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Abstract

Quantum information processing promises to have transformative impacts on information and

communication science and technology. Photonic implementation of quantum information pro-

cessing is among successful candidates for implementation of quantum computation and is an

essential part of quantum communication. Linear optical quantum computation, specifically the

KLM scheme [1], and quantum repeaters [2, 3] are prominent candidates for practical photonic

quantum computation and long-distance quantum communication. Quantum memories for photons

are key elements for any practical implementation of these schemes. Practical quantum memories

require theoretical and experimental investigations into quantum memory protocols and physical

systems for implementations.

The present thesis is focused on studying new approaches toward practical solid-state based

quantum memories. First, I present a proposal for a new quantum memory protocol called the

controllable-dipole quantum memory [4]. It represents a protocol, in a two-level system, without

any optical control that is shown to be equivalent to the Raman type-quantum memory. Then I

include our studies on the quantum memory based on the refractive index modulation of the host

medium [5]. It is shown that it can resemble the gradient echo quantum memory without a spatial

gradient in the external field. These two protocols can be implemented in rare-earth doped crystals.

With regards to using new physical systems, I present a proposal based on nitrogen vacancy centers

[6]. This may pave the way toward micron-scale on-chip quantum memories that may contribute to

the implementation of integrated quantum photonics. Finally, I studied the precision requirements

for the spin echo technique [7]. This technique is necessary to extend the storage time in solid-state

quantum memories, in which the coherence times are limited by spin inhomogeneous broadening.
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Chapter 1

Introduction

1.1 Overview

Quantum mechanics introduced a fundamental evolution to information science through quantum

information processing. Quantum computation was introduced by David Deutsch in 1985 [8], in

which its potential in performing certain probabilistic tasks based on the ”quantum parallelism”

has been discussed. The concept that has led to the invention of a quantum algorithm, by Peter

Shor in 1994 [9], for factoring integer numbers on a quantum computer that takes a number of

steps which is polynomial in the input size (length of the integer number). This algorithm provides

an exponential speedup compared to the best classical algorithms for factoring. Earlier in 1984

[10], Bennett and Brassard introduced a protocol for secure private key distribution based on the

quantum state of the photons as transmitters. In their scheme, the fundamental quantum proper-

ties of the information carriers avoid eavesdropping without inducing detectable disturbance to the

quantum state of the transmitter, which is a prominent advantage compared to its classical coun-

terpart. These steps have led to more explorations that promise striking impacts on the classical

information science and established the quantum computation and communication sciences.

Demonstration of quantum computation and communication schemes yielded several imple-

mentation systems. Among these, photons have been one of the promising candidates for imple-

mentation of quantum computation and are the most natural choice for quantum communication

tasks. Photons can carry information using their different degrees of freedom, such as polarization,

path, frequency mode, transverse mode and temporal mode. The coherence times are long, due to

the weak coupling of the photons to the environment.

Implementation of deterministic quantum computation schemes requires two-qubit gates, which

they necessitate non-linear interaction between weak optical pulses in the photonic implementa-

1



tions. This has been a long lasting challenge in experimental quantum optics. However, in 2001,

Knill, Laflamme and Milburn (KLM) introduced a scheme for quantum computation with lin-

ear optics [1]. Their scheme only requires linear optical elements, such as beam splitters and

phase shifters, in addition to single-photon sources, photo-detectors for single-photons and feed-

back from the photo-detectors. The required non-linearity is hidden in the photo-detectors, and

their techniques effectively transfer this non-linearity back to the gates. The implementation of

this scheme needs reliable single-photon sources. Realizing deterministic single-photon sources

is challenging. However, quantum memories for light have been proposed to realize deterministic

single-photon sources, see Sec. (1.2.5).

This is not the only application of quantum memories for photons as they can be used to syn-

chronize events in photonic quantum architectures that can result in significant improvements in

performance, see [11]. In this regard, quantum memories are the key element in long-distance

quantum communication based on quantum repeaters. Quantum repeaters are invented to amplify

quantum communication distances as they overcome the exponential photon loss with respect to

the distance [2, 3, 12]. This is achieved by generating entangled pairs between the internal links

of the quantum repeater. Then one can distribute the entanglement over longer distances by apply-

ing the entanglement swapping operation between neighboring links. This cannot be implemented

efficiently without quantum memories for photons to synchronize entanglement generation and

distribution across different links, see Sec. (1.2.5).

Both linear optical quantum computation and long-distance quantum communication rely on

the implementation of efficient quantum memories for photons. These motivated my studies that

have been presented in this thesis. In the following, I introduce the quantum memory in detail and

explain its applications in single-photon sources and quantum repeaters.
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1.2 Quantum memories for light

A quantum memory for light is a device that can faithfully store and re-emit photons. Quan-

tum memories are physical systems that are operating based on quantum memory protocols. The

physical system can be comprised of atoms, ions or defects in solids that are able to interact with

photons. Some of the properties of a quantum memory, such as storage time, are mainly deter-

mined by the coherence properties of the physical system. Other specifications, such as efficiency

or multimode capacity of memory as a function of optical depth, are determined by the protocol.

The thesis contributes to the development of memory protocols and physical systems for im-

plementations of quantum memories. To explore this in more detail I must first introduce tools to

assess the performance of a quantum memory. Below, I introduce the figures of merit for quan-

tum memories. Followed by the discussion of the quantum memory protocols, physical systems,

state-of-the-art and applications for quantum memories are discussed.

1.2.1 Figures of merit

Fidelity is a commonly used criterion for assessing the performance of a quantum memory. In

order to be able to define a proper measure for fidelity, one needs to understand the application of

the quantum memory. Here, I focus on quantum memories for single-photons. For this purpose,

conditional fidelity is a proper measure for faithfulness of the quantum memory. The conditional

fidelity is the overlap of the state of the re-emitted photon with the state of the input photon that is

conditioned on the successful retrieval of the single-photon. Assuming that the quantum state of the

single-photon is pure, the overlap of the single-photon wave functions is equivalent to the general

definition of the quantum fidelity. It has to be noted that poor fidelity due to a unitary evolution

applied by quantum memories may arise in some cases. This does not rule out practicality of the

quantum memory in some of applications ( e.g. quantum repeaters).

The fidelity is mainly determined by the quantum memory protocol, and limitations that come

from the physical system and implementation. I will describe these limitations when the physical
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systems are discussed.

Efficiency is a key feature for quantum memories as it can affect performance of possible ap-

plications, such as single photon sources that are based on quantum memories. For single photon

storage and retrieval, the efficiency can be described based on the single photon probabilities. The

storage efficiency could be defined as one minus the probability of having a photon at the output

during the storage, if transmission is the only loss channel. Similarly, the retrieval efficiency is the

probability of retrieving a photon given that one photon is successfully stored, see chapters (2,4).

High efficiency is an essential feature for quantum memories to be used as single photon sources

and elements of a long-distance quantum communication.

The efficiency depends on specifications of the physical systems that are to be used for im-

plementation of the quantum memory. For quantum memories that are based on an ensemble of

atoms, increasing the optical depth enhances the coupling between the photon and the memory.

Cavities also can enhance the efficiency. The efficiency with respect to optical depth scales dif-

ferently in different protocols. This is further discussed with some of the examples, later in the

thesis.

Storage time is one of the crucial aspects of quantum memories. Quantum memories are devel-

oped for synchronization of different events in implementations of quantum information process-

ing. Performance of some of the applications such as quantum repeaters rely on the storage time

of quantum memories. In quantum repeaters, quantum memories are crucial to store the entangle-

ment at different links. The minimum storage time is proportional to L0/c, where L0 is the length

of one link. It has been shown that for storage times of Ts� L/c, where L is the total communi-

cation distance, the rate of entanglement distribution degrades exponentially in
√

L as opposed to

the polynomial scaling with L for quantum memories with infinitely long storage time, see [13].

In general, the storage time is limited by relevant coherence times of the atomic level config-

uration that are used for the storage. In solid-state systems, where the optical coherence is stored

in spin states, the spin inhomogeneous broadening limits the storage time [14]. In some of the
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memory schemes, dynamical decoupling approaches have been used to extend the storage time.

The precision requirements for one of these schemes were studied in this thesis and are presented

in Chapter (5).

Multimode storage capacity can be defined as the maximum number of modes that can be

stored simultaneously in a memory with a certain efficiency. Here, the focus is on quantum mem-

ories that are based on ensembles of atoms. In addition to the advantage of atomic ensembles in

enhancing the photon-memory coupling, ensembles allow one to implement quantum memory pro-

tocols with large multimode storage capacity. One way of multimode storage is based on storing

photons at different frequencies. This requires large memory bandwidth.

Memory bandwidth is the available spectral bandwidth for storage. This parameter is notewor-

thy as it sets a limit on the rate that the memory can operate.

There are other parameters such as the wavelength of the quantum memory. This can be impor-

tant to match the memory wavelength with an appropriate transmission channel (optical fibers or

free-space transmission) in order to optimize the performance of the communication scheme. Fur-

thermore, for quantum memories that are used as single photon sources or in quantum repeaters,

it is essential to be compatible with the available parametric down conversion sources, see Sec.

(1.2.5).

In the next section, I introduce quantum memory protocols. Quantum memories inherit some

of their properties from memory protocols as they determine a procedure for the operation of

quantum memories. Part of my research contributes to developing new protocols and exploring the

connection of these protocols with known schemes. This contribution is briefly introduced in the

next sections of this chapter and is presented in detail in the following chapters.

1.2.2 Protocols

1.2.2.1 Off-resonant Raman coupling quantum memory

In 2007, in two separate works, the quantum memory protocol based on the off-resonant Raman

interaction has been proposed [15, 16]. The scheme is based on an ensemble of 3-level atoms, and it
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Figure 1.1: The figure shows the off-resonant Raman coupling that allows the absorption of a
single-photon through the creation of a spin excitation. One can retrieve the stored photon by
applying the same control field after the storage time.

operates by application of a properly shaped control field. To understand the basic principles of this

protocol, one can imagine that all atoms are prepared in the ground state g, see Fig. (1.2.2.1). The

purpose is to store and retrieve the single photon pulse that is characterized by Ê (t). Coupling of

the s−e transition to the applied control field is determined by Ωc(t). Both the input single photon

and control field are not in resonant with the g− e and s− e transitions, respectively. However,

two-photon resonance is necessary for an efficient coupling, such that ωp−ωc = δgs.

In order to analyze this system, two paths have to be taken. First, one needs to use Maxwell’s

wave equation to consider the propagation of the electromagnetic fields in the medium. Second,

a Hamiltonian that consists of energy of the levels and the atom-field interaction terms has to be

considered. The propagation equation is a second order differential equation. The fact that the

bandwidth of the pulse is much smaller than its central frequency leads to simplification of the

wave equation. This derivation is explained in Chapter (4) for a more complicated case, where the

refractive index of the medium is time-dependent.

The Hamiltonian can be used in the Heisenberg equation, ˙̂A = i
h̄ [Ĥ, Â]+ ∂ Â

∂ t , to find the dynam-

ics of any operator in this system, see [15]. The Heisenberg equation gives a set of equations for the

level populations and transition operators. The point that the number of photons is much smaller

than the number of atoms allows for a significant simplification, see the appendix of [15]. Finally,

having ∆ much larger than the bandwidth of the input pulse and the excited state broadening leads
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to the elimination of the excited state from the equations of motion. It has to be noted that sources

of decoherence, such as the ground-state spin broadening, can be added to the equations. These

considerations provide the tools to study the properties of the Raman quantum memory.

In principle, the fidelity of the Raman quantum memory can approach the ideal fidelity. How-

ever, due to the coupling to the control field, excitation of atoms from their ground state g generate

unwanted spin excitation, and consequently result in noise at the readout. This will limit the fi-

delity. One can avoid this process, by choosing appropriate levels with the opposite polarization

selection rules. The efficiency depends on the effective optical depth. The effective optical depth is

determined by the single-photon coupling, control field Rabi frequency, number of atoms, detuning

and the ground state spin broadening. The efficiency in the forward direction can be limited, due

to re-absorption during the read-out. The backward retrieval is not limited, and the efficiency can

reach 100%, see Fig. (1.2.2.1). High efficiencies may require more control field power. This may

lead to a time-dependent phase modulation that is given by φ(t) =
∫ t

0 dt ′ |Ωc(t ′)|2
∆

. This effect that is

called the AC Stark shift and can significantly limit the performance of the quantum memory. One

can apply a proper phase modulation on the input pulse to cancel the effect of the AC Stark shift,

and therefore reach the ideal efficiency.

Multimode storage capacity of quantum memories based on atomic ensembles have been stud-

ied in [17]. For quantum memories without controlled inhomogeneous broadening, including

Raman-type quantum memory, the multimode storage capacity does not scale favorably with opti-

cal depth. Specifically, the studies show that the number of modes that can be stored simultaneously

with an efficiency above a certain threshold, in the Raman-type quantum memory, scales with the

square-root of the optical depth.

It is important to understand that the bandwidth of the Raman quantum memory is determined

by the bandwidth of the control field. This allows one to implement a broadband quantum memory

based on this protocol in contrast to the limited bandwidth in the electromagnetically induced

transparency, see the next section.
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(b)

(a)

Figure 1.2: (a) Shows the control field (red) and the input single-photon pulse (blue) that are
properly timed for absorption of the input pulse in the atomic ensemble. (b) Schematically shows
the probability of the spin excitation that is decreasing exponentially over the length of the medium.
This is the reason for the limited efficiency for the forward retrieval, as the re-emitted pulse is
affected by re-absorption in the rest of the medium. The backward retrieval is experimentally more
demanding, but it allows to reach 100% efficiency.

Finally, it has to be noted that the proposed protocol in Chapter (2) is equivalent to the Raman

quantum memory in a 2-level system and without application of an optical control field. See new

protocols in subsection 1.2.2.6 and Chapter (2) for more details.

1.2.2.2 Electromagnetically induced transparency quantum memory

Slow light has been one of the most exotic effects in optics. Electromagnetically induced trans-

parency (EIT) is well-known to exhibit slow light effect. As it can be seen in Fig. (1.2.2.2), the

imaginary part of the susceptibility that is responsible for absorption features a transparency win-

dow. Similar to Fig. (1.2.2.1), the light that propagates in a medium of three-level atoms can be

controlled by applying a control field, Ω(t). In contrast to the previous scheme that is demonstrated

in Fig. (1.2.2.1), when the detuning ∆ approaches zero, this transparency window in Fig. (1.2.2.2)

appears. This can be explained by interference between different possibilities for absorption of the

probe field. For the detuning ∆ = 0, one can imagine that the probe field, Ê (t), can be absorbed

through the | g〉− | e〉 transition. For an excited state with a relatively long life time, the absorp-
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Figure 1.3: This figure shows the imaginary part (blue) and real part (green) of the susceptibility
that is experienced by the probe field Ê (t), see Fig. (1.2.2.1). In the Λ configuration in Fig.
(1.2.2.1), by reducing the detuning ∆ from left to the right, the scheme approaches the condition
for EIT. The plot on the right presents a transparency window that is associated to a reduction in
the group velocity that can be determined by the slope of the Re[χ].

tion through the | g〉− | e〉− | s〉− | e〉 transition destructively interferes with the aforementioned

absorption process. This results in a transparency window in the absorption line. The transparency

window is associated with a reduction in the group velocity that corresponds to the real part of the

susceptibility for the propagating light.

The group velocity is determined by the Rabi frequency of the control field. For a weak prop-

agating field (single-photon), it has been shown that the group velocity can be reduced to zero.

In this process, by turning off the control field gradually, the optical excitation in the propagating

probe field is converted to a spin excitation and is stored in the ground state of the system. By

turning on the control field, the stored excitation can be read out.

The optical depth and the ground state coherence time are necessary for higher efficiency and

storage time, respectively. Similar to the Raman-type quantum memory, the available bandwidth

for storage is determined by specifications of the control field that results in the transparency win-

dow, see Fig. (1.3). For multimode storage, the capacity scales with the square-root of the optical

depth. This is a disadvantage for non-inhomogeneously broadened ensemble memories, such as

Raman-type and EIT-based quantum memories.

9



(a) (b) |e〉

|s〉
|g〉

}∆

Figure 1.4: (a) Ensemble of atoms in a ring cavity that is interacting with the cavity field with a
well-defined propagation direction. (b) Λ-level configuration of the atoms. All atoms are prepared
in the ground state. The cavity field can result in scattering a photon and generate a collective spin
excitation.

1.2.2.3 Off-resonant Raman scattering protocol (DLCZ)

As another scheme that is based on an ensemble of three-level atoms, I introduce the off-resonant

Raman scattering scheme that is known as the DLCZ protocol. This protocol has been proposed

in [3] by Duan, Lukin, Cirac and Zoller (DLCZ) as a part of a scheme for long-distance quantum

communication. This scheme is not a quantum memory protocol in the sense that it does not al-

low for reversible mapping of externally provided single-photons. However, the protocol allows

to generate entanglement between the atomic ensemble and a scattered photon. This can be uti-

lized toward implementations of single-photon sources or long-distance quantum communication

schemes.

Applying a detuned optical pulse to the atomic ensemble scatters one photon and generates a

spin excitation. In order to avoid absorption of the pulse, the field has to be detuned by ∆ from

the |g〉− |e〉 transition. However, a greater ∆ may reduce the probability of scattering a photon

and generating a collective spin excitation. The use of the ring cavity is a way to enhance this

probability (coupling).

The spontaneous emission from the excited state might seem to be problematic in this scheme.

However, it can be shown that the spontaneous emission distributes excitation over all possible

modes (wave vectors). The Raman scattering generates a collective spin excitation, where its wave

vector (mode) is determined by the wave vector of the incoming and scattered photon. There-
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fore, at the read out there is a preferred direction for which the read out emission is collectively

enhanced by the number of atoms in the ensemble. This results in a high signal-to-noise ratio

(a suppressed noise). This concept is discussed in detail in Chapter (5), and used to study the

precision requirements for spin-echo quantum memories.

1.2.2.4 Controlled-reversible inhomogeneous broadening quantum memory

Controlled-reversible inhomogeneous broadening (CRIB) quantum memory has been introduced

and analyzed in [18, 19, 20]. As its title suggests, it is based on controlling the inhomogeneous

broadening of the relevant transition. Inhomogeneous broadening refers to the variance in energy

of the atoms in an ensemble. In this protocol, the photon is stored in a collective excitation of

an inhomogeneously broadened atomic ensemble. After absorption of an incoming photon, this

collective atomic state can be described by | ψ(t)〉 = 1√
N ∑

N
j=1 eiδ jt | gg..e jg..g〉, where N is the

number of atoms in the ensemble and δ j is the detuning of the central frequency of the incoming

photon from the jth atom. The variance in energy (level splitting) of atoms leads to dephasing

of the collective atomic state. The dephasing happens at the rate that is determined by the width

of the inhomogeneous broadening. This prevents any application, including storage that requires

coherence times that are longer than the inverse of the width of the broadening. However, a con-

trolled inhomogeneous broadening allows one to rephase the collective atomic state. After some

time t = T , using this control the inhomogeneous broadening can be reversed. Therefore, the jth

atom in the ensemble will acquire a reversed detuning of −δ j. It can be seen from the collective

atomic state | ψ〉 that the dephasing can be reversed at the time t = 2T , see Fig. (1.2.2.4).

The fidelity of the CRIB quantum memory can in principle approach 100%. Similar to the other

protocols, the efficiency depends on the optical depth of the ensemble. As it has been discussed

for the Raman-type quantum memory, the re-absorption effect in the medium limits the forward

retrieval efficiency. The backward retrieval efficiency approaches 100% for high optical depths.

See subsection (1.2.2.6) for a modified CRIB protocol that offers a solution to suppress the re-

absorption effect in the CRIB protocol.
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Figure 1.5: (a) A schematic absorption profile of an atomic ensemble with initial broadening of
γinitial is broadened to Γin by applying an inhomogeneous external (magnetic/electric) field. This
broadened ensemble allows to absorb the incoming pulse E (ω). (b) The broadened ensemble
dephases due to the broadening. After the time t = T , the external field is reversed leading to
the inversion of the detuning of all absorbers, see the open and solid circles. (c) Reversing the
broadening at time t = T allows to get all the atoms rephased at t = 2T . Efficient retrieval is
expected at t = 2T .
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The limit on the storage time is determined by properties of the physical system. For a storage

time of Tstor, one has to reverse the inhomogeneous broadening at t = Tstor/2 to achieve an efficient

recall at t = Tstor, see Fig. (1.2.2.4). This property has been used for pulse sequencing in [21].

