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Abstract
 

The classical Goldreich-Levin (G-L) theorem is presented as a block-box query prob­

lem, referred to herein as the G-L problem. The query complexity of this problem 

is bounded in both classical and quantum settings. The well-known upper bound 

of the classical G-L problem is analyzed in a pedagogical manner. A proof of the 

lower bound of the classical G-L problem is given using the techniques of classical 

information theory. This classical analysis is then extended to the realm of quantum 

computing by noting the similarity of the noiseless G-L problem to the inner-product 

query problem solved by the quantum circuit defined by Bernstein and Vazirani (B­

V). An upper bound of the query complexity of the quantum G-L problem is proven 

by extension of the B-V circuit to incorporate noisy inner-product queries. The lower 

bound of the query complexity of the quantum G-L problem is proven by adapting 

the proof of the optimality of the quantum search algorithm to include modified 

inner-product queries. 

Both the classical and quantum versions of the Goldreich-Levin theorem have 

cryptographic applications in the area of bit commitment. A discussion of the im­

possibility of unconditional quantum bit commitment is followed by the presentation 

of both classical and quantum bit commitment protocols that are based on the as­

sumption of the existence of classical and quantum one-way permutations. The 

relative security of the classical and quantum protocols are compared where it is 

shown that the quantum version is quantitatively more secure. 
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Introduction
 

The bulk of this thesis deals with various aspects of the Goldreich-Levin (G-L) 

Theorem and its application to cryptography. The G-L Theorem is concerned with 

the reduction from the computational problem of inverting a one-way function to the 

problem of predicting a single bit—a so-called hard predicate—associated with that 

function. The G-L Theorem is presented as a black-box query (or oracle) problem 

that we refer to as the G-L problem. In our study of this problem, we have divided 

the thesis into four chapters. The first chapter deals with preliminaries — that is the 

background required to understand the mathematical and physical concepts inherent 

in the proofs. Those readers with the appropriate background can skim or skip this 

section in its entirety. We now provide a brief overview of each of the chapters. 

In the first chapter, we begin with an overview of classical information theory, 

specifically focusing on the tools used in the proofs of the query complexity of the 

classical G-L problem. This includes a discussion of entropy and related quantities 

as well as a discussion of basic asymptotic notation. In our study of the mathemat­

ical theory of information, we realize that information must exist in some physical 

sense — either as a symbol written on a piece of paper or the physical position of a 

switch. The language of physics is used to describe the physical states inherent in 

our information. Physics went through a revolution when the quantum theory was 

proposed and later demonstrated to accurately describe the behaviour of things at 

atomic scales. The mathematics of the quantum theory is much richer than its clas­

sical counterpart, and we will see that quantum information is also correspondingly 

richer than its classical counterpart. We follow our discussion of classical information 

1
 



2 

theory with a brief introduction to quantum information and computing that we will 

use in our study of the query complexity of the quantum G-L problem. We conclude 

Chapter 1 with a brief overview of cryptography with the main focus on the concept 

of bit commitment, which motivates the need for a hard predicate and introduces the 

G-L Theorem. Bit commitment is a useful application of the G-L Theorem whose 

reduction provides a means for us to compare the relative security of classical and 

quantum bit commitment schemes. 

In Chapter 2, we focus on the classical G-L Theorem. We expand on Goldreich 

and Levin’s original proof and provide a detailed analysis of the upper bound of 

the query complexity of this problem. The query complexity of the G-L problem is 

dependent on the advantage of the oracle. We speak of the noiseless G-L problem 

when the advantage is such that the oracle always returns the correct answer. Our 

study of the upper bound is followed by an analysis employing the techniques of 

classical information theory to provide a lower bound. 

In Chapter 3, we introduce the quantum circuit used by Bernstein and Vazirani 

(B-V) to solve the inner product (IP) query problem. We show how the solution given 

by this circuit solves a problem that is equivalent to the noiseless G-L problem. We 

then capitalize on this recognition to extend the B-V circuit’s applicability to noisy 

IP queries whose probabilistic response relates to the classical theorem in a natural 

way. We use this circuit to derive an upper bound of the query complexity of the 

quantum G-L problem. We then adapt the proof of the optimality of the quantum 

search algorithm to include modified inner-product queries in order to lower bound 

the quantum G-L problem. 

The final chapter focuses on applications of the classical and quantum G-L The­
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orems in the area of bit commitment. The concept of a quantum one way permu­

tation is introduced. This is in turn used to develop protocols for both bit and 

qubit-commitment schemes. The relative security of these quantum protocols are 

compared to the equivalent classical protocols. 



Chapter 1 Preliminaries
 

1.0 Introduction 

The material presented in later chapters of this thesis requires some understand­

ing of classical information theory, complexity theory, quantum information theory 

and cryptography. The purpose of this chapter is to present an overview of these 

large bodies of knowledge with a focus on the key concepts employed in the proofs 

presented herein. The chapter begins with an introduction into the mathematical 

foundation of information theory, where we focus on various aspects of Shannon en­

tropy. This is followed by a brief introduction into the key concepts of quantum 

computing where we introduce the definition of the qubit and the quantum circuit 

representation of quantum algorithms. This framework is then expanded upon to in­

clude some examples of quantum algorithms that find application later in the thesis. 

The chapter concludes with a brief overview of the science of cryptography in which 

we pay particular attention to the concept of bit commitment. The conflicting needs 

of effective bit commitment provides motivation for the G-L Theorem. 

1.1 Classical Information Theory 

Information theory, as a distinct branch of mathematics, began in 1948 when Claude 

Shannon published his landmark paper “A Mathematical Theory of Communication” 

[30]. In this section, we discuss the major concepts of what we will refer to as classical 

information theory as distinguished from quantum information theory. 

4 
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1.1.1 Entropy
 

We begin by introducing the concept of Shannon entropy. We follow this with 

definitions of conditional entropy and mutual information. We give examples of 

specific calculations for clarity and, in some cases, perform some of the calculations 

that are applied later on in the thesis. 

The Shannon entropy of a random variable, X, is a measure of the average 

uncertainty of the random variable. Alternatively it can be viewed as the amount of 

information gained, on average, when we learn the value of X. The Shannon entropy 

is written as a function of the probability distribution of X, p1, . . . , pn, as  

 
H(X) ≡ H(p1, . . . , pn) ≡ − px log px. (1.1) 

x 

Note that in this definition the logarithm indicated by ‘log’ is taken to the base 

2. We will use this convention throughout this thesis, while ‘ln’ indicates a natural 

logarithm. There are other definitions of entropy such as minimum entropy and 

maximum entropy defined in the literature, but we drop all adjectives and refer to 

Shannon entropy simply as entropy for the remainder of this thesis. 

It is instructive to specifically look at the entropy of a two-outcome random 

variable 

H(p) ≡ −p log p− (1 − p) log(1 − p), (1.2) 

where p and 1−p are the probabilities of the two possible outcomes. This is sometimes 

referred to as the binary entropy. The graph of the function H(p) is shown in Figure 

1.1. The figure illustrates some of the basic properties of entropy — it equals 0 when 

p = 0  or  p = 1 and it takes on its maximum value of 1 when p = 1
2 . Intuitively, this 

makes sense since when p = 0  or  p = 1 there is no uncertainty, and the uncertainty 
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=
is maximum when p
 1 
2 .
 For purposes later on in the thesis, we now derive an
 

1 1 
2 − ε, and
 expression for H(p) when p is just slightly less than
 Thus we set  p =
.
2

the binary entropy is expressed as
 

1 
2 − ε) log(
1 

2 − ε) − (
1 
2 + ε) log(
1 

2H(p) =  −(
 + ε)
       

1
 2
 2
 
  
  
  


1 1− ε
 ln
 ln
+
 + ε
=
 2 2ln 2
 1 − 2ε
 1 + 2ε

1   
   
   


1 1(ln 2 − ln (1 − 2ε)) +
 + ε (ln 2 − ln (1 + 2ε))
− ε
= 
ln 2 2 2

1   
   
   

1 1(ln 2 + 2ε) + 
 + ε (ln 2 − 2ε)
≥
 − ε
2 2ln 2

4 
ε2= 1  −
 . (1.3)


ln 2


Here we have used the relationship ±x ≥ ln(1 ± x) to create a quadratic bound in 

ε for this entropy. For comparison with H(p), this bound is also plotted in Figure 

1.1. Before moving on to the entropy of more than just a single random variable, 

it is interesting to write down the entropy of a random variable that has a uniform 

distribution over 2n outcomes. The entropy of such a random variable is 

2n 2n 

1 1 
H(X) =  − pi log pi = − log = log 2n = n. (1.4)

2n 2n 
i=1 i=1 

It is stated, but not proven, that the number of bits used to describe the random 

variable is the maximum value that H(X) can take. It is left to the reader to prove 

that this always occurs when the random variable is uniformly distributed. 

So far we have defined the entropy of a single random variable. The joint entropy 

is a measure of the uncertainty of a bivariate distribution. It is defined as 

H(X, Y ) =  − p(x, y) log p(x, y). (1.5) 
y x 
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p
 

Figure 1.1: Plot of the binary entropy (solid line) and a quadratic approximation 
given in Equation 1.3 (dashed line). 

The conditional entropy of a random variable given another random variable is the 

expected value of the entropies of the conditional probability distributions averaged 

over the conditioning random variable. It is defined as follows 

H(Y |X) =  p(x)H (Y |X = x) . (1.6) 
x 

A very useful quantity is the mutual information content of X and Y , which is a 

measure of how much information X and Y have in common. If we add the informa­

tion content of X, which is H(X), to the information content of Y , information that 

H
(p

) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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is common to both will have been counted twice in the sum. Subtracting the joint 

information of (X, Y ), which is H(X, Y ), we obtain an expression for the mutual 

information of X and Y as 

I(X : Y ) =  H(X) +  H(Y ) − H(X, Y ). (1.7) 

Introducing the definition of conditional entropy given in Equation 1.6, Equation 1.7 

is commonly rewritten as 

I(X : Y ) =  H(X) − H(X|Y ). (1.8) 

H(X) H(Y) 

H(Y|X)H(X|Y) H(X,Y) 

I(X:Y) 

Figure 1.2: Entropy Venn diagram showing relationship between joint entropy 
H(X, Y ), conditional entropy H(X|Y ) and mutual information I(X : Y ). 
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These various entropy definitions are most easily remembered when they are 

expressed in the Venn diagram presented in Figure 1.2. We note the symmetry of 

the mutual information in its arguments and use this to write down 

H(X) − H(X|Y ) =  H(Y ) − H(Y |X). (1.9) 

This property is useful in defining a chain rule for entropy. We write down the 

definition without proof (see [13, page 22] for a clear one): 

n 

H(X1, X2, . . . , Xn) =  H(Xi|Xi−1, . . . , X1). (1.10) 
i=1 

In Chapter 2 in our proof of the classical lower bound of the G-L Theorem, we need 

to develop an expression for how information about an unknown random variable is 

revealed by a succession of random variables that are the result of “noisy” responses 

to oracle queries. Equation 1.10 forms the basis for the desired expression. We first 

explore the simple case where n = 3, and in keeping with notation we use in Chapter 

2, we relabel the random variables used in Equation 1.10 and write 

H(A, Y1, Y2) =  H(A) +  H(Y1|A) +  H(Y2|Y1, A) 

= H(Y1) +  H(Y2|Y1) +  H(A|Y1, Y2). 

Solving this expression for H(A|Y1, Y2), we have 

H(A|Y1, Y2) =  H(A) +  H(Y1|A) +  H(Y2|Y1, A) − H(Y1) − H(Y2|Y1) 
2 

= H(A) +  (H(Yi|A, Yi−1) − H(Yi|Yi−1)) . (1.11) 
i=1 

In the last equality in Equation 1.11, we assume that H(Y1|Y0) =  H(Y1) and 

H(Y1|A, Y0) =  H(Y1|A). The quantity H(A|Y1, Y2) is interpreted as the amount 
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10 

of information we have about the random variable A given the information about 

the random variables Y1 and Y2, which are the result of making m = 2 queries to our 

“noisy” oracle. We readily extend Equation 1.11 to the general case where we make 

m queries 

m 

(A|Y1, Y2, . . . , Ym) =  H(A) +  (H(Yi|A, Y1, . . . , Yi−1) − H(Yi|Y1, . . . , Yi−1)) . 
i=1 

(1.12) 

We will make use of Equation1.12 in Chapter 2 where we wish to bound the number 

of queries we have to make to the “noisy” oracle to determine the unknown random 

variable A with reasonable probability. 

We conclude this discussion of some of the properties of entropy by considering the 

entropy of a bi-level probability distribution where 2n/2 elements of {0, 1}n each have 

probability δ/2n/2 and 2n − 2n/2 elements each have probability (1 − δ)/(2n − 2n/2). 

The entropy of this distribution is 

δ δ 1−δ 1−δ= H 2n/2 , . . . ,  , 2n−2n/2 , . . . ,Hbi-level 2n/2 2n−2n/2 

2n/2 2n−2n/2 

2n/2 2n 

δ δ 1 − δ 1 − δ 
= − log − log

2n/2 2n/2 2n − 2n/2 2n − 2n/2 
i=1 i=2n−2n/2 

δ 1 − δ 
= −δ log − (1 − δ) log 

2n/2 2n − 2n/2 

= −δ log δ + δ log(2n/2) − (1 − δ) log(1 − δ) + (1  − δ) log(2n − 2n/2) 

= H(δ) +  δ log(2n/2) + (1  − δ) log(2n − 2n/2). (1.13) 

The entropy of an arbitrary distribution having 2n/2 elements with probability pi 

http:Equation1.12
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and 2n − 2n/2 elements with probability qi is written 

2n/2 2n−2n/2 

H p1, . . . , p2n/2 , q1, . . . , q2n−2n/2 = − pi log pi − qi log qi. (1.14) 
i=1 i=1

2n/2 2n−2n/2 

We have already mentioned that in Chapter 2 we bound the number of queries we 

need to make to a “noisy” oracle in order to determine the value of an unknown 

random variable. To assist in establishing this bound, we show that the entropy 

of the bi-level distribution given in Equation 1.13 upper bounds the entropy of any  
distribution with i pi = δ. It is of interest to note that this generalizes the spirit 

of Equation 1.4, where we have H(X) ≤ H(uniform) =  n. We thus make the claim 

that the entropy of the arbitrary distribution given by Equation 1.14 is at most equal 

to the entropy of the bi-level distribution. We prove the claim as follows: 

δ δ 1−δ 1−δH 2n/2 , . . . , 2n/2 , 2n−2n/2 , . . . , 2n−2n/2 −H p1, . . . , p2n/2 , q1, . . . , q2n−2n/2 

2n/2 2n−2n/2 2n/2 2n−2n/2 

2n/2 2n 

δ δ 1 − δ 1 − δ 
= − log − log

2n/2 2n/2 2n − 2n/2 2n − 2n/2 
i=1 i=2n−2n/2 

2n/2 2n−2n/2 

+ pi log pi + qi log qi 
i=1 i=1
 

2n/2 2n−2n/2
 

δ 1 − δ 
= − pi log − qi log

2n/2pi (2n − 2n/2)qii=1 i=1 

2n/2 2n−2n/2 

δ 1 − δ ≥ −  pi 1 − − qi 1 −
2n/2pi (2n − 2n/2)qii=1 i=1
 

2n/2 2n/2 2n−2n/2 2n−2n/2
 

δ 1 − δ 
= pi − + qi −2n/2 2n − 2n/2
 

i=1 i=1 i=1 i=1
 

= 0. (1.15) 

We will now discuss some of the terminology of complexity theory that will be used 
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later in the thesis. 

1.1.2 Complexity Theory 

Complexity theory provides a methodology for analyzing the computational com­

plexity of different computational problems. A computational problem’s complexity 

is determined by the computational power needed to solve it. Computational com­

plexity is often measured by two variables: T (for time complexity) and S (for space 

complexity, or memory requirements). Both T and S are commonly parameterized 

as functions of n, where n is the size of the input. In this thesis, we wish to bound 

the number of oracle queries required to solve the G-L problem. We are particularly 

interested in determining upper and lower bounds on the G-L query problem that are 

asymptotically tight. The bounds will “cap” the number of oracle queries we need to 

make and will be parameterized as a function of n, the number of bits in an unknown 

string. We will use the O (‘big O’) notation to set asymptotically tight upper bounds 

on the number of queries that a particular algorithm must make to determine the 

value of the string. We then use the Ω (‘big Ω’) notation to set asymptotically tight 

lower bounds on the number of queries that any algorithm must make to determine 

the value of the string. Also, in several definitions used later in the thesis, we make 

use of bounds that are not asymptotically tight. For these, we use the o (‘little o’) 

notation for non-asymptotically tight upper bounds and the ω (‘little ω’) notation for 

non-asymptotically tight lower bounds. We now provide definitions of each of these 

bounds along the lines given in [10] and [32], and for the purpose of cross reference, 

provide some examples. 

The big O notation is particularly useful for studying the worst-case behaviour of 
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a specific algorithm. In this notation we only care about the term of the complexity 

function that grows the fastest. For example, if the time complexity of a given 

algorithm is 40n4 + 30n2 + 20 log2 n + 10, then the computational complexity is on 

the order of n4 which is expressed O(n4). We formalize this notion in the following 

definition. 

Definition 1 An asymptotic upper bound of a function f(n) is  g(n) and is written 

f(n) =  O(g(n)) provided the following conditions are met: 

1. f and g are two functions f, g : N → R. 

2. positive integers c and n0 exist so that for every integer n ≥ n0, f(n) ≤ cg(n). 

We say that g(n) is an  asymptotic upper bound for f(n), to emphasize that we are 

suppressing constant factors. Intuitively, f(n) =  O(g(n)) means that f is less than 

or equal to g if we disregard differences up to constant factor. 

When studying the behaviour of a class of algorithms, we wish to set lower bounds 

on the resources required by any member of that class. We use the Ω notation for 

this purpose. A formal definition of Ω notation is written along the lines of Definition 

1. 

Definition 2 An asymptotic lower bound of a function f(n) is  g(n) and is written 

f(n) = Ω(g(n)) provided the following conditions are met: 

1. f and g are two functions f, g : N → R. 

2. positive integers c and n0 exist so that for every integer n ≥ n0, f(n) ≥ cg(n). 

