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Abstract

One approach to the development of quantum search algorithms is the quantum walk. A

spatial search can be effected by the continuous-time evolution of a single quantum particle

on a lattice or graph containing a marked site. In most conceivable physical applications,

however, one would rather expect to have multiple interacting particles. In bosonic sys-

tems at zero temperature, the dynamics would be well-described by a discrete non-linear

Schrödinger equation. In this thesis we investigate the role of non-linearity in determining

the efficiency of the spatial search algorithm within the quantum walk model, for the com-

plete graph. Our analytical results indicate that the search time for this non-linear quantum

search scales with size of the database N like
√
N , equivalent to linear spatial search time.

The analytical results will be compared with numerical calculations of multiple interacting

quantum walkers.
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Chapter 1

Introduction

My experience with quantum mechanics and its peculiar outcomes resembles the story of

Alice′s Adventures in Wonderland [1]. One of the most fascinating parts of my wonder-

land, quantum computing, was first revealed by Richard Feynman [2] in one of his famous

talks, when he said: “it is impossible to represent the results of quantum mechanics with a

classical universal device.” He was suggesting that it is possible to improve the efficiency of

computation by using quantum effects.

Quantum computing is an interdisciplinary field of science which is mainly about con-

structing quantum computers and quantum information processing systems with the help

of counter-intuitive quantum mechanical laws of nature. Although quantum computing is

a young field of research, it has already found many applications in science and technology

such as computational geometry [3], pattern recognition [4, 5, 6], and quantum games [7]. A

comprehensive introduction to quantum information and quantum computing can be found

in [8]. Quantum computing as a part of this wonderland has many colourful and outlandish

corners. In 1994, Shor [9, 10], astonished the world by his quantum algorithm which has

polynomial time for factoring integers. Another surprising result came out in 1996, Grover’s

search algorithm [11]. Grover introduced an algorithm which is quadratically faster than

classical search algorithms. This sequence of events drew a huge amount of attention to this

field and turned it into one the most active fields of research in physics and computer science.

Searching is an important problem in computer science and quantum computing. One

of the most basic classical search problems is the algorithm for finding a special item in an
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unsorted database with N items. In order to find that item the algorithm should check all

the items in the database until it finds that specific item. On average half of the items in

the database have to be checked before finding the correct one. The best classical searching

time is O(N) which means it has order of N . However in quantum mechanics the story is

totally different. Lev Grover [11, 12] introduced a quantum search algorithm which can find

a special item in an unsorted database with N items quadratically faster than the classical

search algorithms. In other words the time scaling of this quantum mechanical search algo-

rithm is O(
√
N). Bernstein et al. [13] showed that Grover’s algorithm is optimal and it is

faster than any classical search algorithm. Although Grover’s search algorithm is promising,

it cannot be easily applied to physical problems. The reason for this is that Grover’s algo-

rithm is designed for a combinatorial space search. In other words Grover’s search algorithm

does not provide any information about physical structure of its elements for a real physical

system.

Classical random walks are well-known classical Markov chains. Markov chains are named

after the Russian mathematician Andrey Markov. It is a mathematical discrete-time memo-

ryless system where transitions from one state to another occur in a set of finite or countably

infinite states [14]. Memoryless, which means that the future of the system depends only on

the present state of the system and it is independent of the past. The most famous example

of a Markov chain is the drunkard’s walk, a random walk on a discrete line which for every

step the probability of going to the left and right is equal. Markov process is the continuous-

time version of a Markov chain. Markov chains and processes have many applications in

different fields of science and technology such as chemistry [15], biology [16], economics and

finance [17]. For instance the PageRank algorithm used by Google is a good example of the

application of a Markov chain [18].
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Among all the mathematical methods and tools employed in classical stochastic algo-

rithms, it has been shown that classical random walks as a particular kind of stochastic

process provide a powerful framework for classical algorithms. Moreover, random walks have

a wide range of applications in different fields of science such as biology [19], physics [20],

finance theory [21], and earthquake modelling [22]. Likewise, quantum walks, the quantum

mechanical counterpart of classical random walks, can provide powerful algorithmic tools for

quantum algorithms. It has been shown that quantum walks provide quantum algorithms

that are more powerful than the best-known classical algorithms [23]. They can also be used

for describing physical phenomena such as quantum state transfer in spin chains [24, 25] and

energy transport in biomolecules [26].

The concept of a quantum walk was first introduced in the late 80s and early 90s by

Gudder [27] and Aharonov et al. [28]. There are two types of quantum walks: discrete-time

quantum walks and continuous-time quantum walks. The difference between these two kinds

of walks is their evolution operator in time.

The history of discrete-time quantum walks in physics, like their nature, is intriguing.

It was first modelled mathematically by Feynman [29] in a totally different context, in the

discretization of the Dirac equation. In the context of quantum computing and quantum

information, discrete-time quantum walks were first reintroduced by Meyer [30, 31] in his

work on quantum cellular automata. In 2001, Aharonov et al. [32] and Ambainis et al. [33]

demonstrated that they represent a powerful quantum computational tool.

In order to describe the mathematical model of a discrete-time quantum walk, two quan-

tum mechanical systems are needed, a quantum walker and a coin [23]. For a discrete-time

quantum walk on a line Fig. 1.1, to every point j on the line we assign a quantum state |j〉.
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1 2 3 40-1-2-3-4

Figure 1.1: Discrete-time quantum walk on a line.

Therefore the position Hilbert space of the walker Hp is spanned by basis states {|j〉 : j ∈ Z}.

States of the discrete-time quantum walk live in H = Hp ⊗Hc where Hc is the coin-space.

For the case of a line the coin space Hc spanned by basis states {| ↑〉, | ↓〉}, the translation

operator of the quantum walker can be written as

S = | ↑〉〈↓ | ⊗
∑
j

|j + 1〉〈j|+ | ↓〉〈↑ | ⊗
∑
j

|j − 1〉〈j|. (1.1)

The Hadamard coin operator is an unbiased unitary coin with the following properties

CH | ↑〉 =
1√
2

(| ↑〉+ | ↓〉) ; (1.2a)

CH | ↓〉 =
1√
2

(| ↑〉 − | ↓〉) . (1.2b)

The evolution of the system in time from n to n + 1 can be written via a unitary operator

in the following form:

|Ψ〉tn+1 = S.(CH ⊗ I)|Ψ〉tn . (1.3)
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Although discrete-time quantum walks are quantum mechanical analogues of classical ran-

dom walks, it has been shown that they have counterintuitive and fascinating behaviours.

The limiting probability distribution of an unbiased classical discrete-time random walk on

an infinite line approaches a Gaussian distribution with mean zero and variance σ2 = Ns,

where Ns is the number of steps. Nayak et al. [34] showed discrete-time quantum walks on a

line with the Hadamard coin and a symmetric initial condition (|Ψ0〉 = 1√
2

[| ↑〉+ ı| ↓〉]⊗|0〉)

does not approach a Gaussian distribution and more surprisingly σ2 = N2
s . Moreover Am-

bainis et al. [33] and Bach et al. [35] showed that the escaping probability of a quantum

walker in a Hadamard walk on a line with an absorbing wall is not zero. The escaping proba-

bility in the classical case is zero and the walker will get absorbed by the wall. Discrete-time

quantum walks are the subject of an active field of research, these examples being just the

tip of the iceberg.

Continuous-time quantum walks are the quantum mechanical analogs of continuous-time

classical Markov chains. They were first introduced by Farhi and Gutmann [36]. The main

difference between this model and the discrete-time model is that the Hilbert space for the

continuous-time case is Hp, the Hilbert space for the position of the walker, and there is no

need for coin flipping or a coin unitary operator. In 2002, Childs et al. [37] defined a general

formalism for continuous-time quantum walks on a graph. In this model the dynamic of the

state is described via the time-dependent Schrödinger equation

ı~
d

dt
|Ψ〉 = H|Ψ〉, (1.4)

where H is the Hamiltonian for the continuous-time quantum walk. He defined the Hamil-

tonian with the help of a probability generator matrix of a graph Mp. Continuous-time

quantum walks will be introduced and discussed in more detail in the next chapter.

Quantum walks can be powerful algorithmic tools for designing and implementing quan-
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tum algorithms. A quantum algorithm for finding a triangle in graph G [38, 39] and the

graph collision problem [40] are interesting examples of quantum algorithms based on quan-

tum walks. Refs. [23, 41, 42, 43, 44, 45] provide comprehensive reviews and introductions to

quantum walk-based algorithms. All these algorithms follow a general recipe which consists

of two important steps:

I) Defining a suitable unitary operator for describing the time evolution of the system for

the discrete case or an appropriate Hamiltonian for the continuous case.

II) Finding a set of convenient measurement operators for finding the position of the quan-

tum walker.

In 2003, the first connection between quantum walk-based algorithms and the quantum

search algorithm was made by Shenvi et al. [46]. I quote a sentence from their article which

shows the crucial role of this article in the history of quantum computation and quantum

information: “However, previous to a very recent paper by Childs et al. [47], there had been

no quantum algorithms based on the random walk model.” In this article Shenvi et al. used

the discrete-time quantum walk as a quantum search algorithm on a hypercube [48, 49] with

N = 2n vertices, where n is the dimension of the hypercube. They showed the searching time

for this algorithm is O(
√
N). In other words they showed that this discrete-time quantum

walk search algorithm can be a spatial simulation of Grover’s search algorithm.

Childs and Goldstone [50] developed a spatial search algorithm via continuous-time quan-

tum walks based on the Farhi and Gutmann [36] continuous model. In this model they

marked a vertex w on a graph G and they introduced the marking Hamiltonian as the

projection operator of the state of a marked vertex

Hw = |w〉〈w|, (1.5)
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and they used the following Hamiltonian for describing the time evolution of the system

H = −γL− |w〉〈w|, (1.6)

where γ is the hopping rate between two adjacent vertices of the graph G and L is the

Laplacian of G. They showed that for a complete graph, hypercube and d-dimensional

square lattice when d > 4, the search time for finding the the marked site w with this model

is O(
√
N). For the complete graph with N vertices, the search time of this spatial search

algorithm is O(
√
N), with the search time T = π

2

√
N . They showed that when γ = 1

N
the

probability of finding the quantum walker at the marked vertex w, at T is

|〈w|Ψ(T )〉|2
γ= 1

N
= 1. (1.7)

In the next chapter I introduce their model with more details and reproduce the above re-

sults with a different mathematical approach.