Multimode storage is one of the most important features of quantum memory protocols that are

based on inhomogeneous broadening. As opposed to the protocols that are based on unbroadened

atomic ensembles, the number of modes that can be stored with a certain efficiency scales linearly

with the optical depth. In CRIB, depending on the physical system, the inhomogeneous broad-

ening is produced by an external electric or magnetic field. Increasing the external field strength

results in a greater inhomogeneous broadening and consequently a greater memory bandwidth.

This controllable memory bandwidth can be used to store multiple input modes.

The gradient echo memory (longitudinal CRIB) is based on the CRIB protocol, where the

broadening is produced by a longitudinally (along the propagation direction of the input field)

varying external field. This is in contrast to the transverse CRIB, where every slice of the medium

along the propagation direction contains all of the frequency components.

The most distinguishing feature of the gradient echo memory (GEM) compared to CRIB is

that the forward retrieval efficiency is not limited by re-absorption as the atoms are broadened

longitudinally in space that prevents re-absorption at the retrieval. The gradient echo memory

protocol has led to some of the influential experimental results on quantum memories [21, 22, 23].

In Chapter (3), I present a proposal for a novel quantum memory protocol based on a different

principle that resembles the gradient echo memory under certain conditions.

1.2.2.5 Atomic frequency comb quantum memory

The atomic frequency comb (AFC) quantum memory is another well-known quantum memory

protocol that is based on inhomogeneous broadening, see [24]. The principle of the protocol is

based on periodicity in the absorption frequency of the atomic ensemble, see Fig. (1.2.2.5). An

incoming pulse interacting with an ensemble of atoms with a comb-like atomic frequency distri-

bution generates a collective atomic state. This collective atomic state dephases as different atoms

13



n(ω)

freq.

E(ω)

{∆

e−4i∆te−3i∆te−2i∆te−i∆t ei∆t e2i∆t e3i∆t e4i∆t

� � � � � � ��

@@@@@@@@
Γin

Figure 1.6: (a) The figure shows the absorption profile of inhomogeneously broadened ensemble
that is prepared for the AFC protocol. The periodic absorption peaks are prepared by optical pump-
ing. The incoming field E (ω) interacts with the ensemble. The collective atomic state dephases as
atoms in different absorption peaks precess at different rates. However, the collective atomic state
automatically rephases (due to the periodicity) at t = 2nπ

∆
, where n = 1,2, ....

have different frequencies (detunings). However, due to the comb-like distribution (periodicity in

absorption peak frequencies), the collective atomic state rephases at certain times. The rephas-

ing times are integer multiples of 2π/∆, where ∆ is the angular frequency difference between the

absorption peaks of the AFC. The storage time is determined by this dephasing-rephasing time.

Therefore, once the atomic frequency comb is prepared, the storage time is fixed. Transferring

the stored excitation to a third level allows one to eliminate the limitation due to the fixed storage

time. In addition, for communication purposes, the functionality of the AFC quantum memory can

be improved by transferring optically excited state to the collective spin ground state for longer

storage times and on-demand retrieval [25].

The fidelity of the AFC has been shown to approach the ideal fidelity [26]. The efficiency in the

forward direction is limited by re-absorption, see [24]. However, the backward retrieval approaches

100% efficiency for high optical depths. AFC provides multimode storage. The number of modes

that can be stored is independent of the optical depth as opposed to the other protocols, see [24].
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1.2.2.6 New protocols

A significant part of my research is devoted to finding new protocols for realizing quantum mem-

ories. As I discussed above, various protocols exist, and each protocol brings certain possibilities

and limitations. Developing new protocols may allow to approach a more practical quantum mem-

ory protocol.

Below, I describe three new protocols that are developed by our research group and some of

the new quantum memory schemes by other groups. The first two are my main contributions

to the topic of quantum memory protocols, which are presented in Chapters (2) and (3). In the

first two cases, these protocols are shown to be able to operate similar to the off-resonant Raman

interaction quantum memory and the gradient echo quantum memory, respectively. In the first

case, the controllable-dipole quantum memory possesses properties similar to the Raman-type

quantum memory, but in a two-level system and without any optical control. The latter, under

certain conditions, operates similar to the GEM without any spatial gradient imposed on the atomic

ensemble. The third proposal has similarities to the slow-light effect in the electromagnetically

induced transparency and shows connections to the gradient echo memory. These similarities

and connections provide the ground-work for a better understanding of quantum memories and

categorizing the schemes. This is also a step toward inventing hybrid schemes with combined

features that may serve better than the current demonstrations for some of the quantum memory

applications. Here, I briefly describe these protocols.

Controllable-dipole quantum memory is a protocol in an ensemble of two-level atoms that is

based on the ability to control the transition dipole moment for storage in the optical coherence of

the transition. There are solid-state systems, such as Tm+3 ions doped in YAG crystal, in which the

transition dipole moments of some of the transitions can be manipulated by applying an external

electric or magnetic fields. In Chapter (2), I show that this proposal is equivalent to the Raman-

type quantum memory in a two-level system and with no optical control. I studied both cases of

the ensemble in cavity and for atoms in free-space. The first case is treated analytically, and the
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optimal solutions are found. The case of atoms in free-space is more complicated, and there has

not been any optimal solution for arbitrary input pulse shapes. However, I analyzed the perfor-

mance for Gaussian pulses and compared the results with the controlled reversible inhomogeneous

broadening quantum memory.

Quantum memory based on the refractive index modulation is another novel scheme that uti-

lizes a time-dependent refractive index of a medium to generate an effective longitudinal con-

trolled reversible broadening. The time-dependent refractive index of the medium allows one to

effectively modulate the frequency of the propagating pulse as a linear function of the position

in the medium. This results in an effective longitudinal position-dependent detuning between the

pulse and atoms. A comparison shows that this scheme is equivalent to the gradient echo mem-

ory, where the position-dependent detuning is due to an external position-dependent (electric or

magnetic) field. In chapter (3), I present an implementation that is based on Tm+3 ion that are

doped in the lithium niobate crystal (medium), in which one can modulate the refractive index of

the medium by a time-dependent electric field, such that it provides enough bandwidth to store the

input pulse. Reversing the time-dependent electric field allows for retrieving the stored pulse.

Quantum memory by atomic frequency sweeping is an emerging scheme that is based on mod-

ulating the transition frequency of an ensemble of two-level atoms. The protocol is developed by

our group, see [27]. The results show that changing the transition frequency of a narrow atomic

line from a large negative to a large positive detuning allows to store pulses that are much broader

than the atomic frequency linewidth. The polaritonic description of the dynamics in this system

indicates a slow-light effect that is similar to that of the electromagnetically induced transparency.

There is also a correspondence between this system and an array of waveguide cavities that are

interacting with side cavities. Numerical analysis also sheds light on similarities between this pro-

posal and the gradient echo memory. Atoms in hollow-core photonic crystal fiber is a potential

implementation of this scheme as the medium is required to accommodate the input pulse.

Other quantum memory protocols are also recently developed. Similar to the quantum memory
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by atomic frequency sweeping, a protocol has recently been introduced that is based on a controlled

homogeneous splitting, see [28]. The authors of this paper showed that one can store and retrieve a

quantum state of light by controlling the homogeneous splitting between two frequency linewidth

of two species in an ensemble. They also observe the slow-light effect that is not based on the

ground-state coherence (as opposed to EIT), therefore it shares partial similarities with our above-

mentioned protocol.

In addition to this protocol, I. Iakoupov and A.S. Sørensen in [29] presented a modified con-

trolled reversible inhomogeneous broadening quantum memory. In contrast to CRIB, the external

field that is to broaden the ensembles frequency linewidth is only turned on for the duration of the

input pulse. The reversed external field is applied for the same duration at the time of retrieval.

Their study shows that the forward retrieval efficiency could approach the ideal efficiency, and the

re-absorption is less severe.

1.2.3 Physical systems

Any stationary quantum system that can be coupled to photons and has a coherence time that is

longer than the duration of the photons can be a candidate for the implementation of a quantum

memory. A trapped single-atom, or ensembles of atoms in a trap or in a gas cell, or in a crystal

are other possibilities. Artificial atoms such as quantum dots and nitrogen vacancy (NV) centers

in diamond are also among the possible physical systems. Coherence times vary from about 1µs

in the electronic ground states of Rb atoms in a Vapour cell to over 1s in nuclear spin states of

some rare-earth ion doped crystals. The efficiency of the atom-photon interface is determined by

the optical depth that varies from one implementation to another.

My research is focused on the solid-state candidates. In particular, rare-earth ion doped crystals

are attractive because of their properties such as relatively long optical coherence times and inho-

mogeneous broadening that can be engineered to be utilized in some of the protocols. In addition,

NV centers in diamond possess various useful properties that propose this system as a promising

candidate for photonic quantum information processing tasks. The NV centers in diamond show a
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significant ground state nuclear spin coherence times even at room temperature. This has provided

over a second coherence time that can be used for storage of microwave photons. Below, I provide

details about these two solid-state candidates for implementations of quantum memories.

1.2.3.1 Rare-earth ion doped crystals

Rare-earth elements are already an inevitable part of the current technology. They became partic-

ularly attractive since the invention of the laser in 1960s. In industry, they are used in producing

magnets and batteries. In life sciences, their fluorescence properties are used for examining biolog-

ical fluids and drug research. Rare-earth elements are known to be comprised of scandium, yttrium

and 15 other metallic elements that are called Lanthanides. There are four elements that are par-

ticularly appealing to the quantum memory community. These four elements are praseodymium

(Pr), neodymium (Nd), erbium (Er) and thulium (Tm). These rare earth elements belong to the

4 f block that corresponds to the filling of the 4 f electronic shell. The 5s, 5p and 6s shells are

filled and have a larger radial distribution, which they partially shield the 4 f electrons that results

in a narrow homogeneous optical linewidth and reduces the influence of crystal strain and lattice

phonons, see [30, 31].

There are few crystals, such as YAG(Y3Al5O12), Y2SiO5 or LiNbO3 that are often used as

the host crystals for the rare-earth ions. The wavelength of the transition is determined by the

rare-earth ion. The doped ion replaces yttrium and lithium in the host crystals. The host crystal

can offer crystallographically equivalent or inequivalent sites for the dopants. This may have an

impact on the response to the external magnetic or electric fields. Homogeneous broadening is

limited by the excited state lifetime of the relevant transition. However, depending on the tem-

perature it is determined by phonon interactions (high temperatures) or energy exchange between

spins (cryogenic temperatures). Inhomogeneous broadening, which is due to inhomogeneity in the

environment of the dopants, is caused through spin-spin interaction and strain that are sources of

a spatially varying potential for dopants. Therefore, the density of dopants becomes an important

factor that has an impact on the inhomogeneous broadening. This is the reason that one cannot
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increase the optical depth arbitrarily at a certain frequency by increasing the density of dopants.

There is a chance to increase the optical density by using the stoichiometric rare-earth crystals, see

[32].

In Chapter (2), the proposed implementation of the Controllable-dipole quantum memory is in

Tm:YAG. The photon is stored in a two-level configuration that is based on the optical coherence

of that transition. It is also noteworthy that one can control the transition dipole moment of the

certain transitions of Tm+3 ion in Tm:YAG by applying small changes to the external magnetic

field, see Chapter (2). In Chapter (3), the proposed protocol requires a host that has a variable

refractive index under the external electric field. Therefore, Tm:LiNbO3 is an appropriate choice

of the rare-earth doped crystals to implement the protocol.

1.2.3.2 NV centers in diamond

Defects in solids are attractive due to their potential to provide atom-like properties with relatively

long coherence times. The defect can be a displaced atom or a vacancy in the crystal structure.

In addition to the defects, impurities exist in or can be added to the crystal structure. Depending

on the impurity, it can add an excessive electron or a hole (lack of an electron) to the structure.

This along with the symmetry of the defect can determine some of important properties of the

impurity-vacancy centers in crystals.

Nitrogen is the most common impurity in diamond. A nitrogen vacancy (NV) center in dia-

mond is a nitrogen that replaces a carbon , which is neighbor to a vacancy in the diamond crystal

structure. A negatively charged NV center that is the focus of this study is comprised of 6 con-

tributing electrons (3 electrons from 3 carbon atoms, 2 electron from nitrogen and 1 electron from

the environment that is possibly from another single atomic nitrogen impurity). These 6 electrons

are confined in the defect (vacancy) in the diamond with C3v symmetry as they can not contribute

in any covalent bond with a neighboring site in the lattice. The C3v symmetry denotes symmetry

under rotations around a vertical axis and (here it is the NV axis, see Fig. (1.2.3.2)) and 3 mirror

planes. For comparison this is the same symmetry as for the NH3 molecule. This information can
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σ1

σ2

σ3

σN

NV axis

Figure 1.7: The figure shows the dangling electronic orbitals σ1, σ2 and σ3 that are associated
with the electrons shared by three neighboring carbons and σN that corresponds to electrons from
the nitrogen. In the basis of the NV center the z direction is determined by a vector from the
nitrogen toward the vacancy. One of the carbon’s dangling electrons (for example σ1) defines the
x direction, and the y direction is correspondingly defined perpendicular to x and z.

be used to determine the electronic level configuration and energies, see [33].

There has been significant interest in NV centers for studying and utilizing their properties

for various applications. NV centers have relatively long electronic spin coherence times (up to

about 1ms) at room temperature. These coherence times become much longer at low temperatures.

The spin state can be read optically by exciting the NV center and measure the polarization of

the fluorescent emission. These properties have made NV centers an attractive tool for magnetic

sensing and nano-scale nuclear magnetic resonance [34, 35].

Recently, storage of microwave photons in a single NV center or an ensemble of NV centers

has been studied theoretically and experimentally [36, 37, 38]. For an NV center that is not coupled

to any neighboring nuclear spin the coherence (storage) time is given by the electronic ground state

T2 time. T2 time of about 1ms has been observed at room temperature. In [39], T2 time of 0.5s

has been reported at low temperatures around 77°K. NV centers can couple to their neighboring

nuclear spins (of C13 or N15) that are within few nm distances. This potentially allows one to

take advantage of the even longer coherence time of nuclear spin that has been shown to be over

one second [40]. It has also been shown that the parallel electron-nuclear coupling rate exceeds

the 1/T1e, where T1e is the electronic spin lifetime. This means that the flip-flop of the electronic
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spin that is happening at the time scale of about 10ms leads to dephasing of the nuclear spin

[40]. Therefore, the nuclear spin coherence time is limited by the electronic spin lifetime. A

dynamical decoupling technique has been used to achieve over one second coherence time at room

temperature [40].

Despite all these attractive properties, the storage of optical photons becomes problematic due

to the short excited state lifetime of individual NVs and the broad optical linewidth (excited state

inhomogeneous broadening) in NV ensembles.

In Chapter (4), a solution to these difficulties is presented, and an NV ensemble coupled to a

cavity is shown to be a promising solid-state candidate for micron-scale on-chip optical quantum

memories.

1.2.3.3 Other systems

Apart from the above-mentioned solid-state systems, there are other physical systems that are

being used by several groups around the world. The most commonly used systems are ensemble of

trapped cold atoms and hot atomic gases. A hot atomic gas cell of Rb atoms has been used for the

implementation of the Raman-type quantum memory in [41] and for realizing the gradient echo

memory, see [23]. Trapped cold atoms in a ring cavity have been used to implement DLCZ type

protocol that resulted in a combination of high efficiency and storage time, see [42].

In addition, a cold trapped single atom in a cavity has also been shown to operate as a quantum

memory, see [43].

Atoms trapped in a hollow core fiber provide a relatively large optical depth [44], which is one

of the requirements for an efficient quantum memory. Hollow core photonic crystal fibers as a trap

for Cs atoms have been shown to provide even higher optical depths that are promising for the

Raman-type scheme [45]. Another candidate is a rare-earth ion doped fiber. Despite their small

optical coherence, they can be useful for protocols that are based on inhomogeneous broadening

[46]. Very recently, inhomogeneous and homogeneous optical linewidths of rare-earth ion doped

transparent ceramics have been studied, see[47]. The results from this study are comparable to
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rare-earth ion doped single crystals. This suggests that ceramic materials can be competitive with

single crystals for applications in quantum information, including quantum memories. Further

studies are required to determine their potential advantages.

1.2.4 State of the art

Quantum memory protocols and their experimental demonstrations progressed rapidly during the

past decade. Various quantum memory protocols have been adapted to realize each of the quantum

memory criteria in various setups. Even though high efficiency, long storage time and multimode

capacity have not been achieved in one single implementation, there have been attempts to address

these requirements individually.

1.2.4.1 Solid-state systems

Achieving high efficiency has been the focus of many experiments. Since the transition dipole

moment in rare-earth doped solids are weak, achieving high optical depth and, consequently,

high efficiency is challenging. Higher concentration of dopants could increase the inhomoge-

neous broadening and prevent one from arbitrarily increasing the optical depth. Isotropically pure,

stoichiometric rare-earth crystals promise much higher optical depths compared to the rare-earth

doped crystals, see [32].

In 2010, Pr3+ doped in Y2SiO5 crystal was used to implement the gradient echo memory

(GEM) protocol. In this study, an efficiency of about 69% was achieved and currently constitutes

the solid-state quantum memory with the highest efficiency, see [22]. Very recently, implementing

the AFC protocol in the same material within an impedance-matched cavity resulted in about 58%

efficiency, see [48, 49]. It has to be noted that this result is achieved based on a weakly absorbing

sample. This promises more progress in terms of the efficiency based on impedance-matched

quantum memories [49].

In 2005, Pr3+: Y2SiO5 was used to implement EIT-based storage [14]. This experiment demon-

strated storage times of over 1s. In this experiment, multiple π-pulses have been used to prevent
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dephasing due to the spin inhomogeneous broadening. This technique only allowed to store strong

pulses, due to a limited signal-to-noise ratio. See Chapter (5) for evaluation of the error due to the

uncertainty in π-pulses.

In terms of the bandwidth, the AFC protocol in Tm3+ doped lithium niobate waveguide pro-

vided 5GHz memory bandwidth [50]. This also provides the potential for multimode capacity.

Quantum memory based on AFC protocol in Tm3+:YAG allowed storage of more than 1000 tem-

poral modes [51].

Storage of entangled photons has been demonstrated in Tm3+:LiNbO3 [50] and Nd3+:Y2SiO5

[52] based on the AFC protocol. This is important as it is a key component in long-distance

quantum communication based on quantum repeaters.

1.2.4.2 Atomic gases

Some of the major achievements in developing quantum memories are based on physical realiza-

tions in atomic gases. The highest efficiency for quantum memories has been accomplished in hot

atomic gas of Rb atoms in a cell. The efficiency of about 87% was achieved based on the GEM

protocol, see [53]. The same protocol has been employed to use the quantum memory as an optical

pulse sequencer to store and re-order multiple pulses in time [21].

In a similar setup, Raman-type quantum memory has been implemented. Despite the limited

efficiency, the scheme provided one of the broadband quantum memory implementations with a

bandwidth of about 1.5GHz [41].

Recently, an ensemble of cold Rb atoms in a magneto-optical trap inside a ring cavity, resulted

in the best available combination of storage time and efficiency. The off-resonant Raman scattering

(DLCZ) protocol has been employed in this experiment and about 73% efficiency and over 3ms

lifetime have been demonstrated.

The next step is to combine the required features in one single implementation to take a step

toward more practical quantum memories.
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1.2.5 Applications

1.2.5.1 Deterministic single-photon sources

Immediate application of an efficient quantum memory is the implementation of a deterministic

single-photon source. A parametric down-conversion source can produce photon pairs in a non-

deterministic way. One can combine this source with a quantum memory. Detecting one of the

photons at one arm determines the presence of another photon at the other arm to be stored in the

quantum memory. Later the stored excitation can be retrieved to construct an on-demand heralded

single-photon source. A highly efficient single-photon source is a crucial element in photonic

quantum information processing, especially in linear optical quantum computation based on the

KLM scheme [1].

In [54] the off-resonant Raman scattering approach has been used to realize a deterministic

and storable single-photon source. Applying an off-resonant weak laser pulse allows to scatter one

photon and create a collective spin excitation in the ground state of an atomic ensemble. Detecting

the scattered photon determines the stored spin excitation and its mode (wave vector). Later, the

stored excitation can be retrieved to serve as a deterministic and storable single-photon source.

