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Abstract

We propose and analyze a quantum memory protocol based on dynamically changing the reso-

nance frequency of an ensemble of two-level atoms. By sweeping the atomic frequency in an

adiabatic fashion, photons are reversibly transferred into atomic coherences. We present a polari-

tonic description for this type of storage, which shares lots of similarities with Electromagnetically

Induced Transparency (EIT) based quantum memories. On the other hand this memory is linked to

the Gradient Echo Memory(GEM) quantum memory in the co-moving frame due to the effective

spatial gradient that pulses experience in the medium. As a result the proposed protocol forms a

bridge between two well-known protocols for quantum memory, which is conceptually a matter of

interest in the field of quantum memories. We also present a numerical analysis of this memory

protocol and discuss various conditions that have to be fulfilled for desirable memory performance.
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Chapter 1

Introduction

Storage and retrieval of photons on-demand is essential in quantum information processing tasks

such as implementation of single photon sources, long-distance quantum communication and dis-

tributed quantum computing [1][6][7]. Quantum memory can be achieved by coherent control of

the atom-photon interaction. Some protocols for quantum memory introduce a control beam in

a three-level atomic configuration (e.g. Electrically Induced Transparency (EIT) [8] and Raman

scheme [9][10][11]) to manipulate the interaction between the signal pulse and the atoms. Other

protocols use the phenomenon photon echo[12][13] to achieve controlled atom-photon interac-

tion. In this type of memory the atom-photon interaction is controlled in a more indirect way by

a dephasing-rephasing process owing to the inhomogeneous broadening of the medium. Atomic

Frequency Comb memory (AFC) [5], Controlled Reversible Inhomogeneous Broadening memory

(CRIB)[14] and Gradient Echo Memory (GEM)[15] are examples of this type of protocols.

Recently it has been shown that some of these protocols can be emulated by dynamically chang-

ing certain characteristics of an ensemble of two-level atoms. For instance, it has been shown that

by dynamically controlling the transition dipole moment of an ensemble of two-level atoms, one

can emulate Raman-type quantum memories[16]. More recently it has been shown that changing

the refractive index of the host medium of two-level atoms is equivalent to GEM memory[17].

Here we study another way of manipulation of the atom-photon interaction, namely by sweep-

ing the resonance frequency. When the light is in resonance with the atoms, the interaction is

on and when the detuning is large compared to the bandwidth of the pulse, the interaction is off.

The energy levels of the two-level atoms can be changed by applying a magnetic or electric field

depending on the system.

We demonstrate that this protocol can be described in terms of polaritons similar to dark-state
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polaritons in EIT [2]. By changing the detuning, the pulse slows down and is stored in atomic

coherences. Changing the detuning plays the role of changing the control field in EIT. However

there are also difference between the two polaritonic pictures, in particular, in our protocol the

pulse doesn’t shrink at the beginning of the medium, in contrast with EIT.

Intuitively this protocol is similar to the GEM protocol for the regime in which pulses are short

compared to the medium. While we change the detuning in time during the propagation of the

pulse through the medium, the pulse effectively sees the spatial gradient in the energy levels of the

atoms, and atomic coherence becomes dephased.

In chapter 2 we review the theory and experiments of quantum storage based on EIT and

derive the dark state polaritons. In chapter 3 we review photon echo quantum memories including

CRIB, GEM and AFC. We also discuss about experimental implementations of these protocols.

In chapter 4 we describe the main focus of this thesis which is quantum memory with sweeping

atomic frequency. We present the polaritonic picture and numerical analysis for this memory in

this chapter. In chapter 5 we show the link between GEM and atomic frequency sweep memory

analytically by going to the co-moving frame. We also compare these two protocol by providing

numerical analysis. Lastly, the concolution and final remarks are discussed in the chapter 6.
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Chapter 2

Quantum Memory Based on Dark-State Polariton in

Electromagnetically Induced Transparency (EIT)

Electromagnetically Induced Transparency (EIT) is a nonlinear phenomenon in atoms with a three-

energy-level configuration usually with Λ structure (Figure.2.1). In the absence of a strong control

field, the weak signal field is absorbed by the transition, with which it is resonant.

Figure 2.1: Energy levels of atoms with a Λ-structure. Atoms are initially in the ground state b.

The signal quantum field and strong control field are on resonance with b-a and c-a transitions

respectively.

In the presence of a control field, destructive quantum interference between the probability

of transitions a-b and a-c, causes the atoms to stay in the ground state b, and the field is not

absorbed by the medium. This phenomenon, where the control field makes the opaque medium

transparent is called EIT. Therefore EIT opens a transparent window at the resonance frequency

with width proportional to the intensity of the control field (Fig.2.2). According to the Kramers-

Kronig relations, followed by a change in the refractive index of the medium.

This change in refractive index results in a reduction of the group velocity by a factor propor-

tional to the inverse of the control field intensity. Experiments have shown that light can be slowed

3



Figure 2.2: Absorption profile (a) and refractive index profile (b) of the medium without (red) and
with (blue) control field. It can also be seen that how transparency window changes with change
in intensity of control field (dashed line). The atomic parameter used for this plot corresponds to
cloud of ultra cold rubidium atoms. Image courtesy of ref.[1]

by seven orders of magnitude [18].

It has been shown [2] that there is a form-stable excitation associated with the propagation

of pulses in such a medium, called ”dark-state polariton”, which is a superposition of light and

atomic polarization. While the dark-state polariton is preserved during the propagation, photonic

and atomic contributions in dark states can be manipulated by adiabatic changes of the control

field. Also the group velocity is directly related to the ratio of atomic and photonic contributions

in the dark state polariton.

As a result, by adiabatically changing the control field, one can slow down the light and transfer

the photonic state to an atomic state, and by reversing the process retrieve the photonic pulse. Thus,

the dark-state polariton in EIT is a suitable candidate for a quantum memory.

We consider an ensemble of Λ-type three-level atoms. Figure 2.1 shows the energy configura-

tion of the atoms with two metastable ground states (b,c) and one excited state(a) . Ê is the signal

which is the quantum field that we aim to store and Ω(t) is the time dependent Rabi frequency of

the control field. We assume that both the control field and the signal are in resonance with their

corresponding transitions.

Propagation of the light inside the atomic medium is governed by Maxwell’s equations, which

leads to the following wave equation

4



∂ 2E
∂ z2 −

1
c2

∂ 2E
∂ t2 =

1
c2ε0

∂ 2P
∂ t2 (2.1)

where E and P are the electric field and polarization of the atoms respectively. Here, without

loss of generality, we consider a one-dimensional system for the sake of simplicity. We also use

the slowly-varying approximation by introducing slowly-varying amplitudes E (z, t) and P(z, t)

E(z, t) = E (z, t)ei(k0z−ω0t)+ c.c. (2.2)

P(z, t) = P(z, t)ei(k0z−ω0t)+ c.c. (2.3)

Here, k0 and ω0 are the central wave vector and frequency respectively. Under slowly-varying

conditions;

∂z

∂t

(E ,P)�

k0

ω0

(E ,P) (2.4)

the wave equation of 2.1 is simplified to

(
∂

∂ z
+

k0

ω0

∂

∂ t
)E (z, t) =

iω2
0

2ε0k0c2 P(z, t) (2.5)

A quantum field can be described by the dimensionless annihilation and creation operators [19]

Ê(z, t) =
∫

dω âω(t)eikz + c.c. (2.6)

where âω is annihilation operator of photon with frequency of ω . We also can write the polar-

ization of one atom as

P j(t) = dσ̂
j

ba + c.c. (2.7)
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where σ̂
j

ba = |b j〉〈a j| is the matrix element ofthe polarization of the jth atom, and d = dab =

dba = e〈b|~r|a〉 is the dipole moment of the atom. Eq.(2.3) together with Eq.(2.7) leads us to the

expression for the slowly-varying collective polarization;

P(z, t) = de−i(k0z−ω0t) 1
Nz

Nz

∑
j=1

σ̂
j

ba n(z) (2.8)

where n(z) = N
V is the atomic density and d 1

Nz
∑

Nz
j=1 σ̂

j
ba is the average polarization in the tiny

slice but microscopic volume in the z position which contains Nz atoms.