In Chapters 2 and 3 of this thesis we will be comparing both upper and lower 

bounds of classical and quantum algorithms designed to to solve the G-L query 
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problem. It is interesting to note that while determining an upper bound requires 

just a specific algorithm be created and analyzed, determining a lower bound is 

usually more involved. This difficulty arises because the lower bound is often the 

result of some inherent constraint on the problem at hand that must be studied 

outside of the context of any particular algorithm. Once a lower bound has been 

proven for a given class of algorithms, no algorithm of that class can do better. Of 

course, an algorithm of a different class can do better as we will show when we 

provide lower bounds to both the classical and quantum G-L problem. Tools used 

to determine lower bounds include those of information theory. We now wish to 

introduce the concept of a tight bound. The bound on some problem A is said to be 

tight if A is both O(f(n)) and Ω(f(n)). In this case we say that A = Θ (f(n)). We 

now give definitions on non-asymptotic upper and lower bounds. 

Another type of upper bound is one that is not asymptotically tight for which 

we use the o-notation. 

Definition 3 A non-asymptotic upper bound of a function f(n) is  g(n) and is written 

f(n) =  o(g(n)) provided the following conditions are met: 

1. f and g are two functions f, g : N → R. 

2. for any c > 0, there exists some n0 > 0 such that for all n ≥ n0, f(n) < cg(n). 

The statement f(n) =  o(g(n)) means f(n) is “less than” any constant multiple of 

g(n) for “big” values of n. We can thus think of f(n) as “eventually” being trapped 

below all constant multiples of g(n). The definitions of O-notation and o-notation 

are similar, but in o-notation the f(n) < cg(n) holds for all constants c > 0. Perhaps 

the difference between the notations is most strikingly captured in the following. If 
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f (n)f(n) =  O(g(n)), then assuming such a limit exists, limn→∞ g(n) = c; whereas if   

f (n)f(n) =  o(g(n)), then assuming such a limit exists, limn→∞ g(n) = 0. In our final 

definition of this section, we define the non-asymptotically tight lower bound. 

Definition 4 A non-asymptotic lower bound of a function f(n) is  g(n) and is written 

f(n) =  ω(g(n)) provided the following conditions are met: 

1. f and g are two functions f, g : N → R. 

2. for all c > 0, there exists some n0 > 0 such that for all n ≥ n0, f(n) > cg(n). 

The statement f(n) =  ω(g(n)) means f(n) is “greater than” any constant multiple 

of g(n) when we ignore “small” values of n. We can thus think of f(n) as “even­

tually” being trapped above any constant multiple of g(n). Again, the definitions 

of Ω-notation and ω-notation are similar, and we capture the difference between the 

notations most strikingly in the following. If f(n) = Ω(g(n)), then assuming such   
f (n)a limit exists, limn→∞ g(n) = c; whereas if f(n) =  ω(g(n)), then assuming such a   

limit exists, limn→∞
f
g(
(
n
n
)
) = ∞. 

f(n) Notation 
3n3 

3n3

n100 

nlog log n 

nn 

= O(n3) 
 = o(n3) 
= nO(1) 

= nω(1) 

= nω(n) 

Table 1.1: Some functions and their bounds 

We shall use these bounds frequently throughout the thesis. In Table 1.1, we 

give some examples of functions and their membership or not in these sets. We now 

give in introduction to the aspects of quantum information theory that we will be 

making use of later in the thesis. 
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1.2 Quantum Information Theory 

In order to study information in a quantum setting we need to expand several classical 

concepts into the quantum domain. In this section, we firstly expand our concept 

of a classical bit and introduce the concept of a quantum bit, which is termed a 

qubit. We introduce the idea of a quantum circuit as an analogy to a classical 

computer algorithm. Finally as preparation for proofs that will appear in Chapter 

3, we introduce a simple quantum circuit in the study of Deutsch’s algorithm and 

also study the slightly more involved Grover’s algorithm. 

1.2.1 Quantum bits 

What is a qubit? Just as a classical bit has a state, which can be either 0 or 1, a 

qubit has two possible basis states |0) or |1). Here we are using the Dirac notation 

to describe a quantum mechanical state where the symbol ‘| )’ is termed a ket - the 

right syllable of bracket. The fundamental difference between bits and qubits is that 

qubits can be in a state other than |0) or |1). It is possible to form superpositions 

of states: 

|ψ) = α|0)+ β|1). (1.16) 

The numbers α and β are complex numbers subject to the constraint that |α|2+|β|2 = 

1. Thus we can think of a qubit as a vector in a two-dimensional complex vector 

space. The special states |0) and |1) are known as the computational basis states, 

and form an orthonormal basis for this vector space. When it comes to measuring a 

qubit, we get the result 0 with probability |α|2 and the result 1 with probability |β|2 . 

It is remarkable that we can not examine a qubit to determine its quantum state, 
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but nonetheless we can achieve powerful results with qubits. 

Before going into how we can manipulate qubits, we wish to describe them in the 

langauge of linear algebra. The basis kets are written as the following two column 

vectors ⎤⎡⎤⎡ 

1 0
 |0) =
 ⎥⎦

⎢⎣
 

0
 
;
 |1) =
 ⎥⎦


⎢⎣
 .
 (1.17)
 
1
 

Like a two-bit system, a two-qubit system has four possible basis states, which are 

written as follows ⎤⎡⎤⎡⎤⎡⎤⎡ 
1 0 0 0
 

|00) =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0
 

0
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

; |01) =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

1
 

0
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

; |10) =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0
 

1
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

; |11) =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0
 

0
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

. (1.18)
 

0 0 0 1 

These basis vectors are often expressed using the outer or Kronecker product notation 

⊗2|00) = |0) ⊗ |0) = |0)
 ⎤⎡⎤⎡ 
1 × 1 1
 ⎢⎢⎢⎢⎢⎢⎢⎣
 

1 × 0
 

0 × 1
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

=
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0
 

0
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

⎤⎡⎤⎡ 

1 1
 ⎥⎦

⎢⎣
 ⊗
 ⎥⎦
 

⎢⎣
 (1.19)
=
 =
 .
 
0 0
 

0 × 0 0 

This notation is extended to define an n-qubit state, e.g. ⎤
⎡
 

|00 . . . 0) = |0)⊗n =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

1
 

0
 
. .. 

0 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (1.20)
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We now move on to define the quantum gates, which are used to manipulate qubits 

in order to compute with them. 

1.2.2 Quantum gates 

A classical computer is built around logic gates ; in an analogous manner, a quantum 

computer is built from a quantum circuit, which contains elementary quantum gates. 

In this section, we introduce single and multiple qubit quantum gates. We state 

that a universal set of quantum gates can be constructed from some basic single and 

double qubit gates. 

In a classical computer the non-trivial single bit logic gate is the NOT gate, whose 

operation is defined by its truth table. The 0 and 1 states are interchanged by this 

operation, in which 0   → 1 and 1→ 0. The analogous quantum NOT gate for a qubit 

acts linearly on a single qubit state 

α|0) + β|1)  (1.21)→ α|1) + β|0). 

It is convenient to represent this quantum NOT gate, conventionally written X, as  

the two-by-two matrix
 ⎤
⎡
 

0 1 
  
X =
 ⎥⎦


⎢⎣
 .
 (1.22)
 
1 0  

As it turns out, all quantum gates acting on a single qubit can be described by 

unitary two-by-two matrices. Recall that the matrix U is unitary if U †U = I, where 

U † is the complex conjugate transpose of U . There are many non-trivial single qubit 
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gates. One of the most important in quantum computation is the Hadamard gate,
 ⎤⎡ 

1
 
H = √
 

1 1
 ⎥⎦⎢⎣ .
 (1.23)

2
 1 −1
 

This gate takes either of the computational basis states into an equal superposition 

of these states. The effect of the two-qubit gates, X and H is illustrated in Figure 

1.3. Before moving on to discuss two qubit gates, we develop an expression for the 

α|0) + β|1) β|0) + α|1)
  X

|0)+|1) |0)−|1)
α|0) + β|1) α √ + β √ 

2 2
  H

Figure 1.3: Single qubit logic gates 

effect of n Hadamard gates operating on an n qubit state. Recall that we used the 

Kronecker product to express the two qubit basis states. If we wished to operate on 

each of the two component qubits, we would analogously express the four-by-four 

Hadamard matrix as ⎤⎡ 

1 
H⊗2 = H ⊗ H = 

2
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

1 1 1 1 

1 −1 1 −1 

1 1 −1 −1 

1 −1 −1 1 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (1.24)
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Of course we could extend this notation to n qubit states, but the effect of this 

Hadamard on a given input state can be much more succinctly expressed. To see 

how to proceed, we firstly explicitly write out the result for the n = 2 case: 

H⊗2|00) = 1 (|00)+ |01)+ |10)+ |11))2 

H⊗2|01) = 1 (|00) − |01)+ |10) − |11))2 

H⊗2|10) = 1 (|00)+ |01) − |10) − |11))2 

H⊗2|11) = 1 (|00) − |01) − |10)+ |11)). (1.25)2 

There is an interesting pattern in how the plus and minus symbols are distributed 

in these four equations. We can capture this relationship by looking at the inner 

product of the input and output states. Defining z ∈ {0, 1}2 as the input states and 

x ∈ {0, 1}2 as the output states, we express the inner product between the two states 

as 

(1) (1) ⊕ z(2) (2)z · x = z x x . (1.26) 

Here z(i) is the ith bit of the state |z) and the resulting inner product is a single bit. 

With this definition of the inner product we can rewrite the four equations 1.25 in 

the following nicely compact form 

1 
H⊗2|z) = (−1)z·x|x). (1.27)

2 
x∈{0,1}2 

The reader can readily verify the correctness of this expression. It is particularly 

satisfying how readily this representation extends to the n-qubit case: 

1 
H⊗n|z) = √ (−1)z·x|x). (1.28)

2n 
x∈{0,1}n 
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In designing quantum circuits to solve particular problems, it is often the case that 

the qubit registers are prepared in the n-qubit state |00 . . . 0), and this state is then 

operated on by n Hadamard gates to produce an equal superposition of the 2n basis 

states. Equation 1.28 with |z) = |00 . . . 0) thus appears often in the analysis of 

quantum circuits. The final component required to make a useful quantum circuit 

are the multiple qubit gates. 

|A) _ |A)
Control 

|B) _ |B ⊕ A)
Target 

Figure 1.4: The CNOT Gate: an example two-qubit logic gate 

The prototypical multiple qubit gate is the two qubit gate termed the controlled-

NOT (CNOT) gate. Figure 1.4 is the standard quantum circuit representation of 

this gate. The upper qubit is referred to as the control qubit while the lower qubit 

is referred to as the target qubit. The effect of this gate is to flip the target qubit 

when the control qubit is 1. This effect is expressed in the following equations. 

|00) → |00); |01) → |01); |10) → |11); |11) → |10). 
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The CNOT has the following matrix representation ⎤⎡ 

CNOT =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

1 0 0 0  

0 1 0 0  

0 0 0 1  

0 0 1 0  

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (1.29)
 

Before moving on to discuss the use of these elementary quantum gates in quantum 

circuits, we introduce the semantics of quantum measurement. 

1.2.3 Quantum measurement 

It is postulated that closed quantum systems evolve according to unitary evolution. 

However, when a measurement is made this simple picture breaks down. To explain 

what happens, we give a very brief description of the effects of measurement on a 

quantum system. See [27, Pages 84-90] for a more complete discussion. 

We begin by defining the measurement operator Mm, where the the index m ∈ 

{0, 1}n refers to the measurement outcomes that may occur in an experiment in­

volving an n-qubit system. The measurement operators satisfy the completeness 

equation, 

M † Mm = I.  (1.30)m

m 

If the state of a quantum system is |ψ) before a measurement is made, then the 

probability that the result m occurs is 

Pr[m] =  (ψ|M † Mm|ψ), (1.31)m
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and the state of the system after the measurement is 

Mm|ψ)
. (1.32) 

mMm
† 

 

(ψ|M
 |ψ)
 

These two equations are understood by an example. Consider the measurement of a 

qubit in the computational basis. This is a measurement on a single qubit with two 

outcomes, which are defined by the two measurement operators ⎤
⎡
 

1 0 
  ⎥⎦

⎢⎣
M0 = |0)(0| = ,
 

0 0 
  

and
 ⎤
⎡
 

0 0 
  ⎥⎦

⎢⎣
M1 = |1)(1| = .
 

0 1 
  

0 + M1M
† 

we would expect is required to completely describe the system. Continuing with our 

example suppose the state being measured is |ψ) = α|0) + β|1), then the probability 

of measuring outcome 0 is 

Pr[m = 0] =  (ψ|M0|ψ) = |α|2 . (1.33) 

Similarly Pr[m = 1] =  |β|2 . The state after measurement in the two cases is thus 

M0|ψ) α 
= |0) = |0)|α| |α|

M1|ψ) β 
= |1) = |1), (1.34)|β| |β|

where we have ignored the global phase factors α/|α| and β/|β|. We see from this 

simple example that the measurement operator as formulated in Equation 1.31 and 

Equation 1.32 provides a consistent means for quantum measurement. The subject 

†Note that M0M I, which means that the probabilities sum to one as
 =
 1 
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of measurement of quantum systems is much richer, and the interested reader is 

directed to the referenced literature. 

1.2.4 Quantum computation 

An excellent example of a simple quantum circuit that shows the power of the quan­

tum computer over the classical computer is known as Deutsch’s Algorithm [16]. 

The Bernstein-Vazarani Algorithm, which appears later on in the thesis, is similar 

to this algorithm. Deutsch’s Algorithm determines a certain global property of an 

unknown single-bit function f : {0, 1} → {0, 1}. The property of interest is whether 

or not f is balanced or constant. On a single bit input, which can be either 0 or 1, 

there are four possible outputs that any function can have. We can characterize the 

four possible function categories as follows: ⎧ ⎪⎨
 
⎧ ⎪⎨
 

⎧ ⎪⎨
 
⎧ ⎪⎨
f(0) = 0 
  f(0) = 0 
  f(0) = 1 
  f(0) = 1 
  

f00 : ; f01 : ; f10 : ; f11 : .
 ⎪⎩
 f(1) = 0 
  ⎪⎩
 f(1) = 1 
  ⎪⎩
 f(1) = 0 
  ⎪⎩
 f(1) = 1 
  

Note that f00 and f11 are said to be constant functions while f01 and f10 are said to 

be balanced functions for obvious reasons. The problem of determining whether f 

is balanced or constant is termed a black-box or oracle problem. In these types of 

problems, we are presented with a black box that computes f for us without revealing 

f . If we had only classical information, two queries to the oracle are required to 

determine if f is balanced or not. The remarkable feat that Deutsch’s Algorithm 

accomplishes is that it can determine if the function is balanced or constant in just 

one application of the black box. We present the circuit in Figure 1.5 where we have 

marked the four states of interest. The effect of the box marked f in Figure 1.5 is 

to modulo-two sum f(upper qubit) onto the lower qubit. This action can also be 
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represented by the operator Uf |x)|y) = |x)|y ⊕ f(x)). Since f : {0, 1} → {0, 1}, the 

matrix representation of Uf is a permutation matrix, which is always unitary. We 

now proceed with a step-by-step analysis of these states. 

|0) 

|1) 
|Ψ

fH H 

_H 

0) |Ψ1) |Ψ2) |Ψ3) 

Figure 1.5: Quantum circuit implementing Deutsch’s Algorithm 

We begin by noting the input state is, 

|Ψ0) = |0) ⊗ |1) = |01). 

Note that we will suppress the Kronecker operator at times for convenience. Appli­

cation of the Hadamard gates leaves us with the superposition 

(|0)+ |1)) (|0) − |1))|Ψ1) = √ ⊗ √ 
2 2 

= 1 [|0)(|0) − |1)) +  |1)(|0) − |1))] .2 

The next step is the core of the algorithm — the application of the black box Uf . 

This unitary operator acts in a similar manner to that depicted in Figure 1.4. That 
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is the value of f is modulo-two summed with the bottom qubit as follows 

|Ψ2) = 1 [|0)(|0 ⊕ f(0)) − |1 ⊕ f(0))) +  |1)(|0 ⊕ f(1)) − |1 ⊕ f(1)))]2 

= 1 (−1)f(0)|0)(|0) − |1)) + (−1)f (1)|1)(|0) − |1))2 

1 1 
= √ (−1)f(0)|0)+ (−1)f(1)|1) √ (|0) − |1)). (1.35)

2 2

Before applying the final Hadamard transformation, we note that Equation 1.35 has 

two distinct outcomes corresponding to the constant case, where f(0) = f(1), and 

the balanced case, where f(0) = f(1). We thus rewrite Equation 1.35 ⎧ ⎪⎨
 

1( 0 1 )| ) − | ) ⊗ √ 

± 1

2 2 

√ 

1±√ 

1( 0 1 )+| ) | ) ⊗ √ 
2 2 

(|0) − |1)) if  f is constant
 

(|0) − |1)) if  f is balanced.
 
|Ψ2) = ⎪⎩
 

The final Hadamard application reveals that the balanced and constant cases result 

in different states of the upper qubit since 

10±| ) ⊗  ⎪ √⎩
⎧ ⎪⎨

2 

±|1) ⊗  1

√ (|0) − |1)) if  f is constant
 |Ψ3) = 
(|0) − |1)) if  f is balanced.


2 

We see that a single application of the circuit and a measurement of the upper qubit 

reveals whether f is constant or balanced. This is quite remarkable when compared 

to the classical case where two queries are required. Deutsch’s problem is generalized 

to the n-bit case in the what is known as the Deutsch-Jozsa [17] problem. In the 

n-bit classical case, we need to make 2n−1 + 1 queries (worst-case) whereas only 

one query suffices for the quantum case using the Deutsch-Jozsa algorithm. The 

Deutsch, Deutsch-Jozsa, Bernstein-Vazarani algorithms, along with Shor’s famous 

factoring algorithm [31] are all applications of the quantum Fourier transform [27, 

page 37]. Another interesting type of quantum algorithm is known as Grover’s search 

algorithm.
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We will use Grover’s algorithm [22], also called the quantum search algorithm, 

in our proof of the quantum version of the Goldreich-Levin theorem in Chapter 

3. We give an introduction to the algorithm here. If there are N = 2n different 

elements in a list and we are required to search the list for a particular element, 

on a classical computer Ω(N) operations are required to find the element. Grover’s 
√ 

algorithm provides significant speed up requiring only O( N) operations to find the 

element. In Chapter 3 we will show that this bound is in fact optimal. We now 

describe Grover’s algorithm and provide an outline of a proof of an upper bound of 

the algorithm. 