Later in 2004 [51], by adding an additional degree of freedom and using the Dirac Hamil-

tonian they showed when d ≥ 3 quadratic speed-up is attainable and when d = 2 the

searching time is O(
√
N log N). This new result perfectly matches the Ambainis et al. [52]

discrete-time based algorithm.

Thus far, all the quantum walk algorithms I have reviewed in this introduction are run

by a single quantum walker. If we substitute the single quantum walker by M identical

non-interacting walkers for one of these algorithms, the results of the algorithm remain

unchanged. Intuitively the problem of a quantum walk-based algorithm with M identical

non-interacting quantum walkers is reducible to the problem of M separate identical algo-

rithms with a single quantum walker. An immediate question that arises is then: what

would happen if we substitute the single quantum walker with M indistinguishable inter-

acting quantum walkers? In quantum mechanics, the only indistinguishable particles that
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exist in nature are bosons and fermions. Boson wave functions do not have to be antisym-

metrized; therefore, they do not satisfy the Pauli exclusion principle. Unlike fermions, there

is no restriction on the number of bosons that can occupy a given site. For this reason,

bosons are ideal candidates for this purpose. The goal of this research is to investigate the

role of substituting the walker in a continuous-time quantum walk [50] by interacting bosons

at zero temperature.

Bose-Einstein Condensation (BEC) was first introduced by Bose [53] and Einstein [54, 55],

in 1924. Wolfgang Ketterle, Eric Cornell, and Carl Wieman first observed BEC in 1995, and

won the Nobel prize for their work in 2001 [56, 57]. Due to a successful and promising series

of experiments with trapped atoms, started by Anderson et al. [58] and Davis et al. [56],

BEC has become one of the hottest topics in physics. There has been great theoretical and

experimental effort in this field since then. Comprehensive reviews and introductions to

BEC can be found in [59, 60, 61].

In 1947, Nikolay Bogoliubov [62, 63] developed a mathematical description for uniform

weakly low-temperature Bose gases. In the early 1960s Gross [64, 65] and Pitaevskii [66] im-

proved Bogoliubov’s model for nonuniform zero-temperature weakly interacting Bose gases.

This extension yielded the celebrated Gross-Pitaevskii equation, also known as the non-linear

Schrödinger equation

ı~
∂

∂t
ψ(~r, t) =

(
−~2∇2

2m
+ Vext(~r) + g|ψ(~r, t)|2

)
ψ(~r, t), (1.8)

where

g =
4π~2as
m

. (1.9)

Here m is the mass of the boson and as is the s-wave scattering length, a single parameter

for characterizing the binary collisions at low energies and ~ is Planck’s constant. This equa-

tion describes the wave function of a Bose-Einstein condensate for a large number of bosons

8



at zero temperature. Note that ψ(r, t) is the single-particle quantum state occupied by M

atoms, and is therefore normalized as
∫
d~r|ψ(~r, t)|2 = M .

As mentioned in Eq. (1.8), the quantum mechanical model for interacting bosons at zero

temperature is non-linear. The non-linear model is strictly valid at zero temperature. There-

fore if we substitute the single quantum walker with interacting bosons at zero temperature,

the continuous-time quantum walk model becomes non-linear. The question we want to

address in this thesis is the following: is it possible to perform a quantum spatial search al-

gorithm with this non-linear model? If so, it would immediately imply that physical systems

with many interacting bosons could be useful for quantum computation. Non-linearity can

also change the time scale of a dynamical system [67] which raises another crucial question:

does this non-linearity change the scaling of search time of the algorithm?

This thesis is organized as follows. In Chapter 2 I introduce the Childs and Goldstone

model [50]. I define the complete graph and its mathematical properties. I rederive their

results for the case of a complete graph with a different mathematical approach. In Chapter

3 I use this approach as a basis for my calculations. In Chapter 3 I derive the Hamiltonian for

interacting bosons in a discrete space and I define the mathematical model for a non-linear

continuous-time quantum walk on a graph G. I apply this model to the complete graph.

Using the symmetry of the complete graph, I reduce this problem to a two-dimensional

non-linear problem. I also show it is possible to have a successful search (complete search)

and quadratic speed-up is obtainable with this non-linear search algorithm. I conclude and

discuss possible future directions in Chapter 4.
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Chapter 2

Continuous-time quantum walk on a complete graph

2.1 Mathematical introduction

In this section I introduce the Childs and Goldstone [50] continuous-time quantum walk

algorithm in more detail. I reproduce the results of this model for a complete graph with N

vertices. In order to achieve this goal I use a different mathematical approach. Later I use

this method as a basis for solving the non-linear case. As shown in [50], the Hamiltonian for

this model has the form

H = −γL−Hw. (2.1)

Here Hw is the marking Hamiltonian, Hw = |w〉〈w|. This give the Hamiltonian the form

H = −γL− |w〉〈w|, (2.2)

where γ is the hopping rate between two connected vertices in graph G, w is the marked ver-

tex, and L is the Laplacian matrix for the graph G. I define the Laplacian matrix L = A− D.

A is the adjacency matrix for G and it shows the connectivity of the graph as

Aij =

 1, (i, j) ∈ E

0, otherwise
. (2.3)

Graph G is defined as an ordered pair of two sets G = (V,E). V is a set of vertices and E is

a set of edges. If the vertex i is adjacent to vertex j then (i, j) ∈ E. In this study I assume

G is an undirected graph which means the edges have no specific direction. Therefore if

(i, j) ∈ E then (j, i) ∈ E.

D is the diagonal matrix with Dii = deg(i), the degree of a vertex i. The degree of vertex i

10



1

2

3

4

5

Figure 2.1: An arbitrary undirected graph G with 5 vertices and 7 edges.

is defined as the number of vertices adjacent to i.

For instance A and D, for the graph in Fig. 2.1, have the form

A =



0 1 0 1 1

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

1 1 0 1 0


, D =



3 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 3


. (2.4)

Therefore the Laplacian matrix takes the form:

L =



−3 1 0 1 1

1 −3 1 0 1

0 1 −2 1 0

1 0 1 −3 1

1 1 0 1 −3


. (2.5)

In the next section I define the complete graph and I introduce some of its mathematical

properties.
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2.1.1 Mathematical properties of a complete graph

In this section I define the complete graph and I review some of its mathematical properties

such as the Laplacian and adjacency matrices and their eigenvalues and eigenstates. In

graph theory a complete graph is a graph in which every pair of vertices is linked by a

unique undirected edge. In graph theory a complete graph with N vertices is denoted by

KN . Some sources claim that the letter K in this notation comes from the German word

komplett. However there are some sources that claim the notation comes from Kazimierz

Kuratowski’s name, because of his great contributions to graph theory. Fig. 2.2 shows the

drawings of two complete graphs resulting when vertices are placed on a regular polygon.

Such a graph is also known as a mystic rose. In the general case of KN , each vertex has N−1

neighbours; in other words, the graph is maximally connected. Therefore the complement of

a complete graph is an empty graph. This maximal connectivity yields maximal accessibility

for the complete graph which means every vertex is connected to every other vertex by one

edge. Because of this property the complete graph can be used as the most ideal arrangement

of a physical database.

2.1.2 Adjacency and Laplacian matrix

Since the complete graph is fully connected, the adjacency matrix has a simple form. In this

study I assume that the graph does not contain self loops, so that all the diagonal terms are

12



Figure 2.2: K8 and K20, complete graphs with 8 and 20 vertices.

zeros and the rest are one. This gives the adjacency matrix the form

A = J − I =



0 1 . . . 1

1 0 . . . 1

. 1 . .

. . . .

. . 0 1

1 1 . . 1 0


, (2.6)

where J is the all -1 matrix and I is the identity matrix. One can write the characteristic

polynomial for the complete graph’s adjacency matrix in the form of

PKN (λ) = (λ−N + 1)(λ+ 1)N−1. (2.7)

If I set the characteristic polynomial to zero, it gives the eigenvalues or spectrum of the

complete graph’s adjacency matrix. By solving PKN (λ) = 0 for λ, one obtains

λ :

 λ1 = −1 (N − 1 times)

λ2 = N − 1
, (2.8)
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which shows that the adjacency matrix for KN without self-loops is (N −1)-fold degenerate.

In order to find the eigenvectors of the adjacency matrix for KN , one can write A in the

following form:

A = N |S〉〈S| − I, (2.9)

where I is the identity matrix and |S〉 is a normalized vector with the following form:

|S〉 =
1√
N

(1, 1, ..., 1)†. (2.10)

Therefore the corresponding normalized eigenvector for λ2 is |S〉

A|S〉 = N |S〉〈S|S〉 − I|S〉 = (N − 1)|S〉. (2.11)

Since A is (N−1)-fold degenerate, the rest of the eigenvectors can be any (N−1)-dimensional

set of orthogonal vectors which live in the hyper-surface defined by the normal vector |S〉.

Moreover, KN is a regular graph with degree N − 1, therefore D takes the following form:

D = (N − 1)I, (2.12)

where I is the identity matrix. Therefore the Laplacian matrix takes the following form:

L = A−D =



−(N − 1) 1 . . . 1

1 −(N − 1) . . . 1

. 1 . .

. . . .

. . . 1

1 1 . . 1 −(N − 1)


. (2.13)

Since the matrix D is a multiple of I, the Laplacian matrix has the same eigenvectors as the

adjacency matrix and the spectrum of L is just a constant shift in the adjacency matrix’s

spectrum,

l :

 l1 = −N (N − 1 times)

l2 = 0
. (2.14)
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2.2 Continuous-time quantum walk on a complete graph

In this section I want to solve the time-dependent Schrödinger equation under the Hamil-

tonian of Eq. 2.2 with |S〉 as the initial state. A complete search is a search in which the

probability of finding the particle in the marked site or vertex approximately reaches one for

some value of time T . Since the goal of the search algorithm is to find the marked vertex it

should be a unique property of the marked vertex. T is called the hitting time or search time

of the algorithm. As mentioned earlier, γ is the hopping rate between two adjacent vertices.