1.2.5.2 Quantum repeaters for long-distance quantum communication

One of the main motivations for developing quantum memories is their use as a component in

quantum repeaters. Quantum repeaters are developed to provide the possibility of distributing

entanglement between distant parties. Direct transmission of photons through free space (on earth)

or fiber is limited by exponential decay of transmission probability with distance.

A quantum repeater with atomic ensembles and linear optics was first proposed in 2001 by

Duan-Lukin-Cirac-Zoller (DLCZ), see [3]. Their proposed scheme is as follows. Applying a weak

off-resonant pulse to an atomic ensemble scatters a photon and generates a collective spin excita-

tion, see Sec. (1.2.2.3). The scattered photon is correlated to the collective spin excitation. Having

two ensembles and collecting scattered photons from both allows one to perform a Bell state mea-

surement with the scattered photons. A successful Bell state measurement results in entanglement
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generation between the collective spin excitations in the atomic ensembles. The-above mentioned

setup is one link in the DLCZ quantum repeater. Having several links and generating stored en-

tanglement in every link provides the possibility to distribute entanglement over long distances as

detailed below. Consider two neighboring links that include ensembles that are labeled as A1, B1

and A2, B2 corresponding to link 1 and 2. The spin excitation in A1 is entangled with that of B1.

Similarly, A2 is entangled with B2. Recalling the stored excitation from B1 and A2 and sending the

photons to a Bell state measurement results in entanglement between A1 and B2. This procedure

can be performed in other links and finally generate entanglement between A1 and BN , where N is

the number of links. The loss does not scale exponentially with the total length as it is determined

by the traveling distance of the scattered photons within a link.

As seen from the DLCZ quantum repeater, the proposal is not limited to only DLCZ-type

quantum memory. In a similar approach, other quantum memory protocols can play a similar role

as nodes in a quantum repeater, [12]. Having a source of entangled photons at each node, one

can generate entangled pairs, store one photon at the node and send the other photon to a beam

splitter at the middle of the link. Similar operation at the other node of the link and the Bell

state measurement in the middle of the link results in entanglement generation between the stored

excitations in the quantum memories. Recalling the stored excitation and performing the Bell state

measurement between the neighboring links distributes entanglement over longer distances. As

generating entanglement in each link is not deterministic, quantum memories are vital to keep the

performance of the quantum repeater by synchronizing the links before distributing entanglement.

There are several proposal s for quantum repeater architectures with different performances

and demands for quantum memories. Recently, Munro et al. in [55], proposed a quantum commu-

nication scheme that does not require long-lived quantum memories. The loss could be overcome

by use of a redundant quantum parity code. Instead of quantum storage, efficient two-qubit gates

is necessary in addition to an efficient interface between photons and stationary qubits is necess
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Chapter 2

Controllable-dipole quantum memory

2.1 Preface

Quantum memories are implemented based on quantum memory protocols, see Sec. (1.2.2). The

protocol specifies all the steps that have to be taken to store in and recall from a quantum mem-

ory. Taking the quantum memory protocol into account and considering the light-atom interaction

allows to analyze the performance of the quantum memory.

This chapter presents a new quantum memory protocol for storage in two-level systems that

is based on direct control of the transition dipole moment. Mainly, the analysis is focused on the

case in which the atomic ensemble is inside a cavity. This enhances the light-atom interaction. The

analysis is focused on finding the conditions for maximizing the efficiency. We could show that

the optimal write process is related to the optimal read process by a reversal of the effective time

τ =
∫

dtg2(t)/κ , where g(t) is the time-dependent light-atom coupling and κ is the cavity decay

rate. Then the paper shows results on the free-space case, where Maxwell equation is used for

considering the propagation of the photon in the medium. A possible implementation is discussed

based on Tm3+:YAG. In Tm3+:YAG, the transition dipole moment can be controlled by changing

the direction of the external magnetic field. Finally, the performance of the controllable-dipole

quantum memory is compared with that of the controlled reversible inhomogeneous broadening

(CRIB) quantum memory. The proposed protocol based on the modulation of the transition dipole

moment is shown to be equivalent to the Raman-type quantum memory without the requirement

for application of an optical control field.

This work has been published through collaboration with several co-authors. I contributed to

this publication by performing theoretical analysis for the free-space solution, preparing graphs

for describing the scheme and comparisons and presenting the performance in the free-space case.
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.

Figure 2.1: We consider an ensemble of two-level systems inside a one-sided cavity, where the
time-dependence of the light-matter coupling g(t) can be controlled. See also Eq. (1).

I supervised an undergraduate student for calculations regarding the analysis of the system in the

cavity. Finally, I wrote a part of the manuscript and prepared responses to the referee reports.

2.2 Introduction

Quantum memories for light are devices that allow one to store and retrieve light in a way that

preserves its quantum state [56, 57, 58]. They are essential components for optical quantum infor-

mation processing, notably for quantum repeaters [12]. All quantum memories require a way of

switching the coupling between the light and the material system (which is used as the memory)

on and off in a controlled way. In the case of memories based on electromagnetically induced

transparency or off-resonant Raman transitions [41, 56, 59, 60, 16] the coupling is controlled by

a laser beam, which is typically much more intense than the signal that one aims to store. In con-

trast, in the case of photon-echo based memories [58, 30, 61] the coupling is controlled in a more

indirect way via the dephasing of the atoms in the storage medium. This typically requires spectral

tailoring of the medium by optical pumping before the signal can be stored.

Here we consider a way of controlling the light-matter interaction that is different from the

mentioned examples, and that is particularly simple from a conceptual point of view, namely the

direct control of the transition dipole element of the relevant optical transition. This is motivated
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by recent demonstrations that transition dipoles can be turned on and off in certain solid-state

systems, in particular in rare-earth ion doped crystals by applying magnetic fields [62, 63, 64],

and for NV centers in diamond by applying electric fields [65]. We consider the case where the

storage medium is placed inside an optical cavity [49, 66, 67]. This both enhances the light-

matter interaction, which is desirable for achieving high efficiencies, and simplifies the equations

of motion, thus clearly bringing out the basic principles of the memory dynamics. The free-space

case, which is attractive from the point of view of experimental implementation, is discussed in the

appendix.

2.3 Controllable-dipole quantum memory in a cavity

We consider an ensemble of two-level atoms coupled to a cavity mode, see Fig. 1. We ignore the

spatial dependence of the light-matter interaction, and thus phase-matching considerations [68, 69].

The system that we consider is formally equivalent to a Raman memory in a cavity, if the excited

state is adiabatically eliminated in the Raman case [66], and where the two-photon spin transition

is replaced by a single-photon optical transition. There is also some similarity to Refs. [70, 71],

where the light-matter coupling is controlled by tuning a cavity instead of the transition dipole

moment.

2.3.1 Equations of motion

We use the usual input-output formalism for a single-sided, fairly high-finesse cavity [72]. The

basic equations are then

σ̇(t) =−i∆(t)σ(t)− γσ(t)+ ig(t)E(t)

Ė(t) = ig(t)σ(t)−κE(t)+
√

2κEin(t)

Eout(t) =−Ein(t)+
√

2κE(t). (2.1)
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Thanks to the linearity of the dynamics, σ and E can be interpreted as the atomic polarization and

cavity fields (in the semi-classical regime), but also as the probability amplitudes corresponding to

a single atomic excitation in the ensemble and a single cavity photon respectively (in the quantum

regime, which is our focus here) [57, 60, 66]; Ein(t) and Eout(t) are the incoming and outgoing

fields (photon wave functions); g(t) is the time-dependent light-matter coupling, which is propor-

tional to the transition dipole matrix element between the ground and excited atomic states (and

also to
√

N, where N is the total number of atoms); κ is the cavity decay rate; γ is the atomic decay

rate; ∆(t) is a time-dependent detuning, which may arise in practice as a consequence of applying

a time-dependent external field in order to control the dipole element and thus g(t); γ and ∆(t) are

imperfections that we will neglect at first to keep the discussion simple, but whose effect will be

discussed later in the paper.

We are interested in the (realistic) situation where the cavity decay defines the shortest relevant

timescale. In this case it is well justified to adiabatically eliminate the cavity field, setting Ė = 0.

This gives

E(t) =
1
κ

(
ig(t)σ(t)+

√
2κEin(t)

)
(2.2)

and hence

σ̇(t) =−g2(t)
κ

σ(t)+ i

√
2
κ

g(t)Ein(t)

Eout(t) = Ein(t)+ i

√
2
κ

g(t)σ(t) (2.3)

where we have set ∆(t) = γ = 0, as mentioned above. It is straightforward to derive the (very

intuitive) continuity equation

d
dt
|σ(t)|2 = |Ein(t)|2−|Eout(t)|2. (2.4)

2.3.2 Read process

We now discuss quantum memory operation, starting with a discussion of the read process. (The

motivation for this approach will become clear in the following.) The read process corresponds to
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a situation where there is no incoming photon, Ein = 0. The continuity equation (2.4) implies

|σ(0)|2 = |σ(t)|2 +
∫ t

0
dt ′|Eout(t ′)|2, (2.5)

which motivates the definition of the read efficiency ηr as

ηr =

∫
∞

0 dt|Eout(t)|2
|σ(0)|2 . (2.6)

Here we have defined t = 0 as the starting time of the read process.

The solution of Eq. (2.3) with Ein = 0 is given by

σ(t) = σ(0)e−
∫ t

0 dt ′g2(t ′)/κ

Eout(t) = i

√
2
κ

g(t)σ(t). (2.7)

Using Eqs. (2.6) and (2.7) one finds

ηr = 1− e−2
∫

∞

0 dtg2(t)/κ . (2.8)

Eq. (2.8) motivates the introduction of the effective time variable

τ =
∫ t

0
dt ′g2(t ′)/κ, (2.9)

see also Ref. [16], giving the simple expression ηr = 1− e−2τr , where τr =
∫

∞

0 dtg2(t)/κ is the

total effective time that elapses during the read process. This means that in order to maximize the

read efficiency one simply has to maximize τr. The shape of g(t) has an impact on the form of the

output field, but the efficiency only depends on τr.

In order to rewrite the whole dynamics in terms of the effective time variable τ , we furthermore

introduce effective input, output and cavity fields,

E =
κ

g
E,Ein =

√
κ

g
Ein,Eout =

√
κ

g
Eout . (2.10)

One then finds the new equations of motion (after adiabatic elimination of E )

d
dτ

σ(τ) =−σ(τ)+ i
√

2Ein(τ)

Eout(τ) = Ein(τ)+ i
√

2σ(τ). (2.11)
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The read efficiency can be rewritten as

ηr =

∫
τr
0 dτ|Eout(τ)|2
|σ(0)|2 . (2.12)

The solution of Eq. (2.11) in the read case (Ein = 0) is simply

σ(τ) = σ(0)e−τ ,Eout(τ) = i
√

2σ(τ). (2.13)

Eq. (2.13) shows that in terms of the effective time (and of the effective fields) the read process is

a simple exponential decay - a remarkable simplification considering that the time dependence of

g(t) (and hence Eout(t)) is completely arbitrary.

2.3.3 Write process

We are now ready to discuss the write process. We will immediately use the effective variables.

Solving Eq. (2.11) for non-zero Ein one finds

σ(0) = i
√

2
∫ 0

−τw

dτ
′eτ ′Ein(τ

′), (2.14)

where τw is the total elapsed effective time for the write process and σ(−τw) = 0. Note that no

effective time elapses during times when the transition dipole is zero (i.e. during storage). We

define the write efficiency as

ηw =
|σ(0)|2∫ 0

−τw
dτ|Ein(τ)|2

. (2.15)

2.3.3.1 Optimal input field

Our goal is to find the form of Ein(τ) that maximizes ηw. Since the solution for σ is linear in

Ein, maximizing ηw corresponds to maximizing |σ(τw)|2 for a normalized input field satisfying∫ 0
−τw

dτ|Ein(τ)|2 = 1.

Before discussing the formal optimization, let us take a step back and try to make a guess for

the optimum input field. We have seen that when expressed in terms of effective time rather than

real time, the read process simply corresponded to an exponential decay, see Eq. (2.13). It is
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natural to suspect that inverting this decay (in effective time) will give the optimum effective input

field. This means that our guess for the optimum solution is Ein(τ) ∝ eτ .

This can be proved by functional differentiation. The optimum solution has to satisfy

δ

δE ∗in(τ)

[
|σ(0)|2 +λ

(∫ 0

−τw

dτ|Ein(τ)|2−1
)]

= 0, (2.16)

where λ is a Lagrange multiplier, and Ein(τ) and E ∗in(τ) are independent variables for each τ .

Solving this equation using Eq. (2.14) gives Ein(τ) ∝ eτ , confirming the intuitive guess, see also

Fig. 2.

For this optimal solution the write efficiency is analogous to the read efficiency,

ηw = 1− e−2τw . (2.17)

The total efficiency (ignoring losses during storage) is then

ηtot = ηwηr = (1− e−2τw)(1− e−2τr), (2.18)

which can obviously be simplified further if τw = τr. Provided that the optimum input field is

chosen for the write process, the efficiency is thus maximized by maximizing τw and τr.

In real time the input field for the write process and the output field for the read process satisfy

Ein(t) ∝ gw(t)e
∫ t
−∞

dt ′g2
w(t
′)/κ

Eout(t) ∝ gr(t)e−
∫ t

0 dt ′g2
r (t
′)/κ , (2.19)

where gw(t) and gr(t) are the light-matter coupling for the write and read processes respectively,

and the proportionality constants are such that
∫ 0
−∞

dt|Ein(t)|2 = 1 and
∫

∞

0 dt|Eout(t)|2 = ηtot . Eq.

(2.19) shows that if the light-matter couplings are simple square functions in time, then the input

and output fields are growing and declining exponentials in real time, respectively. However, there

is no general requirement to choose the couplings in this way. On the one hand, one can achieve

optimal write efficiency for any form of gw, as long as the input field satisfies the above equation;

on the other hand, the form of the output field can be tailored by choosing the form of gr.
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Figure 2.2: (a) The effective input and output fields Ein(τ) and Eout(τ) of Eq. (2.10) in terms of
the effective time τ of Eq. (2.9). The inset shows the effective time versus real time. It can be seen
that the effective time elapses only when the coupling is on. (b) An example for the possible time
dependence of the real fields Ein(t) and Eout(t). (c) The corresponding write and read couplings
gw(t) and gr(t). Any Ein(t) can be absorbed with the optimal efficiency ηw = 1− e−2τw for gw(t)
satisfying Eq. (2.20); and Eout(t) can, for example, be chosen to be proportional to Ein(t − T )
(where T is the storage time) for gr(t) satisfying Eq. (2.20).

2.3.3.2 Optimal coupling

This means in particular that memory performance can be optimal even if the input and output

fields are not related by time reversal in real time. For example, let us suppose that we want the

input and output fields to have the same temporal shape, Eout(t) = −
√

ηwηrEin(t−T ), where T

is the storage time, while still satisfying Eq. (2.19). By inverting Eq. (2.19) one can show that

this can be achieved by choosing the following time-dependent couplings for the write and read
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processes:

gw(t) =

√
κηw|Ein(t)|2

2(1−ηw +ηw
∫ t
−∞

dt ′|Ein(t ′)|2)

gr(t) =

√
κηr|Ein(t−T )|2

2(1−ηr
∫ t
−∞

dt ′|Ein(t ′−T )|2) . (2.20)

This choice of gw(t) achieves the optimal write efficiency ηw = 1−e−2τw for any input field Ein(t)

and any value of τw =
∫ 0
−∞

dtg2
w(t)/κ . On the other hand, the above choice of gr(t) ensures that

the output field is proportional to the input field (shifted in time by T ). We have seen that the read

efficiency always satisfies ηr = 1− e−2τr with τr =
∫

∞

0 dtg2
r (t)/κ . Note that arbitrary output field

shapes are possible for appropriately chosen gr(t), see also Fig. 2.

2.3.3.3 Imperfections

So far we have neglected the spontaneous decay rate γ . It is not difficult to include in the above

approach, but it obviously leads to somewhat lower efficiencies, because its effect is irreversible.

The optimum input field can still be found by functional differentiation. To discuss the simplest

example, let us consider square coupling pulses of strength gw(r) and duration tw(r). Then the

optimized input field for writing satisfies Ein(t) ∝ gwe
g2
wt
κ
+γt and the output field from the read

process fulfills Eout(t) ∝ gre−
g2
r t
κ
−γt , while the efficiencies satisfy

ηw(r) =

g2
w(r)
κ

g2
w(r)
κ

+ γ

1− e
−2

(
g2
w(r)
κ

+γ

)
tw(r)

 . (2.21)

One can see that for large effective times the efficiencies tend towards C
C+1 [66], where C = g2

κγ
,

which is essentially the optical depth in the presence of the cavity. High efficiencies require large

C. For a given decay rate, C can in principle always be increased by increasing g (which re-

quires increasing the dipole moment or the number of atoms), or by decreasing κ (which requires

increasing the finesse of the cavity, i.e. the number of roundtrips).

The general case also includes a time-dependent detuning ∆(t). By functional differentiation

one finds that the optimum input field has a phase dependence that exactly compensates the detun-
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ing. If this is not possible, the achievable efficiencies will again be reduced. However, in analogy

to the case of spontaneous decay, the effect will be small as long as the ratio g2

κ∆
is large.

2.4 Implementation

We will now discuss potential experimental implementations of the proposed protocol. In certain

rare-earth ion doped crystals optical transitions can be switched on and off by changing the applied

magnetic field [62, 63, 64]. This is due to the coupling of the electronic Zeeman and hyperfine

interactions in the presence of the crystal field. This coupling yields a substantial contribution to the

overall nuclear Zeeman effect which is different for the ground and excited states, allowing one to

control the branching ratios of optical transitions. For example, in Tm:YAG adding a field of order

80 mT transversally to a static applied field of 1 T will turn on a previously forbidden transition

to a point where its optical depth d is of order 1/cm [62, 63]. It is possible to control magnetic

fields of this order (tens of mT) on ns timescales [73], making it possible to store light pulses

whose duration is on these timescales. See also the appendix for more details on the proposed

implementation. In practice the spectral width of the pulses is more likely to be limited by nearby

transitions. The optical depth will be enhanced by the cavity, one has C ≈ dF for the ratio C

defined above, where F is the cavity finesse. Based on Eq. (2.21) high efficiencies should thus be

achievable combining crystals of typical dimensions (say 1 cm in length) with moderate-finesse

cavities. We have focused on the case of a memory inside a cavity. However, good memory

performance based on the same principle is possible without a cavity as well, see the appendix. In

particular, we show that the present protocol outperforms memories based on controlled reversible

inhomogeneous broadening (CRIB) [19] in terms of efficiency for a given optical depth.

The described memory could be attractive from a practical point of view as a solid-state Raman-

like memory that does not require an optical control field, thus avoiding spurious signal detections

(i.e. noise) due to the presence of the strong control beam [41]. Implementations in systems other

than rare-earth ion doped crystals may be possible, for example using electric control fields for NV
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centers in diamond [65].

More conceptually, the present protocol has the potential to provide insight into the basic prin-

ciples underlying quantum memories for light in general. As a first example, we have seen that the

optimal write process is related to the read process by a reversal of effective, but not necessarily

real, time. Because of the mentioned formal equivalence of the considered system to off-resonant

Raman memories, this result applies to the latter as well. It is an interesting question whether

the same also holds for other memory protocols for appropriately defined effective variables. See

Refs. [19, 60, 74, 75] for related discussions in real time. Even more generally, the present pro-

tocol seems well placed to serve as an “archetype” for quantum memories, because, as discussed

above, in all memory protocols the light-matter interaction is controlled in some fashion. Map-

ping various protocols onto the controllable-dipole memory discussed here may be a good way of

analyzing their similarities and differences.