In Grover’s algorithm, we are given an oracle Γ with f : {1, 2, . . . , N} → {0, 1} 
defined as 

Γ|x)|q) → |x)|q ⊕ f(x)), (1.36) 

where x is the index list register and the oracle qubit |q) is flipped if f(x) = 1.  

By definition f(x) = 1  if  x is a solution to the search problem. Just as we did in 
√ 

Deutsch’s algorithm if we set the oracle qubit initially in the state (|0) − |1))/ 2, 

we can express the oracle more succinctly as 

|0) − |1) Γ |0) − |1)|x) √ → (−1)f (x)|x) √ 
2 2 

Γ|x) → (−1)f (x)|x). (1.37) 

In order to simplify the description, in the last step of the preceding we have adopted 

the convention of omitting the state of the oracle qubit because it remains unchanged. 

The oracle is said to mark the solutions to the search problem by shifting the phase 

of the solution. Grover’s search algorithm involves the repeated application of the 

operator Γ and a second operator that we will now define. 
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The second operator involves the application of a conditional phase shift operator 

with every computational basis state except |0) receiving a phase shift of −1. This 

operator may be written CP hase = 2|0)(0| − I. For clarity, we derive the matrix 

representation of this operator for the n = 2 case as 

CP hase = 2|00)(00| − I 
1 1 0 0 0  1 0 0 0 

⎤⎡ ⎤⎡⎤⎡ 

= 2 
  

⎢⎢⎢⎢⎢⎢⎢⎣
 

0
 

0
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

1 0 0 0  −
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0 1 0 0 
  

0 0 1 0 
  

⎥⎥⎥⎥⎥⎥⎥⎦
 

=
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0 −1 0 0
 

0 0 −1 0
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 

0 0 0 0 1  0 0 0 −1 

If we apply Hadamard operators to both the left and right sides of CP hase, we can 

define 

H⊗n(2|0)(0| − I)H⊗n = 2|ψ)(ψ| − I,  (1.38) 

where the state |ψ) = √1
2n x∈{0,1}n |x) is the equal superposition of all the basis 

states as defined in Equation 1.28 with |z) = |00 . . . 0). The action of this operator 

on an arbitrary state is to reflect it through the state |ψ). This can be readily seen 

by noting that 

(2|ψ)(ψ| − I)|a) = 2p|ψ) − |a), (1.39) 

where p = (ψ|a) is the projection of |a) onto |ψ). Thus we can view the action 

of the operator presented in Equation 1.39 as inverting the sign of the amount of 

|a) perpendicular to |ψ). This is a reflection of |a) through |ψ). This operator 

is combined with the oracle operator Γ, in the definition of the Grover iteration 

operator G, which is written 

G = (2|ψ)(ψ| − I)Γ. (1.40) 
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Grover’s algorithm is simply the repeated application of the operator G until the 

output state is nearly the solution state. We now describe how a single iteration of 

θ+ sin | )A 2

G gets us closer to the solution state. Consider a two dimensional vector space with 

I|B) 

|B)
θ| )ψ = cos 2
  

  
  

  
  

  
  

2 
θ 
2 

            

θ 
_

|A) 
 

θ θΓ sin| ) | ) −ψ A= cos 22

Figure 1.6: The action of the operator Γ is to reflect the state |ψ) about the state 
|A) 

two basis vectors, |A) and |B), which are non-solutions (bad) and solutions (good) 

respectively to the search problem. These states are defined as 

1 |A) = √ |x)
N −M 

x∈bad 

1 |B) = √ |x). (1.41)
M 

x∈good 

Here we are assuming a search space of N elements of which there are M solutions. 

It is apparent that |A) and |B) form an orthonormal basis. We can thus express the 

equal superposition state as 

N −M M |ψ) = |A)+ |B) (1.42)
N N 

|B)
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in this basis. We start Grover iteration on this state. We will now describe some 

pictures to get a feel for how the iteration works. 

In order to understand the action of Grover iteration, we present two figures. In 

θθ3
2 |A)+ sin 32 |B)I|B) (2|ψ)(ψ| − I)Γ|ψ) = cos 

 
  
  
  
  
  θ 

2 |A)+ sin

|A) − sin

θ 
2 |B) 

|B) 

 |ψ) = cos 
 θ θ
  2 _
 
 |A)
 
 

θ 
2 

θ 
2 

θΓ|ψ) = cos
 2 

θ 

Figure 1.7: The action of the operator (2|ψ)(ψ|−I) is to reflect the state Γ|ψ) about 
the state |ψ) 

Figure 1.6, we show the action of the oracle Γ, which is a reflection about the |A) 
axis (Remember that this oracle gives a minus sign to solution vectors). In Figure 

1.7, we show the action of the operator 2|ψ)(ψ|−I, which is also a reflection but this 

time about the starting state |ψ). Note that the net result of applying the operator 

G to the starting state |ψ) has been to move it closer to being parallel to the solution 

θ3
2 |A)+ sin 32 |B) is θ radians closer to the state |B).state |B). The state G|ψ) = cos
 

Furthermore if we start with the state G|ψ), then the state G2|ψ) will be 2θ radians 

closer to |B) than the starting state |ψ). (Note that 2θ =
 θ 
2 + 32 

θ as the operator in
 

Equation 1.39 always reflects through the equal superposition state, |ψ)). Thus k
 

applications of the the operator G has the effect of rotating the state |ψ) kθ radians
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towards |B). This continued application of G may be expressed as 

2k + 1  2k + 1  
Gk|ψ) = cos θ |A) + sin θ |B). (1.43)

2 2 

We will now upper bound the number of times we have to apply the operator until 

with high enough probability we have the solution. 

N−M MStarting with the initial state of the system |ψ) = |A) + |B), we note 
N N 

Mthat we need to rotate through arccos 
N radians in order to move the system to 

|B). We thus define the number of Grover iterations    
arccos M/N 

nGI = CI , (1.44)
θ

where CI(x) is the  closest integer to x. The arccos function provides us with a   
convenient way to upper bound the number of iterations. Noting that nGI ≤ π 

θ θand sin≥ 22

2θ

= M , we have  
N   

nGI ≤ π N
. (1.45)

4 M

NThus we see that nGI = O
 
M . Note that nGI depends on the number of solutions 

M , but not on the identity of these solutions. Provided we know M , the search
 

algorithm is applicable as described. The interested reader is directed to [27, Section
 

6.3 ] for an explanation on how to remove the need for a knowledge of M . Thus for 

the case where there is a single solution only, we have 

nGI = O 
√ 
N , (1.46) 

as we stated earlier. We will have need to call on Grover’s search algorithm in 

Chapter 3 of this thesis and will make use of the result given in Equation 1.46. We 

now move on to discuss some of the concepts within cryptography that are pertinent 

to proofs in later chapters. 
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1.3 Overview of Cryptography 

Cryptography is usually associated the study of how effectively information may 

be concealed from prying eyes during its transmission. Cryptographic protocols 

have also been developed for other purposes such as two distant and un-trusting 

parties wishing to share the result of a fair coin toss using digital communications 

only. Bit commitment is related to such a protocol. All cryptographic protocols 

may be analyzed using the techniques of information theory, complexity theory and 

probability theory. In this section, we briefly discuss the concept of absolute security 

and present some of the trade-offs between different techniques of more traditional 

cryptography in light of quantum information. We then turn to the concept of bit 

commitment and focus both on the quantification of its desirable characteristics and 

on actual implementations. 

1.3.1 Cryptographic Algorithms and Protocols 

In this section we first discuss, in very general terms, cryptographic algorithms, which 

are sometimes referred to as ciphers. We divide these algorithms into two categories 

symmetric and asymmetric algorithms. We give some examples and discuss the 

relative pros and cons of the two approaches. We then go onto to describe the 

motivation for the more esoteric cryptographic protocol of bit commitment. We 

provide some examples identifying deficiencies, which we will use to motivate the 

need for the G-L Theorem. 

A cryptographic algorithm is the mathematical function used for encryption and 

decryption. The security of ciphertext transmission is based on a number of factors, 



33 

but for well-designed algorithms, of paramount importance is the key, denoted by k. 

Plaintext is denoted by m for message, and the ciphertext is denoted c. Both the 

encryption and decryption operations use the key, so the functions are expressed as 

Ek(m) =  c 

Dk(c) =  m. (1.47) 

There are two general types of key-based algorithms: symmetric and public-key. 

Symmetric algorithms, sometimes called conventional algorithms usually require that 

the sender and the receiver agree on a key before they can communicate securely. 

Note that this is a fundamental issue with this type of security algorithm. That is, 

in order to communicate securely, we must first communicate securely! 

Public-key algorithms, also known as asymmetric algorithms, are designed so that 

the key used for encryption is different than the key used for decryption. Further­

more, the decryption key cannot (at least in a reasonable amount of time) be calcu­

lated from the encryption key. The algorithms are called “public-key” because the 

encryption key can be made public. We now discuss some of the issues of balancing 

these approaches against the need for quantifiable security. 

The whole point of cryptography is to keep the plaintext secret from eaves­

droppers. All algorithms exhibit varying degrees of resistance, so it is necessary 

to quantify the degree to which an algorithm can withstand an attack made by a 

cryptanalyst. Of paramount importance is the concept of unconditional security. An  

algorithm is unconditionally secure if, no matter how much ciphertext a cryptana­

lyst has, there is not enough information to recover the plaintext. Given unlimited 

computing resources, only a one-time pad is unbreakable. To understand why this 

http:security.An
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is so, we construct a one-time pad and perform a little analysis. We start with a 

n nmessage string m ∈ {0, 1} and a random key string, k ∈ {0, 1} . By random we 

mean each key string occurs with probability Pk = 1/2n . We construct the cipher 

text by modulo-two summing the key with the message such that 

c = Ek(m) =  m ⊕ k. (1.48) 

Next we convince ourselves that the ciphertext has the same probability distribution 

as the key. Assuming Pm is the probability of a message string, we calculate the 

probability that the ciphertext is equal to any particular value as follows 

Pr[c = z] =  Pm · Pk 

k,m∈{0,1}n 

m⊕k=z 

1 
= Pm 2n 

m k 
k=m⊕z 

1 
= Pm · 2n 

m 

1 
= . (1.49)

2n 

From this we see that the ciphertext has the same probability distribution as the key, 

but note the dependence of this upon Pk = 1/2n exactly. If the outcome probability 

of a key differs at all from this value, information about the plaintext will be present 

in the ciphertext. This will occur if the key is generated by a source that is only 

pseudo-random, or if the number of message bits is greater than the number of key 

bits since a key bit would then have to be used multiple times in construction of 

the ciphertext. This latter fact highlights the impracticality of the one-time pad 

since a new key of length at least that of the message to be exchanged is required 
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for each secret. If a protocol that does not have a one-time pad at its core is used 

to secure communications, the eavesdropper with sufficient computational resources 

can recover the message. Recognition of the impracticality of key distributions in 

a classical setting has led to the development of ways to get around the problem. 

Public-key cryptography skirts the issue by using the concept of trap-door one-

way functions to allow the encryption key to made public by the person wishing 

to receive a secure message while the decryption key is kept private. Quantum key 

distribution using a protocol like BB84 [14] solves the problem by exchanging the 

key over a quantum channel, in a manner that ensures that any eavesdropping can 

be detected. Discussion of these two very interesting parts of classical and quantum 

cryptography is beyond the scope of this thesis and the interested reader is directed 

to the references. We now turn our attention to bit commitment protocols. 

Two parties, especially two un-trusting parties, may wish to do more than just 

communicate securely. Using digital communications, they may wish to compute 

a value such as the result of a fair coin toss, generate a shared random sequence, 

authenticate each other’s identity or sign a contract. One of the key foundation 

protocols applicable to these needs is called bit commitment. This important protocol 

has many interesting applications as diverse and thought-provoking as zero-knowledge 

proofs [29, pages 101-109]. Again, detailed discussion of applications is beyond the 

scope of this thesis, and the reader is directed to the references for more information. 

We now focus on the problem of implementing bit commitment with quantifiable 

properties. 
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1.3.2 Bit Commitment
 

In this section we introduce the concept of bit commitment. We discuss several im­

plementations of bit commitment protocols. We pay particular attention to bit com­

mitment using one-way functions, which we use as a springboard into the Goldreich-

Levin theorem. 

Bit commitment can best be understood using a simple physical example. Sup­

pose Alice wants to commit to a prediction of a particular event in the future (e.g., 

whether a particular stock will be a winner or not), but she does not want to reveal 

her prediction until sometime later. Bob, on the other hand, wants to make sure that 

Alice cannot change her mind after she has committed to her prediction. A physical 

implementation of this commitment might proceed as follows. Alice chooses a bit, 0 

or 1, and writes it on a piece of paper, which she deposits in a locked box. She gives 

the box to Bob but keeps the key. She cannot change what she wrote, and without 

the key, Bob cannot open the box. But at some later point, Alice can give Bob the 

key and reveal her bit. This concrete example illustrates the two key requirements 

of an effective bit commitment scheme. The scheme must be both concealing and 

binding. We will now discuss how to implement schemes without the encumbrances 

of physical safes and keys. 

Although bit commitment appears to be quite a simple concept, it is actually 

quite difficult to come up with robust digital schemes. The difficulty arises in trying 

to make the proposal simultaneously concealing and binding. In fact, unconditional 

bit commitment is actually not possible. The proof of the impossibility of uncondi­

tional classical bit commitment is beyond the scope of this thesis. (A sketch of the 
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proof of the impossibility of unconditional quantum bit commitment is presented in 

Chapter 3.) However, we will illustrate that finding a protocol with reasonably good 

concealing and binding properties is a challenge. Consider the following candidate 

for a bit commitment protocol. Suppose Alice wishes to commit to a bit, b. She 

selects a random n-bit string, r. She has a bit-commit function Commit(r, b) =  r + b 

(the addition is modulo 2n), which gives as output an n-bit commitment string, c, 

which she sends to Bob. This protocol is illustrated in figure 1.8. It is assumed 

® 
�� 

A ® 
�� 

B 

1. b ∈ {0, 1}
2. r ∈μ {0, 1}n 

3. c ← r + b 
4. Commitment c 
5. De-commitment b, r 

6. Verify c ← r + b 

Figure 1.8: A naive bit commitment protocol 

that Bob also knows the bit-commit function, Commit(r, b). When Alice is ready 

to de-commit, she sends the bit, b, and the random n-bit string, r to Bob, who then 

verifies the bit that Alice committed to. On the face of it, this protocol appears 

to satisfy our requirements that the scheme be both concealing and binding. It is 

perfectly concealing in the sense that the commitment string, c is dependent on there 

being 2n random strings. But is it binding? The answer is no because any particular 

commitment string could equally be a commitment to 0 or to 1 since Bob has no 

knowledge of which random string was selected. Thus a dishonest Alice can change 

her commitment at will. We could add more steps to this protocol, such as having 

Bob generate the string r and Alice encrypt the commitment with a one-time pad, 
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but we would still have a protocol with poor binding properties. We need another 

approach to find a bit commitment protocol with reasonable concealing and binding 

properties. 

Other bit commitment protocols exist and of particular interest are those that use 

one-way functions. We are now going to define a special case of a one-way function. 

A one-way permutation, for which we will use the abbreviation OWP, is a length 

preserving one-way function having a unique inverse and is defined as follows. 

n nDefinition 5 A one-way permutatin f : {0, 1} → {0, 1} has the following proper­

ties: 

1. Given x, f(x) is computable in polynomial time. 

2. Each f(x) has a unique inverse. 

3. 	  Let A be any  t(n)-time algorithm with success probability ε(n). If x is ran­

domly selected from all n-bit strings, that is x ∈μ {0, 1}n, and y ← f(x) and 

t(n) ω(1)Pr[A(y) ∈ f−1(y)] = ε(n), then 
ε(n) ∈ n . 

The last statement in this definition means that the ratio of the time resources to any 

algorithm’s success probability is at best super-polynomial. See Table 1.1 for some 

examples of functions that are super-polynomial. We can use a OWP to implement 

a bit commitment scheme that is computationally concealing and perfectly binding. 

We will first present another naive implementation, which is depicted in Figure 1.9. 

We see that this protocol is indeed perfectly binding in that once Alice has made the 

commitment, there is no way she can change it because the OWP is one-to-one. But 

how concealing is it? The critical part of this protocol is how the string r and the 
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A B® ® 
1. b ∈ {0, 1}
2. r ∈μ {0, 1}n−1 

n n4. f : {0, 1} → {0, 1}
5. c ← f(r, b) 

c6. Commitment 
r, b 7. De-commitment 

8. Verify c ← f(r, b) 

Figure 1.9: A naive bit commitment protocol based on a one-way permutation 

bit b are combined into the n-bit argument of the OWP. Indeed depending on the 

specific combination, it is important to note that the protocol may not be concealing 

at all. This is because it may be computationally very easy for Bob to determine 

the single bit in the commitment string that the bears information about b. We note 

that the OWP appears to solve the binding problem, but it would nice to quantify 

the degree of concealment. Rather than mixing the commitment bit into the n-bit 

argument of the one way function, it would be nice to somehow define a single bit 

that is also hidden by the OWP. Ideally we would also like to quantify how hard it 

is for Bob to determine the value of the commitment given this hard bit and any 

other ancillary information necessary to make the commitment. For this we look to 

the concept of a hard predicate of a one-way permutation. 

A hard predicate of a OWP is a single bit that is easy to determine given x but is 

hard to determine given f(x). We give the following definition of a hard predicate. 

n nDefinition 6 A hard predicate of a one-way permutation f : {0, 1} → {0, 1} is a 

nfunction h : {0, 1} → {0, 1} that has the following two properties: 

1. h is computable in polynomial time. 
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2. Let A be any t(n)-time algorithm with success probability ε(n). If x ∈μ {0, 1}n , 

t(n) ω(1)and Pr[A(f(x)) = h(x)] = 1 + ε(n), then .2 ε(n) ∈ n

The next question is how do we find a hard predicate of f . For this we turn to the 

Goldreich-Levin Theorem. This theorem provides a generic means for determining a 

hard predicate given any one-way permutation. In Chapter 2 we state the Goldreich-

Levin Theorem and its adjunct, the Goldreich-Levin black-box query problem. We  

proceed to develop upper and lower bounds for the query problem in a classical 

setting. In Chapter 3, we repeat the analysis in a quantum setting. Finally in 

Chapter 4, we return to the analysis of both quantum and classical bit commitment 

protocols using the Goldreich-Levin Theorem. 

http:problem.We


Chapter 2 Classical Goldreich-Levin Theorem 

2.0 Introduction 

The Goldreich-Levin (G-L) Theorem [20] was first presented and an upper bound 

proven in 1989. An improvement to the original bound was discussed by O. Goldreich 

in 1999 [21]. In this chapter, we explore the classical G-L Theorem as distinguished 

from the quantum G-L Theorem, which we study in Chapter 3. Here, we give a 

detailed analysis of both the original and the improved classical upper bounds and 

prove the classical lower bound. 