This algorithm gives a high probability of finding the quantum walker in the marked vertex,

for some value of γ called critical γ. As pointed out above, the adjacency and Laplacian

matrices for the complete graph have only two distinct eigenvalues. This property suggests

a symmetry which reduces our problem to a two-dimensional problem. As shown in Fig. 2.3,

swapping two unmarked vertices i and j does not change the configuration of KN and fur-

thermore, it keeps the Hamiltonian of the system unchanged.

Since swapping two unmarked vertices does not change the Hamiltonian, one might expect

that if the search starts in a uniform superposition of all vertices, all the unmarked ver-

tices must have the same quantum state or in a more mathematical form ∀ i, j (i 6= w, j 6=

w) ψi(t) = ψj(t), where ψi ≡ 〈i|ψ〉 and ψj ≡ 〈j|ψ〉. Fig. 2.4 shows the numerical results

of the spatial search on K8 based on the continuous-time quantum walk. As shown these

results confirm this symmetry. However here I wish to prove this symmetry analytically.

To accomplish the proof, I define the function ξij in the following form:

ξji ≡ ψj(t)− ψi(t). (2.15)

Therefore I can write the derivative of ξij with respect to time as

˙ξji = ψ̇j − ψ̇i. (2.16)
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Figure 2.3: Geometrical representation of the complete graph

To find the ψ̇j, I use the time-dependent Schrödinger equation for the vertex j. Henceforth

I assume ~ = 1,

ı〈j| d
dt
|ψ〉 = 〈j|(−γL− |w〉〈w|)|ψ〉. (2.17)

According to the definition of the Laplacian matrix,

L|j〉 = (A− (N − 1)I)|j〉 =
N∑
m6=j

|m〉 − (N − 1)|j〉 =
N∑
m=1

|m〉 −N |j〉. (2.18)

By substituting this result into Eq. (2.17), ψ̇j takes the following form:

ψ̇j = −ı[−γ(
N∑
m=1

ψm −Nψj)− δj,wψw]. (2.19)

By following the same procedure for ψi, one obtains

ψ̇i = −ı[−γ(
N∑
m=1

ψm −Nψi)− δi,wψw]. (2.20)

Therefore one can write ˙ξji as follows

˙ξji = −iγN(ψj − ψi) + i(δj,w − δi,w)ψw. (2.21)
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Figure 2.4: Continuous-time random walk on K8, the amplitude of ψ1, ψ2, ψ7 and ψ3 with
the marked vertex w = 3 and γ = 0.125.
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Since i 6= w and j 6= w then δj,w = δi,w = 0, ˙ξji takes the following form:

˙ξji = −iγNξji. (2.22)

The general solution for this one-dimensional differential equation is

ξji = Ce−iγNt, (2.23)

where C is a constant which will be determined by the initial condition. Since in this problem

the initial state is the uniform superposition of all states

ψj(0) = ψi(0) =
1√
N
. (2.24)

The initial condition for ξji is

ξji(0) = ψj(0)− ψi(0) = 0. (2.25)

By applying this initial condition to the general solution, one obtains

ξji = 0. (2.26)

Therefore one can write

ψj = ψi (i, j 6= w). (2.27)

According to this symmetry, the continuous-time quantum walk on a complete graph is a

two-dimensional problem. Therefore in order to describe the state of the system we need

two independent parameters. Naturally one of these parameters is ψw and the other one is

ψα, where α can be any number in the set of {1, 2, ..., w − 1, w + 1, ..., N}

ψα ≡ ψ1 = ψ2 = ... = ψw−1 = ψw+1 = ... = ψN . (2.28)

As shown in Eq. (2.9) and Eq. (2.12) the adjacency matrix can be written as A = N |S〉〈S|−I

and D = (N − 1)I. Therefore the Laplacian matrix for KN becomes

L = N |S〉〈S| −NI. (2.29)
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Since −NI creates a constant shift in energy levels and it does not change the dynamic of

the system the Laplacian matrix can be changed to

L→ L+NI = N |S〉〈S|, (2.30)

where |S〉 is the initial state. Therefore the Hamiltonian takes the following form:

H = −γN |S〉〈S| − |w〉〈w|. (2.31)

The time-dependent Schrödinger equation for ψα and ψw can be written as follows

ı〈w| d
dt
|ψ〉 = 〈w|H|ψ〉 = −γN〈w|S〉〈S|ψ〉 − 〈w|ψ〉; (2.32a)

ı〈α| d
dt
|ψ〉 = 〈α|H|ψ〉 = −γN〈α|S〉〈S|ψ〉 − 〈α|w〉〈w|ψ〉. (2.32b)

Since |S〉 is the normalized uniform superposition of all the vertices,

〈α|S〉 = 〈w|S〉 =
1√
N
. (2.33)

Using the symmetry of the complete graph, 〈S|ψ〉 becomes

〈S|ψ〉 =
1√
N

N∑
l=1

ψl =
1√
N

(ψ1 + ...+ψw−1 +ψw+1 + ...+ψN +ψw) =
1√
N

[(N − 1)ψα +ψw].

(2.34)

Using these equations, the time-dependent Schrödinger equations for ψα and ψw become

ıψ̇w = −(γ + 1)ψw − γ(N − 1)ψα; (2.35a)

ıψ̇α = −γψw − γ(N − 1)ψα, (2.35b)

or in a more compact form

ı

 ψ̇w

ψ̇α

 = −

 γ + 1 γ(N − 1)

γ γ(N − 1)


 ψw

ψα

 ≡ Γ

 ψw

ψα

 . (2.36)
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This equation describes a linear two-dimensional dynamical system. It is convenient to

introduce a new variable as follows

ψµ ≡
√
N − 1ψα,

which allows us to rewrite equations (2.35) in an explicitly symmetric form as follows

ıψ̇w = −(γ + 1)ψw − γ
√
N − 1ψµ; (2.37a)

ıψ̇µ = −γ
√
N − 1ψw − γ(N − 1)ψµ, (2.37b)

or more compactly

ı

 ψ̇w

ψ̇µ

 = −

 γ + 1 γ
√
N − 1

γ
√
N − 1 γ(N − 1)


 ψw

ψµ

 . (2.38)

I define the matrix operator H2D

H2D ≡ −

 γ + 1 γ
√
N − 1

γ
√
N − 1 γ(N − 1)

 . (2.39)

The new initial state is  ψw(0)

ψµ(0)

 =
1√
N

 1
√
N − 1

 . (2.40)

Before solving this problem and finding the search time and critical γ, I would like to

explain the physical meaning of ψµ and the geometrical interpretation of this two-dimensional

Hamiltonian. Since H2D is Hermitian, the new two-dimensional quantum state (ψw, ψµ), is

normalized to one

|ψµ|2 + |ψw|2 = 1. (2.41)

According to the definition of ψw, |ψw|2 is the probability of finding the particle in the marked

vertex w. Therefore |ψµ|2 is the probability of finding the particle in an unmarked vertex.

In other words

|ψµ|2 = |ψ1|2 + |ψ2|2 + ...+ |ψw−1|2 + |ψw+1|2...+ |ψN |2. (2.42)
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Figure 2.5: Reduction of continuous-time quantum walk on KN to a two dimensional prob-
lem. Here, γ is the hopping rate and N is the dimension of the complete graph.

As shown in Fig. 2.5, geometrically this symmetry reduces the continuous-time quantum walk

on KN to a continuous-time quantum walk on a line with two vertices, with self loops and

different hopping rate γ′ = γ
√
N − 1. For a large database (N � 1), the two dimensional

Hamiltonian H2D becomes

H2D =

 −(γ + 1) −γ
√
N − 1

−γ
√
N − 1 −γ(N − 1)

 ≈ −
 γ + 1 γ

√
N

γ
√
N γN

 . (2.43)

For the sake of simplicity, I define the following basis.

|w〉 =

 1

0

 , |µ〉 =

 0

1

 . (2.44)

In this regime, the initial state becomes

1√
N

 1
√
N − 1

 ≈
 0

1

 = |µ〉. (2.45)

When N � 1, the eigenvalues of H2D, are

E1 = −1

2
[1 + (N + 1)γ +

√
(1 + (N + 1)γ)2 − 4Nγ]; (2.46a)
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E2 = −1

2
[1 + (N + 1)γ −

√
(1 + (N + 1)γ)2 − 4Nγ]. (2.46b)

In order to make the calculations easier I define

α ≡ 1 + (N + 1)γ, β ≡
√

(1 + (N + 1)γ)2 − 4Nγ,

ζ ≡ 1− (N − 1)γ, κ ≡ 2γ
√
N .

Therefore the eigenvalues become

E1 = −1

2
(α + β); (2.47a)

E2 = −1

2
(α− β), (2.47b)

and the eigenvectors are

|E1〉 =
1√

(ζ + β)2 + κ2

 ζ + β

κ

 ; (2.48a)

|E2〉 =
1√

(ζ − β)2 + κ2

 ζ − β

κ

 . (2.48b)

Since |E1〉 and |E2〉 are the eigenvectors of H2D, they are orthogonal

〈E1|E2〉 = ζ2 − β2 + κ2 = 0 =⇒ κ2 = β2 − ζ2, (2.49)

which yields

|E1〉 =
1√

2β(ζ + β)

 ζ + β

κ

 ; (2.50a)

|E2〉 =
1√

2β(β − ζ)

 ζ − β

κ

 . (2.50b)

The solution of the time-dependent Schrödinger equation has the following form:

|ψ(t)〉 = c1|E1〉e−ıE1t + c2|E2〉e−ıE2t, (2.51)
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where ci = 〈Ei|ψ(0)〉. Since the initial state is |µ〉 for large N , c1 and c2 take the following

form:

c1 = 〈E1|µ〉 =
κ√

2β(ζ + β)
; (2.52a)

c2 = 〈E2|µ〉 =
κ√

2β(β − ζ)
. (2.52b)

2.2.1 Finding the critical γ

The objective of this section is to find the critical value of γ, called γ∗, that satisfies the

following condition

|ψw(T )|2 ≈ 1, (2.53)

where T is the search time for this algorithm. As pointed out in the previous section, the

solution of the time-dependent Schrödinger equation is the following

|ψ(t)〉 =
κ

2β

 1

ζ + β

 ζ + β

κ

 e
i
2
(α+β)t − 1

ζ − β

 ζ − β

κ

 e
i
2
(α−β)t

 . (2.54)

Therefore the quantum state for the marked site takes the following form:

ψw(t) = e
i
2
αt κ

2β
(e

i
2
βt − e−

i
2
βt), (2.55)

where ψw(t) = 〈w|ψ(t)〉. The amplitude of ψw(t) is

|ψw(t)| = κ

β
| sin(

β

2
t)| (2.56)

=⇒ 0 ≤ |ψw(t)| ≤ κ

β
.
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Figure 2.6: The maximum of |ψw| as a function of γ, for N = 1024.

