily by

writing down the Heisenberg equation of motion for âH and âV . To show this we note that the

equation of motions is given by

d
dt

âH =
i
h̄
[H, âH ] = χ â†

V (5.5)

d
dt

âV =
i
h̄
[H, âV ] = χ â†

H (5.6)

The solution to the above coupled equations for âH is given by

âH(t) = cosh(χt)âH(0)+ sinh(χt)âV (0) (5.7)

From Eq.(5.7) one obtains the followoing relation for photon number with H polarization

〈â†
H(t)aH(t)〉= cosh2(χt)〈â†

H(0)aH(0)〉+ sinh2(χt)〈â†
V (0)aV (0)〉 (5.8)

The same equation can be obtain for V polarization. From Eq.(5.8) it is clear that the photon

number in mode H is increasing with time.

It is interesting to note that the Hamiltonian (5.4) is invariant under the effect of rotation in

the equator of the Bloch sphere. To see this we define the annihilation operator on the equator

of the Bloch sphere as

âφ =
âH + eiφ âV√

2
(5.9)

âφ⊥ =
âH− eiφ âV√

2
(5.10)

The Hamiltonian (5.4) can then be rewritten in term of the aforementioned operator as

Ĥ = iχ{(â†
φ
)2 +(â†

φ⊥)
2}+h.c. (5.11)
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The total state after amplification, expressed in term of equatorial basis, is given by [116]

|Σ〉AB =
1√
2
(|1φ

⊥〉|Φφ 〉B−|1φ〉|Φφ⊥〉) (5.12)

with the orthogonal macroscopic states

|Φφ 〉B =
∞

∑
i, j=0

γi j

√
(2i+1)!(2 j)!

i! j!
|(2i+1)φ ;(2 j)φ⊥〉 (5.13)

|Φφ⊥〉B =
∞

∑
i, j=0

γi j

√
(2i+1)!(2 j)!

i! j!
|(2 j)φ ;(2i+1)φ⊥〉 (5.14)

where γi j ≡C−2(−Γ

2 )
i Γ j

2 , C ≡ cosh(g), Γ ≡ tanh(g) and g is the nonlinear gain. In Eq.(5.12),

|pφ ;qφ⊥〉means p photons with polarization aφ and q photons with polarization aφ⊥. Eq.(5.12)

describes the superposition of a macroscopic state with a microscopic state. It is important to

note that the single photon is in superposition with a classically distinguishable macroscopic

state. To see this we note the mean photon number of the state |Φφ 〉 and |Φφ⊥〉. The mean

photon number for the polarization φ is sinh2(g) for |Φφ⊥〉 and 3sinh2(g)+ 1 for |Φφ 〉. The

mean photon number for the polarization φ⊥ is 3sinh2(g)+1 for |Φφ 〉 and sinh2(g) for |Φφ 〉.

In[116], experimental realization of the De Martini scheme has been reported. The exper-

imental challenge in the experiment is to verify the entanglement in the final state Eq.(5.12).

The experimental detection of the micro-macro entanglement in [116] is based on the violation

of the following inequality

V1 +V2 +V3 ≤ 1 (5.15)

with Vi = |〈ΣA
i ⊗ σB

i 〉|, Σi = |ΦΨi〉〈ΦΨi| − |ΦΨi⊥〉〈ΦΨi⊥|, σi = |Ψi〉〈Ψi| − |Ψ⊥i 〉〈Ψ⊥i | where

{Ψi,Ψ
⊥
i } are two orthogonal qubits corresponding to basis {Ψ1,Ψ

⊥
1 }= {|H〉, |V 〉}, {Ψ2,Ψ

⊥
2 }=

{| |H〉−i|V 〉√
2

, |H〉+i|V 〉√
2
} , {Ψ3,Ψ

⊥
3 }= {

|H〉+|V 〉√
2

, |H〉−|V 〉√
2
}.

To test entanglement it is then necessary to measure the correlation between |σA
i 〉 and |ΣB

i 〉.