The context of the Goldreich-Levin (G-L) Theorem is to find a so-called hard 

predicate for a one-way length preserving function f that is a one-way permutation. 

Recall that as discussed in Chapter 1, a one-way permutation is loosely defined as a 

permutation that uniquely maps an n-bit string, x, into another n-bit string, f(x), 

where it is computationally easy to perform the mapping but computationally diffi­

cult to invert the mapping. A hard predicate of a one-way permutation is a single bit, 

h, which is hidden by the permutation f in the following sense. Given x, computing 

h(x) is computationally easy, but given f(x), computing h(x) is computationally 

difficult. Formal definitions of one way permutations and hard predicates are given 

in Chapter 1, Definitions 5 and 6. The G-L Theorem offers a generic means for 

constructing hard predicates given any one-way permutation. A key step in the re­

duction of the G-L Theorem is the solution of a black-box, or oracle, query problem 

referred to herein as the G-L problem. 

The G-L problem is concerned with determining the number of times a two­
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part oracle must be queried in order to determine an unknown n-bit string a. The 

two oracles are the inner-product oracle, IP , and the equivalence oracle EQ. The 

query problem is presented pictorially in Figure 2.10. The inner-product of two n-bit 

strings, a and x, is denoted a · x, and is defined as 

(1) (1) + a(2) (n) (n)a · x = a x x(2) + · · ·+ a x . (2.50) 

The additions here are modulo two, so the result of an IP  query is a single bit. 

As depicted in Figure 2.10, the IP  oracle either returns the correct result of the 

inner product of the string x with the string a or it returns the inverted result. The 

 
x ∈ {0, 1}n IP(x) =

a · x 
a · x 

if x ∈ S 
if x ∈ S 

IP  

 

1 if  x = anx ∈ {0, 1} EQ(x) = 0 if  x = a. 

EQ 

Figure 2.10: The Goldreich-Levin Query Problem
 

correctness of the result depends on whether the string x is a member of the set S
 

nor not. The set S ⊆ {0, 1} is chosen subject to the condition that |S| = (1 + ε)2n .2 

The value of ε >  0 is termed the advantage of the IP  oracle. The output of an 

inner-product query is thus only slightly correlated with a · x in the sense that 

Pr[IP(x) =  a · x] ≥ 1
2 + ε. (2.51) 
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The EQ(x) oracle is used to determine if the input string, x, is equal to the unknown 

string a or not. 

The focus of this chapter is to determine both an upper and a lower bound of 

the query complexity of the G-L problem. Firstly, we study the query complexity 

of the problem using a specially constructed algorithm that makes use of these two 

oracles. We bound the success probability of the algorithm, which enables us to 

provide an upper bound on the number of queries required to determine the correct 

value of the unknown string. Secondly, we provide a proof of the lower bound of the 

query complexity by analyzing the amount of information that is revealed in each 

IP  query. We will discuss the generation and use of hard-core predicates in Chapter 

4. 

2.1 Upper Bounding the Classical G-L Problem 

2.1.1 The Problem 

The discussion presented in the following expands on the ideas given by M. Bellare 

in his 1999 manuscript [3]. In solving the G-L query problem, we are allowed to use 

any combination of the two oracles in our quest to determine a with the idea that we 

wish to obtain the value using the fewest total number of queries. Of course we could 

simply choose to use only EQ queries in which case we would determine the correct 

value of a on average after making approximately 2n−1 queries, but an exponential 

upper bound is not very interesting. 

Can using the IP  query reduce the number of queries? The answer is yes with 

the amount of the reduction dependent on the value of ε, the advantage of the IP  
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oracle. Consider the case where ε is equal to
 1 
2 ; that is, the IP  oracle always returns
 

the correct value of the inner product. In this case we could adopt the strategy of 

determining a one bit at a time. We would achieve this by sequentially offering the 

basis strings, ek, (those strings with a one in the kth position and zeroes in all other 

positions) to the IP  oracle. This strategy would result in the correct value of a after 

only n queries without even having to resort to the use of the EQ oracle. We see that 

in this exact case, using only IP  queries we make exponentially fewer queries than 

we make by blindly using the EQ oracle. The analysis becomes more interesting in 

the case where ε is less than
 1 
2 . Before proceeding with the analysis of this case, we
 

must consider what we mean by the statement that the IP  oracle is returning the
 

correct value of the inner product with probability
 1 
2 + ε. Simply stated, it means
 

that there are a collection of good strings, for which the IP  oracle returns the correct
 

value of the inner product, and a collection of bad strings for which it returns the
 

incorrect value. The ratio of good strings to the whole is
 1 
2 + ε; while the ratio of
 

the bad strings to the whole is
 1 
2 − ε.
 When ε is less than
 1 

2 , the problem with the
 

approach we outlined for the case where ε =
 1 
2 is that it is possible that some (or
 

all) of our basis strings could happen to be bad strings in which case the previous 

strategy would not work at all. 

In order to get around the problem of our basis strings potentially being in the 

bad bunch, we compare two self-correcting strategies in two separate algorithms. We 

carefully construct these algorithms and determine bounds on their success probabil­

ity in terms of the number of bits n and the advantage ε. We then use these bounds 

to estimate the query complexity of IP  and EQ queries required to determine the 

correct value of the string a. 
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2.1.2 The High Advantage Case
 

The high advantage case is where ε >  14 . We begin by considering the case, where ε 

is very close to 1
2 , say  12 − δ. With this definition, we can rewrite Equation 2.51 as 

Pr[IP(x) =  a · x] ≥ 1 − δ. (2.52) 

In order to develop a workable algorithm, we look toward the first self-correcting 

strategy to remove the possibility that our input strings are all in the bad bunch. 

This strategy reduces the worst case input string to the average case by invoking the 

IP  oracle only on random points. We achieve this by relying on the linearity of the 

inner product, a · x = a · (x ⊕ r) ⊕ a · r. Here r is a random string. An algorithmic 

strategy is to use 

IP(x ⊕ r) ⊕ IP(r) (2.53) 

to approximate IP(x). 

We now introduce a simple algorithm, which we will refer to as ExtractA. This 

algorithm is so named because its aim is to extract the unknown string a and because 

it is the first of two such algorithms, ExtractA and ExtractB, that employ different 

self-correction strategies. Algorithm ExtractA is presented in the box denoted Algo­

rithm 1. Note that our algorithm queries the IP oracle twice for each input string 

1: Input: ek 
random

2: rk ←− { 0, 1} n 

3: bit1 ←− IP(ek ⊕ r) 
4: bit2 ←− IP(r) 
5: Return bit1 ⊕ bit2 

Algorithm 1: Algorithm ExtractA
 

— once with a random string and once again with the same random string added
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to the input string. The algorithm then returns the difference, which is a single 

bit having value 1 or 0. Although we will show that this is a workable strategy for 

the high advantage case, we will also show that using two IP queries for each input 

string severely limits the size of the advantage to which this strategy is applicable. 

There are two IP queries in the approximation given by Expression 2.53. For each 

individual query, the probability that the returned value is not equal to a · x is δ. 

Since our algorithm must make two queries to the IP oracle, we have a bit more 

work to bound its failure probability as follows: 

Pr[IP(x ⊕ r) ⊕ IP(r) = a · x] ≤ Pr[IP(x ⊕ r) = a · (x ⊕ r) ∨ IP(r) = a · r] 
r r 

≤ Pr[IP(x ⊕ r) = a · (x ⊕ r)] + Pr  [IP(r) = a · r] 
r r 

= δ + δ = 2δ. 

Here, we have used the union bound to bound the probability of our algorithm failing. 

The success probability of algorithm ExtractA is thus 

Pr[ExtractA(ek) =  a · ek] ≥ 1 − 2δ. (2.54) 

Assuming the input, ek, are again the n basis strings and a new random string, r, is  

drawn for each input, the probability that all n calls return the right answer is 

(1 − 2δ)n ≥ 1 − 2nδ. (2.55) 

If we want to keep the error probability limited to
 1 
2 , then it is sufficient that δ ≤
 1 

4 . 
n 

Thus we see that δ tends to 0 as n tends to infinity. If we keep within this very
 

restrictive bound, our algorithm has an error probability of at most
 1 
2 , by making
 

2n queries to the IP oracle and 1 query to the EQ oracle; an error probability of
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1 by making 4n queries to the IP oracle and 2 queries to the EQ oracle, and error 4 

probability γ by making O n log 1 
γ queries to the IP oracle and O log 1 

γ queries 

to the EQ oracle. 

We conclude from the preceding analysis that we need to modify our strategy if 

we wish to work outside the restriction of δ ≤ 4
1 
n . We note that with the current 

strategy, the success probability for each bit is only 1 − 2δ. The success probability 

for an n-bit string is this quantity raised to the nth power, which rapidly goes to 

zero with increasing n. We can improve this situation through a technique sometimes 

called probability amplification. This involves making m >  1 calls to our algorithm 

with the same value of ek, but with a new random sting r drawn each time. Since our 

algorithm returns a bit each time, we can sum the result of the m queries, and if the 

mresult is ≥ 2 conclude that the bit is a 1 otherwise it is 0. We present the improved 

algorithm ExtractAI in the box denoted Algorithm 2. We now proceed to bound the 

1: Input: ek, m 
2: sum ←− 0 
3: for i = 1  to  m do 
4: sum ←− sum + ExtractA(ek) 
5: end for 

m6: if sum ≥ then2 
7: y(k) ←− 1 
8: else 
9: y(k) ←− 0 

10: end if 
11: Return y(k) { This is an estimate of the kth bit of a}

Algorithm 2: Algorithm ExtractAI 

success probability of this algorithm. We recognize that the for loop in algorithm 

ExtractAI is just a sequence of m Bernoulli trials with success probability p, where 

we use the convention that for a successful trial the returned bit is 1. Thus there are 
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two cases we have to consider — where p ≥ 1 − 2δ, which corresponds to the case 

a · ek = 1, or where p ≤ 2δ which corresponds to the case a · ek = 0. Either way, 

the resulting probability distribution is Binomial, and we have to determine which 

of the two cases it is. Figure 2.11 is a graphical representation of the two possible 

distributions for m = 20 and δ = 1
8 . Note that the two probability distributions 

show significant overlap in the region near m/2. If for the a · ek = 0 case, the sum 

happened to be > m/2, we would make the wrong conclusion about the value of the 

bit. Likewise for the a ·ek = 1 case if the sum happened to be < m/2, we would make 

D
is

tib
ut

io
n 

of
 R

an
do

m
 V

ar
ia

bl
e 

X
 

5 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0 

Number of Calls to Algorithm 

Figure 2.11: Binomial Distributions for a · ek = 0 and a · ek = 1.  

a ⋅ e
k 
= 0 a ⋅ e

k 
= 1 

0 2 4 6 8 10 12 14 16 18 20 



49 

the wrong conclusion. The size of these tails of the distributions offers us a means 

by which we can bound the error probability of our modified algorithm. We use 

tail-inequalities to bound this overlap probability. Our strategy will be to sum the 

result of m queries using the value m/2 as our decision threshold. This will improve 

matters so that rather than having the very restrictive bound of δ inversely varying 

with n, we can achieve acceptable success probability with a polynomial number of 

queries and δ <  14 . 

We begin the analysis by defining the random variable X = X1 + X2 + . . .  + 

Xm as the variable sum in algorithm ExtractAI. The Xi are binomially distributed 

independent random variables, which allows us to apply the powerful Chernoff bound 

to the distribution’s tail. However here we are going to apply the weaker Chebychev 

bound because it is also applicable to pairwise independent random variables, which 

we will be employing later when we solve the general case. The expected value and 

the variance of a binomially distributed random variable are 

μ(X) =  mp 

V ar(X) =  m(1 − p)p. (2.56) 

Chebychev’s inequality states 

V ar(X)
Pr [|X − μ| > A] ≤ . (2.57)

A2 

This inequality formalizes what we intuitively expect — that the probability that a 

particular value falls greater than a certain distance from the mean of the distribution 

diminishes as that distance increases. Now we have two cases to consider. Firstly 

when ek · a = 1, we have p ≥ 1−2δ, and we want to find the probability that X <  m 
2 . 
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Secondly when ek · a = 0, we have p ≤ 2δ, and we want to find the probability that 

mX >  2 . In both cases, it can be shown that the absolute distance from the mean 

can be expressed as 
m |X − μ| > − 2mδ. (2.58)
2 

Combing the results of Equation 2.56 with Equation 2.57 and Equation 2.58 allows 

us to write   m m(1 − 2δ)(2δ)
Pr |X − μ| > − 2mδ ≤ . (2.59)

2 m 2 

2 − 2mδ 

The preceding bounds the error probability of Algorithm ExtractAI, which outputs a 

single bit after a majority vote over the m queries. After simplification it is expressed 

as 
(1 − 2δ)(2δ)

Pr [ExtractAI(ek,m) = a · εk] ≤ . (2.60) 
m(1

2 − 2δ)2 

We note from this equation that there is a vertical asymptote at δ = 4
1 . We next 

bound the probability of successfully recovering all n bits of the string a. We write 

this success probability as: 

(1 − 2δ)(2δ) n 

Pr [(EAI(e1), EAI(e2), . . . , EAI(en)) = a] ≥ 1 − 
m(1 − 2δ)2 

2 

n (1 − 2δ)(2δ)≥ 1 − , (2.61) 
m (1

2 − 2δ)2 

where we have used the shorthand EAI(ek) for ExtractAI(ek,m). Finally bounding 

this success probability to a half, we have 

1 n 8δ(1 − 2δ)≤ . (2.62)
2 m (1 − 4δ)2 

This is > 0 when 0 < δ <  14 and approaches +∞ as δ → 1
4 +. It is instructive to 

express Equation 2.62 in terms of a new variable ε 1 = 1  − 4δ, which allows us to 
4 
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bound the number of calls over which we make a majority vote as 

4 

2 
12n 1 − ε

.
 (2.63)
m ≤
 

4 

2 
1ε


We note that algorithm ExtractAI makes 2nm queries to the IP  oracle. Thus for
 

> 0, which corresponds to δ < 
1 
4 , we provide an upper bound for the number of
 ε
1 

4 

IP  queries as 
n2 

.
 (2.64)
qIP  = O 
4 

2 
1ε


We conclude this sub-section noting that probability amplification must form a 

part of an effective algorithmic strategy, but we have to get past the “brick wall” 

of δ
 =
 1 
4 .
 Our current self-correction strategy performs two IP queries to extract
 

each bit before probability amplification. The two queries effectively doubles the
 

error probability resulting in the “wall” at δ =
 1 
4 rather than at δ =
 1 

2 as we desire.
 

We thus conclude that if we wish to solve for polynomially small ε, it may be more 

promising to make only one IP query to extract each bit. 

2.1.3 General Case 

The general case is when 0 < ε  ≤
 1 
2 . In the high advantage case we ran our algorithm
 

over the n basis strings as input. We also relied on the linearity of the inner product
 

function and used repeated runs to amplify probability. In the general case, where
 

ε may be
 1 
4 or less, we will again employ these tricks, but we also need an algorithm
 

that with high enough probability determines a · ek for a given ek while making only 

one IP query. We will refer to this algorithm simply as Algorithm ExtractB. Before 

we state and prove a theorem that bounds the probability that ExtractB will return 
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the correct value of a · x, we need to employ another clever trick. That is a method 

for producing M pairwise independent strings from O(log(M)) random strings. 

In order to explain this trick, we let m and M be integers with M = 2m − 1. 

We define the set [m] =  {1, . . . ,m} and the listing S1, . . . , SM of all the non-empty 

subsets of [m] in the canonical order usually associated with counting binary numbers. 

It is helpful to think of each of the members of SM , denoted Si, as being the bit 

positions of those bits equal to 1 in the m-bit binary representation of the number 

i. For example, the usual 4-bit representation of the number 3 is 0011. Reading the 

first bit position from the right, we have the first and second bits equal to one as is 

indicated by S3 = {1, 2}. This is not the only ordering we could imagine, but it is 

straightforward to write the first several Si explicitly as 

S1 = {1} 

S2 = {2} 

S3 = {1, 2} 

S4 = {3} 

S5 = {1, 3} 

S6 = {2, 3} 

S7 = {1, 2, 3} 

S8 = {4} 
... 

SM = {1, 2, . . . ,m}. 

Now let R = (r1, . . . , rm) be an  m-tuple of m random n-bit strings. We use the 
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definition of R and our listing of the M subsets of [m] to construct the sequence 

Q = (q1, . . . , qM ). Each of the qi are formed as bitwise modulo-two sums of particular 

n-bit strings selected from R as  
qi = rj . (2.65) 

j∈Si 

For clarity, we again write down several of the qi explicitly as 

 
q1 = rj = r1 

j∈S1  
q2 = rj = r2 

j∈S2  
q3 = rj = r1 ⊕ r2 

j∈S3  
q4 = rj = r3 

j∈S4 

. ..  
qM = rj = r1 ⊕ r2 ⊕ · · · ⊕ rm. 

j∈SM 

It is important to note that whilst the rk are independent random variables, the qi 

nare only pairwise independent since for every i, j ∈ [M ] with i = j and a, b ∈ {0, 1}

Pr[qi = a and qj = b] =  Pr[qi = a] · Pr[qj = b]. (2.66) 

This can be understood by noting that if qi = qj , then there is some string rk that 

belongs to one and not the other, and a modulo-two sum involving rk is unpredictable 

from a sum not involving rk. This means having the value of one of them does not 

help predict the value of another, but having the value of any two of them may help 

predict the value of the others. This pairwise independence is a crucial property of 

this construction that will be used to bound the query complexity. 
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Our new algorithm is also going to make one query IP (x ⊕ r), which is on a 

random point. Again, we need to find a way to modulo-two subtract the effect of 

adding a random string in order to approximate IP (x). Recall that we achieved this 

in the high advantage case by making a second IP  query as we did in Expression 

2.53. To avoid making a second IP  query here, we will achieve the same effect by 

defining a sequence of M single bits constructed using the inner product function. 