By substituting κ and β in the above equation I obtain the following equation for the

maximum of |ψw(t)|

|ψw(t)|max =
κ

β
=

2γ
√
N√

(1 + (N + 1)γ)2 − 4Nγ
. (2.57)

As shown in Fig. 2.6 at some value of γ the maximum value for |ψw| reaches one. To obtain

the critical value of γ, one can solve the following equation for γ

d

dγ
[

2γ
√
N√

(1 + (N + 1)γ)2 − 4Nγ
] = 0, (2.58)

hence

2
√
N [1− (N − 1)γ]

[(1 + γ(N + 1))2 − 4Nγ]
3
2

= 0. (2.59)

It is straightforward to show that the critical γ, γ∗, is

γ∗ =
1

N − 1
. (2.60)

For a large database (N � 1), it becomes γ∗ ≈ 1
N

. Therefore when γ = γ∗, the continuous-

time quantum walk search algorithm on a complete graph provides a complete search. In
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other words for a large database at critical γ

|ψw(T )|2 ≈ 1, (2.61)

where T is the search time for this algorithm.

2.2.2 Time scale and search time

In the previous section I showed that ψw(t) has the following form:

ψw(t) = e
i
2
αt κ

2β
(e

i
2
βt − e−

i
2
βt). (2.62)

Since e
i
2
αt is an overall phase factor, I can write |ψw(t)| in the following form:

|ψw(t)| = κ

2β
|(e

i
2
βt − e−

i
2
βt)| = κ

β
| sin(

β

2
t)|, (2.63)

where κ = 2γ
√
N and β =

√
(1 + (N + 1)γ)2 − 4Nγ. At critical γ, β and κ take the

following form:

β|γ=γ∗ =
√

(1 + (N + 1)γ)2 − 4Nγ|γ= 1
N−1

= 2

√
N

N − 1
≈ 2√

N
; (2.64a)

κ|γ=γ∗ = 2γ
√
N |γ= 1

N−1
= 2

√
N

N − 1
≈ 2√

N
. (2.64b)

Substituting β from the above equations into |ψw(t)|, one obtains

|ψw(t)| = | sin(

√
N

N − 1
t)|. (2.65)

For a large database (N � 1), |ψw(t)| takes the following form:

|ψw(t)| = | sin(
t√
N

)|. (2.66)
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Figure 2.7: Probability of finding the particle at the marked site, |ψw|2 as a function of time,
for N = 1024 and γ = 1

N
.

|ψw| reaches one when

T ≈ π

2

√
N, (2.67)

consistent with the results shown in Fig. 2.7. Therefore the continuous-time quantum walk

on a complete graph provides quadratic speed-up over a classical search.
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Chapter 3

Non-linear continuous-time quantum walk

In the previous chapter I showed that spatial search via a continuous-time quantum walk

with one quantum walker on a complete graph provides a quadratic speed up over a classical

search. In this chapter I construct a model for continuous-time quantum walks on a graph

G with interacting bosonic walkers at zero temperature and show that the Hamiltonian for

this system has the form

HNL = −γL− |w〉〈w|+ g
N∑
i=1

|ψi|2|i〉〈i|, (3.1)

where γ is the hopping rate, L is the Laplacian matrix, w is the marked site, g is the inter-

action coefficient, and ψi = 〈i|ψ〉.

The central questions to be addressed in this Chapter are

first: Is it possible to perform a complete quantum search with many interacting bosons on

a spatial database? In other words, is it possible to rotate the initial state |S〉 to the desired

state |w〉, with this non-linear Hamiltonian for some values of γ and g?

Second: If it is possible, what is the time scale for this process? It has been show that for

some cases non-linearity can change the time scale of a dynamical system [67]. Can non-

linearity change the time scale of the search algorithm, or is it still proportional to
√
N and

hence quadratic speed-up is attainable?

In order to address these questions I use non-linear dynamics techniques that include fixed

point analysis, linearization at fixed points, stability analysis and phase space analysis. I re-

view the basics of these techniques in Appendix A. I use fixed point analysis and linearization

techniques to find the regimes of g and γ that provide a complete quantum search algorithm.

I use phase space analysis for finding the time scale for the search algorithm.
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3.1 Interacting bosons at zero temperature as quantum walkers

As mentioned in the introduction, the goal of this research is to investigate the spatial search

via a continuous-time quantum walk with interacting bosons at zero temperature. In this

section I derive the Hamiltonian for interacting bosons at zero temperature in a discrete space

such as a graph or a lattice. When there are a large number of bosons, the fluctuations in

the number of bosons is negligible and a mean field approach is valid [60].

In the second quantization the many-body Hamiltonian describing M interacting bosons in

an external potential Vext has the following form [59]:

H =

∫
drΨ̂†(r)

[
− ~2

2m
∇2 + Vext(r)

]
Ψ̂(r) (3.2)

+
1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r),

where Ψ̂(r) and Ψ̂†(r) are boson field annihilation and creation operators, and V (r − r′) is

the two-body interatomic potential. For a discrete space such as a graph or lattice, I can

write the Hamiltonian for interacting bosons in the following form:

Hint =
1

2

∑
i

∑
j

Ψ̂†(ri)Ψ̂
†(rj)V (ri − rj)Ψ̂(rj)Ψ̂(ri), (3.3)

where ri and rj are the position vectors of the vertices i and j in graph G. By writing the

Heisenberg equation for the interaction part of the Hamiltonian, one can prove that (below

~ = 1 as was assumed in the previous chapter)

ı
∂Ψ̂(ri)

∂t
=

[∑
j

Ψ̂†(rj)V (rj − ri)Ψ̂(rj)

]
Ψ̂(ri). (3.4)

I define Ψ̂(ri) = Ψ̂i. At zero temperature, when BEC occurs, the Bogoliubov [59] first-order

approximation can be used

Ψ̂i = Ψi + Ψ̂′i, (3.5)

where Ψi is a complex function defined as the expectation value of the field operator

Ψi = 〈Ψ̂i〉. (3.6)
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When BEC is macroscopically occupied, Ψ̂′i can be treated as a very small perturbation [59].

Therefore Eq. (3.4) takes the following form:

ı
∂Ψi

∂t
≈

(∑
j

Ψ∗jVijΨj

)
Ψi. (3.7)

Rewriting the above equation in the following form:

ı〈i| ∂
∂t
|Ψ〉 = 〈i|

(∑
j

Ψ∗jVijΨj

)
|Ψ〉, (3.8)

gives

Hint =
∑
i

∑
j

Ψ∗jVijΨj|i〉〈i|. (3.9)

By defining Ψi =
√
Mψi, where M is the number of bosons in the system, one can write the

Hamiltonian for the interaction in the following form:

Hint = M
∑
i

∑
j

ψ∗jVijψj|i〉〈i|. (3.10)

Since in a cold and dilute boson gas, binary collisions at low energy are the dominant

interactions [60], one can approximately replace Vij by

Vij = gδij, (3.11)

where g [59]

g =
4πas
m

, (3.12)

where m is the mass of the boson and as is the s-wave scattering length, a single parameter

for characterizing the binary collisions at low energies. This parameter is independent of the

details of Vij. Therefore

Hint = g
N∑
i=1

|ψi|2|i〉〈i|. (3.13)
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Note that

∑
i

|Ψi|2 = M −→
∑
i

|ψi|2 = 1, (3.14)

where ψi = 〈i|ψ〉 and N is the number of sites in the graph G.

3.2 Reduction to a two-dimensional problem

As pointed out earlier, the non-linear Hamiltonian for a continuous-time quantum walk with

bosonic interacting quantum walkers has the following form:

Hnl = −γL− |w〉〈w|+Hint, (3.15)

therefore

Hnl = −γL− |w〉〈w|+ g
N∑
i=1

|ψi|2|i〉〈i|, (3.16)

where nl stands for non-linear, ψi = 〈i|ψ〉 and |i〉 is the ket representing the vertex i. The

Laplacian matrix for the complete graph can be written N |S〉〈S|, so that in case of the

complete graph, Eq. (3.16) becomes

Hnl = −γN |S〉〈S| − |w〉〈w|+ g
N∑
i=1

|ψi|2|i〉〈i|. (3.17)

This Hamiltonian is N -dimensional; however the question is, can I reduce this non-linear

Hamiltonian to a two-dimensional Hamiltonian with the complete graph’s symmetry? Sim-

ilar to the linear since swapping the unmarked vertex i with another unmarked vertex j in

KN keeps the Hamiltonian unchanged

ψ1 = ψ2 = ... = ψw−1 = ψw+1 = ... = ψN . (3.18)
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The time-dependent Schrödinger equation for an arbitrary unmarked vertex α can be written

as follows

〈α|ı d
dt
|ψ〉 = 〈α|Hnl|ψ〉, (3.19)

Hnl|ψ〉 =

(
−γN |S〉〈S| − |w〉〈w|+ g

N∑
i=1

|ψi|2|i〉〈i|

)
|ψ〉

= −γ
√
N

(
N∑
i=1

ψi

)
|S〉 − ψw|w〉+ g

N∑
i=1

|ψi|2ψi|i〉. (3.20)

The right side of Eq. (3.19), becomes

〈α|Hnl|ψ〉 = −γ
√
N(

N∑
i=1

ψi)〈α|S〉 − ψw〈α|w〉+ g
N∑
i=1

|ψi|2ψi〈α|i〉. (3.21)