One also needs to be able to distinguish |Φφ 〉 and |Φφ⊥〉. In principle if one can determine

whether the photon number in mode B is odd or even one can discriminate |Φφ 〉 from |Φφ⊥〉,
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but this resolution is out of reach of the current detectors. Instead one can use the probability

distributions of photon numbers to distinguish |Φφ 〉 and |Φφ⊥〉 . One can look at the photo

current (which is proportional to the photon numbers) from the detectors behind the PBS in

arm B. If the difference between the two currents exceeds a certain threshold the measurement

counts as a conclusive measurement, otherwise it discarded. This postselection process opens

the loop hole in the De Martini experiment as discussed in [117, 118, 123]

5.1.1 Our Scheme

In the following we describe our proposal in more detail, taking into account the effects of

photon loss, see also Figure5.2. We start by sending a single photon onto a balanced beam

splitter. The output state is a single-photon entangled state

|ψin〉=
|1〉A|0〉B + |0〉A|1〉B√

2
. (5.16)

The photon in arm B is then subjected to the unitary evolution Ŝ = e−iĤt where

Ĥ = iχ(â2− â†2
) (5.17)

is the single-mode squeezing Hamiltonian, which can be implemented by type-I parametric

down conversion. The total state after the application of S becomes

|ψs〉=
|1〉A|S0〉B + |0〉A|S1〉B√

2
, (5.18)

where

|S0〉= Ŝ|0〉= 1√
coshr

∞

∑
n=0

√
(2n)!

2nn!
(− tanhr)n|2n〉 (5.19)

and

|S1〉= Ŝ|1〉= 1√
(coshr)3

∞

∑
n=0

√
(2n+1)!
2nn!

(−tanhr)n|2n+1〉, (5.20)

with r = χt. For derivation of Eq.(5.19, 5.20) see Appendix C. For large enough squeezing

parameter r the state |ψs〉 is a superposition of two components with largely different mean
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HaL

(b)

Figure 5.2: Schematic of the proposed experiment. (a) A single photon is sent onto the beam
splitter BS, which creates the single-photon entangled state of Eq. (5.18). Mode A is di-
rectly measured, see below. Mode B is first amplified by the single-mode squeezer S and then
de-amplified by S−1. The pump laser beams necessary for implementing S and S−1 are not
shown for simplicity. Losses before S, between S and S−1, and after S−1 are taken into account
through transformation factors η1, η and η2, respectively. If the modes A and B are found to
be entangled at the end, one can infer the existence of micro-macro entanglement between the
applications of S and S−1. (b) Measurement scheme including the local oscillator LO (which
is a laser) which is essential for performing homodyne tomography ( means to reconstruct the
wave function of the photons ) of the final state. The box AD represents the amplification and
de-amplification process described in (a).
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photon numbers. To see this, we calculate

n0 = 〈S0|â†â|S0〉= sinh2(r) (5.21)

and

n1 = 〈S1|â†â|S1〉= 1+3sinh2(r). (5.22)

For large enough values of r one has n1/n0 ∼ 3. In Fig.(5.3) we show the photon number

distributions for the states |S0〉 and |S1〉, as well as their Wigner functions. Note that values of

r much greater than those used in the figure were achieved in the experiment of Ref. [116],

where thousands of photons were created on the macro side.

So far we have discussed the amplification process. In order to study the effects of photon

loss and subsequent de-amplification as shown in Fig(5.2), it is most convenient to work with

the Wigner function. The Wigner function corresponding to the state of Eq. (5.16) is given by

Win(XA,PA,XB,PB) =
1
2

m,n=1

∑
m,n=0

Wm,n(XA,PA)W1−m,1−n(XB,PB), (5.23)

where W0,0(Xi,Pi) =
e−(X

2
i +P2

i )

π
, W1,0(Xi,Pi) =

√
2(Xi+iPi)e

−(P2
i +X2

i )

π
=W ∗0,1(Xi,Pi) and W1,1(Xi,Pi) =

(−1+2X2
i +2P2

i )e
−(P2

i +X2
i )

π
with i = A,B. Xi,Pi are the position and momentum quadratures respec-

tively.