Our algorithm will then modulo-two subtract all possible values of these bits for each 

query on a random point. As an aside, we will also see that this modulo-two summing 

of all possible points will form the basis of probability amplification employed in 

algorithm ExtractB. We first define the sequence of m bits B = (b1, . . . , bm) as  

bk = a · rk. We then define the sequence of M bits D = (d1, . . . , dM ) with each of 

the bits calculated as 

di = bj . (2.67) 
j∈Si 

We write the first several di explicitly as 

d1 = bj = b1 

j∈S1 

d2 = bj = b2 

j∈S2 

d3 = bj = b1 ⊕ b2 

j∈S3 

... 

dM = bi = b1 ⊕ b2 ⊕ · · · ⊕ bm. 
j∈SM 

We again use the linearity of the inner product function to write 

a · (x⊕ rj ) = (a · x) ⊕ (a · rj ) = (a · x) ⊕ bj . (2.68) 
j∈Si j∈Si j∈Si 
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Using Equation 2.67 and Equation 2.65, we rewrite Equation 2.68 as 

a · (x ⊕ qi) = (a · x) ⊕ di. (2.69) 

Finally Equation 2.69 is rearranged in order to approximate IP (x) by the following 

quantity to be employed by our algorithm 

IP (x ⊕ qi) ⊕ di. (2.70) 

Armed with the Expression 2.70, we are now able to construct algorithm ExtractB. 

Once we have constructed and offered a step-by-step analysis of the algorithm, we 

state and prove a theorem bounding the algorithm’s success probability. We now 

describe the intent of the algorithm. 

We begin by noting that Expression 2.70 will form the heart of algorithm Ex­

tractB. Comparing Expression 2.70 with Expression 2.53, which formed the heart 

of algorithm ExtractA, we note two crucial differences. Firstly in Expression 2.70, 

only one call is made to the IP oracle whereas two are made in Expression 2.53. 

This means that the error probability will not be doubled, which we will show allows 

algorithm ExtractB to work with polynomially small advantage rather than being 

limited to an advantage only polynomially smaller than 1
4 as we saw in the high 

advantage case. Secondly, in Expression 2.70 we note that the di are not explicitly 

known. In algorithm ExtractB, we get around this problem by using a value of m 

sufficiently small to permit us to try all of the 2m possible values of the di. 

As with Algorithm ExtractA, Algorithm ExtractB performs a bit-by-bit extrac­

tion of the unknown string a. Once we think we have a candidate string, we offer it 

to the EQ oracle to see if it is the right one. We again perform probability ampli­

fication for each of the bits we extract, but rather than doing this over m random 
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strings and two IP queries as we did in algorithm ExtractA, we do it with M pair-

wise independent strings and only one IP  query modulo two summed with all of 

the possible di bits. In the case of Algorithm ExtractA, we  chose to bound the 

post-amplification error probability using Chebychev’s inequality where the random 

variables were Binomially distributed. In the case of Algorithm ExtractB, we  must 

bound the post-amplification error probability using Chebychev’s inequality because 

the random variables are only pairwise independent. After we have described Al­

gorithm ExtractB, we will state and prove a theorem of its success probability and 

consequently bound the number of queries for polynomially small ε. 

1: Input: ek, n, m, M 
2: Initialize(ek, n,M) 
3: for l = 1  to  M do 
4: Let B = b1 . . . bm be the binary representation of l − 1 
5: for k = 1  to  n do 
6: Amplify(B, Tk) 
7: end for 

(1) (n)8: y ←− y . . . y
9: if EQ(y) = 1  then 

10: a←− y 
11: end if 
12: end for 
13: Return a 

Algorithm 3: Algorithm ExtractB 

The main part of Algorithm ExtractB is presented in the box denoted Algorithm 

3, and its two subroutines, Initialize and Amplify, are presented in the boxes denoted 

Algorithm 4 and Algorithm 5 respectively. In the first line of Algorithm ExtractB, 

the subroutine Initialize is called. This subroutine returns the n by M table of the 
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1: Input: ek, n, M 
2: for k = 1  to  m do 

random n3: rk ←− {0, 1}
4: end for 
5: for i = 1  to  M do 
6: 

7: 

qi ←−
 
j∈Si 

for k = 1  

rj 

to  n do 
8: Tk,i ←− IP(ek ⊕ qi) 
9: end for 

10: end for 
11: Return T 

Algorithm 4: Subroutine Initialize 

results of the IP  queries, ⎤⎡ 

T =
 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


T1,1 · · ·  T1,i · · ·  T1,M 

. .. 
. .. 

. .. 

Tk,1 · · ·  Tk,i · · ·  Tk,M 

... 
... 

... 

Tn,1 · · ·  Tn,i · · ·  Tn,M 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 

,
 (2.71)
 

which will be used later on in the algorithm for probability amplification in a manner 

similar to what we did in the high advantage case. We also denote Tk as the M -

component, kth row of T . We generate the table T by making nM calls to the IP  

oracle as follows. For each of the n basis stings ek, an  IP  query is made with ek 

modulo two summed with one of the M pairwise independent strings, Q, generated 

from the m random n-bit stings, R, per Equation 2.65. Note that it is only in the 

subroutine Initialize that the IP  oracle is called. It is also helpful to note that 

each Tk consists of the results of M IP  queries made with the modulo-two sum of a 

unique ek with each of the random strings Q. After this initialization step, in line 3 
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of Algorithm ExtractB we enter a loop in which we sequentially enumerate the M , 

m-bit strings, B. For each one of the m-bit strings and each of the n basis strings, 

we then call the subroutine Amplify. It is in this subroutine that we perform the 

probability amplification necessary to achieve an acceptable success probability. 

1: Input: B, Tk 

2: sum ←− 0 
3: for i = 1  to  M do 
4:	 di ←− bj
 

j∈Si
 

5:	 ci ←− Tk,i ⊕ di
 

sum ←− sum + ci
 
6: end for 
7: if	 sum ≥ M then2 
8:	 y(k) ←− 1 
9: else 

10: y(k) ←− 0 
11: end if 
12: Return y(k) { This is an estimate of the kth bit of a}

Algorithm 5: Subroutine Amplify 

In the subroutine Amplify, the counter sum is used as the basis for making the 

majority vote decision in our estimate of each bit, a · ek. We begin the subroutine 

by setting this counter to 0. One of the inputs to the subroutine is an m-bit string 

B = b1 . . . bm. We use Equation 2.67 to generate M pairwise independent bits from 

this input string. Each one of these M bits is then sequentially modulo-two summed 

to the corresponding table entry Tk,i, which removes the effect of making the IP  

query on a random point. The result of this operation is then arithmetically added 

to the counter sum. Once this operation has been performed M times, a majority 

Mvote decision is made by comparing the counter, sum, to  2 . If it is greater than 

this value, we estimate that the bit a · ek is 1; otherwise it is 0. We then return this 
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estimate of the kth bit of a · x to the main algorithm. 

Algorithm ExtractB thus performs a bit-by-bit extraction for all n bits by making 

n calls to the subroutine Amplify for each m-bit string, B. Once a candidate string 

has been returned by the subroutine, it is then offered to the EQ oracle to see if it is 

the correct one. We note the key role that the EQ oracle plays in this algorithm — 

without it there is little chance of success. This extraction continues for all possible 

2m ∗values of the string B, and as a result, there will be a particular string B that 

satisfies the relation bj = a · rj for j = 1, . . . ,m. It is for this particular string that 

we have a chance of recovering the string a. To see this, consider that in the specific 

case where i = 3 in subroutine Amplify we have 

T(k,3) ⊕ d3 = IP (ek ⊕ q3) ⊕ d3 

= IP (ek ⊕ r1 ⊕ r2) ⊕ (b1 ⊕ b2) 

= IP (ek ⊕ r1 ⊕ r2) ⊕ (a · r1 ⊕ a · r2). (2.72) 

The preceding has two outcomes, which may be expressed as 

T(k,3) ⊕ d3 = 

⎧ ⎪⎨ 

⎪⎩
 

a · ek if ek ⊕ r1 ⊕ r2 ∈ S 
(2.73) 

a · ek if ek ⊕ r1 ⊕ r2 ∈ S. 

For the specific string B∗, Equation 2.72 and Equation 2.73 are true for all i. This 

observation will allow us to bound the success probability of the algorithm ExtractB, 

but first we state and prove a bound on subroutine Amplify ’s failure probability. 

Theorem 1 Let M = 2m − 1 and B∗ be the m-bit string for which bj = a · rj for 

j = 1, . . . ,m. Also, let ek be an n-bit string with a one in the kth position and zeroes 

elsewhere, and let Tk be the M -component kth row of T . Then for any ek, we have  

Pr[Amplify(B∗, Tk) = a · ek] ≤ 1/Mε2 
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Proof: Our proof parallels that presented in the low advantage case. We begin by 

noting that the counter sum in subroutine Amplify is a random variable, which we 

rename Y for convenience and express as 

Y = Y1 + Y2 + . . .  + YM . (2.74) 

We again have two cases to consider, ek · a = 1, for which we label the random 

variable Y (1), and ek · a = 0, for which we label the random variable Y (0). Given 

these definitions, the expectations for the individual events comprising Y (1) and Y (0) 

have the following forms 

(1) (1) (1)
E Y := 1 · Pr Y = 1  + 0  · Pr Y = 0i i i 

= Pr  Yi 
(1) = 1  

= 2
1 + ε, (2.75) 

and 

(0) (0) (0)
E Y := 1 · Pr Y = 1  + 0  · Pr Y = 0i i i 

= Pr  Yi 
(0) = 1  

= 2
1 − ε. (2.76) 

For both cases Yi = Yi 
2, and the variance of Yi is simply expressed as 

V ar[Yi] :=  E[Yi 
2] − E[Yi]2 

= E[Yi](1 − E[Yi]) 

= (1
2 + ε)(1

2 − ε) 

1 
= − ε2 . (2.77)

4 
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Note that we shall suppress the index that distinguishes the two cases whenever the 

results are identical. Using μ to denote E[Y ], the linearity of expectation tells us 

that 

μ(1) 1= M 2 + ε , and 

μ(0) 1= M 2 − ε . (2.78) 

We noted in Equation 2.66 that the q1, . . . , qM are pairwise independent random 

variables. We observe that since the Yi are derived through the combination of 

modulo-two sums with the qi and IP  queries on a fixed set S, the Yi are also pairwise 

independent. With this observation it can be shown [3, Lemma 5 ] that the variance 

of the sum, Y can be expressed 

V ar[Y1 + · · ·+ YM ] =  M · V ar[Yi]. (2.79) 

We will again use Chebychev’s inequality to bound the failure probability. We have 

two cases to consider. Firstly when ek · a = 1, we have E Yi 
(1) ≥ 1

2 + ε, and 

we want to find the probability that Y <  M Secondly when ek · a = 0, we have 

E Y
(0) ≤ 2

1 − ε, and we want to find the probability that Y >  M In both cases, 

2 . 

i 2 . 

it can be shown that the absolute distance from the mean can be expressed as 

|Y − μ| > Mε.  (2.80) 

Using Chebychev’s inequality, which is give in Equation 2.57 along with Equation 

2.80 and Equation 2.79, we write 

M 4
1 − ε2 

Pr [|Y − μ| > Mε] ≤ . (2.81)
(Mε)2 
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The preceding bounds the error probability of subroutine Amplify. After simplifica­

tion, it is expressed 

Pr[Amplify(B ∗ , Tk) = a · ek] ≤ 
1 

4Mε2 
− 

1 
M 

≤ 1/Mε2 , (2.82) 

which concludes the proof of Theorem 1. 

We now turn our attention to bounding the failure probability of algorithm Ex­

tractB. As discussed previously due to the loop considering all possible values of B, 

we need only consider the case where bj = a · rj for j = 1, . . . ,m. In this case, we 

note that the algorithm ExtractB calls the subroutine Amplify a total of n times with 

n different values of ek but always with the same values of r1, . . . , rm and b1 . . . bm. 

The probability that all of these calls return the wrong answer is upper-bounded by 

n times the probability that the kth call returns the wrong answer. We thus bound 

the failure probability of algorithm ExtractB as 

Pr[ExtractB = a] ≤ n/Mε2 . (2.83) 

In order to get a success probability of 1
2 , it is sufficient to set M = 2

ε
n 
2 . We noted in 

our discussion of the algorithm ExtractB that a total of nM IP queries and M EQ  

queries were made. Denoting the number of IP  queries made as qIP  and the number 

of EQ queries qEQ, we express the query complexity of algorithm ExtractB as 

2n
qIP  = O 

ε2 

n 
qEQ = O . (2.84)

ε2 

Equation 2.84 is an upper bound of the query complexity of G-L problem, which is 

what we have been after, but it is not a tight bound. In the following section, we 
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show that we can achieve a tighter bound by incorporating linear block codes into 

our algorithm. 

2.1.4 Improvement to General Case 

The idea of using linear block codes to improve the bounds given in the previous 

section is discussed in high-level terms by O. Goldreich in his 1999 book, Modern 

Cryptography, Probabilistic Proofs and Pseudo-Randomness [21]. We will now pro­

vide a detailed discussion of how to improve these results by incorporating a linear 

block code into our algorithm. This block code will be used to correct errors and 

reduce the number of queries we require in order to obtain a satisfactory success 

probability. 

Linear block codes are an important class of error correcting codes, which are 

widely used in the reliable transmission of information over noisy communication 

channels. In communications theory an (n, k, t) binary block code that can correct 

any combination of up to t errors, requires a total of n bits be transmitted. Of these, 

there are k data bits and n−k redundant bits. The term linear refers to the formation 

of a vector space by linear combinations of basis vectors. Thus we can state that 

the set of all n-bit vectors over the finite-field GF (2) of k linearly-independent basis 

vectors g1, g2, . . . , gk is a binary (n, k) linear block code C. If the gi are arranged as 

rows of a k × n generator Matrix G, an  n-bit codeword c can be expressed as ⎤
⎡
 

c = [i1, i2, . . . , ik] 

⎢⎢⎢⎢⎢⎢⎢⎣
 

g1 

g2 

. .. 

gk 

⎥⎥⎥⎥⎥⎥⎥⎦
 

= iG. (2.85)
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where i is a k-bit information vector.
 

Most of the block codes that have proven to be useful in practical applications 

belong to a class of codes called cyclic codes. Cyclic codes are easy to encode and 

many efficient decoding schemes have been defined. An illustrative example of cyclic 

codes are the Bose-Chaudhuri-Hocqeunghem codes, usually referred to as BCH codes. 

These codes form an infinite class of (n, k, t) cyclic block codes that have capabilities 

for multiple-error detection and correction. In reference [26, page 121] it is shown 

that for any positive integers m and t < n/2, there exists a binary BCH code with 

block length n = 2m −1 having no more than mt redundant bits. Each such code can 

correct up to t errors per n-bit codeword and is thus said to be a t-error-correcting 

code. 

Another class of linear block codes are the Justesen codes. These codes have 

provably good asymptotic properties [23]. Asymptotically good codes exhibit the 

property that for d ≥ 2t + 1 defined as the minimum distance of the code, the ratio 

d/n remains nonzero as the block length n tends to infinity. We shall make use of 

this property to reduce the number of IP  queries required. In order to avoid sym­

bol clashing, we will refer to an (n, k, t) code as a (cn, n, αcn) with n the number 

of data bits corresponding to the length of the unknown string a as previously de­

fined. For the purposes of this thesis, we give the following alternate definition of an 

asymptotically good code. 

Definition 7 For an asymptotically good code, there exists positive constants c' and 

α' with the following property: For all n, there exists a c ≤ c' and an α ≥ α' such 

that there exists an (cn, n, αcn) code. 
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This follows from [23]. An important point to note is that the error correcting 

capability is proportional to the total number of bits transmitted. It is of interest 

to note that with our new definition of n, the BCH codes appear to exhibit this 

desirable “asymptotic” property with c ' = 4 and α ' = 1/16 despite the fact that 

strictly speaking, the BCH codes are asymptotically bad [26, page 136]. We can 

deduce this desirable property of the BCH codes from studying tables of primitive 

BCH codes [26, pp. 122-123]. Since the BCH codes are of such practical importance, 

proving that Definition 7 is true for the BCH codes may be of some interest. 

We now show how incorporating an (cn, n, αcn) code leads to a reduction in the 

number of IP  queries made by algorithm ExtractB. We redefine the cn× n generator 

matrix G as ⎤⎡ 

G =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

g11 g12 . . .  g1cn 

g21 g22 . . .  g2cn 

.. . 
.. . . . . .. . 

gn1 gn2 . . .  gncn 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (2.86)
 

We express a cn-bit codeword, y, in terms of an n-bit information vector x and the 

generator matrix G as 

[y1, y2, . . . , ycn] = [x1, x2, . . . , xn]G. (2.87) 

Note that we used the index k in Section 2.1.1 to identify the basis strings ek. Here 

we change this index to κ to avoid confusion with the use of k in the literature as the 

number of data bits in a linear block code. Denoting the cn, n-bit column vectors 

of the matrix G as zκ and using Equation 2.85, we modify algorithm ExtractB. We  

thus present the modified algorithm, ExtractBI in the box marked Algorithm 6. 

http:ExtractB.We
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1: Initialize(zk, cn,M) 
2: for l = 1  to  M do 
3: Let B = b1 . . . bm be the binary representation of l − 1 
4: for κ = 1  to  cn do 
5: Amplify(B, Tk) 
6: end for 

(1) (cn)7: . . . yyreceived ←− y
8: y ←− Decode yreceived 

G−19: x ←− y · 
10: if EQ(x) = 1  then 
11: a ←− x 
12: end if 
13: end for 
14: Return a 

Algorithm 6: Algorithm ExtractBI 

In the previous section, we showed that it was sufficient to we set M = 2n/ε2 . 

We will now show that instead of making M depend on the number of bits and the 

advantage, we can make it depend on the advantage only. We set 

M = 
β 

with β >  2. (2.88)
ε2 

Defining q as the error probability given by Equation 2.81, we have 

1 1 
q ≤ = . (2.89)

Mε2 β 

We assume we have an efficient, binary-cyclic code that corrects any combination 

of t = αcn or less errors. We run algorithm ExtractBI, which for each value of M 

makes cn calls to subroutine Amplify. Each of the calls are again made with Tκ, but 

T is constructed in subroutine Initialize on input zκ = (g1κ, g2κ, . . . , gnκ) rather than 

eκ. We use the zκ because we wish to perform a bit-by-bit extraction of ya, which 

is the codeword of the n-bit string a. The zκ are the appropriate input strings since 
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each of the bits of ya are 

ya 
(κ) = g1κ ⊕ g2κ ⊕ . . .  ⊕ gnκ. (2.90) 

Thus each of the y(κ) generated by the subroutine Amplify are estimates of the bits 

of the cn-bit codeword ya. Once we have extracted all cn bits, we remove errors from 

the received code word using an efficient Decode algorithm — see for example the 

Kasami decoding algorithm [26, page 157]. Finally we calculate a candidate solution 

string x using G−1 and offer the result to the EQ oracle. We now bound the success 

probability of this algorithm. 