Since |S〉 is the uniform superposition of all the vertices and it is normalized to one, 〈α|S〉 =

1
N

. α is an unmarked vertex, 〈α|w〉 = δα,w = 0. Eq. (3.21) takes the following form:

〈α|Hnl|ψ〉 = −γ
N∑
i=1

ψi + g|ψα|2ψα. (3.22)

The goal of this section is to reduce this system to a two-dimensional system. In order to

achieve this goal the right side of Eq. (3.22) should be expressed in terms of two variables,

for instance ψw and ψα. Using the complete graph symmetry, Eq. (3.18)

N∑
i=1

ψi = ψ1 + ψ2 + ...+ ψw−1 + ψw+1 + ...+ ψN + ψw = (N − 1)ψα + ψw. (3.23)

The time-dependent Schrödinger equation for the vertex α becomes

ıψ̇α = −γ(N − 1)ψα − γψw + g|ψα|2ψα. (3.24)

Eq. (3.24) expresses the ψ̇α, in terms of two complex variables ψα and ψw. The time-

dependent Schrödinger equation for the marked vertex w

〈w|ı d
dt
|ψ〉 = 〈w|Hnl|ψ〉. (3.25)
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The right side Eq. (3.25) can be written as

〈w|Hnl|ψ〉 = −γ
N∑
i=1

ψi − ψw + g|ψw|2ψw. (3.26)

Using the complete graph symmetry, I can rewrite Eq. (3.26) as follows

ıψ̇w = −γ(N − 1)ψα − (γ + 1)ψw + g|ψw|2ψw. (3.27)

Eq. (3.27) expresses ψ̇w, in terms of ψw and ψα. Therefore Eq. (3.24) and Eq. (3.27) describe

a two-dimensional system of non-linear differential equations with complex variables.

ıψ̇w = −γ(N − 1)ψα − (γ + 1)ψw + g|ψw|2ψw; (3.28a)

ıψ̇α = −γ(N − 1)ψα − γψw + g|ψα|2ψα. (3.28b)

Equations (3.28), can be written more compactly in matrix form as

ı

 ψ̇w

ψ̇α

 = −

 γ + 1− g|ψw|2 γ(N − 1)

γ γ(N − 1)− g|ψα|2


 ψw

ψα

 ≡ Γnl

 ψw

ψα

 , (3.29)

with the initial condition  ψw(0)

ψα(0)

 =
1√
N

 1

1

 . (3.30)

Although Eq. (3.29) perfectly describes the dynamics of the system, it is again convenient

to introduce a new variable as follows

ψµ ≡
√
N − 1ψα, (3.31)

which allows us to rewrite equations (3.28) in a symmetric form as follows

ıψ̇w = −γ
√
N − 1ψµ − (γ + 1)ψw + g|ψw|2ψw; (3.32a)

ıψ̇µ = −γ
√
N − 1ψw − γ(N − 1)ψµ +

g

N − 1
|ψµ|2ψµ. (3.32b)
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In a more compact form, this is

ı

 ψ̇w

ψ̇µ

 = H2Dnl

 ψw

ψµ

 , (3.33)

where H2Dnl has the following form:

H2Dnl = −

 γ + 1− g|ψw|2 γ
√
N − 1

γ
√
N − 1 γ(N − 1)− g

N−1 |ψµ|
2

 , (3.34)

with the new initial condition ψw(0)

ψµ(0)

 =
1√
N

 1
√
N − 1

 . (3.35)

For a large spatial database N � 1, equations (3.32) take the following form:

iψ̇w ≈ −γ
√
Nψµ − (γ + 1)ψw + g|ψw|2ψw,

iψ̇µ ≈ −γ
√
Nψw − γNψµ +

g

N
|ψµ|2ψµ, (3.36)

with initial state as  ψw(0)

ψµ(0)

 ≈
 0

1

 . (3.37)

The non-linear Hamiltonian is then

H2Dnl ≈ −

 γ + 1− g|ψw|2 γ
√
N

γ
√
N γN − g

N
|ψµ|2

 . (3.38)
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3.3 Non-linear dynamics techniques and analysis

Since equations (3.32) are expressed in terms of complex variables ψµ and ψw, this system

is a two-dimensional system in the field of complex numbers. Each of these variables can

be therefore represented by a real-valued phase and modulus. Therefore in the field of real

numbers, it is a four-dimensional system of differential equations. On the other hand, since

this system describes a two-dimensional quantum mechanical problem the solutions satisfies

the following constraints

I) The quantum state (ψw, ψµ) is always normalized to one

|ψµ|2 + |ψw|2 = 1. (3.39)

II) If (ψw(t), ψµ(t)) is a solution of equations (3.32), then

eıδ(ψw(t), ψµ(t)) ∀δ ∈ R,

is also a solution of equations (3.32).

Applying these constraints reduces this system to a two-dimensional system of differential

equations, in the field of real numbers. In the following section my objective is to find

appropriate variables that reflect these constraints and reduce this system to two real non-

linear differential equations.

3.3.1 Reduction to a real two-dimensional problem

As mentioned above, ψw and ψµ can be presented by a real-valued phase and modulus as

follows

ψw ≡
√
Nwe

ıθw ; (3.40a)
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ψµ ≡
√
Nµe

ıθµ , (3.40b)

where Nw is the fractional population of the bosons in the marked vertex w and Nµ is the

sum of the fractional populations in all the unmarked vertices. Since (ψw, ψµ) is normalized

to one, one can write

|ψw|2 + |ψµ|2 = Nw +Nµ = 1. (3.41)

The best candidate for the first variable is the fractional population difference between the

marked vertex w and the effective unmarked vertex µ, defined as follows [68]

η ≡ Nw −Nµ. (3.42)

The second variable must be invariant under the following transformation

Φ : (θw, θµ) =⇒ (θw + δ, θµ + δ). (3.43)

The second variable is defined by the following form:

φ ≡ θw − θµ. (3.44)

In order to find the differential equation for η, start with the definition of η

η = Nw −Nµ = |ψw|2 − |ψµ|2 = ψwψ
∗
w − ψµψ∗µ. (3.45)

The derivative of η with respect to time becomes

η̇ = (ψ̇wψ
∗
w + ψwψ̇∗w)− (ψ̇µψ

∗
µ + ψµψ̇∗µ). (3.46)

From equations (3.36), ψ̇w and ψ̇µ have the following form:

ψ̇w = −ı[(ew + uwNw)ψw − κψµ]; (3.47a)

ψ̇µ = −ı[(eµ + uµNµ)ψµ − κψw], (3.47b)
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where

ew = −(γ + 1); eµ = −γN, (3.48a)

uw = g; uµ =
g

N
, (3.48b)

κ = γ
√
N. (3.48c)

Note that

ψ̇∗w = ı[(ew + uwNw)ψ∗w − κψ∗µ]; (3.49a)

ψ̇∗µ = ı[(eµ + uµNµ)ψ∗µ − κψ∗w]. (3.49b)

With the help of equations (3.47) and (3.49) the first part of the right side of Eq. (3.46)

becomes

ψ̇wψ
∗
w + ψwψ̇∗w = ıκ(ψµψ

∗
w − ψwψ∗µ), (3.50)

and the second part takes the following form:

ψ̇µψ
∗
µ + ψµψ̇∗µ = −ıκ(ψµψ

∗
w − ψwψ∗µ). (3.51)

Therefore η̇ takes the following form:

η̇ = 2iκ(ψµψ
∗
w − ψwψ∗µ). (3.52)

Substituting equations (3.40) into this equation we obtain

η̇ = 2ıκ(ψµψ
∗
w − ψwψ∗µ) = 2ıκ

√
NwNµ[e−i(θw−θµ) − ei(θw−θµ)]

= 4κ
√
NwNµ sin(φ). (3.53)

Using the first constraint of the system,
√
NwNµ becomes

√
NwNµ =

1

2

√
(Nw +Nµ)2 − (Nw −Nµ)2 =

1

2

√
1− η2. (3.54)
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Therefore Eq. (3.53) becomes

η̇ = 2κ
√

1− η2 sin(φ). (3.55)

This equation is the first real non-linear differential equation. In order to find the second

one that expresses φ̇ in terms of η and φ, let

ψwψ
∗
µ =

√
NwNµe

i(θw−θµ). (3.56)

Substituting Eq. (3.54) into Eq. (3.56), one obtains

ψwψ
∗
µ =

1

2

√
1− η2eiφ. (3.57)

Taking the derivative of both sides of this equation with respect to time

ψ̇wψ
∗
µ + ψwψ̇∗µ = (− ηη̇

2
√

1− η2
+
ıφ̇

2

√
1− η2)eiφ. (3.58)

Substituting Eq. (3.55) into the left side of Eq. (3.58) I obtain the following equation(
− ηη̇

2
√

1− η2
+
ıφ̇

2

√
1− η2

)
eiφ

=

(
−κη sin(φ) +

ıφ̇

2

√
1− η2

)
eiφ. (3.59)

Using Equations (3.47) and (3.49) the left side of Eq. (3.58) takes the following form:

ψ̇wψ
∗
µ + ψwψ̇∗µ = −ıκ(Nw −Nµ) + ı[(eµ − ew) + (uµNµ − uwNw)]

√
NwNµe

iφ. (3.60)

With the help of the first constraint

uµNµ − uwNw =
uµ − uw

2
− uµ + uw

2
(Nw −Nµ), (3.61)

one obtains

ψ̇wψ
∗
µ + ψwψ̇∗µ = −ıκη + ı

[
(eµ − ew) +

(
uµ − uw

2

)
−
(
uµ + uw

2

)
η

] √
1− η2

2
eiφ. (3.62)
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Therefore (
−κη sin(φ) +

ıφ̇

2

√
1− η2

)
eiφ

= −ıκη + ı

[
(eµ − ew) +

(
uµ − uw

2

)
−
(
uµ + uw

2

)
η

] √
1− η2

2
eiφ. (3.63)

Solving this equation for φ̇ yields the second non-linear differential equation

φ̇ = (eµ − ew) +
uµ − uw

2
− uµ + uw

2
η − 2κ

η√
1− η2

cos(φ). (3.64)

Equations (3.55) and (3.64) describe a two-dimensional system in the field of real numbers.