The effect of squeezing in the phase space is simply given by the following transformation:

XB → erXB, PB → e−rPB. This implies that the Wigner function after squeezing is given by

Ws(XA,PA,XB,PB) =Win(XA,PA,erXB,e−rPB).

In the absence of photon loss, the prepared macroscopic state in arm B would now undergo

the de-amplification operation S−1, which can be realized by changing the sign of χ . Exper-

imentally this can be done either by inverting the phase of the pump laser or by inverting the

sign of the non-linear coefficient of the second non-linear crystal, in analogy to what is done

in periodic poling [134]. In practice the de-amplification will always be preceded by a certain

amount of photon loss. In this case the final state is no longer exactly equal to the initial state,
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Figure 5.3: (a) Photon probability distributions of |S0〉 (big dots) and |S1〉 (small dots) for
r = 2.6. The inset shows the mean photon numbers for the same two states as a function of
r, see also Eqs. (5.21) and (5.22). (b) Cross section of the Wigner function of |S0〉 (left) and
|S1〉 (right) for the cutting plane P = 0. The dotted curves are the Wigner functions of |0〉 and
|1〉, respectively. Note that the other quadrature (which is not shown here) is correspondingly
elongated due to the Heisenberg uncertainty principle.
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in particular there will be higher order excitations in the number basis (beyond one). We will

first discuss only loss between S and S−1, which is the most critical imperfection; loss before

S and after S−1 will be discussed below.

The effect of loss in phase space is described by a convolution [135]

Ws,η(XA,PA,XB,PB) =

∞∫
−∞

dX ′BdP′BWs(XA,PA,X ′B,P
′
B)Fη(XB,PB,X ′B,P

′
B) (5.24)

with the attenuation kernel

Fη(XB,PB,X ′B,P
′
B) =

exp[− η

1−η
((X ′B−

XB√
η
)2 +(P′B−

PB√
η
)2))]

π(1−η)
. (5.25)

The Wigner function of the final state after de-squeezing is given by Ws,η ,s−1(XA,PA,XB,PB) =

Ws,η(XA,PA,e−rXB,erPB).

To determine the density matrix of the final state in the photon number basis we use the

following property of the Wigner function [135]

tr[Ô1Ô2] = 2π

∞∫
−∞

dXdPW1(X ,P)W2(X ,P) (5.26)

where W1and W2 are the Wigner functions of operators Ô1 and Ô2, respectively. If we set

Ô2 = |m〉〈n| and Ô1 = ρ̂ in Eq.(5.26) we obtain the following expression for the density matrix

in the photon number basis,

ρmn = 2π

∞∫
−∞

dXdPW (X ,P)Wmn(X ,P) (5.27)

As mentioned above, on the B side the final state will in general have higher-order compo-

nents in the Fock basis. As it is difficult to quantify entanglement in high-dimensional systems,

we will here focus on the projection of the final state onto the zero and first excitation subspace

for mode B, i.e

ρ̂p = (ÎA⊗ P̂B)ρ̂(ÎA⊗ P̂B), (5.28)

where ÎA is the identity operator in mode A and PB is the projection in subspace {|0〉B, |1〉B} in

arm B. Since the local projection P̂B cannot create entanglement, any entanglement present in
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ρ̂p also had to be present in ρ̂ . Similarly, any entanglement present in ρ̂ had to be present in

the micro-macro state created by the amplification stage because the loss and de-amplification

are also local processes.

The projected density matrix ρ̂p has the following form in the Fock state basis,

ρ̂p =



p00 0 0 d′

0 p01 d 0

0 d∗ p10 0

d′∗ 0 0 p11


, (5.29)

where pi j is the probability to find i photons in arm A and j photons in arm B; d is the coherence

term between |1〉A|0〉B and |0〉A|1〉B , d′ is the coherence between |0〉A|0〉B and |1〉A|1〉B. One

should note that the projected density matrix is not normalized. In fact the success probability

of projection is given by Tr(ρ̂p) = p00+ p01+ p10+ p11. In the initial state p01 = p10 = d = 1
2 ,

with all other coefficients equal to zero. One sees that the combination of amplification, loss

in between, and de-amplification can create new population terms as well as a new coherence.