2.5 Appendix A1: Solution of the Maxwell-Bloch equations in free space

The equations of motion in free space are given by

∂tσ(z, t) = −(γ + i∆(t))σ(z, t)+ ig(t)E(z, t)

∂zE(z, t) = i
g(t)

c
σ(z, t), (2.22)

where σ(z, t) can be interpreted as the wave function for a single atomic excitation, and E(z, t) as

the wave function for a single photon; γ , ∆(t) and g(t) are the same as in the paper and it can be

represented by g(t)≡
√

ω0/2ε0h̄V℘(t), where ℘(t) is the controllable transition dipole moment,

ω0 is central frequency of the incident light pulse, and V is the quantization volume; c is the speed

of light. These equations are valid if saturation can be neglected, which is guaranteed if the number

of atoms N is much greater than one. Moreover it is assumed in the derivation that the length of

the medium L is much smaller than the characteristic length of the pulse, such that the difference

between the real time t and retarded time t− z/c is negligible.
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We define S(z, t) = eiχ(t)σ(z, t), E (z, t) = cE(z,t)
ig(t) eiχ(t) and τ(t) =

∫ t
0 dt ′ g(t

′)2

c , where χ(t) =∫ t
0 dt ′(∆(t ′)− iγ), see also Ref. [16]. Substituting these variables in the Eq. (2.22) gives

∂τS(z,τ) = −E (z,τ)

∂zE (z,τ) = S(z,τ). (2.23)

Using a proper Laplace transformation, L {E (z,τ)} = e(s,τ) =
∫

∞

0 dze−szE (z,τ) and S̃(s,τ) =∫
∞

0 dze−szS(z,τ), one can convert the set of differential equations in Eq. (2.23) to a differential

equation and an algebraic equation, namely

∂τ S̃(s,τ) = −e(s,τ)

S̃(s,τ) = −E (0,τ)+ se(s,τ). (2.24)

One can easily find S̃(s,τ) =−1
s
∫

τ

0 dτ ′e(τ
′−τ)/sE (0,τ ′)+e−τ/sS̃(s,0). Plugging this result into the

second equation in Eq. (2.24) gives e(s,τ)= s−1E (0,τ)+s−1e−τ/sS̃(s,0)−s−2 ∫ τ

0 dτ ′e(τ
′−τ)/sE (0,τ ′).

Using L {(z/a)n/2In(
√

4az)}= s−(n+1)ea/s and the convolution theorem [76] the solution is as fol-

lows,

E (z,τ) = E (0,τ)+
∫ z

0
dz′S(z′,0)I0(

√
4τ(z′− z)) (2.25)

+
∫

τ

0
dτ
′E (0,τ ′)

√
z

τ ′− τ
I1(
√

4(τ ′− τ)z),

S(z,τ) = S(z,0)−
∫

τ

0
dτ
′E (0,τ ′)I0(

√
4z(τ ′− τ))

−
∫ z

0
dz′S(z′,0)

√
τ

z′− z
I1(
√

4τ(z′− z)),

where In is the nth modified Bessel function, see also [77]. One can simply use the above-

mentioned definitions for E (z,τ), S(z,τ) and τ(t) to convert the result in Eq. (2.25) to the actual

optical field.

This solution allows one to analyze both the storage (write) and retrieval (read) process, de-

pending on the initial conditions. In the next section it is used to determine the efficiency of the

controllable-dipole memory in free space.
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2.6 Appendix A2: Efficiency analysis and comparison with the controlled re-

versible inhomogeneous broadening quantum memory protocol

In this section we study the efficiency of the controllable-dipole quantum memory and we compare

its performance to that of the controlled reversible inhomogeneous broadening (CRIB) protocol

[84]. In the free-space case, in contrast to the cavity case discussed in the paper, we do not know

the exact conditions for Ein(t) and g(t) which maximize the total efficiency for the controllable-

dipole protocol. In spite of this, we show that it is still possible to achieve very good memory

performance under realistic conditions. We have chosen an incident light pulse that is a Gaussian

with full width at tenth of maximum (FWTM) Tpulse = 300 ns, and a Gaussian profile for g(t),

which is displaced in time relative to the pulse, see Fig. 2.3. We also choose γ = 50 kHz, and

assume that ∆(t) has the form shown in the inset of Fig. 2.3. All of these choices are motivated by

the implementation considerations discussed in the next section. We are interested in the efficiency

of the memory as a function of the optical depth. In our model, the optical depth D(t) = g(t)2L
γc is

a function of time. In order to facilitate the comparison with CRIB we define d = maxD(t) to

indicate the effective optical depth of our system when the dipole has its maximum value.

Fig. 2.4(a) shows the efficiency of the controllable-dipole memory for the above-mentioned

parameters as a function of d, for retrieval in the backward and in the forward direction. As for

other memory protocols including CRIB, the efficiency in the forward direction is limited by re-

absorption, see Ref. [20]. In the backward direction, the achievable maximum efficiency is mainly

limited by the decay rate γ . Note that backward retrieval requires transferring the atomic excitation

to an extra level using an optical control field. Here we have assumed that the pulse is retrieved

immediately after having been stored. Otherwise the storage time also has to be taken into account.

Fig. 2.4(b) shows the efficiency as a function of d for the CRIB memory protocol, based on

the results of Ref. [20]. In order to make a meaningful comparison, we choose the same initial

linewidth γ = 50 kHz for CRIB as for the controllable-dipole memory. In the CRIB protocol the

initial line is broadened through the application of an external field in order to accomodate the
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Figure 2.3: The time-dependent coupling g(t) and input field Ein(t) used in our examples. The
inset shows the time-dependent detuning ∆(t). See text for a more detailed discussion.

spectrum of the input pulse. This can be seen as analogous to the effective spectral broadening

that happens in the controllable-dipole protocol as a consequence of the time dependence of the

transition dipole, making CRIB a natural point of comparison for the present protocol. The input

pulse of Fig. 2.3 has a frequency FWTM of 9.8 MHz. Since broadening the initial line lowers

the optical depth, it is advantageous to choose the width of the broadened line somewhat smaller

than this value. This cuts off the outermost frequency components of the pulse, but enhances the

efficiency for the most important components. In Fig. 2.4(b) we show the efficiency of CRIB for

two different choices of the broadened width. The first (8 MHz) is chosen such that the maximum

achievable efficiency is the same as for the controllable-dipole memory. One can see that in this

case the efficiency for the CRIB memory increases significantly more slowly with d. On the other

hand, for the second choice of broadened linewidth (3.5 MHz) the efficiency initially increases

similarly quickly for CRIB. But then the achievable maximum efficiency is reduced, because a

significant fraction of the input pulse is cut off. Taking these observations together, one can see that

the controllable-dipole memory shows better efficiency performance than the CRIB protocol, even

without full optimization of the pulse shapes. It should be noted that the shape of the broadened
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Figure 2.4: (a) Efficiency of the controllable-dipole memory in free space for readout in the
backward (solid line) and forward (dotted line) direction. In analogy with other quantum memory
protocols such as AFC or CRIB, the forward retrieval efficiency is limited due to re-absorption.
(b) Efficiency for a CRIB memories with two different values for the broadened linewidth, also in
backward and forward direction. See text for a more detailed discussion.

absorption line in CRIB has not been optimized for a Gaussian pulse.

2.7 Appendix A3: Implementation in Tm:YAG

In the following we discuss a potential implementation of the controllable-dipole quantum mem-

ory protocol in a Tm:YAG crystal. We focus on the first crystal-field states of the 3H6(0) and

3H4(0) multiplets, with a transition at 793 nm [63], see Fig. 2.5(a). For a magnetic field in x

direction, the states |2〉 and |3〉, which are employed as ground and excited states in our mem-

ory scheme, are eigenstates of the nuclear spin in x direction with eigenvalues MI of 1/2 and
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Figure 2.5: (Color online)(a) Transition used for the proposed implementation. (b) The corre-
sponding transition dipole moment as a function of the applied magnetic field. See text for a more
detailed discussion.

−1/2 respectively. According to the nuclear spin selection rule ∆MI = 0 the dipole moment

℘23 = 〈2,MI =−1/2|− er|3,MI = 1/2〉 ≡ 0 and the transition |2〉� |3〉 is forbidden. This corre-

sponds to g(t) = 0. When an additional magnetic field is applied in the y direction, the states |2〉

and |3〉 become superpositions of the nuclear spin states corresponding to MI = 1/2,−1/2. Per-

turbative treatment of the electronic Zeeman effect and hyperfine interaction shows that the first

order of perturbation is zero. However, in the second order of perturbation, cross coupling of the

electronic Zeeman effect and hyperfine interaction is taking place, which leads to nuclear spin state

mixing for certain directions of the magnetic field, see [62]. This yields a considerable transition

dipole moment between |2〉 and |3〉 and thus non-zero g(t).

The sensitivity to the direction of the magnetic field is due to the anisotropic gyromagnetic ratio

in Tm:YAG [62]. Based on the crystal-field Hamiltonian approach, one can completely calculate

the magnetic interactions from the crystal-field wave functions. Fig.2.5(b) shows a particular case

of the dependence of℘23 on the direction of B. Using the same definition of local crystal-field axes

as in Ref.[63], we fix Bx = 1T,Bz = 0T , and let By vary from 0T to 0.10T. As a consequence, ℘23

varies from 0 to 0.44℘130 , where ℘130 ≡℘13|(By=0) is the transition dipole moment of |1〉� |3〉

when |By|= 0. Note that ℘13 also varies slightly under the same modulation of the direction of the

magnetic field, see Fig. 2.5. Therefore, with a magneto-dependent transition dipole moment and
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Fig. 2.3; this field dependence also leads to a time-dependent detuning ∆(t) as shown in the inset
of Fig. 2.3.

long-lived upper level (coherence times of order 100 µs have been reported [78]), the transition

|2〉� |3〉 is an excellent candidate for the present scheme. The initial narrow line can be prepared

by spectral tailoring, see e.g. [79].

The speed of controlling g(t) is limited by how fast one can control the magnetic field. Ref.

[73] demonstrated a device composed of an electronic circuit and a low inductance coil capable

of producing rapidly switched magnetic fields with a speed of 0.02T/10ns. Noticing the variation

range of By in Fig.2.5(b), this speed would enable us to control ℘23, and consequently change the

coupling g(t), on a time scale of 100ns, which sets a lower bound for the input pulse duration Tpulse.

This motivates the choice of g(t) and Ein(t) shown in Fig. 2.3. Fig.2.6 shows the time-dependent

magnetic field By that has to be applied in order to produce that form of g(t). This field also leads

to a time-dependent detuning ∆(t) as shown in the inset of Fig. 2.3.

42



Chapter 3

Photonic quantum memory in two-level ensembles based on

modulating the refractive index in time

3.1 Preface

Inventing new quantum memory protocols and studying similarities and differences between the

quantum memory protocols is an important step toward a better understanding of the protocols and

categorizing them. This provides the opportunity to combine different schemes to satisfy several

criteria in one implementation. Such theoretical investigations may lead to a versatile quantum

memory with simpler implementations.

This chapter presents studies of a new quantum memory protocol that allows storing light in

ensembles of two-level atoms by modulating the refractive index of the host medium. One can

imagine an ensemble of atoms in a host, e. g. rare-earth ions doped in a crystal. Results in this

paper show that linear modulation of the refractive index of the host medium in time induces a

position-dependent detuning between the photon and the atoms. This can be used to store and

recall photons. Under certain conditions that are explained in the manuscript, the dynamics of the

proposed system is shown to be equivalent to that underlying the gradient echo memory protocol.

It has to be noted that the gradient echo memory is based on a position-dependent modulation on

the transition energy of the atoms. The experimental implementation is proposed based on the

Tm3+ ions doped in lithium niobate waveguide. A proper external electric field can modulate the

refractive index of the lithium niobate without affecting the transition energy of the thulium ions.

Since this scheme is based on the application of a time-dependent electric field, it could introduce

simplicity in practice compared to the requirement for a position-dependent magnetic or electric

field in the implementation of GEM.

43



This work is published based on an undergraduate project. I supervised calculations that have

been done by the undergraduate student. I refined the calculations and derivations. I analyzed the

proposed physical system for the implementation. Finally, I wrote the manuscript and prepared

responses to the referee reports.

3.2 Introduction

Quantum memory for light is an essential element for the photonic implementation of quantum

communication and information processing [80, 12]. In recent years there has been a lot of work

both on theoretical proposals and on experimental implementations [56, 58]. Thus far optical

control, using relatively strong laser pulses, has been exploited for electromagnetically induced

transparency and off-resonant Raman-type storage [81, 82] in ensembles of three-level systems.

More recently, a direct control of the transition dipole-moment has been proposed that emulates

Raman-type quantum memories in a two-level atomic configuration [83].

In photon-echo based memories [30], the light-matter coupling is controlled in a more indirect

way by exploiting the dephasing and rephasing of inhomogeneously broadened atomic ensem-

bles. This includes the controlled reversible inhomogeneous broadening protocol [84], the atomic

frequency comb protocol [24], and the gradient echo memory (GEM) protocol [85]. The GEM

protocol has allowed the demonstration of the highest memory efficiency (in the quantum regime)

so far [23].

Recently Ref. [86] proposed a quantum memory protocol based on controlling the refractive

index. Considering an ensemble of three-level atoms inside a host medium (e.g. rare-earth ions

doped into a crystal), which is located in a circular optical cavity, the authors showed that a contin-

uous change of the refractive index of the host medium during an off-resonant Raman interaction

between a single photon, a classical control pulse and the atomic ensemble allowed mapping the

state of the single photon into a collective atomic excitation.

Here we consider storing quantum states of light in an ensemble of two-level atoms in a host
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medium, where the refractive index of the medium can be modulated during the interaction of the

light with the atoms. In contrast to Ref. [86] here there is no optical control pulse (which is related

to the fact that we consider two-level instead of three-level atoms) and no cavity. Interestingly, we

find that under certain conditions the considered system leads to dynamics that are equivalent to

those of the GEM protocol; controlling the refractive index of the host medium in time can mimic

the effect of the spatial frequency gradient present in GEM.

This paper is organized as follows. In Sec. 3.3 we derive the dynamical equations for our

system under certain conditions, which we discuss in detail. In Sec. 3.4 we compare these results

to the GEM protocol. In Sec. 3.5 we discuss a possible experimental implementation of our

protocol. Sec. V contains our conclusions.

3.3 Maxwell-Bloch equations

Here we study the propagation of the light and its interaction with two-level atoms inside a host

medium whose refractive index varies in time. We show that in a certain parameter regime the

time-dependent refractive index does not play a role in the propagation equation for the light. In

contrast, it plays an essential role in the dynamics of the atomic polarization. For simplicity, we

assume the field is propagating in a certain direction with a fixed linear polarization. (This is well

justified for our choice of possible implementation in a waveguide, see below.) The wave equation

for the electric field operator is analogous to the classical equation, namely

∂ 2E
∂ z2 = µ0

∂ 2D
∂ t2 = µ0

∂ 2

∂ t2 (εE +P), (3.1)

where E is the electric field, z is the direction of propagation, µ0 is the vacuum permeability,

D is the electric displacement field, ε is the permittivity of the propagation medium and P is

the polarization of the embedded two-level atoms. There are thus two fundamentally different

contributions to D. The εE term is due to the permittivity of the host medium, whereas P describes

the polarization of the two-level atoms that are the actual memory system for the light.
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Consider the case where ε is time-dependent. The permittivity of the medium is related to

its refractive index as ε(t) = n2(t)ε0. We consider a medium with a linearly changing refractive

index, n(t) = ni + ṅt. Based on this, only the first derivative of the refractive index remains in the

Eq. (3.1), giving

(
∂ 2

∂ z2 −
n2(t)

c2
∂ 2

∂ t2 )E =
1
c2 (2ṅ2E +4n(t)ṅĖ)+µ0P̈, (3.2)

where c is the speed of light. We now introduce the slowly varying components of the signal field E

and the atomic polarization P, E = E e−i(ω0t−k0(t)z) and P =Pe−i(ω0t−k0(t)z). Here the wave vector

k0(t) = ki + k̇t = (ni + ṅt)ω0
c is a function of time and k̇ = ṅω0

c , where ω0 is the central frequency

of the signal.

The wave equation can be greatly simplified provided that a number of (realistic) conditions are

fulfilled (see also the appendix). The second-order spatial derivative for E can be dropped provided

that the field amplitude changes appreciably over the length of the medium (such that the derivative

is comparable to E /L) and k0(t)� 1/L. Similarly, the second order time-derivative can be ignored

if ω0� 1/τ , where τ is the duration of the pulse. The same conditions also allow one to drop the

first and second order derivatives of the slowly varying polarization operator. We are interested in

the regime where the extent of the pulse in space (outside the medium), L = cτ , is much greater

than the length of the medium, L [24]. This is a realistic condition which is satisfied even in

experiments with broadband pulses [50]. This allows one to drop the first-order time derivative of

E compared to the first-order spatial derivative. Note that this condition is not crucial; the time

derivative can also be eliminated by transforming the equation to the co-propagating frame as in

Ref. [87], provided that ∆n� ni, where ∆n is the total change in the refractive index.

Finally, by assuming ∆n� ni and k̇L� 2c
nL one obtains the simplified propagation equation

∂E

∂ z
=

iµ0ω2
0

2ki
P. (3.3)

This shows that, under the above conditions, the propagation equation remains unchanged com-

pared to that of systems with constant refractive index (k̇ does not play an appreciable role in the

propagation), see e.g. [87, 24]. The derivation of Eq. (3) from Eq. (2) is discussed in detail in the

46



appendix.

We now derive the dynamics of the polarization of the dopant atoms. The polarization of the

j-th atom is P j = 〈g j|d̂|e j〉σ j
ge, where σ

j
ge = |g j〉〈e j| and 〈g j|d̂|e j〉 is the matrix element of the

corresponding dipole moment component between the ground and excited states. The collective

atomic polarization at a certain position z is the sum over the individual atoms in a slice of width

∆z. The slow component of this collective operator is given by

P =
1

A∆z
〈g|d̂|e〉

Nz

∑
j=1

σ
j

geei(ω0t−k0(t)z j) ≡ 〈g|d̂|e〉N
V

σ̃ge, (3.4)

where we assume equivalent dipole moment for all of the atoms; A and V are the cross-section

area and volume of the light-atom interface; N is the number of the dopant atoms and σ̃ge =

1
Nz

∑
Nz
j=1 σ

j
geei(ω0t−k0(t)z) is the average atomic polarization at position z. The Hamiltonian of the

ensemble of the dopant atoms interacting with the light field can be written as

H = H0 +Hint (3.5)

=
N

∑
j=1

h̄Ωσ
j

ee−〈e|d̂|g〉
N

∑
j=1

σ
j

egE(z j, t)+h.c.,

where we assume uniform excited state energy h̄Ω for all of the atoms. We can now derive the

dynamics of the slowly varying collective atomic polarization using

dσ̃ge

dt
=− i

h̄
[σ̃ge,H]+

∂ σ̃ge

∂ t
. (3.6)

For the next step we assume that all of the atoms are initialized in the ground state and the number

of atoms N � 1. For weak (quantum) signals one can then ignore the change in the excited state

population.

Using Eqs. (3.3,3.4,3.5,3.6), the above definition of the slowly varying field, and including

the atomic excited state linewidth γ , one finds the Maxwell-Bloch equations describing the inter-

action of the light with the collective atomic polarization in a medium with linearly time-varying
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refractive index,

dσ̃ge(z, t)
dt

= −(γ + i(∆+ k̇z))σ̃ge(z, t)+ igẼ (z, t), (3.7)

∂ Ẽ (z, t)
∂ z

= i
nNg

c
σ̃ge(z, t),

where Ẽ =
√

h̄ω0
2εiV

E and ∆ = Ω−ω0 is the detuning. The coupling constant g = 〈e|d̂|g〉
√

ω0
2h̄εiV

,

where ω0 is the central frequency of the pulse and εi = n2
i ε0 is the initial refractive index of the

medium. Note that the time dependence of the permittivity can be ignored in the definitions of Ẽ

and g because we are interested in the regime where ∆n� ni.

The above set of equations shows the role of the linearly changing refractive index of the host

medium in the regime that we have discussed. One sees that the linear change of the refractive

index in time results in a space-dependent frequency shift given by the k̇z term in Eq. (3.7), see

also Fig. 3.1(b). The above Maxwell-Bloch equations are identical to those underlying the GEM

quantum memory protocol [85]. In the next section we therefore discuss in detail how the present

proposal compares to GEM.

3.4 Comparison with Gradient Echo Memory

The dynamical equations (8) derived in the previous section (under a number of realistic condi-

tions) are exactly equivalent to those underlying the GEM quantum memory protocol [85]. In

the GEM protocol, an initially narrow atomic absorption line is broadened by applying an ex-

ternal (longitudinal) field gradient. This longitudinal broadening allows one to accommodate all

frequency components of the incoming pulse, see Fig. 3.1(a). Once the pulse is absorbed, the

produced collective atomic excitation starts to dephase due to the position-dependent detuning.

By inverting the external field that is used to generate the gradient, one can rephase the collective

atomic excitation, which leads to the re-emission of the light.