These equations also satisfy all the constraints of the original system. Therefore the non-

linear continuous-time quantum walk on the complete graph KN is reducible to a two-

dimensional system with real-valued variables as follows

η̇ = 2γ
√
N
√

1− η2 sin(φ); (3.65a)

φ̇ = ∆E − g

2
η − 2γ

√
N

η√
1− η2

cos(φ), (3.65b)

where

∆E ≡ 1−Nγ − g

2
. (3.66)

According to the definition of η the initial value is

η0 = |ψw(0)|2 − |ψµ(0)|2 =
2−N
N

≈ −1. (3.67)

Since the initial values for ψµ and ψw are real positive numbers, the initial condition of this

new system is  η(0)

φ(0)

 =

 2−N
N

0

 . (3.68)
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Therefore for a large database (N�1) η(0)

φ(0)

 ≈
 −1

0

 . (3.69)

3.4 First regime: ∆E = 0

The goal in this section is to solve equations (3.65) when ∆E = 0. Setting ∆E equal to zero

and solving for γ gives

γ∗ =
2− g
2N

. (3.70)

Since γ is the hopping rate it should be always positive, therefore

γ∗ > 0 → g < 2. (3.71)

In this regime Equations (3.65) take the following form:

η̇ = 2γ∗
√
N
√

1− η2 sin(φ); (3.72a)

φ̇ = −g
2
η − 2γ∗

√
N

η√
1− η2

cos(φ). (3.72b)

The first step for analyzing this system is to find the fixed points of Equations (3.72). As

I defined in Appendix A, fixed points are the points in phase space satisfying the following

equations

η̇ ≡ 0; (3.73a)

φ̇ ≡ 0. (3.73b)
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Fixed points provide qualitative information about the behaviour of the system. I discuss

this in more detail in the following next section.

3.4.1 Fixed points

In order to find the fixed points, I solve the following equations simultaneously

2γ∗
√
N
√

1− η2 sin(φ) ≡ 0; (3.74a)

−g
2
η − 2γ∗

√
N

η√
1− η2

cos(φ) ≡ 0. (3.74b)

Solving the above equations yields two sets of fixed points as listed below

I) The first set, as shown in Fig. 3.1, has the following form:

η0 = 0, φ = 2mπ m ∈ Z. (3.75)

II) The second set, as shown in Fig. 3.2, has the following form:
η+ = +

√
1− 4(g−2)2

g2N

η0 = 0

η− = −
√

1− 4(g−2)2
g2N

, φ=(2m+ 1)π m ∈ Z. (3.76)

The second set of fixed points η+ and η− are functions of g, in contrast to the first set. As

shown in Fig. 3.3 η+ and η− become equal to zero for some value of g as follows

g∗ =
4√
N + 2

≈ 4√
N
. (3.77)

As shown in Fig. 3.3, η+ and η−, approach zero as g decreases and they become imaginary

when g is smaller than the critical value. Furthermore as g increases they take the following
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Figure 3.1: First set of fixed points for Equations (3.72).
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Figure 3.2: Second set of fixed points for Equations (3.72), for N = 1024 and g = 0.125.
Blue dots represent η+, red dots represent η− and black dots represent η0.
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Figure 3.3: Second set of fixed points for Equations (3.72) as a function of g, for N = 1024.
The blue graph is η+, the red one is η− and the black is η0.

form:

lim
g→∞

η± = ±1. (3.78)

For the limiting case of strong on-site interactions (g � 1), intuitively there are three possible

stationary states that particles tend to occupy. The first one is when they all accumulate

in the marked vertex (η = +1), the second one is when they all accumulate in the effective

unmarked vertex µ, (η = −1). The third one is when half of the particles are in the vertex

w and the other half are in the vertex µ, (η = 0).
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3.4.2 Classical Hamiltonian

Although Equations (3.72) describe a quantum mechanical system, they can describe a

classical system with the Hamiltonian HC satisfying the following equations [69]

η̇ = −∂HC

∂φ
; (3.79a)

φ̇ =
∂HC

∂η
. (3.79b)

It is not difficult to verify that this classical Hamiltonian has the following form:

HC = −g
4
η2 + 2γ∗

√
N
√

1− η2 cos(φ). (3.80)

As we know from classical mechanics, the dynamics of a quantity u can be written in the

following form:

du

dt
= {u,HC}+

∂u

∂t
, (3.81)

where {u,HC} is the Poisson bracket of u and HC . This equation also holds for HC , therefore

ḢC becomes

dHC

dt
= {HC , HC}+

∂HC

∂t
. (3.82)

Since {HC , HC} = 0 and the classical Hamiltonian is not an explicit function of time the

above equation becomes

dHC

dt
= 0, (3.83)

which shows that the classical Hamiltonian HC is a constant of motion. Eq. (3.83) shows

that system is conservative, therefore I can use the theorem of Section A.2.3 for describing

the behaviour of the trajectories near the fixed points.
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3.4.3 Linearization near fixed points and stability analysis

The goal of this section is to analyze the stability of the fixed points introduced in Sec-

tion 3.4.1. For this analysis I use the method introduced in Section A.2.1. In order to

linearize the system near the fixed points I construct the Jacobian matrix. As shown in

Appendix A, the Jacobian matrix has the following form:

J =

 ∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v


(u∗,v∗)

. (3.84)

In this problem the Jacobian matrix is

J =

 ∂f
∂η

∂f
∂φ

∂g
∂η

∂g
∂φ


(η∗,φ∗)

, (3.85)

where

f(η, φ) = 2γ∗
√
N
√

1− η2 sin(φ); (3.86a)

g(η, φ) = −g
2
η − 2γ∗

√
N

η√
1− η2

cos(φ). (3.86b)

Therefore

J =
1√

1− η2

 −2γ∗
√
Nη sin(φ) 2γ∗

√
N(1− η2) cos(φ)

−g
√

1−η2
2
− 2γ∗

√
N cos(φ)

1−η2 2γ∗
√
Nη sin(φ)

 . (3.87)

For the first set of fixed points the Jacobian matrix becomes

J(0,2mπ) =

 0 2γ∗
√
N

−g
2
− 2γ∗

√
N 0

 . (3.88)

When N � 1 the eigenvalues of J have the following form:

α± = ±i

√
(2− g)(g

√
N + 4)

2N
. (3.89)
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Since the system is conservative, they are marginally stable or centers. As shown in Fig. 3.4

and Fig. 3.5 near these points trajectories circulate around them and eventually return to

the initial point. Since the system is conservative the trajectories become closed trajectories

or closed orbits.

For the second set of fixed points

2.a) For [η = 0, φ = (2m+ 1)π] the Jacobian matrix takes the following form:

J[0,(2m+1)π] =

 0 −2γ∗
√
N

−g
2

+ 2γ∗
√
N 0

 . (3.90)

When N � 1, the eigenvalues of J have the following form:

α± = ±

√
(2− g)(g

√
N − 4)

2N
. (3.91)

There are two possible cases for the stability of these fixed points:

2.a.I) When 4√
N
< g < 2

In this case the eigenvalues are both real. One of them is negative and the other one is

positive, therefore it is an unstable saddle fixed point.

2.a.II) When g ≤ 4√
N

In this case the eigenvalues are both imaginary, therefore it is a marginally stable fixed

point or a center.

2.b) For [η = η+, φ = (2m+ 1)π], the Jacobian matrix takes the following form:

J[η+,(2m+1)π] =

 0 −2γ∗
√
N
√

1− η2+

−g
2

+ 2γ∗
√
N

(1−η+)
3
2

0

 . (3.92)
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Figure 3.4: Fixed points in η − φ space when g ≤ 4√
N

and γ = γ∗.
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Figure 3.5: Fixed points in η − φ space when g > 4√
N

and γ = γ∗.
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Substituting γ∗ and η+, the eigenvalues of J take the following form:

α± = ±1

2

√
−(N − 4)g2 + 16g − 16

N
. (3.93)

There are two possible cases for the stability of these fixed points:

2.b.I) When g > 4√
N

In this case the eigenvalues are both imaginary, therefore it is a marginally stable fixed

point or a center.

2.b.II) When g ≤ 4√
N

as mentioned earlier, when g ≤ 4√
N

, η+ becomes imaginary and in this regime [η+, (2m+1)π]

does not exist, therefore it is not a fixed point.

2.c) For [η = η−, φ = (2m+ 1)π], the Jacobian matrix takes the following form:

J[η−,(2m+1)π] =

 0 −2γ∗
√
N
√

1− η2−

−g
2

+ 2γ∗
√
N

(1−η−)
3
2

0

 . (3.94)

Following the same procedure the eigenvalues of J are the same as in the previous case

α± = ±1

2

√
−(N − 4)g2 + 16g − 16

N
. (3.95)

The only difference between this case and the previous one is that the trajectories near the

η−, flow in the opposite direction near η+. Figures 3.4 and 3.5 show the phase configuration

and stability of fixed points in η − φ space for both regimes of g.

3.4.4 Phase space analysis

In this section I analyze the phase space (η − φ space) with the help of the results obtained

in previous sections. Phase space analysis helps to describe qualitative behaviour of the

47



solutions of Eq. (3.72) for different regimes of g. Moreover, with this analysis one can find

conditions that provide a complete search

η(T ) ≈ 1. (3.96)

As mentioned in Section 3.4.2, the classical Hamiltonian HC

HC = −g
4
η2 + 2γ∗

√
N
√

1− η2 cos(φ), (3.97)

is a constant. With the following initial condition η(0)

φ(0)

 =

 −1

0

 , (3.98)

the classical Hamiltonian has the following value

HC = HC [η(0), φ(0)] = −g
4
. (3.99)

According to the definition of η, η = |ψw|2 − |ψµ|2, the search is complete when η reaches

one. Therefore the goal of my project is to find g and γ in such a way that the following

transition happens

(η = −1) −→ (η = +1). (3.100)

The classical Hamiltonian is an even function of η, therefore

Hc(η = −1, φ = 0) = Hc(η = +1, φ = 0). (3.101)

The above equation reduces the problem to one of finding a closed orbit in phase space with

(η = −1, φ = 0) as the initial condition. As mentioned earlier, when ∆E = 0, there are two

possible regimes for g

γ∗ =
2− g
2N

,

 g > g∗

g ≤ g∗
, (3.102a)
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Figure 3.6: Qualitative analysis of the phase space for the first regime, g > g∗.
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Figure 3.7: The trajectory in η − φ space when g = 2g∗ and γ = γ∗.
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where g∗ = 4√
N

.