However, certain coherences are still exactly zero (under otherwise ideal conditions). This can

be understood by noting that neither the Hamiltonian nor the loss can create coherence between

neighboring photon number states (in a given mode). The zero elements in Eq. (5.29) can also

be understood in term of the reflection symmetry of the initial state and attenuation kernel Eq.

(5.25).

To characterize entanglement we use the concurrence[136] which is defined as

C(ρ̂p) = max(0,λ1−λ2−λ3−λ4) (5.30)

where λi are the eigenvalues in decreasing order of the Hermitian matrix
√√

ρ̂pρ̃p
√

ρ̂p with

ρ̃p = (σ̂y⊗ σ̂y)ρ̂
∗
p(σ̂y⊗ σ̂y). For the density matrix in Eq.(5.29) the concurrence is given by

C(ρ̂p) = max{0,2(|d|−√p00 p11),2(|d′|−
√

p10 p01)}. (5.31)
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Figure 5.4: (a) Concurrence of the final state as a function of the mean photon number af-
ter the amplification, n = n0+n1

2 , for different values of the attenuation between amplifica-
tion and de-amplification, η . The solid, dotted, dashed and dot-dashed curves correspond
to η = 0.99,0.95,0.9,0.85, respectively. (b) Probability of projecting the final state into the
subspace spanned by the zero and one photon states for the same values of η .
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Figure 5.5: Concurrence of the final state for a fixed mean photon number n = 100 for dif-
ferent values of η , for η1 = η2 varying together. Circles, cubes and diamonds correspond to
η = 0.99,0.97,0.95 respectively. One can see that the entanglement is much more sensitive to
η than to η1 and η2.

Fig.(5.4)(a) shows the concurrence as a function of mean photon number n = n0+n1
2 after

squeezing for different values of attenuation η . One notes the high sensitivity of the concur-

rence to the attenuation. However, in practice it should be possible to keep losses between the

two non-linear crystals very low, values of η as high as 0.99 should be realistic. One promising

approach would be to realize amplification and de-amplification in a single solid-state system,

where the two active non-linear sections could be separated by a non-active spacer layer. Note

that the experiment would typically be performed with femtosecond pulses, so it would not be

difficult to make non-active layer thick enough to contain the entire pulse. The macro com-

ponent of the micro-macro entangled state would then exist for a short span of time in that

spacer layer. Fig. 3(b) shows that the success probability for projecting the system into the

zero-or-one photon subspace decreases as the amount of loss and the mean photon number are

increased, but that it is still quite significant in the regime under consideration.

Fig.(5.4) suggests that micro-macro entanglement involving hundreds of photons might be

observable with the proposed scheme. To confirm this suggestion, it is still important to study
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the effect of losses before the amplification and after the de-amplification, η1 and η2. These

losses are harder to minimize in practice. In particular, η2 also includes detector inefficiency.

However, values of order η1 = η2 = 0.9 should be achievable [137]. Figure (5.5) shows that

a substantial amount of entanglement is still present in the system under these conditions for a

mean photon number n = 100. One can see that the micro-macro photon-number entanglement

is much less sensitive to η1 and η2 than to η , similarly to the results of Ref. [123] for micro-

macro polarization entanglement.

The entanglement can be demonstrated experimentally by using full homodyne tomogra-

phy, which was already used to demonstrate the non-locality of single-photon entanglement in

Ref. [125]. In this method the full density matrix is reconstructed from the joint quadrature

statistics pθA,θB(XA,XB) for different values of the local oscillator phases θA and θB. In particu-

lar this allows one to reconstruct the density matrix in the zero and one-photon subspace which

is relevant for us here.