Now we define the collective operator as follows:

σ̂αβ (z, t) =
1
Nz

Nz

∑
j=1

σ̂
j

αβ
eiωαβ (t− z

c ) (2.9)

By introducing the collective operators, Eqs.(2.5)(2.8) lead to the field equation in terms of the

collective operator,

(c
∂

∂ z
+

∂

∂ t
)Ê (z, t) = igNσ̂ba (2.10)

where g = d·εk ε̂

h̄ is the atom-field coupling constant, εk =
√

h̄ω0
2ε0V is the electrical field per

volume V and N is the number of atoms in the medium.

The atomic evolution in the interaction picture is given by the Heisenberg equation

∂

∂ t
σ̂αβ =−γαβ σ̂αβ +

i
h̄
[V̂ , σ̂αβ ]+Fαβ (2.11)

where γαβ is the decay rate of the polarization matrix element σ̂αβ , Fαβ is the Langevin noise

operator, and V̂ is the interaction Hamiltonian which governs the interaction between light and

atoms in free space,

V̂ =−
N

∑
j=1

(h̄g
∫

âωeikz j σ̂
j

abeiωab(t− z
c )dω + h̄Ωσ̂

j
aceiωac(t− z

c ))+H.c. (2.12)

Here, Ω(t) is the Rabi frequency of the control field which is applied to a-c transition (Fig.2.1).
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By substituting the interaction Hamiltonian 2.12 into the Heisenberg equation 2.11 and taking

commutators, we end up with a set of equations of motion for the atomic operators

∂

∂ t
σ̂aa =−γaaσ̂aa− ig(E †

σ̂ba−H.c.)− iΩ(σ̂ca− σ̂ac)+ F̂aa (2.13)

∂

∂ t
σ̂bb =−γbbσ̂bb− ig(E σ̂ab−H.c.)+ F̂bb (2.14)

∂

∂ t
σ̂cc =−γccσ̂cc− iΩ(σ̂ac− σ̂ca)+ F̂cc (2.15)

∂

∂ t
σ̂ba =−γbaσ̂ba− igE (σ̂aa− σ̂bb)+ iΩσ̂bc+F̂ba (2.16)

∂

∂ t
σ̂ca =−γcaσ̂ca + igE σ̂cb− iΩ(σ̂aa− σ̂cc)+ F̂ca (2.17)

∂

∂ t
σ̂bc =−γbcσ̂bc− igE σ̂ac + iΩσ̂ba + F̂bc (2.18)

In the above equations we assume for simplicity that the Rabi frequency is real. In the weak-

field condition that the number of photons is much smaller than the number of atoms, we can

assume that the atomic population remains mostly in the ground state b (σbb = 1). Therefore, we

can neglect the population of states a and c (σaa = σcc = 0). Moreover in the weak-field regime,

atomic equations can be treated perturbatively in Ê . To first order in Ê , we have

σ̂ba =−
i
Ω

∂

∂ t
σ̂bc (2.19)

σbc =−
gÊ

Ω
− i

Ω
[(

∂

∂ t
+ γba)(−

i
Ω

∂

∂ t
σbc)]+ F̂ba (2.20)

Considering the adiabatic conditions [20], one can introduce normalized time t̃ with time scale

T (̃t = t
T ). With that, Eq.(2.20) to lowest order in 1

T is given by

7



σbc =−
gÊ

Ω
(2.21)

It is worth mentioning that Fαβ is not the lowest order of 1
T due to the fact that 〈Fx(t)Fy(t)〉

δ (t− t ′) = δ (t̃− t̃ ′)/T .

Plugging Eq.(2.19) into Eq.(2.10) yields the wave equation

(c
∂

∂ z
+

∂

∂ t
)E (z, t) =

gN
Ω

∂

∂ t
σ̂bc (2.22)

To make the equations symmetric in terms of the interaction coefficient, we apply the transfor-

mation (σbc→
√

Nσbc), giving

σbc =−
g
√

NÊ

Ω
(2.23)

(c
∂

∂ z
+

∂

∂ t
)E (z, t) =

g
√

N
Ω

∂

∂ t
σ̂bc (2.24)

Now we simplify the equation by introducing a new quantum field Ψ̂ which is a mixture of

field and atomic operators

Ψ̂(z, t) = cosθ Ê (z, t)+ sinθσ̂bc(z, t) (2.25)

By substituting Eqs.(2.23) and (2.25) into the field equation 2.24, we obtain

Ω

Ωcosθ −g
√

N sinθ
(c

∂

∂ z
+

Ω2 +g2N
Ω2

∂

∂ t
)Ψ̂(z, t)

=−{ Ω̇

Ωcosθ −g
√

N sinθ
+

Ω2 +g2N
Ω

∂

∂ t
(

1
Ωcosθ −g

√
N sinθ

)} (2.26)

One can choose sinθ and cosθ so as to have a non-dispersive quantum field, which results in

the right-hand side of Eq.(2.26) being equal to zero:
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Ω̇

Ωcosθ −g
√

N sinθ
+

Ω2 +g2N
Ω

∂

∂ t
(

1
Ωcosθ −g

√
N sinθ

) = 0 (2.27)

This leads to a relationship between sinθ and cosθ

Ωcosθ −g
√

N sinθ =
√

Ω2 +g2N (2.28)

Thus, together with the normalization condition (cos2 θ + sin2
θ = 1) yields

cosθ =
Ω(t)√

Ω2(t)+g2N
(2.29)

sinθ =
−g
√

N√
Ω2(t)+g2N

(2.30)

Now we end up with the quantum field Ψ̂ with field and atomic contributions given by cosθ

and sinθ respectively, which satisfies the non-dispersive wave equation

(
∂

∂ t
+ ccos2

θ
∂

∂ z
)Ψ̂(z, t) = 0 (2.31)

Ψ̂ is the shape-preserving field whose group velocity is controlled by the control field. By

changing the control field and thus θ from zero (which corresponds to strong control field com-

pared to coupling) to π

2 (which corresponds to absence of control field), one can stop the light and

map it onto the polarization of atoms. By turning on the control field again, light can be recon-

structed from the atomic coherence and accelerated to the speed of light. Figure.(2.3) shows this

reversible transferring of light to matter.
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Figure 2.3: Propagation of dark-state polariton. The initial electric field is a Gaussian envelope
exp(−z/10)2. (a) The control field changes with time such that mixing angle θ changes between 0
and π

2 with the form cotθ(t) = 100(1−0.5tanh[0.1(t−15)]+0.5tanh[0.1(t−125)]). The polari-
ton freely propagates through the medium (b) while (c) the electric field amplitude |〈Ê〉| and (d)
atomic coherence amplitude |〈σ̂cb〉| interconvert between each other. Axes are in arbitrary units,
assuming c=1. Image courtesy of ref. [2]

In 2001, two groups demonstrated storage of classical light based on EIT. D.Phillips et al.[21]

stored a 10−30µs optical pulse at a wavelength of 795 nm in a 4Cm atomic Rubidium vapor cell

at temperature 70− 90◦ for up to 200µs. C.Liu et al.[22] demonstrated storage of 5.70µs pulses

in magnetically trapped sodium atoms cooled to 0.9 µK for up to 0.9 ms.