What is the chance that the offering to the EQ oracle is incorrect? It is the same 

as the chance that we get more than αcn errors in the cn-bits of the string yreceived. 

In order to determine this probability, we first recognize that the value of each of 

these cn bits is a random variable with success probability p = 1  − q. The calls to 

the subroutine Amplify thus constitute a sequence of Bernoulli trials. We use tails of 

the Binomial distribution to bound the probability of having more than αcn errors. 

Defining the random variable Y to be the number of successes in cn trials, we use the 

bound on the left tail of the binomial distribution given in [10, page 122] as follows 

cn−αcn−1 
cn i cn−iPr[Y <  (cn − αcn)] = p q
i 

i=0 

(1 − α)cnq cn (1−α)cn< p q αcn 

cnp − (1 − α)cn (1 − α)cn 
(1 − α)q≤ 
(α − q) 

≤ 
q 

(2.91)
(α − q) 

Setting this probability to at most a 1
2 , and using Equation 2.89 and Equation 2.91 
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we have
 
3 

β <  . (2.92)
α 

Combining the results of Equation 2.88 and Equation 2.92, we have M <  3/αε2 . 

Finally noting that the algorithm ExtractBI makes a total of nM IP queries and M 

EQ queries, we bound the query complexity as 

n 
qIP  = O 

ε2 

1 
qEQ = O . (2.93)

ε2 

Equation 2.93 is an upper bound of the query complexity of G-L problem. In 

the following section, we will demonstrate that these are essentially tight bounds by 

giving lower bounds to qIP  and qEQ. 

2.2 Lower Bounding the Classical G-L Problem 

In the previous section we developed a rather complex algorithm that solves the G-L 

problem with O(n/ε2) IP  queries and O(1/ε2) EQ queries. But is the algorithm 

optimal? If we restrict ourselves to classical information, is there some clever scheme 

that will solve it with fewer steps? In this section we answer these questions. We 

first provide a lower bound on the number of EQ queries required in the case where 

we can perform an unlimited number of IP  queries. We follow this with a section 

where we use classical information theory to determine the minimum number of IP  

queries required to solve the problem whenever the number of EQ queries is less than 

2n/2 . We conclude that the aforementioned upper bound is indeed a tight bound. 
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2.2.1 Lower Bounding the Number of EQ Queries
 

We begin by considering the case where we need to determine the minimum number 

of EQ queries required regardless of the number of IP  queries performed. Here we 

can imagine that IP  queries are cheap, and we can use them freely in order to limit 

the number of EQ queries required. We now propose a theorem. 

Theorem 2 For n = 2k and ε = 2·
1
2k , the instance of the G-L problem requires 

Ω(1/ε2) EQ queries, regardless of how many IP  queries are performed. 

The proof is quite complex. In upper-bounding the G-L problem, we discussed 

the use of linear block codes. We now look to a specific code, the Hadamard Code, 

to represent the situation after we have applied 2n noisy IP  queries. For n = 2k, a  

nsingle Hadamard code word is hk : {0, 1} → {0, 1}2n defined as hk(a)x = a ·x, where 

a, x ∈ {0, 1}n. Thus  x is an index into the 2n components of hk(a). For illustrative 

purposes, we construct the table of codewords for the n = 2 case in Table 2.2. From 

a h1(a) 
00 0000 
01 0101 
10 0011 
11 0110 

Table 2.2: Hadamard Code Words for the 2-bit case 

Table 2.2 we then form and label the matrix H1 of Hadamard code words as ⎤⎡ 

H1 = 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0 0 0 0  

0 1 0 1  

0 0 1 1  

0 1 1 0  

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (2.94)
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The rows and columns of Hk can thus be expressed as Hk(a, x) =  a · x for a, x ∈ 

{0, 1}2k . Note that the definition of the 4 × 4 matrix H1 given here is slightly 

different from the 4 × 4 matrix H⊗2 in Equation 1.24. In fact what we have here 

is equivalent to taking the log to base −1 of each of the elements of the usual H⊗2 . 

In this section alone, we will use the symbol H to represent this 0-1 version of 

H. Each of the codewords in Table 2.2 has a Hamming distance Δ = 2 to each 

of the other codewords. It is easily shown that for the m-dimensional Hamming 

code, the Hamming distance to all other code words is m/2. A received codeword 

having < m/4 errors will thus uniquely decode to the correct codeword. Since the 

Hadamard code is formed by the same inner product operation as IP  queries and the 

G-L problem has noisy IP  queries, we are motivated to explore the error correcting 

capability of the Hadamard code in our quest to lower bound the EQ queries. 

In the G-L problem, we have noisy IP  queries. Again for illustrative purposes, 

consider the n = 2 case with ε = 1
4 — that is, one of our strings is bad. Here we 

mhave 1 = 4 , so we see that we are just over the “edge” of the ability of the code 

to uniquely recover a code word. As it turns out, when this code is just passed its 

ability to uniquely correct, we see an interesting and self-similar structure that we 

will exploit in our proof of Theorem 2. To further understand this, suppose that 

some a ∈ {0, 1}2 is encoded as h1(a), which is then sent through a noisy channel 

in which one bit is flipped. Note that the process of generating h1(a) would involve 

making four IP  queries, and we would not know which one of the queries returned 

a “bad” result. However, if the resulting string is z1 = [0 0 0 1], then what can be 

deduced about what a was? We present the Table 2.3 to answer this question. In the 

bottom row we have the received vector z1 = [0 0 0 1], and in the rightmost column 
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we have the vector of Hamming distances Δ1 =  [1 1 1 3]  between  z1 and the rows of 

H1. Each component of Δ1 is formed from z1 and each row of H1 as 

Δ1,a = (z1,x ⊕ h1(a)x). (2.95) 
x∈{0,1}2 

Clearly, one can deduce that a ∈ {00, 01, 10}, but nothing else. We note that we now 

a h(a) Δ1 

00 0000 1 
01 0101 1 
10 0011 1 
11 0110 3 
z1 0001 

Table 2.3: Hamming Distances, Δ1, to Noisy Code Word z1 = [0001] 

only have to perform at most 3 EQ queries instead of the at most 4 EQ queries that 

would be required if we had not at first performed our 4 “free” IP  queries. Since this 

list of possible a strings for the n = 2 and ε = 4
1 case is smaller than the complete list, 

we are motivated to determine how this list size grows as a function of n and ε. As  

we increase n, we note that the larger Hadamard matrices are constructed in a self 

similar manner, and we also construct our codewords in a self-similar manner. To get 

a feel for how the list grows, we construct a similar analysis for the n = 4 case, where 

6 bits of h2(a) are flipped. If the result is the codeword z2 = [0001 0001 0001 1110], 

then there will be 10 possibilities for a. We see this by looking at Table 2.4 where 

we note that there are 10 possible code words at Hamming distance 6 away and 6 

possible code words at Hamming distance 10 away. To summarize what we see in 

Tables 2.3 and 2.4, we have a number of “close” code words and a number of “far” 

codewords. We would like to determine formulas for both the number and the actual 

Hamming distance of these two types of codewords as functions of ε. 
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a h(a) Δ2 

0000 0000 0000 0000 0000 6 
0001 0101 0101 0101 0101 6 
0010 0011 0011 0011 0011 6 
0011 0110 0110 0110 0110 10 
0100 0000 1111 0000 1111 6 
0101 0101 1010 0101 1010 6 
0110 0011 0011 1100 1100 6 
0111 0110 0110 1001 1001 10 
1000 0000 0000 1111 1111 6 
1001 0101 0101 1010 1010 6 
1010 0011 0011 1100 1100 6 
1011 0110 0110 1001 1001 10 
1100 0000 1111 1111 0000 10 
1101 0101 1010 1010 0101 10 
1110 0011 1100 1100 0011 10 
1111 0110 1001 1001 0110 6 
z2 0001 0001 0001 1110 

Table 2.4: Hamming Distances, Δ2, to Noisy Code Word z2 = [0001 0001 0001 1110] 

We begin by defining formulas for two key quantities, which we denote as rk and 

sk. As we construct several lemmas that will support the proof of Theorem 2, we 

will see the quantities rk and sk appearing in several roles. 

Lemma 2.1: If rk and sk satisfy the recurrence 

rk+1 = 3rk + sk 

sk+1 = 3sk + rk (2.96) 

with boundary conditions r0 = 1 and s0 = 0, then rk = (4k + 2k)/2 and sk = 

(4k − 2k)/2. 
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Proof: The proof is a simple induction over k. We begin by noting that the 

formulas for rk and sk are true for the base case where k = 0 since 

r0 = (40 + 20)/2, and 

s0 = (40 − 20)/2. 

We now assume that rk = (4k + 2k)/2 and sk = (4k − 2k)/2 are true for an arbitrary 

case where we set k = k0 and then calculate the formulas for rk0+1 and sk0+1 . Thus  

we have 

rk0+1	 = 3rk0 + sk0 

= 3(4k0 + 2k0 )/2 + (4k0 − 2k0 )/2 

= (4k0+1 + 2k0+1)/2. (2.97) 

Similarly we have, 

sk0+1	 = 3sk0 + rk0 

= 3(4k0 − 2k0 )/2 + (4k0 + 2k0 )/2
 

= (4k0+1 − 2k0+1)/2, (2.98)
 

which completes the proof.
 

For reference we have written the first several terms of sk and rk in Table 2.5. As an
 

k sk rk 4k 

0 0 1 1 
1 1 3 4 
2 6 10 16 
3 28 36 64 

Table 2.5: The first few values of rk = (4k + 2k)/2 and sk = (4k − 2k)/2. 
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aside, it may be of interest to some readers to note that an alternate proof of Lemma 

2.1 could be given by expressing the conditions of the Lemma as the following matrix 

equation ⎤⎡⎤⎡⎤⎡ 

3 1 
sk+1 sk⎢⎣
 
⎥⎦
 =
 ⎢⎣ 

⎥⎦ 
⎢⎣ 

⎥⎦
 
rk+1 1 3  rk ⎤
⎡
 k+1 ⎡ ⎤
 

3 1  0
 ⎥⎦⎢⎣ 
⎥⎦ 

⎢⎣ (2.99)
=
 .
 
1 3  1 

The square matrix in Equation 2.99 can be diagonalized as ⎤⎡⎤⎡⎤⎡⎤⎡ 
1−√ 
2 

1√ 
2 

√−1 1√ 
2 2

3 1 
  2 0 
  ⎥⎦
 
⎢⎣
 =
⎢⎣
 

⎢⎣ 
⎥⎦ 

⎢⎣ 
⎥⎦ 

⎥⎦
 (2.100)
.
 
√√1 1

2 2 
√√1 1

2 2
1 3 
  0 4 
  

Finally solving for sk and rk, we have  ⎤⎡⎤⎡ k ⎡ ⎤⎡⎤ 
(4k−2k)3 1  0sk 2⎢⎣
 

⎥⎦
 =
 ⎥⎦ 
⎢⎣ 

⎥⎦ 
⎢⎣ =
 ⎢⎣
 

⎥⎦
 (2.101)
.
 
(4k+2k)rk 1 3  1 2 

In Tables 2.3 and 2.4, we introduced the noisy code words z1 and z2. We  now  

wish to define a recurrence formula for zk and to establish that the quantities rk and 

sk represent the numbers of zeroes and ones respectively in the codeword zk. 

Lemma 2.2: If the noisy codeword zk ∈ {0, 1}4k satisfies the recurrence 

zk+1 = zkzkzkzk, (2.102) 

with boundary condition z0 = 0, then there are rk = (4k + 2k)/2 zeroes in zk and 

sk = (4k − 2k)/2 ones . 

Proof: For the base case k = 0 it is clear since for z0 = 0, we have r0 = 1 and 

s0 = 0. We assume that the statement of the lemma holds for a particular k, then 
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by the recurrence given in Equation 2.102, zk+1 consists of three copies of zk each 

of which contains rk zeroes and sk ones and one copy of zk which contains sk zeroes 

and rk ones. Thus we see that the numbers of zeroes and the numbers of ones satisfy 

the same recursion formulas that appear in Lemma 2.1. By Lemma 2.1, we conclude 

that there are rk = (4k + 2k)/2 zeroes in zk and sk = (4k − 2k)/2 ones in zk as 

required. 

The numbers rk and sk will now be shown to be relevant both to the number 

of potential solutions that are “close” to Hadamard code words and to the actual 

Hamming distance of these potential solutions. With reference to Table 2.5, it is 

interesting to note that s1, r1 and s2, r2 appear as both the “close” and the “far” 

Hamming distances, in the vectors Δ1 and Δ2 in Tables 2.3 and 2.4. The numbers 

also appear as the quantities of these terms in a complementary manner. We will 

exploit these facts in forming the central Lemma that we will use in our proof of 

Theorem 2. 

Lemma 2.3: There are (4k +2k)/2 possible values of h(a) ∈ {0, 1}4k with Hamming 

distance (4k − 2k)/2 from zk and (4k − 2k)/2 possible values of h(a) with Hamming 

distance (4k + 2k)/2 from zk. 

Proof: We note the interesting relationship between Hamming distances, Δ1 and 

Δ2 and the code words z1 and z2 in Tables 2.3 and 2.4 respectively. We see that Δ1 

can be formed by replacing each zero in z1 by s1 and each one in z1 by r1. We also 

see that Δ2 is formed similarly by replacing each zero in z2 by s2 and each one in z2 

by r2. We thus define Δj
k as zk with each zero replaced by sj and each one replaced 

by rj . Its complement Δ
j

k is defined as zk with each zero replaced by rj and each 

one replaced by sj . For example with this definition, we can write Δ1
1 =  [1 1 1 3],  
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Δ2
1 = [6 6 6 10] and Δ

2
2 = [10 10 10 6 10 10 10 6 10 10 10 6 6 6 6 10]. We next define the 

quantity Γk(w,M), which is a 4k-element vector produced from the arguments w, a  

string of length 4k, and M a 4k × 4k matrix. The entry in component x of this vector 

is the Hamming distance between w and row x of M . Note that ⎡ ⎤ 
4k 4k 4k ⎣ ⎦Γk(zk, Hk) =  zk,j ⊕ Hk(1, j), zk,j ⊕ Hk(2, j), . . . ,  zk,j ⊕ Hk(4k, j) , 

j=1 j=1 j=1 

(2.103) 

where Γk(zk, Hk) is a 4k vector consisting of the 4k Hamming distances between zk 

and each of the 4k rows of Hk. 

Our strategy for proving Lemma 2.3 is as follows. We know that by the proof of 

Lemma 2.2 and by the definition of Δk
k, it consists of rk entries having value sk and 

sk entries having value rk. It is sufficient to show that these entries are Hamming 

distances. Thus, establishing that the equality 

Γk(zk, Hk) = Δk
k (2.104) 

holds is sufficient to complete the proof. We prove this equality by induction over 

k. For the base case, we specifically choose k = 1 rather that k = 0 in order to 

explicitly write out a sample calculation of Equation 2.103. Thus using Equation 



77 

2.103 and our definitions of z1 and H1 we note that ⎤⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0 ⊕ H1(1, 1) + 0  ⊕ H1(1, 2) + 0  ⊕ H1(1, 3) + 1  ⊕ H1(1, 4) 

0 ⊕ H1(2, 1) + 0  ⊕ H1(2, 2) + 0  ⊕ H1(2, 3) + 1  ⊕ H1(2, 4) 

0 ⊕ H1(3, 1) + 0  ⊕ H1(3, 2) + 0  ⊕ H1(3, 3) + 1  ⊕ H1(3, 4) 

0 ⊕ H1(4, 1) + 0  ⊕ H1(4, 2) + 0  ⊕ H1(4, 3) + 1  ⊕ H1(4, 4) 

⎥⎥⎥⎥⎥⎥⎥⎦
 

Γ1(z1, H1) =  

⎤⎡⎤⎡ 
1 s1 ⎢⎢⎢⎢⎢⎢⎢⎣
 

1
 

1
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

=
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

s1 

s1 

⎥⎥⎥⎥⎥⎥⎥⎦
 

= Δ1
1. (2.105)=
 

3 r1

Similarly, we have ⎤⎡⎤⎡ 
3 r1 ⎢⎢⎢⎢⎢⎢⎢⎣
 

3
 

3
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

=
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

r1 

r1 

⎥⎥⎥⎥⎥⎥⎥⎦
 

= Δ
1
1. (2.106)
Γ1(z1, H1) = Γ1(z1, H1) =  

1 s1 

The need for this latter equation will become apparent during the inductive step. 

It is a little more involved to prove the general case, which is proven by induction 

on k0. We first assume that Γk(zk, Hk) = Δk
k for all k up to k0. In the inductive step, 

we show that Γk0+1(zk0+1, Hk0+1) = Δk0+1 Before proceeding to the inductive step, k0+1. 

we need to make some further definitions. We have already defined zk+1 in Equation 

2.102, we now give a recursive expression for Hk+1 in terms of Hk in Equation 2.107. 

We note that Hk+1 has four rows each containing either four copies of Hk (the first 

row), or two copies of Hk and Hk, in different column positions of the other three 
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rows. ⎤⎡ 

Hk+1 = 

⎢⎢⎢⎢⎢⎢⎢⎣
 

Hk Hk Hk Hk 

Hk Hk Hk Hk 

Hk Hk Hk Hk 

Hk Hk Hk Hk 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (2.107)
 

Since zk+1 also has four elements, formed from three copies of zk and one copy of 

zk, we see that there are four separate Hamming distance vectors that we have to 

account for. By inspection of Equation 2.103, we can reduce these four cases to the 

following two cases: 

Γk(zk, Hk) = Γk(zk, Hk) 

Γk(zk, Hk) = Γk(zk, Hk) = Γk(zk, Hk). (2.108) 

We pictorially represent the construction of all four cases in Figure 2.12. 