At first sight it may seem surprising that a time variation of the refractive index leads to a

spatial gradient in the detuning. This can be understood in the following way. In the definition
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Figure 3.1: (Color online) (a) In the GEM protocol, a longitudinal energy shift in the atoms (solid
dots) allows one to cover all of the frequency components of the incoming light. (b) In the protocol
proposed here, due to the linear change of the refractive index in time, the light experiences an
effective position-dependent frequency shift k̇z. This allows different frequency components of the
light to interact on resonance with a spectrally narrow line of atoms.

for the slow-varying field E , E = E e−i(ω0t−k0(t)z), the fast-varying phase −i(ω0t − k0(t)z) has a

temporal and a spatial part. One can define an effective frequency for the light by taking the time

derivative of the phase, ωe f f = ω0− k̇z. One can see that this corresponds to a spatial gradient in

the frequency of the light, leading to a spatial gradient in the light-atom detuning, see Fig. 3.1(b).

A quantum memory can then be realized in analogy with GEM. The light is absorbed while the

refractive index is changing linearly in time. Then the refractive index is kept constant for storage.

The light can be retrieved by changing the refractive index linearly in time again, but with the

opposite sign to before. As for other two-level memory protocols including GEM, the storage

time can be increased if necessary by transferring the population (after the absorption has been

completed) from the excited state to a long-lived third state.

The total shift in the effective frequency over the length of the medium is k̇L. In order to

accommodate all frequency components of the signal k̇L has to be larger than the frequency band-
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Figure 3.2: The efficiency of the proposed memory protocol based on refractive index modulation
in terms of the initial optical depth din. The efficiency is given by e−2γτ(1−exp(−dinγ/k̇L))2. The
figure shows the efficiency for different pulse durations τ , relative to the excited state line width,
γ . We assume k̇Lτ = 2. Depending on the available optical depth, one can optimize the achievable
efficiency by choosing an appropriate pulse duration.

width of the signal, ∆ω ≡ 1/τ . Therefore, k̇L can be understood as the memory bandwidth. This

is equivalent to the role of ηL in GEM, see Fig. 3.1 and [87].

The efficiency of the present quantum memory proposal can be found by analogy to GEM, see

Eqs. (3, 4) in [87]. Converting the equations of motion to the frequency domain, one finds that

the transmitted pulse is attenuated by a factor of exp(−βπ), where β = nNg2

ck̇
. This implies that

the optical depth of the system is d = 2βπ = 2π
nNg2

ck̇
= din

γ

k̇L
. Here d is the optical depth that is

associated with the effectively broadened line, with the initial optical depth din ≡ 2π
nNg2L

cγ
. The

retrieval efficiency is then given by (1− exp(−d))2e−2γτ , see Fig. 3.2. Here we have assumed

that the decay of the excited state only has an effect during absorption and retrieval, but not during

storage. As mentioned before, this can be achieved e.g. by transferring the excitation to a third,

longer-lived state. Hyperfine ground states in rare-earth doped crystals can have coherence times

of many seconds [88].
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3.5 Possible implementation

We now discuss a potential experimental implementation of our proposed protocol. We propose

to use thulium ions doped into a lithium niobate waveguide. This system was used in a recent im-

plementation of an atomic frequency comb memory [50]. Lithium niobate is an attractive host for

the present proposal because of its electro-optic properties, see below. The thulium ions interact

with near-infrared light at a wavelength of 795 nm. The transition is naturally inhomogeneously

broadened. We propose to prepare an initial atomic linewidth of γ = 10 MHz by optical pump-

ing, which is very realistic. We consider the case where k̇Lτ = 2. This assures that the memory

bandwidth is large enough that it can accommodate the incoming pulse. Assuming L = 3 cm this

leads to the requirement ∆n ≈ 1.5 ∗ 10−5. We choose the pulse duration τ = 1/6γ . The above

values assure that ω0� 1/τ , L�L = cτ , k̇L� 2c
nL , ∆n� ni and k0(t)� 1/L, as required for the

derivation in section II. The given length corresponds to an optical depth din ≈ 18 (at the peak) for

a doping concentration of 1.35 ∗ 1020 cm−3, see the supplementary information of Ref. [50, 89].

For the given parameter values one would achieve about 43% efficiency, see Fig. 3.2, which would

be largely sufficient for a proof of principle experiment. Much larger optical depths, which would

allow greater efficiencies (see Fig. 3.2), have already been achieved in other crystals doped with

rare-earth-ions, see [22].

We consider the refractive-index modulation of the ordinary optical axis of lithium niobate by

a fast varying electric field. We consider the case where the crystal is clamped (spatially confined)

and the temperature is a few Kelvin. Under these conditions the refractive index of the ordinary axis

no ≈ 2.26 [90]. The change in the refractive index through the electro-optical effect is governed

by ∆( 1
n2 )i j = ∑k ri jkEk, where i, j = 1 is associated with the refractive index change of the ordinary

axis. This means that a time-dependent external field in a certain direction, Ek, can impose a time-

dependent refractive index for the ordinary axis if there exists a non-zero linear electro-optical

coefficient for that direction, r11k. For lithium niobate r113 ≈ 10 ∗ 10−12m/V and r112 ≈ −3 ∗

10−12m/V [90, 91]. This leads to ∆n ≈ 1.8 ∗ 10−5 under 0.3 ∗ 106− 1.0 ∗ 106V/m electric field,
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depending on the direction of the field in the 2-3 plane. This is equivalent to applying 3−10V to

a system that has 10µm thickness, comparable to the waveguide used in Ref. [50]. The maximum

change in the refractive index in lithium niobate is expected to be 10−3, which is limited by the

breakdown electric field [92].

Applying the external electric field to change the refractive index is potentially accompanied

by level shifts, due to the linear Stark shift, for the atomic ground and excited states. On the other

hand, for a certain type of dopant, by having the external electric field orthogonal to the difference

between the permanent electric dipole moment of the ground and excited states, one can keep the

resonant frequency between these states unchanged. In our proposed system the permanent dipoles

are aligned with the 3-axis [93, 94], therefore the electric field should be applied along the 2-axis

in order to avoid level shifts.

3.6 Conclusion

We have proposed a memory protocol based on varying the refractive index of the host medium

in time, and shown that in a certain regime it is equivalent to the GEM protocol, even though the

latter is based on a spatial frequency gradient. One may wonder why no similar spatial gradient

was seen in the protocol of Ref. [86], which also considered a time-varying refractive index, but

in a Raman-type system, in contrast to the two-level ensemble considered by us. This can be

understood by noting that in the scheme of Ref. [86] the refractive index modulation causes a

spatial gradient in the frequencies for both the signal and the control fields, such that the two-

photon transition frequency remains unchanged. This holds for co-propagating signal and control.

It might be interesting to consider counter-propagating signal and control fields in this context, for

which no such cancelation would occur. This might result in a protocol similar to Raman-GEM

[21].

We found that a relatively small modulation of the refractive index should be able to provide

sufficient memory bandwidth. We proposed a potential implementation in lithium niobate waveg-
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uides doped with rare-earth ions. However, other implementations could also be considered. In

general, it may be easier to control the behavior of the refractive index in time, compared to the

spatial control of the atomic transition frequencies required in standard GEM experiments.

3.7 Appendix: Wave equation simplification

Here we explain in more detail how to obtain Eq. (3) from Eq. (2). Substituting E =E e−i(ω0t−k0(t)z)

and P = Pe−i(ω0t−k0(t)z) into Eq. (3.2) and canceling the fast varying phase gives

(∂ 2
z +2ik0(t)∂z− k2

0(t))E (3.8)

−n2(t)
c2 (∂ 2

t −2i(ω0− k̇z)∂t− (ω0− k̇z)2)E

=
1
c2 (2ṅ2−4in(t)ṅ(ω0− k̇z)+4n(t)ṅ∂t)E

+µ0(∂
2
t −2i(ω0− k̇z)∂t− (ω0− k̇z)2)P.

In the left hand side of the equation, the term k2
0(t)E cancels n2(t)

c2 ω2
0E . The second order spatial

derivative of the field can be dropped compared to the first order, assuming that the field changes

appreciably over the length of the medium, L, and k0(t)� 1
L . Similarly, the second order time

derivative of the field and the first and second order time derivative of the polarization operator can

be ignored compared to the first order derivatives if ω0� 1
τ
. This simplification is valid as long as

ω0� k̇L. These conditions lead to

(2ik0(t)∂z +
n2(t)

c2 (2iω0∂t−2ω0k̇z))E (3.9)

=
1
c2 (2ṅ2−4in(t)ṅω0 +4n(t)ṅ∂t)E −µ0ω

2
0P.

One can rewrite this equation and use k0(t) = n(t)ω0/c to simplify it to

(∂z +
n(t)

c
(∂t + ik̇z))E (3.10)

= (− iṅ2

c2k0(t)
− 2ṅ

c
− 2in(t)ṅ

c2k0(t)
∂t)E +

iµ0ω2
0

2k0(t)
P.

Provided that ∆n� n(t) (and using again ω0 � 1/τ), one has iṅ2

c2k0(t)
E � 2in(t)ṅ

c2k0(t)
∂tE � in(t)k̇z

c E .

The condition ∆n� n(t) also allows one to drop 2ṅ
c E compared to n(t)

c ∂tE . This simplifies the
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wave equation to

(∂z +
n(t)

c
(∂t + ik̇z))E =

iµ0ω2
0

2k0(t)
P. (3.11)

Provided that the extent of the pulse in space, L = cτ , is much larger than the length of the

medium, L, one can ignore n(t)
c ∂tE in comparison with ∂zE , which is the dominant term for the

slowly varying component of the field. Finally, assuming that k̇L� 2c
nL the term in(t)k̇z

c E also can

be dropped compared to the dominant term, leading to

∂zE =
iµ0ω2

0
2k0(t)

P. (3.12)

The coefficient of P can be rewritten as,

iµ0ω2
0

2ki(1+ k̇t
ki
)
≈ iµ0ω2

0
2ki

(1− k̇t
ki
). (3.13)

Under the condition ∆n� ni this can be well approximated by iµ0ω2
0

2ki
, which leads to

∂zE =
iµ0ω2

0
2ki

P, (3.14)

which is the standard wave equation under similar (realistic) conditions in the absence of a time

variation of the refractive index.
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Chapter 4

Raman-type optical quantum memory based on an ensemble of

nitrogen-vacancy centers in a cavity

4.1 Preface

Future photonic quantum technology requires miniaturized quantum memories that can be inte-

grated with other element from photon sources to the detection. Current quantum memories that

are implemented in atomic gas cells have over 10cm length. Rare-earth doped crystals are at about

1cm length. The recent impedance-matched quantum memory has about 2mm length. These sizes

are far beyond the required sizes for integrated quantum photonics. Nitrogen vacancy (NV) centers

in diamond is an attractive candidate as it can be fabricated in sizes that are comparable with the

wavelength of light. Coherence properties of these artificial atoms suggest that NVs could be the

next implementations of the quantum memories.

In this chapter, a scheme to realize the Raman-type optical quantum memory has been proposed

that is based on an ensemble of nitrogen vacancy centers in a diamond that are coupled to a cavity.

The scheme allows generating a collective spin excitation in the presence of the excited state in-

homogeneous broadening through the off-resonant Raman coupling. We present the requirements

for achieving high efficiency and high fidelity.

The manuscript has not been published yet. The work is based on collaboration with several

co-authors. I performed the theoretical analysis and used numerical methods to predict the results

based on the available realistic parameters. Finally, I wrote the manuscript.
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4.2 Introduction

Quantum memories for light [58] are known to be vital for photonic quantum information process-

ing, specifically in long-distance quantum communications based on quantum repeaters [3, 12].

An efficient quantum memory can be utilized as a deterministic single photon source [54]. The

highest available efficiency is > 80% that is achieved in a warm Rb vapor cell and is based on

gradient echo memory protocol in a Λ-system [53]. The similar protocol in a two-level atomic

configuration allowed about 69% efficiency in a highly absorptive rare earth ion doped crystal

[22]. These crystals combined with an impedance-matched cavity have been shown to reach 58%

efficiency with much shorter crystal length (about 2mm length) [48]. However, none of the present

implementations of the quantum memory is suitable to be integrated with other elements for an

on-chip quantum information processing architecture with multiple operant quantum memories.

In this regard, nitrogen vacancy (NV) centers in diamond are attractive systems to be exploited as

quantum memories for photons due to their spin coherence time and efficient light-NV coupling.

The electronic spin coherence time of 0.5s has recently been observed in NV ensembles that opens

a path toward long storage times in electronic spins of NV ensembles, see [95]. NV ensembles

have been used for storage and retrieval of microwave fields, see [96].

In contrast to the rare earth ion doped crystals [22, 97], the large intractable excited state in-

homogeneous broadening of the NV ensembles in addition to their short excited state lifetimes

prevents storage based on the optical coherence. Electromagnetically induced transparency has

been observed in the NV ensemble, where 17% transparency has been achieved [98]. The large

inhomogeneous optical linewidth affects the efficiency of this scheme that prevents quantum stor-

age for optical photons. However, off-resonant Raman coupling approach allows to circumvent the

excited state inhomogeneous broadening and store optical photons in the collective spin coherence

[16, 99].
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4.3 The scheme

Each negatively charged NV consists of 6 contributing electrons in the C3v symmetry that is im-

posed by the environment (diamond) [33]. Fig. 4.1 shows the ground and excited states triplets,

where the ground state splitting of ms =±1 is due to an external background magnetic field. There

are four different orientations for the NV centers in the ensemble. Applying the external magnetic

field allows to select a subgroup of NV centers that are aligned with the magnetic field [40].

A1,2

Ex,y

E1,2

e

e′

3A2−

3A2+

3A20

∆

G
√
N Ω(t)

ms = 0

g

s

preparation π pulse 2.87GHz
B

Figure 4.1: (Color online) The figure shows the ground and excited states triplet for a negatively
charged NV center in diamond. Initially, a microwave π-pulse transfers the population to the
ground state g. The ground states g and s are coupled to the excited state e, where the couplings
are G

√
N and Ω(t). The excited state detuning, ∆, allows off-resonant Raman optical storage in

the presence of the excited state inhomogeneous broadening.

Originally, all NV centers are initialized in the 3A20 ground state with electronic spin of ms = 0.

A preparation microwave π-pulse prepares all NVs in ms =−1 ground state, see below for further

discussion. As shown in Fig. 4.1, the cavity field and the classical control field are both interacting

with NV centers. For storage, the input field is coupled to the cavity and the control field with

the perpendicular polarization is simultaneously applied to the ensemble. This requires a cavity

bandwidth that is larger than the input field’s bandwidth. This allows to store the input field in the
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ground state coherence of NV ensemble. For retrieval, one applies a similar control field to read

the stored pulse out.

It is crucial to consider selection rules in order to recognize active transitions and construct

a proper Hamiltonian for studying the dynamics in this setup. Under the low magnetic field and

low strain condition only spin-conserving transitions are allowed. Therefore, transitions from 3A20

ground state to the Ex,y excited states are cyclic and do not allow a Λ-level configuration with

3A2±. Here, all NVs are prepared in 3A2− ground state and we consider coupling of the 3A2±

and the excited states triplets to realize the Λ configuration. This is similar to the Λ system that

has been employed in [100] to generate entanglement between an optical photon and a solid-state

spin. For practical reasons we choose to study this system in high strain regime (due to linearity

of the polarizations and the increased excited state splitting, see below for more details). In the

high strain regime the excited state triplets split into two branches, where each branch consists

of 3 states. In the upper branch A1,2 excited states are coupled to 3A2−(3A2+) ground states with

x̂(ŷ) linear polarizations, where x̂ and ŷ are determined by the direction of the strain in the xy-

plane of the NV. In the lower branch E1,2 excited states show the opposite polarizations of ŷ(x̂)

to the 3A2−(3A2+) ground states. In the high strain regime, in the lower branch the non-spin-

preserving transition appears that in [101] led to realizing a Λ-level configuration that includes the

3A20 ground state, see [102, 103, 104]. In our model, since the population is transferred to the 3A2−

ground state, we consider the coupling between 3A2± ground states and the A1,2 and E1,2 excited

states in the upper and lower branches. As the excited state inhomogeneous broadening is larger

than the splitting between A1 and A2 (and also E1 and E2) we treat the upper and lower branches as

two inhomogeneously broadened excited state with the opposite polarization selection rules, which

leaves us with a 4-level system. These conditions are studied in [33] under the δ a
E1

strain.

Let us describe the dynamics for this system, where the input and the control field are interact-

ing with an ensemble of four-level artificial atoms (NVs). The following Hamiltonian shows the

58



free evolution and the interaction terms for the proposed scheme.

H = H0 +V, (4.1)

= h̄
N

∑
j=1

δgσ̂
j

ss +(ωp−∆)σ̂ j
ee +(ωp−∆−δe)σ̂

j
e′e′,

−h̄
N

∑
j=1

Ê Ge−iωp(t−z j/c)
σ̂

j
eg + Ê G′e−iωp(t−z j/c)

σ̂
j

e′s

+Ω(t)e−iωc(t−z j/c)
σ̂

j
es +Ω

′(t)e−iωc(t−z j/c)
σ̂

j
e′g +h.c.,

where e, e′, s and g represent A1,2, E1,2, 3A2+ and 3A2− states, respectively, see Fig. (4.1). The

excited state inhomogeneous broadening that we consider later is larger than the energy splitting

between A1 and A2, which justifies to treat these two levels as one that is labeled as e. The same

assumption holds for E1 and E2. In the above Hamiltonian, ωp and ωc are the input and the control

field frequencies; δg and δe are the ground and excited states splittings and ∆ is the input and the

control field detuning from the A1,2 excited states. Ê is the cavity field annihilation operator with

coupling G = 〈e|d̂.ε̂p|g〉
√

ωp
2h̄ε0V and Ω(t) = 〈e|d̂.ε̂c|g〉Ec(t)/2h̄ is the Rabi frequency describing

coupling of the control field to the e− s transition. The G′ and Ω′(t) are the similar quantities for

the unwanted coupling to the e′ excited state.

We are interested in analyzing the collective spin Ŝ = 1√
N ∑

N
j=1 σ̂

j
gsei(ωp−ωc)(t−z j/c) based on dy-

namics of the collective polarizations P̂= 1√
N ∑

N
j=1 σ̂

j
geeiωp(t−z j/c) and P̂′= 1√

N ∑
N
j=1 σ̂

j
ge′e

iωc(t−z j/c)

and coupling to the cavity field Ê . Assuming that the number of NVs, N, is much larger than the

number of input photons leads to simplification of the dynamics of the level populations. In addi-

tion, having ∆� 1/τ , where τ is the input pulse duration, results in adiabatic elimination of the

excited states, see [105, 106]. These give

˙̂S =−(γs +
G2Ê ?Ê

Γ+ i∆
+

|Ω(t)|2
Γ′+ i(δe +δg +∆)

)Ŝ (4.2)

+iG′Ê ?(
iGÊ Ŝ

γ ′− i(δe−δg +∆)
+

i
√

NΩ′(t)
γ ′− i(δe−δg +∆)

)

+iΩ?(
iG
√

NÊ

γ− i∆
+

iΩ(t)Ŝ
γ− i∆

),
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where γs, γ and γ ′ are the ground state spin and the excited states (e,e′) inhomogeneous broadening.

Γ and Γ′ are the excited states lifetimes for e and e′. The cavity field dynamics can be simplified to

Ê (t) = (
G′
√

NΩ(t)Ŝ?

Γ′− i(δg +δe +∆)
− G
√

NΩ(t)Ŝ
γ− i∆

(4.3)

+
√

2κÊin)×
1

κ + G2N
γ−i∆

.

We find the later by assuming that the cavity decay rate, κ , is faster than the cavity field dynamics

that is determined by the input pulse duration, τ . Here, we also replaced P̂ that is found based on

adiabatic elimination of the excited state dynamics. Êin(t) represents the input quantum field. The

cavity input-output equation, Êout(t) =−Êin(t)+
√

2κÊ (t), in combination with Eqs. (4.2,4.3) al-

lows to analyze the proposed memory and study the performance in terms of fidelity and efficiency,

see Sec. (4.6) for a detailed derivation.