EIT-based memory can also be realized in solid media. The advantage of using solid media is to

allow for longer storage time. Longdell et al.[23] stored light in 4mm long praseodymium-doped

Y2SiO5 crystals with a storage time of more than one second. The disadvantage of using Ion-

doped crystals is their low optical depth, which results in low efficiency. Due to inhomogeneous
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broadening in such crystals, increasing the density of dopants only causes a broader absorption

linewidth without increasing the optical depth. For example, in the afore mentioned experiment,

the efficiency is of the order of 1%.

In 2005 T.Chanelière et al.[24] stored pulses at the single photon level in cold atomic clouds

of Rb confined in magneto-optical traps (MOTs) with optical depth d = 7 for up to 15µs, with

an efficiency of 0.06%. In the same year, M.Eisaman et al.[25] demonstrated storage of a single

photon with 0.5µs storage time and 10% efficiency in a 4.5cm-long Rb vapor cell with optical

depth around d = 4. The efficiency of storage based on EIT was improved to almost 50% with

storage time of up to 400µs by I.Novikova et al.[26]. They achieved this memory efficiency by

optimizing the shape of the input pulse in a Rubidium vapor cell with optical depth d ≈ 9.

In 2008 J.Appel et al.[27] demonstrated storage of squeezed light in Rubidium vapor cell for up

to 1µs, which shows that EIT based quantum memories are compatible with continuous-variable

quantum information protocols.
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Chapter 3

Photon Echo Quantum Memory

EIT-based quantum memories suffer from an intrinsic trade off between the transparency window,

which determines the permitted spectral bandwidth of the input pulse, and reduction in the group

velocity of the pulse. As can be seen in Figure.(2.2) by widening the transparency window the

slope of the refractive index decreases, which results in lesser reduction in group velocity. This

fact limits the spectral bandwidth of the input pulse, and makes multimode storage of pulses very

difficult. Photon echo quantum memory protocols are proposed to get around this problem. Photon

echo is the optical analogue to the well-known spin echo in nuclear magnetic resonance(NMR)

discovered by Hahn in 1950 [28]. Photon echo was demonstrated by Kopvil’em et al.[12] and

Kurnit et al.[13] independently in 1963 and 1964 respectively. Two decades later the idea was

extended to store classical data by Elyutin et al.[29] and Mosseberg et al.[30], and technique has

been improved to store a data sequence of 1760 optical pulses[31].

Photon echo can be understood well in the Bloch sphere description of light-atom interaction.

At first, all atoms are in the ground state, so the atomic state can be described by the vector along

negative w. By applying π

2 pulse we rotate the vector to the u direction (Figure.3.1.a). Due to

inhomogeneous broadening of the medium, each component of the atomic state rotates with a

different frequency in the u-v plane and atomic states become dephased (Figure.3.b). At time τ , by

applying π-pulse atomic states will be rotated by π around the v axis (Figure.3.c). Due to inversion

of atomic states, after time τ , atoms rephase and form a macroscopic dipole and emit the first echo.
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Figure 3.1: Evolution of the atomic state in the Bloch sphere in the two-pulse photon-echo pro-
cess.(a) By applying π

2 pulse, the atomic state rotates from the ground state (negative w) to the u
direction. (b) The atomic phase undergoes a dephasing process owing to inhomogeneous broaden-
ing. (c) At time t = τ π-pulse rotates all the vectors around the v axis. (d) At time t = 2τ all the
vectors have rephased and form a macroscopic dipole, and the first echo is emitted. Image courtesy
of ref.[3]

Although traditional photon echo has been successful in storing classical light, for storing

single photons this protocol suffers from noise resulting from the applied π pulses. When we

apply a π-pulse, we bring the atomic population into the excited state and it will cause noise

and amplifying spontaneous emission due to the dipole-dipole interaction. This effect makes the

conventional photon echo protocol inappropriate for storing single photons.[32]

Nevertheless this technique inspired the other protocols for storing pulses at single photon

level. Consider an inhomogeneous ensemble of two-level atoms interacting with a single-photon

pulse. After the absorption of the photon, since we don’t know which atom absorbed the photon,

the atomic state becomes the collective state

|ψ〉=
N

∑
j=1

c jeiδ jte−ikz j |g1...e j...gN〉 (3.1)

where |g1...e j...gN〉 is the state corresponding to all atoms in ground state except for the jth

atom, which absorbed the photon. k is the wave vector of the field and z j is the position of the

absorber atom. c j is a probability amplitude which depends on the frequency and position of the

jth atom. δ j is the detuning of the jth atom with respect to the central frequency of the field. At

first all atomic phases are in phase with the spatial atomic mode, but since detuning differs for each
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atom, atoms become dephased with respect to the spatial mode, and re-emission of the photon is

suppressed. All photon echo quantum memories use a procedure to rephase the atomic dipoles

with the spatial mode to produce an echo at some later time. Based on the procedure that these

protocols use for rephasing the atomic state, they can be classified into two categories: Controlled

Reversible Inhomogeneous Broadening (CRIB) and Atomic Frequency Comb (AFC).

3.1 Controlled Reversible Inhomogeneous Broadening (CRIB)

This protocol uses spectral hole burning and controllable Stark shift from an electrical gradient to

rephase and dephase the atomic state for the purpose of quantum memory.

The essence of this memory is the hidden time reversibility in the Maxwell-Bloch equations.

The light is absorbed in the inhomogeneous broadening which is made using Stark shift. Time

reversal of corresponding Maxwell-Bloch equations shows it is possible to convert the atomic

excitation into a photonic excitation and retrieve the field. Reversing of the process apart from

reversing the inhomogeneous broadening, requires an application of the phase matching operation,

which is equivalent to applying a phase shift e−2ikz j to all atoms. This causes the forward collective

atomic excitation (which was created during the absorption) to turn into a backward collective

atomic excitation, leading to the backward-traveling output field.

Now we show rigorously the above mentioned time reversibility in the Maxwell-Bloch equa-

tions. We consider a two-level ensemble of atoms with ground state |g〉 and excited state |e〉. The

electric field is in general composed of a backward and forward traveling component

E(z, t) = E f (z, t)eikz +Eb(z, t)e−ikz (3.2)

Here for simplicity, we consider a one-dimensional propagation model. The pulse is detuned

with respect to the inhomogeneously broadened atoms. ∆ j = ω0−ω
j

eg is the detuning of the jth

atom with respect to the central frequency of the pulse ω0. Since we have a distribution of energy

levels due to inhomogeneous broadening, we introduce ρ(∆), which is the number of atoms with
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detuning ∆ compared to the central frequency of the pulse, such that
∫

d∆ρ(∆) = N. To describe

the quantum properties of the medium, we introduce the collective operator for atoms with the

same detuning with respect to the pulse

σi j(z, t;∆) =
1

N(∆,z)

N(∆,z)

∑
n=1
|i〉nn〈 j| (3.3)

Here, |i〉and | j〉 are either |g〉 or |e〉. N(∆,z) = ρ(∆)d∆ is the number of atoms with detuning

∆in the position of z.