Γk(zk, Hk) = Δk 
k Γk(zk, Hk) =  Δ

k 
k 

Hk 
Δk 

k Hk 
Δ

k 
k 

zk zk 

Γk(zk, Hk) =  Δ
k 
k Γk(zk, Hk) = Δk 

k 

Hk 
Δ

k 
k Hk 

Δk 
k 

zk zk 

Figure 2.12: The columns Δk 
k and Δ

k 
k represent vectors of Hamming distances be­

tween the noisy codeword zk, its complement zk and the matrix of Hadamard code-
words Hk and its complement Hk. 
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We are now ready to make the inductive step, which will actually require two steps 

— one for the Hamming distances and one for the quantities of these distances. We 

assume that Γk0 (zk0 , Hk0 ) = Δk0 and Γk0 (zk0 , Hk0 ) = Δ
k0 are true for some k0. Note k0 k0 

that we have shown both of these to be true for the base case in Equations 2.105 

and 2.106. We now begin the first part of the inductive step. Using Equation 2.108 

and the definitions of zk+1 and Hk+1, we write an expression for the first 4k0 entries 

of Γk0+1(zk0+1, Hk0+1), which is 

+ Δ
k0 = Δk0+13Γk0 (zk0 , Hk0 ) + Γk(zk0 , Hk0 ) = 3Δk0 . (2.109)k0 k0 k0 

This equation has been formed from the four constituents of zk+1 and the four con­

Γk+1(zk+1, Hk+1) = Δk+1 
k+1 

Hk 

Hk 

Hk 

Hk 

zk 

Hk Hk 

Hk Hk 

Hk Hk 

Hk Hk 

zk zk 

zk+1 

Hk 

Hk 

Hk 

Hk 

zk 

Δk 
k 

Δk 
k 

Δk 
k 

Δk 
k 

+Δk 
k 

+ Δ
k 
k 

+Δk 
k 

+ Δ
k 
k 

+Δk 
k 

+Δk 
k 

+ Δ
k 
k 

+ Δ
k 
k 

+ Δ
k 
k 

+Δk 
k 

+Δk 
k 

+ Δ
k 
k 

=Δk+1 
k 

=Δk+1 
k 

=Δk+1 
k 

= Δ
k+1 
k 

= Δk+1 
k+1 

Figure 2.13: The column Δk+1 
k+1 represents the vector of Hamming distances between 

the noisy codeword zk+1 and the matrix of Hadamard codewords Hk. It is formed 
by summing and concatenating the columns Δk

k and Δ
k

k formed in Figure 2.12. 

stituents of the first row of Hk+1 as depicted in Figure 2.13. The last equality of 

Equation 2.109 is true since each of the Hamming distances rk0 and sk0 , which are 

the constituents of Δk0 and Δ
k0 , are combined here in a manner consistent with the k0 k0 
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recursion given in Equation 2.96. This results in the Hamming distances rk0+1 and 

sk0+1 consistent with our definition of Δk
k
0
0 

+1 . With reference to Figure 2.13 we see 

that the elements of Equation 2.109 also form the second 4k0 entries and the third 

4k0 entries of Γk0+1(zk0+1, Hk0+1). The final 4k0 entries of Γk0+1(zk0+1, Hk0+1) are 

= Δ
k0+1

Γk0 (zk0 , Hk0 ) + 3Γk(zk0 , Hk0 ) = Δk
k
0
0 
+ 3Δ

k0 
. (2.110)k0 k0 

We can now take the second part of the inductive step, where we want to establish 

the quantities of Hamming distances. In correspondence with the four rows of Hk0+1, 

the first, second and third 4k0 entries of Δk0+1 are as per Equation 2.109 and the k0+1 

fourth 4k0 entries are as per Equation 2.110. We can thus write the expression ⎤⎡ 

Γk0+1(zk0+1, Hk0+1) =  

⎢⎢⎢⎢⎢⎢⎢⎣
 

3Γk0 (zk0 , Hk0 ) + Γk(zk0 , Hk0 ) 

3Γk0 (zk0 , Hk0 ) + Γk(zk0 , Hk0 ) 
⎥⎥⎥⎥⎥⎥⎥⎦
 

. (2.111)
 
3Γk0 (zk0 , Hk0 ) + Γk(zk0 , Hk0 ) 

Γk0 (zk0 , Hk0 ) + 3Γk(zk0 , Hk0 ) 

in Δk0+1 and Δ
k0+1 

k0 k0
Since the quantities of sk0+1 and rk0+1 are now combined in
 

a manner consistent with the recursion given in Equation 2.102, we can express 

Equation 2.111 as ⎤⎡ 

Γk0+1(zk0+1, Hk0+1) =  

⎢⎢⎢⎢⎢⎢⎢⎣
 

Δk0+1 
k0 

Δk0+1 
k0 

Δk0+1 
k0 

Δ
k0+1 
k0 

⎥⎥⎥⎥⎥⎥⎥⎦
 

= Δk0+1 
k0+1, (2.112)
 

thus completing the inductive proof of Equation 2.104. 

We now use the definition of the vector Δk
k to complete the proof of Lemma 2.3. 

We have already established that there are rk zeroes and sk ones in zk in our proof 
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2

of Lemma 2.2. In our definition of Δk
k, we replaced all the zeroes of zk with sk and 

all the ones of zk with rk resulting in a vector consisting of rk values of Hamming 

distance sk and sk values of Hamming distance rk. Thus there are (4k +2k)/2 possible 

values of h(a) ∈ {0, 1}4k with Hamming distance (4k −2k)/2 from zk and (4k −2k)/2 

possible values of h(a) with Hamming distance (4k + 2k)/2 from zk as required. 

We are now ready to use the results of the proofs of Lemmas 2.1, 2.2 and 2.3 to 

prove Theorem 2. 

Proof of Theorem 2: We define the IP  oracle in terms of the noisy codeword zk as 

IP (x) =  zk,x, where zk,x denotes the bit of zk in component x. We want to establish 

that IP (x) =  zk,x is correct on ( )+εk2
1 ·
4k inputs and incorrect on (1 

2−εk) ·4k inputs. 

We show this by noting that IP (x) is correct for the “close” Hamming distances sk. 

Thus we have 

sk = (4k − 2k)/2 

1 −
 1 
2·2k · 4k 

− εk) · 4k , (2.113) 

=
 2

1 
2= ( 


where we have used εk = 1/(2 ·2k) to establish this equality. We have already shown 

in the proof of Lemma 2.3 that the quantity of vectors having Hamming distance sk 

is rk. Since sk + rk = 4k, we conclude that IP (x) is  correct on rk = (1 
2 + εk) · 4k 

inputs as required. Similarly we conclude that IP (x) is  incorrect on sk = (1−εk) ·4k 

inputs.
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The quantity of vectors rk having Hamming distance sk constitutes the size of 

the list we have to search using EQ queries. We thus express rk in terms of εk as 

rk	 = (1
2 + εk) · 4k 

= (1 1 
2 + εk) · 4ε2 

k 

1 1 
= + .	 (2.114)

(8ε2 
k) (4εk)

This means that, for n = 2k and εk = 1/(2 · 2k), if a is encoded into h(a) and if 

there are fraction of (1
2 − εk) errors, which result in the string zk, then there will 

2k	 4kbe a number of values of a ∈ {0, 1} that, when encoded as h(a) ∈ {0, 1} , are 

consistent with zk. The list of consistent values of a is of size 1 + 1 , which is (8ε2 ) (4εk)
k

Ω(1/ε2) as required. 

The preceding proof settles the case where n = 2k and ε = 1/(2 · 2k) (which 

means that n and ε satisfy the relationship ε = 1/(2 ·2n/2)). We claim that as long as 

ε ≥ 1/(2·2n/2), the Ω(1/ε2) EQ query lower bound holds. A rough sketch of the claim 

follows. We define a slightly modified noisy code word zk,1, where in the last step 

of our recursive definition of zk we substitute zk+1 = zkzkzkzk for zk+1 = zkzkzkzk. 

Given this substitution, we obtain the quantity of vectors rk,1 = (4k−1 + 2k−1)/2 

having “close” Hamming distance sk,1 = (4k−1 − 2k−1)/2 to  zk,1 for a slightly larger 

εk,1 = 2/(2 · 2k). We note that rk,1 is still of size Ω(1/ε2 
k,1). If we define zk,m as the 

noisy codeword where we continue this replacement of zk+1 = zkzkzkzk for the last 

m steps of our construction (and still use Equation 2.102 for the first k −m steps) , 

our list of “close” Hamming distance vectors grows like 

rk,m = (4k−m + 2k−m)/2,	 (2.115) 
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while the advantage grows like 

εk,m = 2m/(2 · 2k) = 1/(2 · 2k−m). (2.116) 

Inserting this expression into Equation 2.115, we have 

rk,m = 
1 

4 · ε2 
k,m 

+ 
1 

2 · εk,m 
= Ω  ε2 

k,m , (2.117) 

which completes the sketch. We will next use an information theoretical approach 

to lower bound the number of IP  queries. 

2.2.2 Lower Bounding the Number of IP Queries 

We show that any classical algorithm solving the G-L problem with constant prob­

ability must make Ω(n/ε2) IP  queries (for a reasonable range of values of ε). This 

proof was first presented in [1]. 

Theorem 3 Any classical probabilistic algorithm solving the G-L problem with suc­

cess probability δ >  0 requires either more than 2n/2 EQ queries or Ω(δn/ε2) IP 
√ 
n2−n/3queries when ε ≥ . 

Proof: The proof uses classical information theory, bounding the conditional mu­

tual information about an unknown string that is revealed by each IP query, in 

conjunction with an analysis of the effect of EQ queries. 

It is useful to consider an algorithm to be successful on a particular input if and 

only if it performs an EQ query whose output is 1 (at which point the value of a has 

been determined). 

We begin by showing that it is sufficient to consider algorithms (formally, deci­

sion trees) that are in a convenient simple form. First, by a basic game-theoretic 
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argument [35], it suffices to consider deterministic algorithms, where their input 

data—embodied in the black-boxes for IP and EQ queries—may be generated in 

a probabilistic manner. Second, it can be assumed that all EQ queries occur only 

after all IP queries have been completed. To see why this is so, start with an algo­

rithm that interleaves IP and EQ queries, and modify it as follows. Whenever an 

EQ query occurs before the end of the IP queries, the modified algorithm stores the 

value of the input to the query and proceeds as if the result were 0. Then, at the end 

of the IP queries, each such deferred EQ query is applied. The modified algorithm 

will behave consistently whenever the actual output of a deferred EQ query is 0, and 

also it will perform (albeit later) any EQ query where the output is 1. Henceforth, 

we consider only algorithms with the above simplifications. 

Now we describe a probabilistic procedure for constructing the black boxes that 

nperform IP and EQ queries. First, a ∈ {0, 1} is chosen randomly according to the 

nuniform distribution. Then a set S ⊆ {0, 1} is chosen randomly, uniformly subject 

to the condition that |S| = (1 + ε)2n (assuming that ε2n is an integer). Then 2 ⎧ ⎪⎨ 

⎪⎩
 

a · x if x ∈ S
 
IP(x) =  (2.118)
 

a · x if x ∈ S
 

and
 ⎧ ⎪⎨ 

⎪⎩
 

1 if  x = a
 
EQ(x) =  (2.119)
 

0 if  x = a.
 

Consider an algorithm that makes m IP queries. If m ≥ δn/ε2 then the theorem 

is proven. Otherwise, since ε ≥ √ 
n2−n/3, we have  

δn ≤ δ22n/3m <  . (2.120)
ε2 
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We proceed by determining the amount of information about a that is conveyed 

by the application of m IP queries. Let A be the {0, 1}n-valued random variable 

corresponding to the probabilistic choice of a ∈ {0, 1}n, and let Y1, Y2, . . . , Ym be the 

{0, 1}-valued random variables corresponding to the respective outputs of the m IP 

queries. Let H be the Shannon entropy function (see, e.g., [13]). Then, for each 

i ∈ {1, 2, . . . ,m}, 

H(A|Y1, Y2, . . . , Yi) =  H(A|Y1, . . . , Yi−1)−H(Yi|Y1, . . . , Yi−1)+H(Yi|A, Y1, . . . , Yi−1). 

(2.121) 

Combining the above equations yields 

m 

H(A|Y1, Y2, . . . , Ym) =  H(A) +  (H(Yi|A, Y1, . . . , Yi−1) −H(Yi|Y1, . . . , Yi−1)) . 
i=1 

(2.122) 

(See Equation 1.11 and Equation 1.12 for a detailed derivation of this expression.) 

We shall now bound each term on the right side of Eq. 2.122. Since the a priori 

distribution of A is uniform, H(A) =  n. Also, since the entropy of a single bit is at 

most 1, H(Yi|Y1, . . . , Yi−1) ≤ 1 for all i ∈ {1, 2, . . . ,m}. Next, we show that, for all 

i ∈ {1, 2, . . . ,m}, 

H(Yi|A, Y1, . . . , Yi−1) ≥ 1 − (16/ ln 2)ε2 . (2.123) 

To establish Eq. 2.123, it is useful to view the set S as being generated during the 

execution of the IP queries as follows. Initially S is empty, and when the first IP 

query is performed on some input x, x is placed in S with probability 1
2 + ε and in 

S with probability 1
2 − ε. The inputs to subsequent IP queries are also placed in 

either S or S with an appropriate probability, which depends on how the inputs to 
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previous queries are balanced between S and S. After the execution of the first i−1 

queries, the input to the ith query is placed in S with probability 

(1 + ε)2n − j2 (2.124)
2n − (i− 1) 

, 

where j ∈ {0, 1, . . . , i−1} is the number of previous inputs to queries that have been 

placed in S. Using Eq. 2.120, the above probability can be shown to lie between 

1 
2 − 2ε and 1

2 + 2ε. It follows that 

H(Yi|A, Y1, . . . , Yi−1) ≥ H(1 + 2ε, 1 − 2ε)2 2 

= −(1
2 + 2ε) log(2

1 + 2ε) − (1
2 − 2ε) log(2

1 − 2ε) 

≥ 1 − (16/ ln 2)ε2 , (2.125) 

where we have used Equation 1.3 in the second inequality. This establishes Eq. 2.123. 

Now, substituting these inequalities into Eq. 2.122, we obtain 

H(A|Y1, . . . , Ym) ≥ n− (16/ ln 2)mε2 . (2.126) 

Intuitively, the IP queries yield information about the value of A in terms of their 

effect on the probability distribution of A conditioned on the values of Y1, . . . , Ym. 

Eq. 2.126 lower-bounds the decrease in entropy that is possible. 

From the conditions of the theorem, it can be assumed that, after the IP queries, 

2n/2 EQ queries are performed. The algorithm succeeds with probability at least δ 

nonly if there exist 2n/2 elements of {0, 1} whose total probability (conditioned on 

Y1, . . . , Ym) is at least δ. In Equation 1.15, we established that the maximum entropy 

that a distribution with this property can have is for a bi-level distribution, where 

2n/2 n − 2n/2elements of {0, 1} each have probability δ/2n/2 and 2n elements each 
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have probability (1 − δ)/(2n − 2n/2). Therefore, 

δ δ 1−δ 1−δH(A|Y1, . . . , Ym) ≤ H 2n/2 , . . . ,  , 2n−2n/2 , . . . ,2n/2 2n−2n/2 

2n/2 2n−2n/2 

= H(δ, 1 − δ) +  δ log(2n/2) + (1  − δ) log(2n − 2n/2)
 

< 1 +  δn/2 + (1  − δ)n
 

= n − δn/2 + 1. (2.127)
 

Combining Eq. 2.126 with Eq. 2.127, yields m >  (ln 2)(δn − 2)/(32ε2) ∈ Ω(δn/ε2), 

as required. 

In this chapter, we have established that the classical upper bound to the G-L 

problem requires O n IP  queries and O 1 EQ queries. We have also established 
ε2 ε2 

that any classical algorithm requires Ω 1 EQ queries and Ω n IP  queries (under 
ε2 ε2 

reasonable conditions of various parameters). We conclude that our bounds are 

indeed tight and that we are justified in stating that the total number of IP  and 

EQ queries required to solve the classical G-L problem are 

qIP  = Θ  n/ε2 , 

qEQ = Θ  1/ε2 . (2.128) 

In the next chapter, we study and bound the query complexity of the quantum G-L 

problem. 



Chapter 3 A Quantum Goldreich-Levin Theorem 

3.0 Introduction 

The classical G-L problem is based upon an inner product oracle. The Bernstein-

Vazirani circuit also solves an inner product query problem although its discovery 

was unrelated to the analysis of hard predicates. In this chapter, we first analyze 

the query complexity of the Bernstein-Vazirani circuit. We compare the results with 

that of the noiseless classical G-L problem. We follow this with a detailed analysis 

of the same circuit but with the introduction of noise and show how this is readily 

interpreted as an upper bound of the general quantum G-L problem. The chapter 

concludes with a proof of the lower bound of query complexity of the quantum G-L 

problem. 

3.1 The Bernstein-Vazirani Problem 

The circuit presented by Bernstein-Vazirani in their 1993 paper [4] is an elegant 

example of a quantum circuit whose query complexity represents a polynomial speed 

up over its classical counterpart. An n+1 qubit state is presented to the input of the 

circuit. At the output of the circuit, the first n qubits are in the state |a). Measuring 

this state constitutes a single IP  query and produces the bits of the unknown string a. 

The Bernstein-Vazirani circuit is presented in Figure 3.14. We will now demonstrate 

that the bits of a are recoverable in a single query by proceeding with a step-by-step 

analysis of the circuit using the numbered vertical lines in Figure 3.14 as reference. 
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Figure 3.14: The Bernstein-Vazirani Circuit 

1. The input state is the n + 1 qubit basis state 

|Ψ1) = |00...0)|1). 

2. After the application of the n + 1 Hadamard transformations, we obtain an 

equal superposition of all the basis states ⎛ ⎞ 
1 1 |Ψ2) = √ ⎝ |x)⎠ √ (|0) − |1)) . 
2n 2 

x∈{0,1}n 

We have used H⊗n|z) = √1
2n x∈{0,1}n (−1)z·x|x) and that the input state is 

|z) = |00 . . .  0) to express this result. 
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3. With IP (x) =  a · x, we modulo-two sum the result on to the bottom qubit to
 

achieve the following result ⎛ ⎞ 
1 1 ⎝ ⎠|Ψ3) = √ (−1)a·x|x) √ (|0) − |1)) . 
2n 2 

x∈{0,1}n 

This results from what is sometimes referred to as phase kickback. To appreciate 

this interesting effect, we note that a · x can have the value 0 or 1. For a · x = 

1, we have |0 ⊕ 1) − |1 ⊕ 1) = (−1)1(|0) − |1)), and for a · x = 0, we have 

|0 ⊕ 0) − |1 ⊕ 0) = (−1)0(|0) − |1)). Since phase can be picked up for each of 

the 2n values of x, we bring the phase factor (−1)a·x into the sum. 