In the first regime g > g∗, as shown in Fig. 3.6, the trajectory starts at initial point

(η = −1, φ = 0), then :

I) The fixed point at (η = 0, φ = π) attracts the trajectory along ~v1.

II) The trajectory flows clockwise around (η = η−, φ = π).

III) (η = 0, φ = π) repels the trajectory along ~v2 to the point (η = −1, φ = 2π).

Therefore the trajectory never reaches η = +1. This regime does not provide a closed orbit.

Fig. 3.7 shows the numerical solution for the trajectory in phase space when g = 2g∗.

As mentioned in the previous section, in the second regime g ≤ g∗ the stability of the

fixed point (η = 0, φ = π) changes from an unstable saddle to a centre and the fixed points

(η = η±, φ = π) vanish. As shown in Fig. 3.8, in this case the nearest fixed point to the initial

point is at (η = 0, φ = 0) and is a centre; also the next nearest fixed points (η = 0, φ = ±π)

are centres. Therefore the trajectory cannot be attracted by those points.

Hence in this regime, as shown in Fig. 3.8, the trajectory starts from the initial point (η =

−1, φ = 0), rotates around the origin, and reaches the final point of the search (η = 1, φ = 0).

Since the trajectory is closed it comes back to the initial point.

As shown in Fig. 3.9, the following regime

γ = γ∗ =
2− g
2N

, g = g∗ =
4√
N
, (3.103)

provides a closed trajectory in the (η − φ) space. In other words, a complete search is

attainable. For any g ∈ [0, 4√
N

] a complete search is attainable. For the sake of simplicity,

henceforth, I assume

g = g∗ =
4√
N
. (3.104)
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Figure 3.8: The closed trajectory in η−φ space when N = 1024 and γ = γ∗. The left graph
is for g = 0, for the middle one is for g = g∗

2
= 2√

N
and the right one is for g = g∗ = 4√

N
.
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Figure 3.9: η as a function of time for N = 1024, when g = g∗ and γ = γ∗.
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Figure 3.10: Trajectory in η − φ space , for γ = 2−g
2N

, g = 4√
N

and N = 1024.

3.4.5 Time scale of the search algorithm

As mentioned above, in the following regime

∆E = 0; (3.105)

g = g∗ =
4√
N
,

a complete search is attainable: |ψw|2(T ) ≈ 1, where T is the search time for this algorithm.

The goal of this section is to find T as a function of the number of vertices N . As shown

in Fig. 3.10, for a large database the trajectory in η − φ space can be approximated as a

rectangle. Approximately from the initial point to the end point of the search algorithm,

the trajectory consists of the following steps

I) Constant η: the initial point, (η ≈ −1, φ = 0) → (η ≈ −1, φ = φc), where φc is the

intersection of the trajectory with the φ axis.

II) Constant φ: (η ≈ −1, φ = φc)→ (η ≈ 1, φ = φc)

III) Constant η: (η ≈ 1, φ = φc)→ (η ≈ 1, φ = 0)
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Figure 3.11: φ as a function of time , for γ = 2−g
2N

, g = 4√
N

and N = 1024.

T can be written as

T =

∫
I

dt+

∫
II

dt+

∫
III

dt. (3.106)

Since for the first and third steps η is constant, this equation takes the following form:

T =

∫ φc

0

dφ

φ̇
+

∫ 1

−1

dη

η̇
+

∫ 0

φc

dφ

φ̇
. (3.107)

From equations (3.72)

lim
η→±1

φ̇ = lim
η→±1

[−g
2
η − 2γ∗

√
N

η√
1− η2

cos(φ)] =∞. (3.108)

When |η| ≈ 1, φ̇ is a very large number

lim
η→±1

1

φ̇
= 0. (3.109)

The first and third integrals are so small that they do not make a significant contribution to

T . As shown in Fig. 3.11, the η-constant transition (φ = 0→ φ = φc) is very fast compared

to the φ-constant transition (η = −1 → η = 1). This system is an example of a relaxation

oscillator [67]. Therefore one can write T in the following form:

T ≈
∫ 1

−1

dη

η̇
. (3.110)
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Substituting η̇ into the above equation one obtains

T ≈ 1

2γ∗
√
N sin(φc)

∫ 1

−1

dη√
1− η2

. (3.111)

Note that ∫ 1

−1

dη√
1− η2

= π. (3.112)

Therefore T takes the following form:

T ≈ π

2γ∗
√
N sin(φc)

. (3.113)

Now by substituting γ∗ and g∗

γ∗ =
2− g∗

2N
; (3.114a)

g∗ =
4√
N
, (3.114b)

one obtains

T =
π

(2− 4√
N

) sin(φc)

√
N. (3.115)

Now the question is, how does φc behave when N approaches infinity? As shown in Fig. 3.12,

numerical results show that as N approaches infinity φc approaches a constant value. The

value of φc will be found in the next section.

Therefore for a large database N � 1, the search time for the continuous-time quantum

walk with interacting bosons on a complete graph has the following form:

T =
π

2 sin(φc)

√
N. (3.116)

This equation shows that the non-linear continuous-time quantum walk provides a complete

search algorithm with quadratic speed up when

γ =
2− g
2N

;

g =
4√
N
< 2. (3.117)
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Figure 3.12: The left graph shows the trajectory when N = 1024 and the right one shows
the trajectory when N = 10240

As mentioned in Chapter 2, the search time for the linear case is T = π
2

√
N . Comparing

Eq. (3.116) with the linear case implies

φ′c =
π

2
, (3.118)

where φ′c is the intersection of the trajectory for the linear case with the φ axis.

3.4.6 Finding φc

In the previous section I assumed that when the database is large φc is constant. In this

section I prove this assumption. As showed in Section 3.4.2, HC is a constant of the motion
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Figure 3.13: φc as a function of N, for g = 4√
N

and γ = 2−g
2N

.

and has a constant value along the trajectory of the solution.

HC = HC(η(0), φ(0)) =

[
−g
∗

4
η2 + 2γ∗

√
N
√

1− η2 cos(φ)− g

4

]
(−1,0)

= − 1√
N
. (3.119)

At the intersection of the trajectory with the φ-axis (η = 0, φ = φc), the classical Hamilto-

nian takes the following form:

HC(0, φc) = 2γ∗
√
N cos(φc) = 2(

2− g√
N

2N
)
√
N cos(φc). (3.120)

Equating the classical Hamiltonian at these two points and solving for φc gives

φc = cos−1(− 1

2− 4√
N

). (3.121)

When N approaches infinity, φc approaches a constant (Fig. 3.13):

lim
N→∞

φc = cos−1(−1

2
) =

2π

3
. (3.122)

The search time, Eq. (3.116) then becomes

T =
π√
3

√
N. (3.123)

Therefore spatial search via a non-linear continuous-time quantum walk has the the same

scaling as the linear search problem. However it is slower by a constant factor of 2√
3
.
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3.5 Second regime: ∆E 6= 0

The goal of this section is to investigate the possibility of having a complete search when

∆E 6= 0. In this section I find the necessary condition for having a complete search. The

Classical Hamiltonian H ′C , which satisfies the following equations

η̇ = −∂H
′
C

∂φ
; (3.124a)

φ̇ =
∂H ′C
∂η

, (3.124b)

has the following form:

H ′C = ∆E η − g

4
η2 − 2γ

√
N
√

1− η2 cos(φ). (3.125)

Note that HC , the Hamiltonian introduced in Section 3.4.2, is a special case of H ′C when

∆E = 0

HC = −g
4
η2 − 2γ

√
N
√

1− η2 cos(φ). (3.126)

Since this Hamiltonian is not an explicit function of time either

Ḣ ′C = {H ′C , H ′C}+
∂H ′C
∂t

= 0, (3.127)

H ′C must be a constant of the motion. As mentioned earlier, a complete search is equivalent

to finding a trajectory that makes the following transition possible

(η = −1) −→ (η = 1). (3.128)

For this problem with (η = −1, φ = 0) as the initial condition, H ′C takes the following value

H ′C = −g
4
−∆E. (3.129)
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Figure 3.14: An arbitrary trajectory which satisfies a complete search condition.

As shown in Fig. 3.14, for a complete search the trajectory starting at the initial point

should reach the dashed line at η = 1. The value of H ′C for all the points on that line is

H ′C |(η=1,φ) = −g
4

+ ∆E. (3.130)

However, H ′C is constant along the trajectory and equal to −g
4
−∆E, so the trajectory can

never reach the dashed line and a complete search in this regime is impossible. In other

words ∆E = 0 is a necessary condition for having a complete search.
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Chapter 4

Conclusions

Quantum walks provide powerful tools for quantum algorithms. There are two types of

quantum walks: discrete-time quantum walks and continuous-time quantum walks. Childs

and Goldstone developed a spatial search based on continuous-time quantum walks. They

showed that for the complete graph, hypercube and d-dimensional lattice when d > 4, the

searching time for this model is O(
√
N).

Thus far, all the quantum search algorithms we have known are run by a single quantum

walker. The question that we addressed in this study is the following: what would happen

if we substitute the single quantum walker with M indistinguishable interacting quantum

walkers? In this thesis I introduced a model for a continuous-time quantum walk with M

interacting bosons at zero temperature on a graph G. The interaction of bosons at zero

temperature can be mathematically modelled with a non-linear Hamiltonian.

In Chapter 2 I introduced the Childs et al. continuous-time quantum walk spatial search

algorithm. I explained their model and reproduced their results for KN with a different

mathematical approach. I showed that when γ ≈ 1
N

the probability of finding the particle in

the marked vertex w asymptotically approaches one. The search time for the continuous-time

quantum walk on a complete graph is π
2

√
N , which is O(

√
N). I used this same approach as

a basis for my calculations for the non-linear case in Chapter 3.