The Hamiltonian which describes such a system in the rotating wave approximation and in the

rotating frame is given by

H =
∫ +∞

−∞

d∆
ρ(∆)

L

∫ L

0
dz[h̄∆σee(a, t;∆)− h̄gE(z, t)σeg(z, t;∆)+H.c.] (3.4)

where g = d·εk ε̂

h̄ is the coupling constant between atom and photon, d = dge = deg = e〈e|~r|g〉 is

the dipole moment of the transition e-g and ε =
√

h̄ω0
2ε0V is the electric field per volume.

Similar to the electric field, the atomic coherence is composed of a backward and forward

traveling components

σge(z, t;∆) = σ f (z, t;∆)eikz +σb(z, t;∆)b(z, t)e−ikz (3.5)

In the weak field approximation, where we can assume that most of the population is in the

ground state (σgg = 1), the equations of motion for both the forward and backward components of

atomic coherence is given by the Heisenberg-Langevin equations and in slowly-varying amplitude

approximation,

∂

∂ t
σ f (z, t;∆) =−i∆σ f (z, t;∆)+ igE f (z, t) (3.6)

∂

∂ t
σb(z, t;∆) =−i∆σb(z, t;∆)+ igEb(z, t) (3.7)
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Here, since we are interested in time scales smaller than the decay time, we neglect the decay.

The equation of motion for the forward and backward traveling components of the field in the

slowly-varying amplitude approximation is given by

(
∂

∂ t
+ c

∂

∂ z
)E f (z, t) = ig

∫ +∞

−∞

d∆ρ(∆)σ f (z, t;∆) (3.8)

(
∂

∂ t
− c

∂

∂ z
)Eb(z, t) = ig

∫ +∞

−∞

d∆ρ(∆)σb(z, t;∆) (3.9)

Due to linearity of the equations of motion, these equations can be used for the both classical

and single photon wavefunction. For classical light, E f and Eb are the classical fields and σ f and

σb are the atomic polarizations. Analogously, E f , Eb, σ f and σb can be interpreted as single photon

wavefunctions and single excitation wavefunctions respectively for the quantum case.

This memory protocol can be understood by time symmetry analysis of the equations of mo-

tion. Time reversal can be accomplished via transformation

t→−t (3.10)

∆→−∆ (3.11)

Eb→−Eb (3.12)

The last transformation is due to the fact that the signs of emitted and absorbed fields are oppo-

site. By performing this transformation, the equations of motion for the backward component are

converted to the equations of motion for the forward component of the atomic and photonic coher-

ences. To retrieve the field in the backward direction, in addition to reversing the inhomogeneous

broadening, the phase matching operation also needs to be performed on the atomic coherence,

which is equivalent to applying a phase shift e−2ikz j to all atoms.
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Time symmetry analysis shows that it is possible to store and retrieve the light with high effi-

ciency and fidelity. Since the equations of motion are linear, we can solve the equations analytically

and obtain the efficiency for this protocol. For the case of constant inhomogeneous broadening ab-

sorption line in the medium, in the regime where the frequency bandwidth of the pulse is smaller

than the inhomogeneous broadening, and applying the phase matching operation so that the output

pulse propagates in the backward direction, the output field reads as

Eout
b (0, t) =−(1− e−d)E in

f (0,−t) (3.13)

where d = αL = 2π
g2NL

γc is the effective optical depth and γ is the inhomogeneous broadening

bandwidth . Under the same condition; when the phase matching operation is not performed and

we read out the output from the forward direction, it can be shown that the output field is[14]

Ẽout
f (L,ω) =−de−

d
2 sinc(

ωL
c
)Ẽ in

f (0,−ω) (3.14)

where sinc(x) = sin(x)
x . In the regime where the spectral bandwidth of the input pulse is smaller

than c
L , which corresponds to pulses larger than the size of the medium, sinc(ωL

c ) can be treated as

the delta function δ (ωL
c ). With that, Eq.(3.14) in the time domain is reduced to

Eout
f (L, t) =−de−

d
2 E in

f (0,−t) (3.15)

The memory efficiency, which is the probability of retrieving the pulse for both backward and

forward read-out is shown in Figure3.2 in terms of the optical depth αL
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Figure 3.2: Efficiency in the CRIB protocol for forward (dashed red line) and backward readout

(solid blue line)

For small optical depth, the both forward and backward readout behave quadratically with

optical depth. However, in the forward readout due to the reabsorption of the pulse by the medium,

the efficiency drops with increased optical depth, which is not the case for backward readout. This

fact is due to the exponential dependence of the atomic coherence on the distance that the pulse

travels in the medium. As a result, most of the atomic coherence is formed at the beginning of the

medium. Therefore if we read out the light in the backward protocol we have less medium ahead

of the propagating light, which results in less reabsorption compared to the forward protocol. Due

to this fact the efficiency of forward readout is limited and the maximum efficiency is 54% at the

optical depth d = 2.

3.1.1 Realization

The method of implementation of reversible inhomogeneous broadening depends on the system

of interest. In atomic vapor with natural Doppler broadening CRIB can be achieved by using this

fact that Doppler broadening changes sign when direction of propagation of light is reversed[33].

By applying the phase matching operation to the atomic coherence, one can invert the propagation

of the light and consequently reverse the Doppler broadening. Complete reversal of the Doppler

broadening requires the atoms to have constant velocity during the storage procedure. Thus, stor-
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age time of this protocol is limited by the collision time of the atoms.

In solid state materials, there is natural inhomogeneous broadening due to the different position

of the atoms in the crystal. This broadening can be controlled by narrowing the naturally broadened

transition which can be achieved by optical pumping. Then, by applying an external field gradient,

we reach again the broadened absorption line, due to Stark or Zeeman shift. This time, however,

the broadening is reversible by reversing the external field.

Figure 3.3: CRIB realizations steps. In step 1, by optical pumping, a narrow absorption line is
created. In step 2, by using an external field, the isolated absorption line is broadened. In step
3, the incident photon is absorbed and undergoes a dephasing process. In step 4, by reversing
the polarity of the field, the atomic coherence is rephased and the photon is emitted emit. Image
courtesy of ref.[3]

The storage time is limited by the spectral width of the initial absorption line in the first prepara-
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tion step of CRIB (Figure.3.1.1 .step2). As a result, narrowing the initial line increases the storage

time. However it decreases the optical depth of the system due to optical pumping of more atoms,

and consequently decreases memory efficiency. This problem can be solved by transferring the

atomic population of the broadened excited state to another long-lived excited state, which allows

one to start with a wider initial absorption line. This transfer can be achieved by using a π-pulse

or using Raman transfer via an off-resonant control field that connects levels |a〉 and |b〉.

Figure 3.4: Off resonant transfer of the exited state to another metastable ground state

If the control field counterpropagates with respect to the signal field, it also applies the phase

matching operation which is necessary for the retrieving pulse in the backward direction. The

combination of Raman transfer and CRIB is often called Raman echo quantum memory.