5.2 Conclusion

We have proposed to create and detect micro-macro photon-number entanglement by amplify-

ing and then de-amplifying a single-photon entangled state. In particular, the present approach

should allow the creation and detection of entangled states that are superpositions of two com-

ponents with very different mean photon numbers (for example, 50 and 150).
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Conclusion and Outlook

In conclusion we have studied macroscopic quantum effects in optomechancial and optical

systems. We studied optomechanical entanglement and also discussed how it will change in the

presence of the laser phase noise. Our results show that optomechanical entanglement is very

sensitive to the laser phase noise. This motivated us to study single photon optomechanics. We

proposed that one can enhance the weak optomechancial coupling constant in the single photon

regime by using post selection and then described a scheme for probing the optomechancial

superpositions. The experimental requirements for realizing this scheme have been discussed.

Motivated by recent experiment by De Martini et.al [116] and very recent studies in [119,

123], we presented a new scheme for creating and detecting micro- macro entanglement based

on amplifying a single photon entangled state. The focus in this part is to understand how

precise the measurements should be to be able to verify micro- macro entanglement.

The next logical step is to study the experimental requirements for observing optomechan-

ical entanglement with special emphasis on the measurement precision. In other words, how

sensitive should the measurements be in order to be able to verify the optomechancial entan-

glement.

Another interesting problem is to combine our scheme for creating optical Schrodinger cat

with the optomechanics. One advantage of this method is that it allows larger values for the

optomechanical coupling.
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Appendix A

An introduction to Gaussian states

In this appendix, we briefly review some important aspects of continues variable (CV) state.

We also briefly discuss the entanglement measure that we used in chapters 2 and 3.

In the phase space description of classical mechanics the state of the system consisting of

N particles is described by the position and momentum variables which fulfil the following

relations

{Ri,R j}= σi j (A.1)

where, denotes the Poisson bracket, R = (x1, p1, ,xN , pN)
T and σ is the symplectic matrix

defined as

σ =⊕N
i=1

 0 1

−1 0

 (A.2)

In quantum mechanics the previous description is still valid if we replace position and

momentum variables with their corresponding operators,i.e. xn→ x̂n,pn→ p̂n, Poisson bracket

with commutator [, ]. Now instead of Eq.(A.1) we have

[R̂ j, R̂k] = iσ jk1̂ (A.3)

with R̂ = (x̂1, p̂1, ..., x̂N , p̂N).

From quantum mechanics we also know that the complete description of a system is given

by its density matrix, denoted by ρ . The density matrix is the analogue of the probability

distribution of the classical system. It is also known that the probability distribution can be

completely characterized by its moments which are experimentally accessible. This is also

true for the density matrix.
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The first and second order moments of a state ρ , known as displacement vector and covari-

ance matrix,respectively, defined as

〈R̂〉= tr[ρR̂ j] (A.4)

Vi j = tr[ρ{R̂i−〈R̂i〉, R̂ j−〈R̂ j〉}] (A.5)

using Eq.(A.3) we can rewrite Eq.(A.5)

Vi j = 2tr[ρ(R̂i−〈R̂i〉)(R̂ j−〈R̂ j〉)]− iσi j (A.6)

Now one can show that Eq.(A.6) implies that

V + iσ ≥ 0 (A.7)

It is interesting that Eq.(A.7) is exactly the uncertainty relation. To see this, it is enough to

check Eq.(A.7) for one-mode state. In this case we have

V + iσ =

2〈q̂2〉 i

−i 2〈p̂2〉

 (A.8)

now Eq.(A.7) implies 〈q̂2〉〈p̂2〉 ≥ 1
4 which is the uncertainty relation.

A.0.1 Gaussian states

For the transformation from Hilbert space to phase space we need to define the Weyl operator

defined as

Ŵξ = eiξ T σ R̂ (A.9)

The important properties Weyl operators are

ŴξŴζ = e−iξ T σζŴξ+ζ (A.10)

80



tr(ŴξŴζ ) = (2π)N
δ

2N(ξ −ζ ) (A.11)

Eq.(A.10) is called orthogonality condition for Weyl operator. It makes it possible to expand

any linear bounded operator in term of the Weyl operator,i.e.