We use the above equations to numerically evaluate the single excitation wavefunctions for

the spin and the fields (input, output and cavity fields). In a separate evaluation, we consider a

three-level configuration that only includes e′ as the excited state. Based on this we predict how

much spin excitation (during read-in) and consequently optical noise (in read-out) is generated

due to the unwanted coupling to e′ (E1,2). This is justified as the noise that is generated through

the above-mentioned process is not coherently interfering with the single-photon wave function,

which is evaluated to predict the signal intensity, see Sec. (4.7).

Fig. (4.2) shows our results in which one can compare the retrieved pulse with the input field.

Thanks to the increased excited state splitting (due to strain) the noise is suppressed. The total

efficiency is found based on ηtot =
∫ |Eout(t)|2dt∫ |Ein(t)|2d , where Ein/out(t) = 〈0|Êin/out(t)|1〉 is the single

excitation wave function that is defined based on its corresponding operator. One can compare the

probabilities for reading out the signal and the noise to estimate the fidelity based on 1− Pnoise
Psig

. In

the following we explain physical requirements for a proper NV ensemble in order to provide a

satisfying performance for optical storage in the electronic spin coherence of the NV ensemble.
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Figure 4.2: (Color online) The figure shows the input signal pulse (blue solid line) that is being
stored and after 20ns is retrieved. The pulse bandwidth ∆ω is about 1.9GHz, the excited state
inhomogeneous broadening, γe is 10GHz, the spin inhomogeneous broadening, γs, is 200kHz.
δe is 50GHz and δg is chosen to be 1GHz. The control Rabi frequency is about 3GHz, which
corresponds to applying of about 0.24mW power. The detuning from the excited state, ∆= 16GHz.
These results in about 88% absorption efficiency and about 84% total efficiency. The red thin line
is associated with the predicted noise that contains less than 5% energy of the input light. This
results in about 94% fidelity, see below for more details.

4.4 Implementation

Ideally, one requires an ensemble of NV centers with high density of NVs and low excited state in-

homogeneous broadening (optical linewidth). A sample that is prepared by using a dose of 4∗1016

electrons/cm−3 electron irradiation and annealing at 800°C for 4-5 hours has 10-50 ppb NV density

with FWHM optical linewidth of 15-20GHz. This density of NVs gives 1.755×103-8.775×103

NV/(µm)−3, see [101]. Here, we assume the NV ensemble density of 440 NV/(µm)−3 that is

about twenty times smaller. Based on this, a smaller optical linewidth and spin inhomogeneous

broadening is expected. Here, we assumed the excited state optical linewidth of 10GHz. It has to

be noted that our proposal requires implementation at cryogenic temperatures.

Based on specifications of the cavity, one can estimate number of NVs by assuming that NVs

are in a volume that is equivalent to the cavity mode volume. Here, we require a microcavity with
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cavity linewidth of at least 2GHz in order to accommodate the signal. Coupling a linearly polarized

light is a practical advantage to work at the high strain regime compared to the circular polarization

at zero strain. Opposite polarizations for the input and control field is beneficial to the scheme as

it prevents four-wave mixing due to exciting NVs with the control field.

The cavity quality factor ranges between Q = 104 to Q = 106, see [109, 110, 111]. Here, we

assume Q = 104 which results in cavity amplitude decay rate of κ =
ωp
2Q = 1.48 ∗ 1011Hz. The

mode volume is V = 100(λ/nd)
3, where λ is the wavelength and nd is diamond’s refractive index.

Considering the fact that only a quarter of the NVs contributes in the scheme, this cavity volume

allows to have an ensemble of about N = 80 NV centers in our system. A Rabi frequency of about

Ω0/2π=1GHz per 1mW power with the beam waist of 10µm can be reached. This allows us to

determine the maximum possible two-photon coupling strength. The result in Fig. (4.2) is based on

applying the control field with about 0.24mW power for both the read-in and read-out processes.

The transition dipole moment in NVs are strong compared to that of rare-earth ion doped crys-

tals. In general, this provides a more efficient photon-atom interface. The excited state lifetime is

known to be 12ns. Assuming that only 3.5% of the light goes to the zero phonon line, the single-

photon coupling is about G/2π = 0.9GHz. Even though G′ is expected to be lower than G (which

results in a better fidelity), for simplicity, we assume G = G′. Note that the broad phonon side-

bands are not affecting the proposed process as they are relatively far from the inhomogeneously

broadened zero phonon line.

We described all the requirements and specifications of the NV ensemble and the cavity. In

Fig. 4.2, we show the input signal intensity, |Ein(t)|2, which has ∆ω=1.9GHz, where ∆ω is the full

width at 1/e of the maximum of the intensity. Numerical solution of the differential equation for

the single collective spin excitation is performed based on Eqs. (4.2,4.3) and assuming that there

is no initial excitation stored in the NVs. First, this results in evaluation of the stored excitation

and the part of the input signal that leaks out of the cavity without being stored. Therefore, one

can find the storage efficiency by using, ηs = 1−
∫

dt|Eouts(t)|2∫
dt|Ein(t)|2 , where Eouts(t) is the field that is lost
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during storage. For retrieval, there is an excitation stored in the spin ensemble and there is no input

field present. Using the control field, Ω(t), we can read the stored pulse out. We show that this

1ns input pulse is being stored with an absorption efficiency of ηs ≈ 88% and retrieved after 20ns

with total efficiency of ηtot ≈ 84%. The efficiency can be increased by increasing the control field

strength. The output field can get affected due to the AC Stark shift that is caused by the control

field. The AC Stark shift can be compensated by a proper phase modulation on the input pulse.

This allows to approach 100% efficiency.

4.5 Conlusion and outlook

The electronic spin inhomogeneous broadening of as low as 200kHz has been observed, see [108].

This relatively narrow spin inhomogeneous broadening provides storage time of 100ns without a

significant impact on the efficiency (reduces to about 81%) without application of any rephasing

π-pulse. Applying series of rephasing π-pulses eliminates the limit that is due to the spin inho-

mogeneous broadening, see [14, 106]. Therefore, storage times in our proposal is only limited by

the electronic spin coherence time. The electronic spin coherence times (T2) has been improved to

about 0.5s at 77°K by application of the dynamical decoupling to suppress the NV spin decoher-

ence that is due to magnetic noise, see [95].

In conclusion, we proposed a scheme for storage of optical photons in an ensemble of NV

centers that are coupled to a microcavity. The scheme shows that high efficiencies are possible

with realistic parameters. Thanks to dynamical decoupling techniques long storage times can be

achieved. Coupling to the nuclear spins may allow to increase the storage time even further and

approach the nuclear spin life time of many seconds [40]. Therefore, realization of the on-chip,

efficient and long storage time optical quantum memory becomes plausible due to recent advances

in NVs and the development of the proposed scheme.
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4.6 Appendix A1: Raman couplings for the NV ensemble in a cavity

In this section, I derive the equations of motion for an ensemble of NVs that are interaction with a

single mode cavity field and the control field in order to realize a quantum memory for light. As it

is explained in this chapter and schematically presented in Fig. (4.1), the system can be modeled

as a 4-level system. The cavity field is interacting with 3A2−→ A1,2(| g〉− | e〉) transition, where

the coupling is given by G. Due to the opposite polarization selection rule the cavity field also

couples to the 3A2+→ E1,2(| s〉− | e′〉) transition, where its coupling is denoted by G′. The Rabi

frequency Ω(t) shows the control field coupling to 3A2+→ A1,2(| s〉− | e〉) and Ω′(t) denotes the

opposite interaction with 3A2−→ E1,2(| g〉− | e′〉) transition. The Hamiltonian in Eq. (4.1) is to

consider these interactions and consequently find the dynamics. Using this Hamiltonian and the

Heisenberg equation, dÔ
dt = i

h̄ [Ĥ,Ô]+ ∂ Ô
∂ t , one can find the dynamics for population and transition

operators as below,

˙̂σgg = γegσ̂ee + γe′gσ̂e′e′− iÊ Gσ̂eg + iÊ †Gσ̂ge− iΩ′(t)σ̂e′g + iΩ′?(t)σ̂ge′, (4.4)

˙̂σ ss = γesσ̂ee + γe′sσ̂e′e′− iÊ G′σ̂e′s + iÊ †G′σ̂se′− iΩ(t)σ̂es + iΩ?(t)σ̂se,

˙̂σ ee =−γeσ̂ee + iÊ Gσ̂eg− iÊ †Gσ̂ge + iΩ(t)σ̂es− iΩ?(t)σ̂se,

˙̂σ e′e′ =−γe′σ̂e′e′+ iÊ G′σ̂e′s− iÊ †G′σ̂se′+ iΩ′(t)σ̂e′g− iΩ′?(t)σ̂ge′,

˙̂σge =−(γ− i∆)σ̂ge + iÊ G(σ̂gg− σ̂ee)+ iΩ(t)σ̂gs− iΩ′(t)σ̂e′e,

˙̂σge′ =−(γ ′− i(δe−δg +∆))σ̂ge′− iÊ Gσ̂ee′+ iÊ G′σ̂gs + iΩ′(t)(σ̂gg− σ̂e′e′),

˙̂σ es =−(Γ+ i∆)σ̂es− iÊ †Gσ̂gs + iÊ †G′σ̂ee′+ iΩ?(t)(σ̂ee− σ̂ss),

˙̂σ e′s =−(Γ′+ i(δe +δg +∆))σ̂e′s− iÊ †G(σ̂e′e′− σ̂ss)− iΩ′?(t)σ̂gs,

˙̂σgs =−γsσ̂gs− iÊ Gσ̂es + iÊ †G′σ̂ge′+ iΩ?(t)σ̂ge− iΩ′(t)σ̂e′s.
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It has to be noted that the above operators are the collective operators that are defined based on the

single atomic operators as the following,

σ̂µµ =
N

∑
j=1

σ̂
j

µµ ,where µ = {g,s,e,e′}, (4.5)

σ̂se =
N

∑
j=1

σ̂
j

seeiωc(t−z j/c),

σ̂se′ =
N

∑
j=1

σ̂
j

se′e
iωp(t−z j/c),

σ̂ge =
N

∑
j=1

σ̂
j

geeiωp(t−z j/c),

σ̂ge′ =
N

∑
j=1

σ̂
j

ge′e
iωc(t−z j/c),

σ̂gs =
N

∑
j=1

σ̂
j

gse
i(ωp−ωc)(t−z j/c).

In the above equations, ωp is the resonant frequency of the cavity and ωc is the central frequency

of the control field pulse. Γ and Γ′ are the radiative decay rate of the excited states e and e′. γ = γ ′

are the excited states inhomogeneous broadening and γs is the ground state spin inhomogeneous

broadening. δg and δe denote the ground state and excited state splittings, see Fig. (4.1). As

it is defined above, G = 〈e|d̂.ε̂p|g〉
√

ωp
2h̄ε0V is the single-photon coupling of the cavity field and

Ω(t) = 〈e|d̂.ε̂c|g〉Ec(t)/2h̄ is the Rabi frequency of the control field. G′ and Ω′(t) are defined

similarly for the other excited state and are assumed to be equal to G and Ω(t) correspondingly.

There are simplifications that can be done based on some of the features of the system. As

the number of NVs are much larger than the number of photons, one can assume σ̂gg ≈ N and

σ̂ee ≈ σ̂e′e′ ≈ σ̂e′e ≈ 0. In addition, having ∆� ∆ω , where ∆ω is the input field bandwidth, one
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can assume that ˙̂σge ≈ ˙̂σge′ ≈ 0. Similarly, I assume ˙̂σ se ≈ ˙̂σ se′ ≈ 0. These assumptions results in

P̂ =
iÊ G
√

N
γ− i∆

+
iΩ(t)Ŝ
γ− i∆

, (4.6)

P̂′ =
iÊ G′Ŝ

γ ′− i(δe−δg +∆)
+

iΩ′(t)
√

N
γ ′− i(δe−δg +∆)

,

where P̂ =
σ̂ge√

N
, P̂′ =

σ̂ge′√
N

and Ŝ =
σ̂gs√

N
.

A similar approach can be taken to find the dynamics of the cavity field Ê at below,

˙̂E =−κÊ + iGσ̂ge− iG′σ̂se′+
√

2κÊin, (4.7)

where Êin is the input single-photon field that is to be stored and κ =
ωp
2Q is the cavity decay rate and

Q is the cavity quality factor. The fact that κ� ∆ω allows to assume ˙̂E ≈ 0. These considerations

results in Eqs. (4.2,4.3).

In order to find the quantum memory performance, I first consider the storage of the Êin

field. The above-mentioned equations and the input-output equation allows to evaluate the Eout =

〈0|Êout |1〉 that is the single-photon wavefunction of the output field. Then the storage efficiency

can be determined as it is mentioned in this chapter. After the storage time the stored excitation in

the collective spin of the NV ensemble can be read out by applying the same control field. This

allows to calculate the total efficiency of the quantum memory.

4.7 Appendix A2: Evaluation of the noise

The coupling of the control field to the 3A2−→ E1,2 (g→ e′) is the source of noise in this scheme.

This coupling may lead to the spin excitation by off-resonant excitation of an NV and scattering a

photon to the cavity. This spin excitation can be read out at the retrieval stage and generate optical

noise in the output field. Therefore, here I study the noise by considering the scheme when there

is no input field present. Similar to the previous section one can derive the cavity field and spin
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dynamics as below,

Ê =
G′Ω
√

NŜ†

κ(Γ′− i(δg +δe +∆))
, (4.8)

˙̂S =−(γs +
E †E G′2

γ ′− i(δe−δg +∆)
+

|Ω|2
Γ′+ i(δe +δg +∆)

)Ŝ− E †G′Ω′
√

N
γ ′− i(δe−δg +∆)

.

Application of the control field for the read-out process results in generating field in the cavity and

consequently output field. This is governed by the following equations, where

Ê =− 1

κ + G2N
γ−i∆

GΩ
√

NŜ
γ− i∆

, (4.9)

˙̂S =−(γs +
E †E G2

Γ+ i∆
+
|Ω|2

γ− i∆
)Ŝ− E GΩ?

√
N

γ− i∆
.

Thanks to the strain the splitting between the lower and upper branches of the excited state can be

increased from δe = 14GHz to over δe = 50GHz. Having δe > ∆ one can suppress the effect of the

noise that is due to the opposite coupling of the control field to the lower branch.

It has to be noted that in the numerical calculations the Rabi frequency of the control field is

calculated by

Ω0 =
dzpl

h̄

√
4P

cε0ndπW 2 , (4.10)

where W is the control field beam waist, nd = 2.4 is the refractive index of diamond, ε0 is the

vacuum permittivity and c is the speed of light. dzpl is the transition dipole moment of the zero

phonon line of the negatively charged NV that is given by,

dzpl = 0.035d = 0.035

√
3π2ε0h̄c3Γ

ndω3
p

, (4.11)

where Γ is the excited state lifetime and dzpl is defined based on the transition dipole moment and

the fact that about 3.5% of the coupling is to the zero-phonon line.
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Chapter 5

Precision requirements for spin-echo-based quantum memories

5.1 Preface

Electronic or nuclear spin ground states correspondingly provide few or many seconds lifetime

that could be used for storage. However, spin inhomogeneous broadening in solid-state ensembles

significantly limits the available storage time. Storage of a photon in a spin ensemble generates

a collective spin excitation. The spin inhomogeneous broadening results in the dephasing of this

collective excitation in time scales that are orders of magnitude shorter than the individual spins

coherence time. In order to overcome this limitation, the spin echo technique has to be used. In

the spin echo technique, one uses pairs of π-pulses to invert the spin population before the dephas-

ing happens. Every pair of π-pulses allows to prevent dephasing due to the spin inhomogeneous

broadening.

Here, the effects of pulse imperfections are studied in detail, using both a semi-classical and

a fully quantum-mechanical approach. The results show that high efficiencies and low noise-to-

signal ratios can be achieved for the quantum memories in the single-photon regime for realistic

levels of the control pulse precision. Errors due to imperfect initial state preparation (optical pump-

ing) are also studied. It can be shown that they are likely to be more influential than control pulse

errors in many practical circumstances. These results are crucial for future developments of solid

state quantum memories.

This publication has been done through collaboration with several co-authors. I performed

the quantum mechanical treatment and re-derived the semi-classical calculations. I also wrote the

manuscript and provided a response to the referee reports.
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5.2 Introduction

Quantum memories for light [113, 58] are key elements of quantum repeaters [3, 12], which are

necessary to distribute entanglement over long distances for future quantum networks [114]. Quan-

tum memories based on atomic ensembles [3, 22, 24, 14, 61, 113, 58, 115, 116, 117, 118, 119] are

particularly attractive in practice because the light-matter coupling is enhanced by the large number

of atoms and by collective interference effects. In the retrieval process collective interference can

strongly enhance the re-emission of the stored light in a well-defined direction, compared to the

non-directional background emission. This makes it possible to achieve high retrieval efficiencies

[22, 120, 121, 122] and small noise-to-signal ratios.

For long-distance applications such as quantum repeaters it is essential for the memories to

allow long storage times. This can be achieved by using low-lying atomic states (spin states)

for storage [3, 24, 14, 113, 58, 115, 116, 119]. However, spin states are typically affected by

inhomogeneous broadening, i.e. different atoms in the ensemble have slightly different energies.

For atomic gases this can be due to residual external magnetic fields or intensity-dependent light

shifts (for optical dipole traps). In atomic gases it is possible to work with field-insensitive clock

transitions [123, 124] to suppress inhomogeneous broadening due to magnetic fields.

Solid-state atomic ensembles, such as rare-earth ion doped crystals, are attractive because there

are no unwanted effects due to atomic motion and because solid-state systems promise enhanced

scalability. However, they also have inhomogeneous broadening of the spin transitions. For exam-

ple, in rare-earth doped crystals the rare-earth ions themselves produce a spatially varying potential

due to spin-spin interactions [31, 125].

Inhomogeneous broadening is important because in the absence of control techniques it limits

the coherence time of collective memory excitations to the inverse of the inhomogeneous linewidth,

which is typically in the tens of microseconds range and is much shorter than the desired storage

times. This effect can be compensated using spin-echo techniques, such as the application of a

single or a pair of π pulses. The coherence time can be further extended even beyond the single-
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atom T2 time by applying chains of π pulses (bang-bang control) [14, 126].

In practice the control pulses are never perfect. In a recent experiment [127] the most important

imperfection was shown to be an inhomogeneity in the rf intensity across the sample, leading to a

variation of about 1% in the total pulse area seen by individual atoms.

In Ref. [128] the authors argued that for successful operation in the quantum regime (i.e. when

single atomic excitations are stored) the π pulses would have to be precise to of order 1/N, where

N is the number of atoms. Typically, solid-state ensembles contain of order 107 to 109 atoms, such

a level of precision would thus be completely out of reach. The arguments of Ref. [128] were

criticized in Ref. [14], but to our knowledge the question has not been fully resolved until now.

In the present paper we study this problem in detail. The argument of Ref. [128] was based

on the fact that imperfect π pulses will lead to unwanted atomic excitations, which will cause

background emissions. However, we will see that these emissions are non-collective and hence

non-directional. As a consequence, good memory operation is achievable with realistic π pulses.

There are several different ensemble-based quantum memory protocols. For definiteness, in the

following we focus on the well-known Duan-Lukin-Cirac-Zoller (DLCZ) protocol [3]. However,

with small modifications our results apply to many other protocols, including storage based on

electromagnetically induced transparency [115], off-resonant Raman transitions [116], controlled

reversible inhomogeneous broadening [117], and atomic frequency combs [24].

In the DLCZ quantum memory protocol, as shown in Fig.5.1(a), an off-resonant write pulse

undergoes Raman scattering, leading to the creation of a single photon and a single collective

excitation in the state s. This collective excitation dephases due to inhomogeneous broadening of

the g−s transition, but the application of a π pulse in the middle of the storage time, see Fig.5.1(b),

can prepare a rephased atomic collective excitation at the time of retrieval. A read pulse can now

be applied, which leads to the directional emission of the read photon, see Fig. 5.1(c).

We study the effects of spin-echo related imperfections in the described protocol. We begin

with a semi-classical treatment for uniform errors in the π pulses in section II. Then we give a
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Figure 5.1: Basic level scheme in the Duan-Lukin-Cirac-Zoller protocol [3]. (a) The far detuned
write pulse scatters a write photon and creates a single collective atomic excitation (spin-wave) in
the state s. (b) Applying a π pulse on the g− s transition in the middle of the process interchanges
the roles of g and s, leading to rephasing at the end of storage period. (c) Shining the read pulse
transforms the single collective atomic excitation in g into a read photon.

fully quantum-mechanical treatment for the (most relevant) case of small π pulse errors in section

III, and we show that its results agree with the semi-classical approach. We treat the case of non-

uniform π pulse errors in appendix A. In section IV we consider the effects of imperfect optical

pumping, i.e. an imperfect initial state. In section V we use the semi-classical approach to discuss

the application of multiple π pulses (bang-bang control). In section VI we give our conclusions.