3.1.2 Gradient echo memory(GEM)

As mentioned earlier, The efficiency of reading out the pulse in the forward direction, due to

reabsorption of the echo pulses by the medium is limited to 54%. We can get around this problem

by sorting the absorption frequencies through the optical path of the light which can be achieved

by applying an external field gradient longitudinally rather than transversally. If the energy level of

the atoms changes monotonically through the medium in the retrieval process (Figure.3.5.b) when

we flip the polarity of external field, the echo from each part of the medium is not on resonance
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with the rest of the medium. Thus it doesn’t get reabsorbed by the medium. Therefore we don’t

have the problem of limited efficiency in the forward protocol in the GEM memory, in contrast

with transverse CRIB. This variation of CRIB is often called gradient echo memory (GEM)

Figure 3.5: Schematic illustration of longitudinal CRIB also known as GEM. In contrast with

transverse CRIB, atomic frequencies are ordered in space by applying a spatial linear gradient

of an external field. (b) After time τs, by flipping the polarity of the field, the atomic coherence

rephases and the input signal retrieved. Image courtesy of ref.[4]

In the GEM protocol, we assume a linear external electric field gradient through the propa-

gation of light. This external field causes the detuning of the atoms and the light to depend on

the longitudinal position of atoms in the medium. For analyzing such a system, we can use the

Maxwell-Bloch equations Eqs.3.6 and 3.8 which we obtained for the forward component of the

atomic coherence and field in CRIB. In the case of GEM the detuning of atoms depends linearly on

their position, so we denote detuning as ∆(z) =−χz, where χ is the slope of the change of detun-

ing in the longitudinal coordinate (z). In addition, the density ρ(∆) can be reduced to Nδ (∆−χz).

With these changes, Eqs.3.6 and 3.8 reduce to

∂

∂ t
σ(z, t) =−iχzσ(z, t)+ igE(z, t) (3.16)

(
∂

∂ t
+ c

∂

∂ z
)E(z, t) = igNσ(z, t) (3.17)

21



By solving these equations, it can be shown that the efficiency of such a memory protocol

in the regime where spectral bandwidth of the input pulse is smaller than the inhomogeneous

broadening, is given by η = (1− e−d′)2 where d′ = 2π
g2N
cχ

is the effective optical depth [15]. It

is worth mentioning that this expression for efficiency can also be obtained by substituting χL for

the inhomogeneous broadening bandwidth (γ) in equation 4.22, which is the solution of CRIB for

the backward readout.

The first proof-of-principle realization of CRIB was performed in a 4mm-long europium-doped

Y2SiO5 crystal cooled to 4K [34]. The gradient of the electric field in this experiment was transverse

to the propagation direction of the pulse and was implemented with four electrodes in a quadrapole

configuration. Storage of a 3µs pulse with a decay time of 20µs was observed. Due to the low

absorption of the medium (40% for the narrowed linewidth and 1% for the broadened linewidth)

only between a 10−5 and 10−6 portion of the input pulse was retrieved. Most CRIB experiments

have been performed in the version of GEM when the gradient of field is longitudinal, so the

efficiency in the forward direction has no fundamental limit. The record to date for the GEM

protocol at the single photon level is storing 2µs pulses for 3µs with efficiency 78% and fidelity as

high as 99% in a Rubidium vapor cell with temperature higher than room temperature [35]. The

GEM memory has also been implemented in a solid state medium. M.Hedges et al. [36] stored

pulses with 0.6µs FWHM with a decay time of 3µs in a praseodymium-doped Y2SiO5 single

crystal with an efficiency of up to 69% . In this experiment, the atoms are not transfered to another

long-lived state for the reason that the atomic structure levels of this crystal do not allow isolated

ground states to be exist.

3.2 Atomic Frequency Comb (AFC)

Another way of implementing a photon echo quantum memory is by creating a periodic structure

absorption profile, which looks like a comb. This can be done by frequency-selectively transferring

atomic population from |g〉 to an auxiliary metastable state |aux〉.
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Figure 3.6: Illustration of AFC protocol. (a) AFC structure is tailored for the transition g-e by

frequency-selective optical pumping of atoms to the auxiliary state |aux〉. The AfC teeth have a

width of γ and are separated by ∆. A photon is absorbed by the g-e transition and dephases and then

rephases after time 2π/∆. Rephasing can be delayed by transferring the excited state to another

ground state |s〉 which determines the storage time Ts (b). Image courtesy of ref.[5]

For storing the input field, which is in resonance with atomic transition, the spectral bandwidth

of the input field γp has to be larger than the peak separation ∆. On the other hand it has to

be smaller than the total width of AFC Γ(∆ � γp � Γ). Although the field is subjected to a

narrow-peak absorption line, if the optical depth is large enough, the field can be absorbed by the

medium. This fact can be explained by the Heisenberg energy-time uncertainty relation. During

the absorption time, which is of the order of the time duration of the pulse( 1
γp

), the transition has

an uncertainty greater than γp. Therefore, if the spectral bandwidth of the pulse (γp) is larger than

the peak separation (∆), the input pulse will see a smooth spectral absorption linewidth which is an

averaged version of the sharp AFC structure.
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Here we consider storage of a single photon inside the medium. After absorption of a photon,

since we don’t know which atom absorbed the photon, the atomic state becomes a collective state

|ψ〉=
N

∑
j=1

c jeiδ jte−ikz j |g1...e j...gN〉 (3.18)

where |g1...e j...gN〉 corresponds to all atoms being in the ground state except the jth atom,

which absorbed the photon. k is the wave vector of the field and z j is the position of the absorber

atom. c j is a probability amplitude that depends on the frequency and position of the jth atom. δ j

is the detuning of the jth atom with respect to the central frequency of the field. If we consider

sharp distinct peaks with a peak separation of ∆, δ j can be approximated by δ j = m j∆, where m j

is an integer. At first, all components of the collective atomic coherence are in phase with the

spatial mode k. However due to inhomogeneous broadening, each atomic component dephases

with a different frequency in time. Owing to the periodic structure of the atomic frequencies with

a periodicity of ∆, all components become in phase after a time 2π

∆
, which leads to the first echo

in the direction of the wave vector. For on-demand readout and long storage time, we can transfer

atomic population by applying a π-pulse from the excited state to the other spin ground state |s〉.

As a result, the rephasing process will stop and there will be no echo. For the read-out process,

we can transfer the atoms back to the excited state and let them rephase and produce an echo.

The control field also can be used as a tool for determining the direction of readout. If we apply

a counterpropagating control field with respect to the signal field, the output field is retrieved in

the backward direction. If the control field copropagates with the signal, the output will be in the

forward direction.

The Maxwell-Bloch equations for the AFC are similar to the equations of motion for CRIB

Eqs.3.6-3.9, with the difference that in the AFC case, the atomic spectral distribution ρ(∆) is

described by a series of Gaussian functions with width γ̃ and peak separation ∆, and total width Γ

ρ(δ ) = e−
δ2

2Γ2
∞

∑
j=−∞

e−
(δ− j∆)2

2γ̃ (3.19)
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For characterizing the comb structure, we introduce the AFC finesse F as F = ∆

γ
, where γ =

√
8ln2γ̃ is the full width at half-maximum (FWHM). This quantity quantifies how well the peaks

are separated.