Â =
1

(2π)2N

∫
d2N

ξ fA(−ξ )Ŵξ (A.12)

fA is the unique weighting function. Using the orthogonality property of Weyl operator,Eq.(A.10),

one can show

fA(ξ ) = tr(ÂŴξ ) (A.13)

we can also expand the density matrix in term of the Weyl operator. the coefficient of

expansion in this case is called the characteristic function which is denoted by χρ(ξ ) which is

given by

χρ(ξ ) = tr(ρ̂Ŵξ ) (A.14)

means that it is expectation value of the Weyl operator.

Characteristic function allow us to map any density matrix to L 2 space. The inverse

Fourier transform of the characteristic function,which is called Wigner function, is analogous

to the probability distribution in the phase space. More explicitly we have

W (ξ ) =
1

(2π)2N

∫
dηχρ(η)e−iξ T ση (A.15)

The Wigner function is not always a probability distribution as it takes negative values

because of the quantum nature of the system.

The Gaussian state are states which their characteristic function can be written as:

χρ(ξ ) = exp[−1
4
(σξ )TV (σξ )] (A.16)
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This means that the Gaussian states are completely determined by their covariance matrix V .

A quantum state ρ of the bipartite system is separable if and only if it can be expressed as:

ρ̂ = ∑
i

piρ̂i1⊗ ρ̂i2 (A.17)

where pi ≥ 0 and ρ1,ρ2 are the density matrix for system one and two respectively.

From Eq.(A.17) it is clear that if the state be separable then the partial transposed state is

still a density matrix as

ρ̂
T2 = ∑

i
piρ̂i1⊗ ρ̂

T
i2 = ρ̂ (A.18)

This is the basic idea behind the Peres- Horodecki criterion.

Peres- Horodecki criterion: Let ρ be a density matrix in the Hilbert space Ĥ = ĤA⊗ĤB

with non-positive partial transpose. Then the state is the entangled.

A.0.2 Simon criterion

R.Simon extend the Peres-Horodecki criterion for CV states. The basic idea is that the partial

transpose operation in the phase space is equivalent to time reversal of a subsystem, so equiva-

lent to momentum inversion. To see this we start with a following representation of the Wigner

function for bipartite CV system

W (ξ ) =
1

(2π)2

∫
d2x〈q− x|ρ̂|q+ x〉e−ixp (A.19)

with ξ = (q1,q2, p1, p2)
T , q = (q1,q2)

T , p = (p1, p2) and x = (x1,x2). Let say we take partial

transpose with respect to the second subsystem. By definition we have 〈q1,q2|ρ̂T2|q′1,q
′
2〉 =

〈q1,q
′
2|ρ̂|q

′
1,q2〉 The Wigner function of the partially transposed matrix is then given by

W PT (ξ ) =
1

(2π)2

∫
d2x〈q− x|ρ̂T2|q+ x〉e−i(Zx)T p (A.20)
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where Z = diag[1,−1]. This implies that partial transpose operation inverts the associated

momentum p2. From this observation we arrive to the following statement

W PT (ξ ) =W (Λξ ) (A.21)

where Λ = diag[1,1,1,−1]. It is simple to verify that the effect of partial transposition on the

covariance matrix is given by

V → ΛV Λ (A.22)

With this interoperation of the partial transposition for CV state, we can apply the Peres-

Horodecki criterion to Gaussian states.

Simon criterion: A Gaussian bipartite state (which completely determined by its covariance

matrix) is entangled if and only if

ΛV Λ+ iσ ≤ 0 (A.23)

We used this criterion in chapter 2 and 3 for quantifying optomechanical entanglement.
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Appendix B

Weak measurment

I briefly introduce the basic idea of weak measurement[78, 79].

In standard (projective) measurement, one projects the system of interest (which is in su-

perposition of different state) to one of its eigenvectors of the measured observable. The basic

idea behind the weak measurement is to weakly touch the system to reduce the effect asso-

ciated with measurement process. We don’t gain so mush information in this way unless we

post select the state of the system after weak measurement. To show this, suppose we have a

two level system which is in the initial state |ψ(0)〉= β0|0〉+β1|1〉. Where |0〉 and |1〉 are the

eigenvectors of the observable to be measured which we call it A, Â|0〉= |0〉 and Â|1〉=−|1〉.