5.3 Semi-classical approach

We start with a semi-classical approach. Here the collective atomic state is treated as a tensor

product of single-atom states. The single-excitation component of this tensor product corresponds

to the true quantum state, which is why the two approaches give equivalent results in the single-

photon regime, cf. section III below.

Consider an ensemble of Λ type three-level atoms with two slightly split ground states g and s,

and an excited state e. At the beginning, all of the atoms are ideally pumped into the ground state

g. Applying the write pulse that scatters a (Stokes) photon, transforms the state of the kth atom at

the position Xk into,

| ψ(k)(t0)〉=| g〉− iξ ei~∆k1.~Xk | s〉, (5.1)
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where ξ represents the contribution of each atom to the collective excitation, and ~∆k1 =~kw−~ks,

where~kw is the~k-vector of the write pulse and~ks that of the scattered (Stokes) photon. For single-

photon storage using an ensemble with N atoms, Nξ 2 = 1. The total atomic state, as the product

of single atomic states, implies that in the limit of ξ → 0 the semi-classical atomic state tends to

quantum mechanical state, see below. For weak light storage this limit is equivalent to limit of

large number of atoms, N� 1.

Now, let us consider the effect of inhomogeneous broadening and the π pulse. In the semi-

classical picture one can easily use unitary evolution of a single atom in absence of the electro-

magnetic field to represent the dephasing (rephasing) before (after) applying the π pulse. The

propagator is given by,

U∆k(t f , ti) =

 1 0

0 e−i∆k(t f−ti)

 , (5.2)

where ∆k is the detuning from the central transition for the kth atom. The ∆k have an inhomoge-

neous distribution with a width Γ. Then, the state of an atom after the time interval τ1 = t1− t0 is

| ψ(k)(t1)〉=U∆k(t1, t0) | ψ(k)(t0)〉. An efficient retrieval is impossible for long storage times such

that Γτ & 1, since the readout amplitude is governed by the average atomic polarization, which is

greatly reduced by the dephasing that takes place due to the temporal phase factors e−i∆k(t f−ti) that

vary from atom to atom. Applying the rf π pulse, which is tuned to the central frequency of the

g− s transition, can bring this random phase into a negligible global phase at a certain time. In

order to represent the π pulse, let us recall the expression of the propagator of two levels of the

atom under a pulsed excitation with the Rabi frequency Ωi in the rotating wave approximation,

Uθ (T ) =

 cos(θi/2) −isin(θi/2)

−isin(θi/2) cos(θi/2)

 , (5.3)

θi = ΩiT,

where T is the temporal duration of the pulse.

The final state after applying a π pulse at t = t1 and waiting the time interval τ2 = t2− t1
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is | ψ(k)(t2)〉 = U∆k(t2, t1)Uθ (T )U∆k(t1, t0) | ψ(k)(t0)〉, where θ = π ± ε and θ = π represents a

perfect π pulse and ε is the error. One can now retrieve the read photon by applying the read pulse.

Hence, we need to consider the spatial phase that comes from the read pulse to find the direction

of the read photon. The spatial phase dependence due to the rf pulse can be ignored, because

~kr f .~XN� 1 for realistic sample dimensions. Considering this fact, the final state after applying the

read pulse is given by,

| ψ(k)
f 〉 = ei~kr.~Xk(cos(θ/2)−ξ sin(θ/2)e−i∆kτ1ei~∆k1.~Xk) | e〉 (5.4)

− ie−i∆kτ2(sin(θ/2)+ξ e−i∆kτ1 cos(θ/2)ei~∆k1.~Xk) | s〉,

where~kr is the~k-vector of the read pulse.

By transferring the population of the state g into an excited state, the spin coherence transforms

into an optical coherence, which leads to emission of the optical echo. The following shows how

the atomic polarization would serve as the source of the echo signal,

Iecho = I0
|Pf |2
µ2 , (5.5)

Pf =
N

∑
k=1

µ〈e | ψ(k)
f 〉〈ψ

(k)
f | s〉,

where, µ is the electric dipole moment and I0 is the radiation intensity of one isolated atom.

It can be seen from eq. (5.4) that terms with atom-dependent temporal phases appear in the

atomic polarization in the eq. (5.5). Since the emission is governed by the average over single

atomic polarizations, only those terms for which these phases are canceled contribute significantly

to the echo intensity. Analyzing different terms in 〈e | ψ
(k)
f 〉〈ψ

(k)
f | s〉 one finds that the term

iξ sin2(θ/2)ei∆k(τ2−τ1)ei(~∆k1+~kr).~Xk is the only one for which one can exclude the atom-dependent

temporal phase, which is called rephasing. This can take place under the condition τ1 = τ2, which

implies that the π pulse has to be applied at the middle of the process.

The dipole moment of each single atom serves as a source of radiation. In the far field ap-

proximation and under the rephasing condition (τ1 = τ2), one can show that the amplitude of the

readout from the whole ensemble in the direction~kro is proportional to ∑
N
j=1 ei(~∆k1+~∆k2).~X j sin2

θ/2,
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~kro = ~kw + ~kr − ~ks

collectively enhanced re-emission

~kro 6= ~kw + ~kr − ~ks
the suppressed background

Figure 5.2: A schematic representation of the collective enhancement at a certain direction that
is given by the phase-matching condition. Non-directional re-emission is suppressed by a factor
1/N, where N is the number of atoms.

where ~∆k2 =~kr−~kro. Hence, for ~∆k1 + ~∆k2 = 0 the readout intensity is proportional to N2. This

corresponds to constructive interference of the re-emission from all of the atoms at a certain di-

rection ~kro =~kw +~kr −~ks. However, even by applying an ideal π pulse the radiation at other

directions is not zero. The background re-emission (non-directional) intensity is proportional to

〈∑N
j,k=1 ei(~∆k1+~∆k2).(~X j−~Xk)〉 = N, where ~∆k1 + ~∆k2 6= 0. Accordingly, the intensity ratio of the col-

lectively enhanced re-emission (directional) and the randomly distributed background re-emission

(non-directional) is N, see Fig. (5.2). For example, for counter-propagation of the write and read

pulses the phase-matching condition gives~kro =−~ks.

However, the error in the π pulse prevents achieving the highest possible the echo amplitude

and presents a source of noise.

Efficiency reduction. By considering these points one can calculate the atomic polarization,

Pf =−iNξ µ cos2(ε/2), because θ = π± ε . Consequently, the intensity of the echo is,

Iecho = I0N2
ξ

2 cos4(ε/2), (5.6)

where I0 has the same definition as in eq. (5.5). Eventually, the total efficiency of any process

depends on the optical depth, performance of the experimental facilities and other theoretical and

experimental details which are related to the protocol and the experimental setup. However, the

present result allows to find the efficiency reduction due to the error in the π pulse that is important

in our analysis.

Noise-to-signal ratio. Due to error in the rephasing pulse (ε 6= 0) there is a noise in the re-
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emission. It is important to analyze the intensity of the noise, because for high memory fidelity the

noise to echo ratio has to be small.

A single π pulse interchanges the states of the atoms from s to g and vice versa. However,

an error in the π pulse produces population in the ground state g even without applying write

pulse at the beginning. This would lead to fluorescent radiation. Hence, it can be distinguished

by the non-zero terms in | ψ(k)
f 〉 for ξ = 0, which means even with no write pulse the error by

itself can produce population in g. Quantitatively, the fluorescent radiation can be specified by

| 〈g | ψ(k)
f

ξ=0
〉 |2= cos2 (θ/2) which is the term in | ψ f 〉 that does not originate from the read-in

process (ξ = 0), but gives a non-zero projection on | g〉. Therefore, the intensity of the noise that

originates from error in the π pulse can be given by,

Inoise = I0

N

∑
k=1
| 〈g | ψ(k)

f

ξ=0
〉 |2 (5.7)

= I0N sin2(ε/2).

Obviously, the fluorescent radiation as the source of the noise has the spatial dependence of a single

photon radiation. Consequently, the semi-classical picture yields an equally distributed noise (non-

directional) that comes from single atom radiation of ensemble of the atoms, because of error in

the rephasing pulse.

In order to analyze the effect of an imperfect π pulse on the fidelity, it is important to study the

noise-to-signal ratio. The following presents the noise-to-signal ratio,

r =
Inoise

Iecho
=

sin2(ε/2)
cos4(ε/2)

, (5.8)

keeping in mind that Nξ 2 = 1 for single-photon storage. The higher the noise-to-signal ratio, the

less fidelity we have. In [127], 1% variation has been realized in the intensity of the rf pulse

that causes the same error in the pulse area. Such error gives quite low noise-to-signal ratio of

0.25× 10−4 and only wastes 0.1% of the efficiency. The semi-classical calculation suggests that

the typical 1% error in the π pulse which is far beyond the 1/N precision, does not impose a

major constraint on the efficiency and fidelity. In addition to the semi-classical calculations, it

75



is interesting to reconsider the problem using the quantum mechanical description. In the next

section, we perform fully quantum mechanical investigation for the same question.

5.4 Quantum mechanical treatment

In this section, we perform fully quantum mechanical analysis on a global error in the π pulse. We

consider an ideal initial state where all the atoms have been pumped into the ground state.

5.4.1 Ideal Protocol

As we discussed before, the large detuning of the write laser from g− e leads to scattering of a

photon and creating a collective atomic excitation. The theory of light-atom interaction is well

established to describe interaction between the field and the atomic dipole moment. In general,

one can represent the interaction Hamiltonian as,

Hint =
N

∑
j=1

G
∫

d~kâ(~k)ei~k.~X j σ̂
j

ρν +h.c., (5.9)

where G = 〈ρ|µ̂ j.~ε|ν〉
√

h̄ω

2ε0V and σ̂
j

ρν = |ρ〉 j j〈ν |, where ρ and ν denote atomic levels g, e and s.

This Hamiltonian shows the interaction between a field and the dipole moment of the jth atom, µ̂ j.

For simplicity, we assume the dipole-field coupling is identical for all the atoms and we have not

considered the transverse profile. One can extract the interaction Hamiltonian for the write laser

and the scattered photon from eq. (5.9), see FIG.5.1(a). By combining the interaction Hamiltonians

and considering adiabatic elimination of the excited, e, one can describe the read-in part of the

process as follows,

He f f
int =

N

∑
j=1

G′
∫

d~ksâ†
s (~ks)ei(~kw−~ks).~X j σ̂

j
sg +h.c., (5.10)

where G′ = 〈s|µ̂ j.~εs|e〉〈e|µ̂ j.~εw|g〉
√

h̄ωs
2ε0V εw(τ) and Ωw(τ) = 〈e|µ̂ j.~εw|g〉εw(τ) is the Rabi fre-

quency of the classical write field.

The unitary evolution under this effective interaction Hamiltonian describes the creation of a

Stokes photon via Raman scattering, which is accompanied by the creation of a collective atomic
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state. The collective state is

| ψ(t0)〉 =
1√
N

N

∑
k=1

ei~∆k1.~Xk | g...s(k)...g〉, (5.11)

where | g...s(k)...g〉 shows all atoms in the ground state and the kth atom in the spin state s and

~∆k1 =~kw−~ks. Here, we neglect the terms with more than one excitation, because we are interested

in single photon storage. The interaction Hamiltonian governs the evolution of the atomic and the

photonic state of the system. Our analysis follows the evolution of the atomic state. However, later

in this section, we will refer to the above discussion in order to find the intensity of the readout

based on the norm of the final atomic state.

One can find the state | ψ(t0)〉 in eq. (5.11) by applying the Schwinger bosonic creation oper-

ator or equally weighted superposition of σ+ =| s〉〈g | operators, J+(~∆k1) = ∑
N
k=1 ei~∆k1.~Xkσ

(k)
+ ⊗1.

The inhomogeneous spin broadening implies that each atom has a slightly different energy than

the other atom’s spin level that indicates any atom will evolve based on its small energy detun-

ing specified by ∆n. After the time interval τ1 = t1 − t0 the state | ψ(t0)〉 will be evolved to

| ψ(t1)〉 = 1√
N ∑

N
k=1 ei∆kτ1ei~∆k1.~Xk | g...s(k)...g〉. The effect of dephasing as a result of inhomoge-

neous spin broadening can be described as an atom-dependent phase accumulation of the single

collective atomic excitation.

The Following operator is appropriate to mathematical modeling of the dephasing after the

time t,

eiΩ̂t =⊗N
k=1ei∆kt|s〉k〈s|, (5.12)

where Ω̂ = ∑
N
k=1 ∆k | s〉k〈s | ⊗1, see [130], where the operator 1 shows the identity operator that

acts on the rest of the atoms. The operator in Eq. (5.12) can be used to show the rephasing after

applying the π pulse. Hence, one can represent the dephased state as | ψ(t1)〉= 1√
N

eiΩ̂τ1J+(~∆k1) |

gg...g〉.

At first let us recall how an ideal π pulse treat the atoms, which it swaps g to s and vice versa.
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One can describe that as eiπ/2Jx = eiπ/2∑
N
j=1 σ

( j)
x ⊗1, where eiπ/2Jx =⊗N

k=1iσ (k)
x , see [130].

After applying the π pulse, the operator eiΩ̂t leads to a rephasing of the collective excitation

because for each term in the collective state the previously non-excited atoms now acquire phases

whereas the previously excited atom doesn’t. Finally, the stored pulse will be retrieved by applying

the read field, leading to the emission of the readout photon, see FIG.5.1(c). The readout part of

the process can be represented by the operator J+(~∆k2) = ∑
N
k=1 ei~∆k2.~Xkσ

(k)
+ ⊗1, that is based on

the same discussion as for the read-in. Eventually, the whole process comprised of creation of

collective excitation, dephasing, π pulse, rephasing and the read pulse that leads to the final state

can be described as | ψ f (~∆k1, ~∆k2)〉= 1√
N

J+(~∆k2)eiΩ̂τ2eiπ/2JxeiΩ̂τ1J+(~∆k1) | gg...g〉.

Using Eq. (5.10) and the analogous Hamiltonian for the readout process it is straightforward to

include the quantum states of the light field for the Stokes and readout photons into the description.

One sees that the emission amplitude for the readout photon can be obtained directly from the norm

of the atomic state | ψ f (~∆k1, ~∆k2)〉. Note that there is no preferred direction for the Stokes photon

emission [131]. As before, we are not really interested in the absolute emission probability, but in

how the probability varies as a function of the direction of emission for the read photon, and under

the influence of errors in the control pulses. The collective enhancement happens again under the

phase-matching condition ~∆k1 + ~∆k2 = 0.

In the ideal case, considering these conditions one can easily derive that

〈ψ f (~∆k1, ~∆k2)|ψ f (~∆k1, ~∆k2)〉= N.

The later result is based on considering an ideal π pulse in the calculations and it takes place under

the phase-matching condition, ~∆k1 + ~∆k2 = 0. As we studied in the semi-classical approach, the

re-emission in other directions (~∆k1 + ~∆k2 6= 0) is negligible for the case with large number of

atoms in the ensemble.

Our discussion here was focused on the case of the DLCZ protocol, but the evolution of the

atomic state is identical in the other quantum memory protocols mentioned in the introduction. The

only difference is that in those protocols the creation of the initial atomic excitation is accompanied
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by the absorption of a single photon rather than its emission.

5.4.2 Global error in the rephasing pulse

We now study the effect of imperfect π pulse as one of the sources of error in the spin echo

memories. The most general error in the π pulse can be considered as a small rotation εk around

a random direction n̂k for each atom that can be represented by the operator e∑
N
k=1 iεk/2~σ (k).n̂(k)⊗1.

This operator can show the effect of the inhomogeneity in the intensity of the π pulse across the

sample [127]. For simplicity, we first consider a global error that can be interpreted as lack of

accuracy in pulse shaping. The most general error that affects each atom differently is studied in

the appendix. The corresponding operator for such error which is equally distributed over all atoms

is eiε/2J.n̂ = eiε/2∑
N
k=1~σ

(k).n̂⊗1.

Essentially, the question of studying the effect of the error in the π pulse is reduced to the

problem of analyzing norm of the state

| ψ f (~∆k1, ~∆k2,ε)〉=
1√
N

J+(~∆k2)eiΩ̂τ2eiπ/2Jxeiε/2J.n̂eiΩ̂τ1J+(~∆k1) | gg...g〉. (5.13)

In order to facilitate analyzing the norm of the state |ψ f (~∆k1, ~∆k2,ε)〉we now simplify the final

state. Since we are only interested in its norm, any unitary operator can be used to simplify the

state. By applying the unitary operator e−iπ/2Jx from the left and adding the identity eiπ/2Jxe−iπ/2Jx ,

one can represent the final state up to a unitary and a global phase as,

1√
N

J−(~∆k2)e−iΩ̂τ2eiε/2J.n̂eiΩ̂τ1J+(~∆k1) | gg...g〉, (5.14)

where J−(~∆k2) = ∑
N
k=1 ei~∆k2.~Xkσ

(k)
− ⊗1. Under the condition τ = τ1 = τ2 and by conducting some

algebra one can derive that e−iΩ̂τeiε/2J.n̂eiΩ̂τ = e∑
N
k=1 iεk/2~σ (k).n̂′(k)⊗1, which shows rotation in a new

direction n̂′(k) = (nx cos∆kτ +ny sin∆kτ)x̂+(−nx sin∆kτ +ny cos∆kτ)ŷ+nzẑ. Finally, by applying

the unitary e∑
N
k=1−iεk/2~σ (k).n̂′(k)⊗1 the final state can be simplified to ÔJ+ | gg...g〉where the operator

Ô is given by,

Ô =
1√
N

N

∑
k=1

ei~∆k2.Xk(ασ
(k)
− +βei∆kτ

σ
(k)
z + γe2i∆kτ

σ
(k)
+ )⊗1, (5.15)
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where α = cos2 (ε/2)+2isin(ε/2)cos(ε/2)−nz
2 sin2 (ε/2), β =−isin(ε/2)cos(ε/2)(nx−iny)+

nz sin2 (ε/2)(nx− iny) and γ = sin2 (ε/2)(nx− iny)
2. This simplification allows us to distinguish

three different terms in the final state based on the effect of ÔJ+ on the | gg...g〉. The first term

corresponds to σ
(k)
− σ

( j)
+ | gg...g〉 which gives δ jk | gg...g〉. The other combination σ

(k)
z σ

( j)
+ in

ÔJ+ yields (−1)δ jk | g..s( j)..g〉.The later gives N2 terms that contains one excitation. Finally, the

σ
(k)
+ σ

( j)
+ leads to N(N−1) terms with two excitations. One can benefit from these terms to repre-

sent the final state as

α | ψ1〉+β | ψ2〉+ γ | ψ3〉, (5.16)

where |ψ1〉= 1√
N ∑

N
j=1 ei(~∆k1+~∆k2).~X j | g..g〉, |ψ2〉= 1√

N ∑
N
j,k=1(−1)δ jkei∆kτei~∆k1.~X jei~∆k2.~Xk | g..s( j)..g〉

and | ψ3〉 = 1√
N ∑

N
j,k=1, j 6=k e2i∆kτei~∆k1.~X jei~∆k2.~Xk | g..s( j)..s(k)..g〉. Obviously, because of different

number of excitations, these terms are perpendicular. Thus, one can study the norm of the final

state, easily.