Considering the AFC condition for the spectral bandwidth of the input pulse (∆� γp � Γ),

and assuming that population transfer is performed perfectly and neglecting decoherence, it can be

shown that the relationship between the output and input fields in the backward direction is given

by [5]

Eb(z = 0, t =
2π

∆
) =−E f (z = 0, t = 0)e−i2π

∆0
∆ (1− e−d̃)e−(

1
F2 )(

π2
4ln2 ) (3.20)

The first factor is a global phase due to the offset between the central frequency of the AFC

and the input pulse (∆0). The second factor represents the atom-photon interaction, where d̃ = d
F is

the effective optical depth of the AFC. Effective optical depth is inversely proportional to finesse

as expected, since for higher finesses (which corresponds to making the peaks sharper) we need to

remove more atoms by means of optical pumping, which reduces optical depth. The third factor

is due to dephasing owing to the finite width of the teeth. There are two competing factors in

determining AFC efficiency in terms of finesse. By increasing finesse, on the one hand effective

optical depth decreases, but on the other hand the efficiency increases due to having more distinct

teeth. These facts determine to the optimum value for finesse. Fig.3.7 shows how efficiency varies

as we change the finesse.
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Figure 3.7: Efficency versus AFC finesse F for optical depth d = 5 (black solid line), d = 10 (red

dashed line), d = 20 (green dotted line) and d = 40 (blue dashed-dotted line). This graph is plotted

based on Eq.3.20. Image courtesy of ref.[5]

Figure.3.8 shows the efficiency in terms of optical depth.

Figure 3.8: Memory efficency as a function of optical depth d for different AFC finesse values F.

Solid lines are the result of analytical calculation Eq.3.20 and symbols are the result of numerical

calculations. Image courtesy of ref.[5]

For each graph, the efficiency saturates with increasing optical depth, because of the dephasing

due to the finite width of the peaks. The maximum achievable efficiency can be increased by using

an AFC with a higher finesse, which has the cost of requiring more optical depth. One advantage of

AFC compared to CRIB is that we remove fewer atoms through optical pumping, which increases

the optical depth of system. Therefore we can achieve higher memory efficiency in the AFC. The
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other advantage of AFC is its large mode capacity of storage due to the wide range of spectral

coverage in this protocol.

AFC shares some features with photon echo with an accumulated grating in the absorption line,

discovered in late 1970s [37]. Storage at the single-photon level with AFC was first demonstrated

in 2008 [38]. In this work, light is stored light in Nd+3 ions doped into a YVO4 crystal with

a storage time of 250ns, which is predetermined by the spacing in the comb structure and an

efficiency of 0.5% in the forward direction. The same group performed on-demand storage by

transferring atomic population to the auxiliary ground state using π-pulses [39]. Storage times of

up to 20µs were achieved in praseodymium doped Y2SiO5 crystals with this method.
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Chapter 4

Quantum Storage and Retrieval by Sweeping the Atomic

Frequency

4.1 Scheme

Atom-photon interaction can be manipulated by several methods including using a control field

in three-level atoms [8][9][10][11], photon echo technique [5] [14] [15], controlling the transition

dipole moment of atoms [16], modulating the refractive index of the host medium of atoms [17].

Here we introduce manipulation of atom-photon interaction by means of changing the detuning

between the atoms and the photons. By changing the energy level of the atoms we can sweep the

bandwidth of the pulse and eventually absorb it into the atomic coherence. Thus the pulse must fit

inside the medium in order for it to see all the swept frequencies.

Figure 4.1: Scheme of atomic frequency change protocol. a) We start by changing the energy level
of the atoms from lower than the energy of a photon (h̄Ωi) and eventually, by changing the detuning
to an energy level higher than the energy of a photon (h̄Ω f ) we can absorb the photon (b). We can
have a photon stored in the atomic coherence for a storage time of Ts and then, by sweeping back
the frequency of the atoms we can retrieve the photon(d)
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4.2 Maxwell-Bloch Equations

We consider an ensemble of two level atoms interacting with a quantum field, which can be de-

scribed with the dimensionless operator

Ê(z, t) =
∫

dω âω(t)eikz + c.c. (4.1)

To describe the quantum properties of the medium, we introduce the collective polarization

operator i.e. average of polarization of atoms in the small but macroscopic volume containing

Nz� 1 particles at position z [2]

P̂(z, t) =
d
Nz

Nz

∑
j=1

σ̂
j

gen(z) (4.2)

where σ̂
j

αβ
= |α j〉〈β j| is the matrix element of the polarization of the jth atom, d = dab = dba =

e〈a|~r|a〉 is the dipole moment of the atom, and n(z) = N
V is the atomic density.

The Hamiltonian of such a system in the rotating wave approximation and dipole approxima-

tion is written as

H =
∫

h̄ω âω â†
ωdω +

N

∑
j=1

h̄Ω(t)σ̂ j
ee− h̄g

N

∑
j=1

∫
(âωeikz j σ̂

j
eg +H.C.)dω (4.3)

where Ω(t) is the time dependent energy level of atoms, g = d·εk ε̂

h̄ is the coupling constant

between atoms and photons and εk =
√

h̄ω0
2ε0V is the electrical field per volume

4.2.1 Field Equation

We use slowly varying approximation by introducing slowly varying operators Ê (z, t) and P̂(z, t)

Ê(z, t) = Ê (z, t)ei(k0z−ω0t)+ c.c. (4.4)

P̂(z, t) = P̂(z, t)ei(k0z−ω0t)+ c.c. (4.5)
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where ω0 and k0 are the central frequency and wave vector of the input pulse respectively.

Considering the slowly varying conditions

∂z

∂t

(E ,P)�

k0

ω0

(E ,P) (4.6)

we obtain the wave equation

(
∂

∂ z
+

k0

ω0

∂

∂ t
)Ê =

iω2
0

2εkε0k0c2 P̂ (4.7)

We can substitute for P̂ from Eq.4.2 and Eq.4.5:

(c
∂

∂z
+

∂

∂t
)Ê = igN

1
Nz

ˆ
∑

Nz

j=1σ
j

geei(ω0t−k0z) (4.8)

Now we define the collective operators:

σ̂ee =
1
Nz

Nz

∑
j=1

σ̂
j

ee (4.9)

σ̂gg =
1
Nz

Nz

∑
j=1

σ̂
j

gg (4.10)

σ̂ge =
1
Nz

Nz

∑
j=1

σ̂
j

geei(ω0t−k0z) (4.11)

Introducing these collective operators leads to a simple equation of motion for the field

(c
∂

∂z
+

∂

∂t
)Ê = igNσ̂ge (4.12)

4.2.2 Bloch Equation

The atomic evolution is governed by the Heisenberg equation
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d
dt

σ̂ge =
i
h̄
[H, σ̂ge]+

∂

∂ t
σ̂ge + F̂ge

=
iΩ(t)

Nz

Nz

∑
j=1

[σ̂ j
ee, σ̂

j
ge]e

i(ω0t−k0z)− ig
Nz

Nz

∑
j=1

ei(ω0t−k0z)[σ̂ j
eg, σ̂

j
ge]

∫
aωeikz jdω + iω0σ̂ge + F̂ge

=−i(Ω(t)−ω0)σ̂ge− igei(ω0t−k0z) 1
Nz

Nz

∑
j=1

(σ̂ j
ee− σ̂

j
gg)

∫
aωeikz jdω + F̂ge (4.13)

where F̂ge is Langevin noise. Since our time scale is far less than the decay time, we need

not take decay into account. Considering Eq.4.1 and Eq.4.4 for electric field and the definition of

collective operators in Eqs.4.9-4.11, we can rewrite Eq.4.13 as

∂

∂t
σ̂ge =−i∆(t)σ̂ge− ig(σ̂ee− σ̂gg)Ê + F̂ge (4.14)

where ∆(t) = Ω(t)−ω0. In the weak field regime, we are far from saturation, so we can

assume that most of the population still remains in the ground state. In other words, 〈σee〉 =

0, 〈σgg〉 = 1. Hereafter, we write the equations in terms of the single photon wavefunction of

the electric field (E = 〈0|Ê |ψi〉) and the single excitation wavefunction of the atomic coherence

(σge = 〈0|σ̂ge|ψi〉) instead of field and atomic coherence operators. With these considerations we

will have the following Maxwell-Bloch equations for our scheme

(c
∂

∂z
+

∂

∂t
)E = igNσge (4.15)

∂

∂t
σge =−i∆(t)σge + igE (4.16)

Note that 〈0|F̂ge|ψi〉= 0.