The system is coupled to the measurement apparatus (initially at the state |M(s)〉) through the

Hamiltonian H = gPA where g is the coupling strength between meter (measurement device)

and the system which is very small number and P is the momentum operator for the meter. The

state of the system at time t is given by |ψ(∆t)〉= e−iτPA|M(x)〉|ψ(0)〉= β0|M0〉|0〉+β1|M1〉|1〉

where τ = g∆t. Now we note that in the projective measurement we have 〈M0|M1〉= 0 which

means that the meter completely determines the state of the system. Since we consider the

weak coupling between system and meter we do not expect that this condition be fulfilled,

instead we expect to have 〈M0|M1〉 ∼ 1. This means that the state of the meter before and

after the measurement is almost the same. The difference between |M0〉 and |M1〉 is such small

that the detector can not resolve them (The signal is smaller than the detector noise). Now let

assume that after measurement we post select the state of the system to the state |ϕ〉. The state

of the meter is now given by 〈ϕ|e−iτPA|M(x)〉|ψ(0)〉, which can be written as

〈ϕ|ψ(0)〉(1− τPAw)|M(x)〉 ' 〈ϕ|ψ(0)〉e−iτAwP|M(x)〉 (B.1)
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where Aw is called the weak value and is given by

Aw =
〈ϕ|A|ψ(0)〉
〈ϕ|ψ(0)〉

(B.2)

Now if the post selected state chosen such that it almost be orthogonal to the initial state

(〈ϕ|ψ(0)〉 ∼ 0) then the weak value can be large number. In term of meter displacement this

means that we now have |M(x± τAw)〉, which shows the meter displacement may increase in

such a way that it can be used to infer the state of the system.

In our proposed scheme for post-selection in chapter.4 the states |ψ〉 and |ϕ〉 are

|ψ〉= |1A0B〉+ |0A1B〉√
2

(B.3)

|ϕ〉= |1A0B〉− |0A1B〉√
2

(B.4)

Our post selection scheme is different from weak measurement because of the orthogonality

of initial state and the post selected state.
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Appendix C

Derivation of Equations 5.19 and 5.20

We start with the following identity for the vacuum state

â|0〉= 0 (C.1)

Multiplying Eq.(C.1) from left by Ŝ and using the fact that Ŝ(r) is unitary we can write

Ŝ(r)âŜ†(r)Ŝ(r)|0〉= 0 (C.2)

or

Ŝ(r)âŜ†(r)|S0〉= 0 (C.3)

Now we use the following identity[44]

Ŝ(r)âŜ†(r) = coshrâ+ sinhrâ† (C.4)

we can rewrite Eq.(C.3) as

(coshrâ+ sinhrâ†)|S0〉= 0 (C.5)

Now we expand the state |S0〉 in term the number state

|S0〉=
∞

∑
n=0

cn|n〉 (C.6)

substituting Eq.(C.6) in Eq.(C.5) we get the following recursion relation

cn+1 =−tanhr(
n

n+1
)1/2cn−1 (C.7)
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from Eq.(C.7) and using the normalization condition for |S0〉 we obtain

c2n = (−1)n

√
(2n)!

2nn!
(tanhr)n
√

coshr
(C.8)

Thus the squeezed vacuum state is (5.19)

|S0〉=
∞

∑
n=0

(−1)n

√
(2n)!

2nn!
(tanhr)n
√

coshr
|2n〉 (C.9)

We now drive Eq.(5.20).

Ŝ|1〉= 1
coshr

a†Ŝ|0〉 (C.10)

which using Eq.(C.9) immediately results

|S1〉=
∞

∑
n=0

(−1)n

√
(2n+1)!
2nn!

(tanhr)n

(coshr)3/2 |2n+1〉 (C.11)
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