In this thesis I investigated the spatial search via a continuous-time quantum walk with

interacting bosons at zero temperature on a complete graph KN . This problem is essentially
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an N -dimensional non-linear problem. Using the symmetry of the complete graph I reduced

the system to a two-dimensional non-linear quantum mechanical problem. With the help of

the constraints of the system I described this problem with a two-dimensional conservative

classical Hamiltonian. I identified two different regimes: ∆E = 0 and ∆E 6= 0. The de-

pendence of the search time on the non-linearity was studied in Chapter 3. For ∆E = 0 I

showed that when g ≤ g∗ = 4√
N

the probability of finding all the bosons in the marked vertex

asymptotically approaches one, in other words in this regime a complete search is attainable.

I proved that the search time is T = π√
3

√
N , which is O(

√
N). Therefore the search time of

the non-linear continuous-time quantum walk has the same time scaling as the linear case

even though it is longer by a small constant factor. In contrast, when ∆E 6= 0 I showed it

is not possible to have a complete search. In other words the necessary condition for having

a complete search is ∆E = 0.

The complete graph is the most ideal arrangement of a physical database. A less ideal

arrangement is the hypercube. My model could be extended to a hypercube with the size

of N = 2d, where d is the hypercube dimension. Using methods similar to those discussed

in this thesis for the complete graph, it should be possible to reduce the size of the graph

to O(d), or O[log(N)]. This reduction of dimensionality would make it easier to solve. None

of the existing spatial quantum search algorithms provides a quadratic speed up for one

and two-dimensional regular lattices. Since non-linearity can change the time scale of a

dynamical system it is conceivable that the many-boson quantum walk in the mean-field ap-

proximation could improve the scaling of the search time in these cases. The main advantage

of considering these lattice geometries is that the predictions of this algorithm can be easily

tested experimentally using ultracold atoms confined in optical lattices.

Unfortunately, the analysis of the nonlinear quantum search on these lattices becomes
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difficult, because there are few symmetries one can exploit to reduce the size of the prob-

lem. In d-dimensional square lattices (d ≤ 3), one can at best make use of translational

invariance in the case of periodic boundary conditions, or reflection symmetry in the case

of box boundary conditions. This will at best reduce the overall size of the problem by a

factor proportional to the number of sites in a given direction. That said, the results on the

complete graph suggest that nonlinearity has negligible influence on the scaling of the spatial

search time for sufficiently small interaction strength. One might therefore anticipate that

the spatial search time on regular d-dimensional lattices will not be significantly improved

over the known results in the linear case.
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Appendix A

Introduction to two-dimensional non-linear dynamics

A.1 Two-dimensional linear system

A two-dimensional linear system is a system which has the general form

u̇ = a11u+ a12v;

v̇ = a21u+ a22v. (A.1)

Here a11, a12, a21 and a22 are constants. This system can be written in matrix form as

~̇w = A~w, (A.2)

where

A =

 a11 a12

a21 a22

 , ~w =

 u

v

 . (A.3)

Here the system is autonomous, which means the matrix A is not a explicit function of time.

The simple harmonic oscillator is a well-known example of a two-dimensional linear system.

The Hamiltonian for this system has the form

H =
p2

2m
+

1

2
kx2, (A.4)

where x is the displacement from equilibrium, m is the mass of the object, k is the spring

constant and p is the momentum. Therefore the equations of motion take the following form:

ẋ =
∂H

∂p
=

p

m
; (A.5a)

ṗ = −∂H
∂x

= −kx. (A.5b)
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I represent the problem in the following form: ẋ

ṗ

 =

 0 1
m

−k 0


 x

p

 . (A.6)

A.1.1 Fixed points

A fixed point or equilibrium point is a point where the trajectories in phase space stop. In

other words a fixed point is a solution of the following equation:

~̇w =

 u̇

v̇

 ≡ 0. (A.7)

For the case of the pendulum, the fixed points have the following form

ω = 0; (A.8a)

θ = mπ, m ∈ Z. (A.8b)

A.1.2 Types of fixed points

The general solution for Eq. (A.2) when A is not degenerate and has an inverse has the

following form[67]:

~w(t) = c1 ~α1e
α1t + c2 ~α2e

α2t, (A.9)

where α1, α2 are the eigenvalues, ~α1, ~α2 are the eigenvectors of A and c1, c2 are constants

which will be determined by the initial conditions of the system.

There are three possibilities for the stability of the fixed points: stable, unstable and

marginally stable.

I) α1 and α2 are both real.

I.1) If α1 < 0, α2 < 0, then ~w → 0 as t→∞. As shown in Fig. (A.1), this is a stable fixed

point.
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Figure A.1: Stable fixed point, α1 < 0 and α2 < 0.

I.2) If α1 > 0, α2 > 0, then ~w →∞ as t→∞. As shown in Fig. (A.2), this is an unstable

fixed point.

I.3) If α1 < 0 < α2, then

a) If ~w(0) is a multiple of ~α1, then ~w → 0 as t→∞ (stable along the direction of ~α1).

b) If ~w(0) is a multiple of ~α2, then ~w →∞ as t→∞ (unstable along the direction of ~α2).

As shown in Fig. (A.3), this is an unstable saddle fixed point.

II) α1 and α2 are both complex. Therefore they have the following form

α1 = β + iζ; (A.10a)

α2 = β − iζ. (A.10b)

II.1) If β < 0, then |~w| → 0 as t→∞. As shown in Fig. (A.4), a stable fixed point.

II.2) If β > 0, then |~w| → ∞ as t→∞. As shown in Fig. (A.5), an unstable fixed point.

II.3) If β = 0, then |~w| → C as t → ∞, where C is a constant. As shown in Fig. (A.6),

this is a marginally stable fixed point or centre. In this case trajectories circulate around

the fixed point and eventually return to the initial point. Such trajectories are called closed

trajectories or closed orbits.
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Figure A.2: Unstable fixed point, α1 > 0 and α2 > 0.
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Figure A.3: Unstable saddle fixed point, α1 < 0 < α2.
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Figure A.4: Stable fixed point, Re[α] = β < 0.
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Figure A.5: Unstable fixed point, Re[α] = β > 0.

u

v

Figure A.6: Marginally stable fixed point, Re[α] = 0.
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Figure A.7: Pendulum with mass m, and length l.

A.2 Two-dimensional non-linear system

A two-dimensional non-linear system is a system which has the general form[70]

u̇ = f(u, v);

v̇ = g(u, v), (A.11)

that can not be reduced to the form of Eq. A.1.

The unforced, undamped pendulum or free oscillator is a well known two-dimensional non-

linear problem, Fig. (A.7). The idealized pendulum equation of motion can be written in

the following form[69]:

θ̈ +
g

l
sin(θ) = 0. (A.12)

I can represent this problem in a two-dimensional non-linear form

θ̇ = ω; (A.13a)

ω̇ = −g
l

sin(θ), (A.13b)

which is not a linear system because of the term sin(θ).
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A.2.1 Linearisation near the fixed points

Consider Eq. (A.11), the general form of two-dimensional non-linear system. Suppose (u∗, v∗)

is a fixed point for this system, satisfying

f(u∗, v∗) ≡ 0; (A.14)

g(u∗, v∗) ≡ 0.

Let

u′ = u− u∗; (A.15a)

v′ = v − v∗. (A.15b)

For small u′ and v′

u̇′ ≈ f(u∗, v∗) +
∂f

∂u
(u∗, v∗)u′ +

∂f

∂v
(u∗, v∗)v′ +O2(u, v); (A.16a)

v̇′ ≈ g(u∗, v∗) +
∂g

∂u
(u∗, v∗)u′ +

∂g

∂v
(u∗, v∗)v′ +O2(u, v). (A.16b)

Since (u∗, v∗) is a fixed point, f(u∗, v∗) = g(u∗, v∗) = 0. Close to the fixed points (u′ �

1, v′ � 1), equations (A.16) can be written as

u̇′ ≈ ∂f

∂u
|(u∗,v∗)u′ +

∂f

∂v
|(u∗,v∗)v′; (A.17a)

v̇′ ≈ ∂g

∂u
|(u∗,v∗)u′ +

∂g

∂v
|(u∗,v∗)v′. (A.17b)

These equations can be written in a linearised form as

~̇w′ ≈ J ~w′, (A.18)

where ~w′

~w′ =

 u′

v′

 , (A.19)
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and J is the Jacobian matrix which has the following form

J =

 ∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v


(u∗,v∗)

. (A.20)

This linearised system describes the behaviour of the non-linear system near the fixed points.

Therefore the stability of the fixed points can be analyzed by the method introduced in

section A.1.2.

A.2.2 Validity of the linearization

Here I define two types of fixed points:

I) Hyperbolic : A fixed point is a hyperbolic fixed point if Re(α1) 6= 0 and Re(α2) 6= 0.

Hyperbolic fixed points are sturdy and small non-linear terms cannot change their type of

stability.

II) Non-hyperbolic : A fixed point is a non-hyperbolic fixed point if at least the real part

of one of the eigenvalues of the Jacobian matrix (α1, α2) is zero. Non-hyperbolic fixed points

are fragile and their stability type can be affected by small non-linear terms.

The important Hartman-Grobman states that the local phase portrait near a hyperbolic

fixed point is topologically equivalent to the phase portrait of linearization [67]. In other

words near the hyperbolic fixed points the linearization that I introduced in the previous

section is valid.

A.2.3 Conservative systems

Centers for a non-linear system are non-hyperbolic fixed points and their stability type is

very delicate. However, in this thesis I use the following theorem to describe the behaviour

of the system near a non-linear center [67].

Theorem: Consider the system (u̇ = f(u, v), v̇ = g(u, v)) where (u, v) ∈ R2 and (f, g) are

continuously differentiable. Suppose that (u∗, v∗) is an isolated fixed point and there exists a
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conserved quantity H(u, v). If (u∗, v∗) is a local minimum of H(u, v), then all the trajectories

sufficiently close to (u∗, v∗) are closed.
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