Thus far we have obtained the Maxwell-Bloch equations for our proposed scheme. In the next

section we solve our obtained Maxwell-Bloch equations by paying attention to the eigen modes of

the system, which is similar to the method called the polaritonic picture in EIT.
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4.3 Polaritonic Description

This scheme also can be described by the so called polaritonic picture. We can write Eq.4.15 and

Eq.4.16 in k-space as

∂

∂ t

 ε(k, t)

σge(k, t)

= i

−kc β

β −∆(t)


 ε(k, t)

σge(k, t)

 (4.17)

One can solve this equation by looking at the eigen modes of the above set of equations i.e.

mixtures of field and atomic coherences:

Ψ(k, t) = cosθε(k, t)+ sinθσge(k, t) (4.18)

Φ(k, t) =−sinθε(k, t)+ cosθσge(k, t) (4.19)

where the mixing angle θ is given by

sin2θ =
2β 2√

4β 2 +(ck+∆)2
(4.20)

cos2θ =
−(ck+∆)√

4β 2 +(ck+∆)2
(4.21)

Considering the eigen modes of the system, the equations of motion become

∂Ψ(k, t)
∂ t

− iλ1Ψ(k, t) = θ̇Φ(k, t) (4.22)

∂Φ(k, t)
∂ t

− iλ2Φ(k, t) = θ̇Ψ(k, t) (4.23)

where λ1 and λ2 are the eigen values of the system and θ̇ is the time derivative of the mixing

angle:
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λ1 = β cotθ (4.24)

λ2 =−β tanθ (4.25)

θ̇ =− ∆̇

4β 2 sin2 2θ (4.26)

Assuming ∆̇� β 2 we can neglect θ̇ compared to λ1 in Eq.4.22 so that the eigen modes become

decoupled. Now we Taylor expand the eigen values in terms of k, obtaining

λ1(k) = λ1(k = 0)+
∂λ1

∂k
|k=0 k+

∂ 2λ1

∂k2 |k=0 k2 + ... (4.27)

= λ1(0)− ccos2
θ k+

c2

4β
sin3 2θ k2 + ... (4.28)

λ2(k) = λ2(k = 0)+
∂λ2

∂k
|k=0 k+

∂ 2λ2

∂k2 |k=0 k2 + ... (4.29)

= λ2(0)− csin2
θ k− c2

4β
sin3 2θ k2 + ... (4.30)

In the regime where β � ∆ω , we can keep terms up to first order in k and neglect higher orders

of k. With that, by transforming the equations back to z space we find the equations of motion for

the eigen modes in real space:

∂Ψ(z, t)
∂ t

+ ccos2
θ

∂Ψ(z, t)
∂ z

= iλ1(0)Ψ(z, t) (4.31)

∂Φ(z, t)
∂ t

+ csin2
θ

∂Φ(z, t)
∂ z

= iλ2(0)Φ(z, t) (4.32)

Eq.4.31 and Eq.4.32 indicate that polaritons Ψ and Φ travel with group velocity vg = ccos2 θ

and vg = csin2
θ respectively. Figure.4.2 shows how the mixing angle θ varies with the detuning

∆.
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Figure 4.2: Mixed angle of θ as a function of detuning

Therefore if we start from a large negative (positive) detuning −∆0 (+∆0) compared to the

coupling, we can couple the input pulse to the polariton Ψ (Φ) and by sweeping the detuning

adiabatically to a large positive (negative) +∆0 (−∆0), we can slow the light and convert it to the

atomic coherence reversibly.

4.4 Numerical Calculation

We have performed numerical simulations using 4-order Runge-Kutta method that is in agreement

with the polaritonic picture described in the previous section. Figures.4.3(a),4.3(b) are simulation

of the original Maxwell-Bloch equations Eq.4.15, Eq.4.16
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Figure 4.3: Propagation of field (a) and polarization (b) in the medium in time and space. (c)
Detuning as a function of time, We start from ∆0 =−50β and end to +∆0 = 50β with the rate of
∆̇ = 0.4β 2. Coupling constant is set to β = 30∆ω . The initial envelope is exp−(z/z0)
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0.045L/c
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In addition we have compared the group velocity obtained from numerical calculations with

the group velocity found in the polaritonic picture. Figure.4.4 shows the agreement between the

numerical and analytical group velocities.
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Figure 4.4: Comparison between group velocities resulting from analytical (red) and numerical

(blue) calculations

Thus far we have assumed three conditions for storing light in one of the polaritons, which we

restate together here:

β � ∆0 (4.33)

∆̇� β
2 (4.34)

∆ω � β (4.35)

Now we study the importance of each of these conditions. First we examine condition 4.33.

Figures.4.5(a)-4.5(g) show what happens when the condition 4.33 is violated.
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Figure 4.5: Effect of initial detuning on the output of the memory. The bandwidth of the input
field is set to ∆ω = 0.1β . (a) shows the temporal shape of the input pulse. Note that the input
pulse is initially in the medium . We sketch the output field for different values of initial detuning
b)∆0 = −10β , d)∆0 = −β , f)∆0 = −0.1β . (c), (e), (g) show how detuning changes in each case.
(i) is transmitted and (ii) is retrieved pulse. 37



It can be seen that by decreasing the initial detuning (while the other conditions are fulfilled ),

we excite polariton Φ (i) more and polariton Ψ (ii) become less excited. According to Eq.4.31 and

Eq.4.32, as we change the detuning, polariton Ψ slows down and converts to polarization while

polariton Φ accelerates from zero group velocity to speed of light and leaves the medium. There-

fore excitement of polariton Φ is considered to be loss in this protocol. When the starting detuning

is much less than the coupling rate (Figure.4.5(f)), θ is almost π/4 so according to Eq.4.31 and

Eq.4.32 both polaritons travel with speed c/2 and, since they have opposite phase (λ1 = β and

λ2 =−β ), they undergo a series of reemission and absorption processes with rate β (Figure.4.5(d)

and Figure.4.5(f))

Secondly we examine the adiabaticity condition 4.34. Figures.4.6(a)-4.6(g) show that how the

output field changes when we violate adiabaticity condition.
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Figure 4.6: Effect of the rate of changing the detuning on the output of the memory. The bandwidth
of the input field is set to ∆ω = 0.1β . (a) shows the temporal shape of the input pulse. Note that
the input pulse is initially in the medium. The initial detuning for all of the cases is ∆0 = −10β .
We sketch the output field for different values of ∆̇, b)∆̇ = 0.3β 2, d)∆̇ = 3β 2, f)∆̇ = 30β 2. (c), (e),
g are detuning as a function of time. (i) is transmitted and (ii) is retrieved pulse.
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As we increase ∆̇ (while the other two conditions hold), the process becomes less adiabatic,

resulting in leakage of polariton Ψ (ii) into the polariton Φ (i) which accelerates to the speed of

light and leaves the medium. Therefore this condition is necessary for efficient absorption of the

light.
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Figure 4.7: Effect of the value of β (compared to the bandwidth of the input pulse) on output of
the memory. (a) shows the temporal shape of the input pulse. Note that the input pulse is initially
in the medium. Initial detuning for all of the cases is ∆0 = −10β . We sketch the output field for
two different values of β b) β = 16∆ω , d)β = 4∆ω . (c), (e) are the detuning as a function of time.
(i) is transmitted and (ii) is retrieved pulse.
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Finally we study the effect of violating condition 4.35. Figures.4.7(a)-4.7(e) show how the

output changes when the coupling rate approaches the bandwidth of the pulse.