As it can be seen from the eq. (5.16), because of δ jk, the first term corresponds to the directional

emission of the readout photon. As we discussed in the previous section, see FIG. (5.2), the

readout is strongly peaked around the direction for which all of the single-atom re-emissions can

constructively interfere with each other. The readout intensity at the other directions (the non-

directional background) is suppressed by the ratio 1/N that is a quite small number for a typical

N ∼ 107− 109. Hence, the α term determines the intensity of the echo. In other words, shining

the read laser with~kr =−~kw result in the emission of a readout photon that its intensity is peaked

around~kro =−~ks. The non-directional noise in the re-emission can be attributed to the terms that

correspond to β and γ coefficients, because taking average over position of the atoms leads to

randomly distributed re-emission from each single atom. It can be shown that the norm of the state

in Eq. (5.16) is

|α|2
N
|

N

∑
j=1

ei(~∆k1+~∆k2).~X j |2 + |β |
2

N

N

∑
j=1
|

N

∑
k=1

(−1)δ jkei∆kτei(~∆k1).~X jei(~∆k2).~Xk |2 + 1
N

N

∑
j,k=1, j 6=k

|γ|2. (5.17)

Efficiency reduction. In order to study the worst case scenario, upper bound of the noise

strength and lower bound of the echo intensity have to be studied separately. Considering the
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phase-matching condition it can be shown that Iecho ∝ N|α|2. For small errors, ε � 1 and keeping

terms up to O(ε3), it can be shown that the following lower bound can be achieved for nz = 0,

|α|2 ≤ (1−2(ε/2)2). (5.18)

As in the ideal case the signal intensity is proportional to 1, one can analyze the efficiency re-

duction. So from quantum mechanical point of view the efficiency reduction factor is given by

1−2(ε/2)2 that gives the same results for the typical 1% error as the semi-classical calculation.

Noise. With the aim of studying the intensity of the noise that is proportional to the

1
N
|β |2

N

∑
j=1
|

N

∑
k=1

(−1)δ jkei∆kτei~∆k1.~X jei~∆k2.~Xk |2 + 1
N

N

∑
j,k=1, j 6=k

|γ|2

in the limit of the small errors, ε� 1, we need to discuss the effect of ei∆kτ . For long enough times

that τ is comparable with 1
Γ

, where Γ is the inhomogeneous linewidth, the ei∆kτ becomes a com-

pletely random phase. It can be shown that for random phases φk, |∑k eiφkck|2 = |∑k,l ckc∗l ei(φk−φl)|=

∑k |ck|2, because 〈ei(φk−φl)〉= δkl . Hence we can treat the term that corresponds to β as

1
N
|β |2

N

∑
j,k=1
|(−1)δ jkei~∆k1.~X jei~∆k2.~Xk |2 = N|β |2.

Taking these considerations into account shows that the intensity of the noise is proportional to

1
N
|β |2

N

∑
j=1
|

N

∑
k=1

(−1)δ jkei∆kτei(~∆k1).~X jei(~∆k2).~Xk |2 + N(N−1)
N

|γ|2 (5.19)

≤ N(ε/2)2 max(n2
z (n

2
x +n2

y)(ε/2)2 +n2
x +n2

y)+
N2−N

N
(ε/2)4 max |(nx− iny)

2|2

≈ N(ε/2)2 +O(ε4).

So the choice of uniformly directed error with nz = 0 gives the upper bound for the noise. Obvi-

ously, the second term in the noise intensity is proportional to ε4 that is negligible for the small

errors. Then it leads to Inoise ∝ N(ε/2)2. These results allow us to find the upper bound for the

noise-to-signal ratio.

Let us recall the results for the noise and the echo from the semi-classical approach in eqs.

(5.6,5.7). Obviously, the Taylor expansion of the results obtained in semi-classical treatment and
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eliminating the terms O(ε4) and higher, demonstrates the agreement between the results of the

both approaches in the limit of small errors (ε � 1).

In the quantum mechanical approach the noise is proportional to the term given in eq. (5.19).

The amplitude of the noise shows a correspondence with the fluorescent radiation in the semi-

classical approach. Indeed the spatial phase dependence implies that the direction of the emission

of the noise from each atom varies from one to another, leading to a non-directional noise. Thanks

to collective enhancement, the non-directional noise will not swamp the echo signal, for realistic

control pulse accuracy [127].

5.5 Imperfect initial state and rephasing pulse

An imperfection in the π pulse is not the only source of inefficiency in the spin echo memories. In

our calculations so far we have assumed an ideal situation where all the atoms are initially in the

ground state. Our quantum mechanical approach allows us to study the effect of an imperfect initial

state with n atoms excited to the state s. This can happen in experiments as a result of an imperfect

optical pumping in the initialization of the atomic ensemble. Without loss of generality, we can

consider the initial state | g..gs..s〉 that has n sorted excited atoms instead of randomly positioned

excited atoms. Applying the operator OJ+ gives the final state. We expect the directional echo as

result of applying ∑
N
j,k=1 σ

(k)
− σ

( j)
+ on the initial state | g..gs..s〉. In contrast to the perfect initial case,

this will lead to N− n terms with n excitations correspond to | g..gs..s〉, and also (N− n)n terms

connected with | g..s( j)..gs..g(k)..s〉 which has n excitations. By conducting some algebra, one can

easily show that only the first case gives δ jk which leads to directional (collectively enhanced)

re-emission under the phase-matching condition. This implies that by considering imperfection in

both the initial state and the π pulse, intensity of the echo is proportional to

Iecho ∝
(N−n)2

N
(1−2(ε/2)2). (5.20)

The imperfection in the initial state reduces the intensity of the echo and also introduces a new

source of the non-directional noise. Previously, we analyzed the noise that corresponds to |
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ψ2〉 and | ψ3〉 by finding the upper bound for β and γ . Now, the (N − n)n terms of the form

| g..s( j)..gs..g(k)..s〉 also contribute to the noise. Consequently, as the upper bound, for the term

that corresponds to α can be achieved for nz = 1, one can obtain the following upper bound for the

noise-to-signal ratio r,

r ≤ (N−n)n+N2(ε/2)2

(N−n)2(1−2(ε/2)2)
. (5.21)

Investigating this equation it can be seen that the two different sources of error compete in pro-

ducing noise. For the case with small fraction of excitations in the initial state, n
N � 1, such that

ε2 > 4n
N then the error in π pulse is the dominant term in the noise. Otherwise, in case of 4n

N > ε2

the imperfection in the initial state plays an important role in increasing the upper bound of the

noise-to-signal ratio. For instance, 2% of the atoms not in the ground state, which is a typical

value [22], will cause a 2% error. The error in the π pulse would have to be as large as ε = 0.4 in

order to be comparable in importance.

5.6 Semi-classical treatment of multiple rephasing pulses

So far we have studied the application of a single π pulse. Much longer storage times are achievable

by applying sequences of π pulses. This is also known as bang-bang control. We analyze this case

using the semi-classical approach. We have seen before that semi-classical and quantum treatment

lead to identical conclusions for small errors. The intensity of the signal after applying m pairs of

π pulses is given by,

Iecho ≈ I0N2
ξ

2(1− (2m2−m+1)ε2/2). (5.22)

The intensity that is associated to the noise also can be approximated by Inoise ≈ I0Nm2ε2/2. Thus,

after applying sequence of the rephasing pulses, the noise-to-signal ratio reads

r ≈ m2
ε

2/2, (5.23)

for mε � 1. For instance, with typical 1% error in the π pulse one can benefit from 30 pairs of

rephasing pulses, while still achieving an efficiency factor of 91% and a noise-to-signal ratio of
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0.04. If the pulses are 4 msec apart as in Ref. [14], 30 pairs of pulses correspond to a storage

time of 240 msec. Ref. [127] managed to increase the T2 time to 1 sec, by proper alignment of the

magnetic field, that is much longer than 80 msec in Ref. [14]. This field configuration would allow

one to put the rephasing pulses further apart. For example, one can consider the rephasing pulses

40 msec apart, giving a 2.4 sec storage time with an efficiency factor of 91% and a noise-to-signal

ratio of 0.04.

5.7 Discussion and Conclusion

We have shown that realistic imperfections in the π pulses only have small effects on the retrieval

efficiency of quantum memories, and that the corresponding noise is also acceptable. The latter

fact is due to collective interference. While the emission of the read photon is strongly enhanced

in the direction given by the phase matching condition, the noise due to pulse imperfections is

non-directional. As a consequence, even the use of great numbers of π pulses (bang-bang control)

is realistic at the quantum level. This settles the question raised by Ref. [128].

We have also studied errors due to imperfect optical pumping, i.e. imperfect initial state prepa-

ration. We find that these errors are likely to dominate over π pulse errors in many circumstances,

but that they can also be kept at an acceptable level.

Our discussion was phrased in terms of the DLCZ protocol [3] for concreteness. However, the

same results apply to other ensemble-based quantum memory protocols including those based on

electromagnetically induced transparency [115], off-resonant Raman transitions [116], controlled

reversible inhomogeneous broadening [117], and atomic frequency combs [24].

In conclusion, the prospects for the use of spin-echo techniques in light-matter interfaces at the

quantum level are very good. We hope that our work will further encourage experimental work in

this direction.
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5.8 Appendix-Spatial inhomogeneity in the rf pulse

As we discussed, the main error in rf pulses is the variance in the intensity of the rf pulse that

leads to inhomogeneity of the rf pulse across the sample [127]. Consequently, the error would be

different for the atoms at the different positions. Here we extend our analysis to study such errors.

We study the spatial inhomogeneity in the rf pulse by considering e∑
N
k=1 iεk/2~σ (k).n̂(k)⊗1 as the

operator which represents the error. Therefore, based on eq. (5.13) the final state is,

| ψ f (~∆k1, ~∆k2,ε)〉=
1√
N

J+(~∆k2)eiΩ̂τ2eiπ/2Jxe∑
N
k=1 iεk/2~σ (k).n̂(k)⊗1eiΩ̂τ1J+(~∆k1) | gg...g〉. (5.24)

We can follow the same approach as we used in the paper to simplify the final state that eases

the rest of the calculation. Therefore, the final state | ψ f (~∆k1, ~∆k2,ε)〉 up to a unitary operator and

a global phase is

1√
N

J−(~∆k2)e−iΩ̂τ2e∑
N
k=1 iξk~σ

(k).n̂(k)⊗1eiΩ̂τ1J+(~∆k1) | gg...g〉. (5.25)

Considering the π pulse at the middle of the process, τ = τ1 = τ2, and by conducting some algebra

one can derive that e−iΩ̂τe∑
N
k=1 iξk~σ

(k).n̂(k)⊗1eiΩ̂τ = e∑
N
k=1 iξk~σ

(k).n̂′(k)⊗1, which shows rotation in a new

direction n̂′(k) = (n(k)x cos∆kτ + n(k)y sin∆kτ)x̂+(−n(k)x sin∆kτ + n(k)y cos∆kτ)ŷ+ n(k)z ẑ. Finally, by

applying the unitary e∑
N
k=1 iξk~σ

(k).n̂′(k)⊗1 the final state can be simplified to

| ψ f (~∆k1, ~∆k2,ε)〉= ÔJ+ | gg...g〉, (5.26)

where the operator Ô , which acts on kth atom is given by,

Ô =
1√
N

N

∑
k=1

ei~∆k2.~Xk(α(k)
σ
(k)
− +β

(k)ei∆kτ
σ
(k)
z + γ

(k)e2i∆kτ
σ
(k)
+ )⊗1, (5.27)

and α(k)= cos2 (εk/2)+2isin(εk/2)cos(εk/2)−n(k)z
2

sin2 (εk/2), β (k)=−isin(εk/2)cos(εk/2)(n(k)x −

in(k)y )+ n(k)z sin2 (εk/2)(n(k)x − in(k)y ) and γ(k) = sin2 (εk/2)(n(k)x − in(k)y )2. Finally, the state can be
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simplified to

|ψ f (~∆k1, ~∆k2,ε)〉=
1√
N

N

∑
j=1

α
( j)ei(~∆k1+~∆k2).~X j | g..g〉 (5.28)

+
1√
N

N

∑
j,k=1

(−1)δ jkβ
(k)ei∆kτei(~∆k1).~X jei(~∆k2).~Xk | g..s( j)..g〉

+
1√
N
(

N

∑
j,k=1, j 6=k

γ
(k)e2i∆kτei(~∆k1).~X jei(~∆k2).~Xk)|g..s( j)..s(k)..g〉.

Fortunately, having different number of excitations in the final state simplifies the calculation of

the norm.

As we discussed, the first term contributes in directional emission of the readout photon. Hence,

the α(k)s play role in finding the intensity of the echo. In other words, shining the read laser

with~kr = −~kw result in the emission of a readout photon that is peaked around~kro = −~ks. The

non-directional noise in the re-emission can be attributed to the terms corresponding to β (k) and

γ(k) coefficients, because average over the position of the atoms leads to randomly distributed

re-emission. It can be shown that the following gives norm of the | ψ f 〉 in eq. (5.28),

A2 =
1
N
|

N

∑
j=1

α
( j)ei(~∆k1+~∆k2).~X j |2 + 1

N

N

∑
j=1
|

N

∑
k=1

(−1)δ jkei∆kτ
β
(k)ei(~∆k1).~X jei(~∆k2).~Xk |2 (5.29)

+
1
N

N

∑
j,k=1, j 6=k

| γ(k) |2 .

In order to analyze the efficiency reduction the lower bound of echo intensity have to be studied.

Considering the phase-matching condition it can be shown that Iecho ∝
1
N |∑N

j=1 α( j)|2. For small

errors, ε j� 1 and keeping terms to O(ε3), it can be shown that the following lower bound can be

achieved for n( j)
z = 0

1
N
|

N

∑
j=1

α
( j)|2 ≤ N(1−2(εmax2/)2), (5.30)

where εmax is the largest error and N is number of the atoms. With the aim of studying the in-

tensity of the noise that is proportional to the 1
N ∑

N
j=1 | ∑N

k=1(−1)δ jkei∆kτβ (k)ei(~∆k1).~X jei(~∆k2).~Xk |2

+ 1
N ∑

N
j,k=1, j 6=k | γ(k) |2 for the small errors, ε j � 1, one needs to consider the ei∆kτ as a random

phase, that takes place for long enough times that τ is comparable with the 1
Γ

. It can be shown
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that for random φk, |∑k eiφkβ (k)|2 = |∑k,l β (k)β (l)∗ei(φk−φl)|2 = ∑k |β (k)|2, because 〈ei(φk−φl)〉= δkl .

Hence, one can conclude that |∑N
k=1(−1)δ jkei∆kτβ (k)ei(~∆k1).~X jei(~∆k2).~Xk |2 can be approximated as

∑
N
k=1 |(−1)δ jkβ (k)ei(~∆k1).~X jei(~∆k2).~Xk |2 = ∑

N
k=1 |(−1)δ jkβ (k)|2. By taking these considerations into

account and keeping terms up to O(ε4) give the noise intensity upper bound as

Inoise ≤ N max(n(k)
2

z (n(k)
2

x +n(k)
2

y )(εk/2)4 +(n(k)
2

x +n(k)
2

y )(εk/2)2) (5.31)

+
N2−N

N
max((εk/2)4|(n(k)x − in(k)y )2|2)

= N(εmax/2)2 +O(ε4),

which implies that a uniformly directed error with nz = 0 gives the upper bound for the noise. Ob-

viously, the second term in the noise intensity is proportional to ε4 that is negligible for the small

errors. Then it leads to Inoise ≤ N(εmax/2)2. This shows that the fully quantum mechanical treat-

ment for an inhomogeneous error is in good agreement with the results for global errors derived in

the paper.
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Chapter 6

Conclusion

The emergence of companies that are focused on quantum technologies are an indication of ad-

vances of practical applications. The fast progress within the past decade in quantum memories

promises significant developments in the near future to realize the first real-world implementations

of long-distance quantum communication based on quantum repeaters. For this purpose, develop-

ments of quantum memory protocols and physical systems are essential to approach combination

of higher efficiencies, multimode capacity and longer storage times.

The present thesis contributed to developments of quantum memories by proposing new quan-

tum memory protocols, see Chapter (2,3). Furthermore, nitrogen vacancy (NV) centers are studied

for a new implementation that can lead to the first micron-scale quantum memory. The precision

requirements for the spin echo technique is also studied, due to the importance of long storage time

in quantum repeaters.

In summary, the controllable-dipole quantum memory showed that a scheme equivalent to the

Raman-type quantum memory can be implemented without application of an optical control field.

The scheme proposed a way to store quantum states of light in a two-level system by direct con-

trol of the transition dipole moment and without an engineered inhomogeneous broadening. The

proposal has been analyzed for the in-cavity and free-space cases. For the experimental implemen-

tation, Tm3+:YAG has been proposed, in which the transition dipole moment can be turned on and

off by changes to the angle of the external magnetic field.

The quantum memory protocol based on the refractive index modulation has also been pro-

posed in the present thesis. Interestingly, this scheme resembles the gradient echo memory (GEM).

As opposed to the GEM protocol, there is no modulation on the energy of the relevant atomic tran-

sition. It has been shown that a time-dependent modulation of the refractive index of the host
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medium implies a position-dependent frequency of the photon along the propagation direction.

Lithium niobate is an attractive candidate for refractive index modulation as it is one of the main

materials that are used the electro-optical modulators. Tm3+ doped lithium niobate waveguide

already has been used to implement the AFC protocol [50]. Implementing electrodes along the

waveguide allows to implement this proposal. This can be an implementation of a GEM-like pro-

tocol without difficulties due to application of a position dependent field.

An ensemble of nitrogen vacancy (NV) centers that are coupled to a cavity is examined as a

potential physical system for implementation of quantum memories. As the NV ensembles suf-

fer from a large excited state inhomogeneous broadening, the Raman-type scheme can be used

to circumvent the broadening for storage of optical photons. This proposal allows to implement

micron-scale quantum memories that can be incorporated with sources and detectors for the im-

plementation of an on-chip quantum register.

Finally, precision requirements for the spin echo technique, which is essential for extending the

storage time in many solid-state quantum memories are studied. In Chapter (5), it has been shown

how the imperfection in the initially prepared atomic state and the error in the applied π-pulses for

the spin echo technique can contribute to the noise. Based on the results, for a limited error in the

π-pulses, multiple π-pulses can be used to extend the storage time by about 2 orders of magnitude.

In the present thesis, limited but effective steps have been taken toward more practical solid-

state quantum memories for future applications. However, different aspects of quantum memories

are expected to develop in the future. See the next chapter for a brief description of some of the

foreseeable directions for future studies.
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Chapter 7

Outlook

In my opinion, there are several direction for future studies in the area of quantum memories that

will involve further theoretical and experimental efforts. These future studies may include new

physical implementations, new functionalities for quantum memories, developments of quantum

repeaters and combination of quantum repeaters with satellite quantum communications.

As has been discussed in this thesis, NV centers are a new possibility for small-scale integrable

quantum memories. In addition to the NV centers, hollow-core photonic crystal fibers possess

incredible optical depths that can be employed for efficient quantum memories. Rare-earth ions

doped in ceramic is another promising new physical system. More experimental investigations of

these physical systems are expected in the near future.

Apart from storage in and retrieval from a quantum memory, it is possible to use quantum

memories for straightforward processing tasks inside the memory. More specifically, I will be con-

tributing to proposals for a quantum non-demolition (QND) photon-counting measurement based

on storage and in-memory interference between atomic excitations. In addition, AFC quantum

memory has the potential to be used for storing and interfering multiple pulses in different fre-

quency modes.

One of the main goals for development of quantum memories is the implementation of quantum

repeaters for distributing entanglement over long distances. Based on the developments during the

last few years, there are several groups that are expected to realize quantum repeaters. The first

real-world demonstrations will have limited performance; however, further progress is expected to

approach practical stages.

Recently, quantum communication with satellites has become an ongoing effort in several

groups around the world including one in Canada [132]. This is motivated by the experimental
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demonstration of quantum communication on earth over a distance of 144km. This experiment

can be done between ground stations and moving satellites as the absorption loss is significantly

lower at higher heights above the earth’s surface. In longer terms, this scheme can be combined

with quantum repeaters for global entanglement distribution.
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[18] S.A. Moiseev and S. Kröll, Phys. Rev. Lett. 87, 173601 (2001).

[19] B. Kraus et al., Phys. Rev. A 73, 020302(R) (2006).

[20] N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Phys. Rev.A 75, 032327 (2007).

[21] M. Hosseini et al., Nature 461, 241 (2009).

[22] M. P. Hedges, M. J. Sellars, Y.-M. Li, and J. J. Longdell, Nature 465, 1052 (2010).

[23] M. Hosseini, G. Campbell, B.M. Sparkes, P.K. Lam and B.C. Buchler, Nature Physics 7, 794

(2011).

[24] M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Phys. Rev. A 79, 052329 (2009).

[25] M. Afzelius et al , Phys. Rev. Lett. 104, 040503 (2010).

[26] M.U. Staudt, S.R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche,

W. Sohler, W. Tittel and N. Gisin, Phys. Rev. Lett. 98, 113601 (2007).

[27] Hamidreza Kaviani, MSc Thesis, University of Calgary, December 2012.

[28] G. Hétet, D. Wilkowski and T. Chaneliére, preprint arxiv:12080677 (2012).
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