It can be seen that when β approaches the bandwidth, the output pulse becomes broader, which

reduces the fidelity of the memory protocol. This can be explained by considering the expansion of

the eigen values in terms of k in Eq.4.28. When β is comparable to the bandwidth of the pulse, we

no longer can neglect second and higher orders of k in Eqs.4.28 and 4.30, resulting in dispersion

of the pulse.

4.5 Experimental Requirements

As we mentioned earlier in order to store the pulse efficiently, the pulse has to be fit inside the

medium, otherwise frequency components of the pulse that were not in the medium at the time

that atoms had the corresponding frequency, don’t become absorbed in the medium. This imposes

a condition on the frequency bandwidth of the input pulses (∆ω � c
L ). This condition along with

the requirement for avoiding dispersion of the pulse in the medium Eq.4.35 (β � ∆ω) requires

demanding optical depth for the medium

d =
β 2L
cγ
� β

γ
(4.36)

where γ is the decay rate. For having high efficiency, decay rate should be smaller than the

bandwidth of the pulse (γ � ∆ω) and as we mentioned earlier for having high fidelity, coupling

constant should be larger than the bandwidth of the pulse (β � ∆ω). Therefore coupling constant

should be at least two order of magnitude larger than decay rate. This condition implies that optical

depth (Eq.4.36) requires to be of the order of thousand to store the photon with high efficiency and

fidelity. It is worth mentioning that the same condition on the optical depth can be obtained by

using adiabaticity condition Eq.4.34 and initial detuning requirement Eq.4.33.

The other challenge for implementation of atomic frequency change memory is the range that

atomic frequency has to be swept. As we discussed earlier (Eq.4.33) to avoid mixing eigen modes
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of the system, the range of swept atomic frequency should be larger than coupling constant (∆0�

β ) which demands a two level system with isolation of more than three orders of magnitude larger

than linewidth.
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Chapter 5

Connection to Gradient Echo Memory (GEM)

Intuitively atomic frequency change protocol is similar to the Gradient Echo Memory (GEM) pro-

tocol for the regime in which pulses are short compared to the length of the medium. While we

change the detuning in time during the propagation of the pulse through the medium, the pulse ef-

fectively sees a spatial gradient in the energy level of the atoms and the atomic coherence becomes

dephased.

Figure 5.1: Pulse experiences effective spatial gradient while atomic frequency changes in time

This fact can be captured rigorously by transforming the equations of motions 4.15, 4.16 to the

retarded frame (τ → t− z/c, z′ = z):

∂

∂τ
σge(τ,z) =−i∆(τ +

z
c
)σge(τ,z)+ iβE (τ,z) (5.1)

∂

∂ z
E (τ,z) =

iβ
c

σge(τ,z) (5.2)

Note that this set of equations is nonlocal, However with the approximation that we make in

the following, they become local equations. For pulses smaller than the medium, since the range
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of τ most of the time is of the same order of magnitude as the time duration of the pulse and z
c is

of the same order of magnitude as L
c , term τ can be neglected compared to z

c . As a result we end

up with GEM equations

∂

∂τ
σge(τ,z) =−i∆̇

z
c

σge(τ,z)+ iβE (τ,z) (5.3)

∂

∂ z
E (τ,z) =

iβ
c

σge(τ,z) (5.4)

Here, ∆̇

c is the term corresponding to the spatial gradient term (χ) in GEM ([15]) . Note that

this set of equations is no longer non-local and has been solved for the case of the GEM memory

[15]. By following a similar analysis the effective optical depth is found to:

de =
β 2

∆̇
(5.5)

For high efficiency, the effective optical depth must be larger than one (de > 1), which leads to

an upper bound for the rate of change of the detuning,

∆̇ < β
2 (5.6)

It is remarkable that the optical depth requirement exactly matches the adiabaticity condition

that we obtained for the the atomic frequency change memory. It suggests that the optical depth

requirement can be interpreted as leakage of the pulse into a mode which travels at the speed of

light. We have also performed the numerical comparisons between the GEM and atomic frequency

change memory whose effective spatial gradient ( ∆̇

c ) is equal to the spatial gradient in GEM (χ)
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Figure 5.2: (a) Comparison of the atomic frequency change memory output (green) with GEM
output (red) when we send the same input pulse (blue). (b) illustrates the detuning as a function of
time. The detuning as a function of time during the (c) storage and (d) retrieval. In the simulation
of the GEM, at time t=1.6L/c energy level of atoms are flipped. Spatial gradient ( ∆̇

c ) in atomic
frequency change memory in both storage and retrieval is set to the spatial gradient in GEM (χ).
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Figure.5.2 shows the agreement between outputs of the two protocols. It is important to note

that Eqs.(5.3) and (5.4) were derived with the assumption that retarded time is much smaller than

the temporal extension of medium (L/c) which is true for the short pulses traveling with almost

the speed of light. However based on polaritonic description (Chapter 4) we know that the pulse

slows down in the medium, and as a result the retarded time increases more than the time duration

of the pulse and our assumption is no longer valid. What justifies our approximation is that, when

the retarded time exceeds L/c, the pulse is almost absorbed. Thus this factor doesn’t play an

important role. The small discrepancy of the two protocols in the Figure.5 can be explained by this

imperfection of approximation.
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Chapter 6

Conclusion

We have presented a new protocol for quantum storage of light based on sweeping the atomic

frequency. We have described this protocol by deriving a polaritonic picture and found the require-

ments for efficient storage of light with high fidelity. First of all the pulse should fit inside the

medium in order to experience all of the swept frequency. For efficient storage we have to start

with a detuning much larger than coupling constant (∆0 � β ) and sweep the atomic frequency

while obeying the adiabatic condition ∆̇� β 2, otherwise our polaritonic mode of interest leaks to

the other polaritonic mode that travels with the speed of light and escapes the medium. Also in

order to avoid the dispersion of the pulse in the medium, the coupling constant should be larger

than the spectral bandwidth of the pulse, β � ∆ω . We have verified the necessity of all of these

conditions by numerical analysis. These conditions imply requirements of large optical depth re-

quirement (of the order of a thousand) and large level separation (three orders of magnitude more

than the linewidth).

In addition, we have shown the connection between atomic frequency change memory and

GEM memory for short pulses by going to the co-moving frame, supported by both analytical and

numerical calculations.

In conclusion we have proposed a quantum memory protocol which, on the one hand, shares

lots of similarities with slow light quantum memories, and on the other hand, is similar to the GEM

memory. It thus forms a bridge between two well known quantum memory protocols.

For the future, we are planning to study the experimental requirements in more detail. We will

also further pursue the idea of a unification of quantum memory protocols.
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