4. Writing down the effect of the application of the final n + 1 Hadamard trans­

formations is a little more involved. We begin by writing down ⎛ ⎞ 

|Ψ4) = H⊗n ⎝ 1 √ 
2n ⎛ 

x∈{0,1}n 

(−1)a·x|x)⎠ |1) 
⎞ 

= 
1 
2n ⎛ 

⎝ 

x∈{0,1}n 

(−1)a·x 

w∈{0,1}n 

(−1)x·w|w)⎠ |1) 
⎛ ⎞ ⎞ 

= ⎝ 

w∈{0,1}n 

⎝ 1 
2n 

x∈{0,1}n 

(−1)x·(a⊕w)⎠ |w)⎠ |1) 

= |a)|1). 

The last step is achieved by noting that ⎧ ⎪ ⎨ 1 if  a = w1
(−1)x·(a⊕w) = , ⎩ 2n

x∈{0,1}n 
⎪ 0 if  a = w 

since a ⊕ w = 0 if and only if a = w. 
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We conclude that measuring the first n qubits of the B-V circuit gives us the n 

bits of the unknown string a with only one query. This compares with n queries in 

the noiseless classical case where the advantage, ε = 2
1 . This polynomial speed up 

of the noiseless quantum case over the noiseless classical case motivates us to study 

how the B-V circuit can be adapted to simulate noisy quantum IP queries. We will 

now present an upper-bound to the quantum G-L problem. 

3.2	 Upper-Bounding the Quantum Goldreich-Levin Theo­

rem 

In this section we adapt the B-V circuit to perform a noisy quantum inner prod­

uct query. Here we think of “noisy” as pertaining to our definition of a unitary 

transformation that implements an imperfect quantum inner product theory. This 

is a different usage of the term “noisy” than the common usage, which pertains to 

quantum bit flips or phase flips to which error-correcting codes may be applied [27, 

Chapter 10 ]. In this section, we first provide definitions of IP and EQ queries in 

the quantum case in terms of unitary operations. We do this in a manner that is 

sufficiently general so that, whenever an implementation of a more general IP or EQ 

query is given as a general quantum circuit consisting of elementary quantum gates 

and measurements, a unitary query corresponding to our definition can be efficiently 

constructed from it. 

Definition 8 A quantum inner product query (with bias ε) is a unitary transforma­

tion UIP on n + m qubits, or its inverse U † 
IP, such that UIP satisfies the following two 

properties: 
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n1. If x ∈ {0, 1} is chosen randomly according to the uniform distribution and 

the last qubit of UIP|x)|0m) is measured, yielding the value w ∈ {0, 1}, then 

Pr[w = a · x] ≥
 1 
2 + ε.
 

n2. For any x ∈ {0, 1} and y ∈ {0, 1}m, the state of the first n qubits of UIP|x)|y) 
is |x). 

The first property captures the fact that, taking a query to be a suitable application 

of UIP followed by a measurement of the last qubit, Eq. 2.51 is satisfied. Any imple­

mentation of a quantum circuit that produces an output that is a ·x with probability 

on average
 1 
2 + ε can be modified to consist of a unitary stage UIP followed by a 

measurement of one qubit. The second property is for technical convenience, and 

any unitary operation without this property can be converted to one that has this 

property, by first producing a copy of the classical basis state |x). Moreover, given 

a circuit implementing UIP, it is easy to construct a circuit implementing U † 
IP. 

Definition 9 A quantum equivalence query is the unitary operation UEQ such that, 

nfor all x ∈ {0, 1} and b ∈ {0, 1}, 

UEQ|x)|b) = 

⎧ ⎪⎨ 

⎪⎩
 

|x)|b) if x = a 
(3.129) 

|x)|b) if x = a,
 

where b = ¬b. 

nFor the quantum G-L problem, a ∈ {0, 1} and information about a is available 

only from quantum IP and EQ queries and the goal is to determine a. We can now 

state and prove the result about quantum algorithms for the G-L problem (which is 

similar to a result in [12] in a different context).
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Theorem 4 There exists a quantum algorithm solving the G-L problem with con­

stant probability using O(1/ε) UIP, U † 
IP and UEQ queries in total. Also, the number 

of auxiliary qubit operations used by the procedure is O(n/ε). 

The proof is by a combination of two techniques: the algorithm in [4] for the 

exact case (i.e., when ε = 1
2 ), which is shown to be adaptable to “noisy” data in [12] 

(with a slightly different noise model than the one that arises here); and amplitude 

amplification [8, 22, 9]. 

Since UIP applied to |x)|y) has no net effect on its first n input qubits, for each 

x ∈ {0, 1}n , 

UIP|x)|0m) = |x) (αx|vx)|a · x) + βx|wx)|a · x)) , (3.130) 

where αx and βx are nonnegative real numbers, and |vx) and |wx) are m − 1 qubit 

quantum states. If the last qubit of UIP|x)|0m) is measured then the result is: a · x 

with probability αx
2 , and a · x with probability βx

2 . Therefore, since, for a random 

uniformly distributed x ∈ {0, 1}n, measuring the last qubit of UIP|x)|0m) yields a · x 

with probability at least 1
2 + ε, it follows that 

1 α2 1≥ + ε (3.131)2n x 2 
x∈{0,1}n 

2
1 
n βx 

2 ≤ 1
2 − ε. (3.132) 

x∈{0,1}n 

Now, consider the quantum circuit C in Figure 3.15. We will begin by showing 

that (a, 0m , 1|C|0n , 0m , 0) is real-valued and 

(a, 0m , 1|C|0n , 0m , 0) ≥  2ε, (3.133) 

which intuitively can be viewed as an indication of the progress that C makes towards 

finding the string a. To establish Eq. 3.133, note that the operation C can be 
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n qubits 

m qubits 

⎧⎨
⎩ 

⎧⎨
⎩
 

X 

H 

H 

H 

H 

H 

H 

UIP U † 
IP 

Z 

� 

Figure 3.15: Quantum circuit C. 

decomposed into the following five operations: 

1. Operation C1: Apply H to each of the first n qubits, and a NOT operation to 

the last qubit. 

2. Operation C2: Apply UIP to the first n + m qubits. 

3. Operation C3: Apply a controlled-Z to the last two qubits. 

†4. Operation C4: Apply UIP to the first n + m qubits. 

5. Operation C5: Apply H to each of the first n qubits. 

We note that since (a, 0m , 1|C|0n , 0m , 0) = (a, 0m , 1|C5C4C3C2C1|0n , 0m , 0), the quan­

tity (a, 0m , 1|C|0n , 0m , 0) is the inner product between state C3C2C1|0n)|0m)|0) and 
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state C4
†C5 

†|a)|0m)|1). These states are 

C3C2C1|0n)|0m)|0) = C3C2 √1 
2n 

x∈{0,1}n 

|x)|0m)|1) 

= C3 √1 
2n 

x∈{0,1}n 

|x) (αx|vx)|a · x) + βx|wx)|a · x)) |1) 

= √1 
2n 

x∈{0,1}n 

|x) αx(−1)a·x|vx)|a · x) + βx(−1)a·x|wx)|a · x) |1) 

= √1 
2n 

x∈{0,1}n 

(−1)a·x|x) (αx|vx)|a · x) −  βx|wx)|a · x)) |1), 

(3.134) 

and 

C† 
4 C

† 
5|a)|0m)|1) = C† 

4 
√1 

2n 

x∈{0,1}n 

(−1)a·x|x)|0m)|1) 

= √1 
2n 

x∈{0,1}n 

(−1)a·x|x) (αx|vx)|a · x) + βx|wx)|a · x)) |1). 

(3.135) 

It follows from Eq. 3.134 and Eq. 3.135 (and using the fact that (x|y) = 0 whenever 

x = y) that 

(a, 0m , 1|C|0n , 0m , 0) = 1 α2 − β2 
2n x x 

x∈{0,1}n 

≥ (2
1 + ε) − (2

1 − ε) 

= 2ε, (3.136) 

which establishes Eq. 3.133. 

Note that Eq. 3.133 implies that, if C is executed on input |0n)|0m)|0) (= 

|0n , 0m , 0)) and the result is measured in the classical basis, then the first n bits 

of the result will be a with probability at least |(a, 0m , 1|C|0n , 0m , 0)|2 ≥ 4ε2 . There­

fore, if this process is repeated O(1/ε2) times, checking each result with an EQ query, 
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then a will be found with constant probability. A more efficient way of finding the 

value of a is to use amplitude amplification [8, 22, 9] using the transformation C and 

its inverse C† in combination with EQ queries. The procedure is to compute for an 

appropriate value of k 

(−CU0C
†UEQ)kC|0n , 0m , 0)	 (3.137) 

(where U0 = I − 2|0n , 0m , 0)(0n , 0m , 0|), measure the state, and perform an EQ query 

on the result. Such a computation consists of O(k) UIP, U † 
IP, and UEQ queries. Since 

the number of solutions is known to be one, we set k = π/(8ε) as discussed in 

our study of Grover’s algorithm in section 1.2.4. As shown in [9], the expected total 

number of executions of C, C†, and UEQ until a successful EQ query occurs is O(1/ε). 

†This implies that O(1/ε) UIP, UIP, and UEQ are sufficient to succeed with constant 

probability. 

3.3	 Lower Bounding the Quantum Goldreich-Levin Theo­

rem 

In the previous section we developed a straightforward quantum algorithm that solves 

the quantum G-L problem with O(1/ε) IP  queries and O(1/ε) EQ queries. In this 

section we firstly determine the quantum lower bound on the number of EQ queries 

required by using both the result of the classical EQ lower bound and by evoking 

the well known lower bound on quantum search algorithms. We follow this with a 

section where we modify the proof of optimality of the quantum search algorithm in 

order to develop the lower bound on the number of IP  queries. We conclude that 

the aforementioned upper bound is essentially a tight bound. 
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3.3.1 Equivalence of EQ Queries to Oracle Marking Queries
 

In the proof of the optimality of the search algorithm given in [2] and elsewhere, 

we are allowed to apply the marking oracle Oa which gives a phase shift of −1 to  

the solution |a) and leaves all other states invariant. This gate is interleaved with 

unitary operations U1, U2, . . . , Uk in constructing the proof. The optimality proof is 

directly applicable to the problem of lower bounding the number of EQ queries and 

with slight modification can be made applicable to the problem of lower bounding 

the number of IP  queries. In both cases we need to show that the Oa oracle can be 

used to simulate the EQ oracle. We begin by noting that the EQ oracle given by 

Equation 3.129 can be written as 

UEQ|x)|b) = |x)|b⊕ δx,a), (3.138) 

which can also be nicely represented as the unitary matrix ⎤⎡ 

UEQ = 

⎢⎢⎢⎢⎢⎢⎢⎣
 

[X]δx,a 0 · · ·  0 

[X]δx,a0 · · ·  0 
. . . . . . . . .. . . 

[X]δx,a0 0 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (3.139)
 

Assuming that the marking oracle only marks the unique state |a), this oracle can
 

be written as 

Oa|x) = (−1)δx,a |x). (3.140) 

We define the controlled marking oracle as 

cont-Oa|x)|b) = (−1)(δx,a)·b|x)|b), (3.141) 

the circuit for which is presented in Figure 3.16. The cont-Oa operator can also be 
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. .. (−1)(δx,aOa|x) .. . )·b|x) 

_|b) |b) 

Figure 3.16: Circuit implementation of cont-Oa|x)|b) 

nicely represented as the unitary matrix ⎤⎡ 
[Z]δx,a 0 · · ·  0 

0 [Z]δx,a · · ·  0 
... 

... . . . ... 

0 0 [Z]δx,a 

⎢⎢⎢⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
cont-Oa = (3.142)
 

Multiplying Equation 3.142 on both sides by I ⊗H we have
 ⎤⎡ 

UEQ = 

⎢⎢⎢⎢⎢⎢⎢⎣
 

H[Z]δx,a H 0 · · ·  0 

0 H[Z]δx,a H · · ·  0 
... 

... . . . ... 

0 0 H[Z]δx,a H 

⎥⎥⎥⎥⎥⎥⎥⎦
 

(3.143)
,
 

where we have used the relation X = HZH  to establish the equality with UEQ. 

We present a circuit that is equivalent to Equation 3.138 in Figure 3.17. We thus 

conclude that we can directly simulate Oa queries with EQ queries and vice versa. 

3.3.2 Lower Bounding the Number of EQ Queries 

In Section 2.2.1 in our study of the classical case we showed that after performing an 

unlimited number of IP  queries, we still have to search a list of length Ω(1/ε2) using 
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_ 

|x) ... 
... |x) 

|b) |b ⊕ δx,a) 

Oa 

H H 

Figure 3.17: Circuit equivalent to UEQ|x)|b) constructed from a cont-Oa gate 

EQ queries. In Section 1.2.3 in our discussion of quantum circuits, we showed that 
√ 

Grover’s quantum search algorithm requires O N operations to search a list of 

N elements. It turns out that this upper bound is optimal, and one of the proofs is 

based on what is sometimes called the Hybrid Argument. A proof is not presented 

here, but the reader is directed to [27, pages 269-275] for an interesting discussion 

and proof of the optimality of the quantum search algorithm. Thus we can conclude 
√ 

that a circuit searching a list of N elements requires Ω N operations. We now 

propose a theorem that lower bounds the number of quantum EQ queries, and give 

a proof sketch that makes use of the preceding. 

Theorem 5 For ε ≥ 1/(2 · 2n/2), the instance of the quantum G-L problem with 

bias parameter ε requires Ω(1/ε) EQ queries regardless of how many IP  queries are 

performed. 

Proof sketch: If we were to apply an unlimited number of noisy quantum IP  

queries, we would still need to apply the quantum EQ oracle a number of times in 

order to decide on the correct answer. As we demonstrated in Section 2.2, Theo­

rem 2, there are Ω(1/ε2) possible answers after applying an unlimited number of 
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IP  queries. Intuitively this means that we must search a subspace whose size is 

Ω(1/ε2). Accordingly by the optimality of the quantum search algorithm, we must 

use Ω(1/ε) EQ queries. Thus the upper bound on EQ queries presented in the 

algorithm developed in Section 3.2 is indeed a tight bound. 

3.3.3 Lower Bounding the Number of IP Queries 

We are now going to modify the optimality proof to include two queries. The first 

query is the EQ query. The second query will be based on the operator A (and A†) 

parameterized by p ∈ [1/2n , 1] . We define A as the unitary operation acting on n 

nqubits such that, for all y ∈ {0, 1}

√ 
A|y) = 1 − p|y)+ i p|y ⊕ a). (3.144) 

We will later show that this operator is closely related to the IP  oracle. In order to 

gain an appreciation for the form of the operator for the n = 2 case with a = 01 and 

sin θ = 
√ 
p, we present its matrix representation as follows ⎤⎡ 

A2 = 

⎢⎢⎢⎢⎢⎢⎢⎣
 

cos θ i sin θ 0 0
 

i sin θ cos θ 0 0
 

0 0 cos θ i sin θ
 

0 0 i sin θ cos θ
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (3.145)
 

Note that |(a|A|0)|2 = p. The second type of query is a controlled-A operation, 

denoted as cont-A, where cont-A|y)|b) = (Ab|y))|b), for all y ∈ {0, 1}n and b ∈ {0, 1}. 
Consider the following amplitude amplification problem. There is an unknown 

na ∈ {0, 1} such that a = 0. Information about a is available by EQ, cont-A, and 

cont-A† queries. The goal is to determine a. The well-known amplitude amplification 
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algorithm solves this problem using O(1/ 
√ 
p) EQ, cont-A, and cont-A† queries. We 

first show that this is optimal in the number of cont-A, and cont-A† queries. 

Lemma 6 The amplitude amplification problem requires Ω 1/ 
√ 
p cont-A or cont-A† 

√ 
queries if the number of EQ queries is o( 2n). 

Proof: This is straightforward to prove using the hybrid method. The proof is 

similar to the hybrid lower bound proof for searching with just EQ queries, except 

that cont-A and cont-A† queries can be interleaved into the computation—and need 

to be accounted for. 

The key idea is to bound the effect that each cont-A and cont-A† query can have 

on a quantum state. The relevant result is that, for any quantum state |ψ), 

|||ψ) −  cont-A|ψ)|| ≤ 2p. (3.146) 

We can view the result of the operator cont-A on a state |ψ) as producing a new 

state with Euclidean distance D = |||ψ)−cont-A|ψ)|| from |ψ). Since the eigenvalues 
√

of I − cont-A are either 0 or 1 − ( 1 − p + i p), the distance D is the same as the 
√ √

distance on the complex plane between 1 and 1 − p + i p, which we present in 

Figure 3.18. We stress that this is the maximum effect that the operator cont-A can 

have on any state. Note that the size of p is greatly exaggerated in Figure 3.18 for 

the sake of clarity. We are interested in providing a bound to the distance D. By  

inspection we can use the Pythagorean theorem to write 

2 
D2 = p + 1 − 1 − p 

= 2  − 2 1 − p (3.147) 
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i I 

√ √
1 − p + i p

 
 
 
 
 √ D = |||ψ) −  cont-A|ψ)||p 

 
 √ 1 − p

 _
1 

Figure 3.18: The maximum effect of the operator cont-A is represented in C as the √ √
distance between 1 and 1 − p + i p 

√
We note that for 0 ≤ p ≤ 1, 1 − p ≥ 1 − p. We use this to bound the distance 

given in 3.147 as 

D ≤ 2p. (3.148) 

We now explain the use of this result in modifying the hybrid method. The hy­

brid approach works by replacing the marking oracle queries, Oa, with the identity 

operator. In our modification, we envision an arbitrary ordering of Oa, cont-A and 

cont-A† queries. We define the state |ψ0) as the state |ψk,l ) where we have replaced a a 

k, EQ queries and l, cont-A (and cont-A†) queries with the identity operator. We 

are interested in bounding the average value of this distance |||ψk,l ) − |ψ0)|| over all a a

a ∈ {0, 1}n . We define the maximum effect of the marking oracle at the ith step as 

|||ψi+1) − |ψi )|| = 2Δi . We use this and our bound given in Equation 3.148 to write a a a

k−1 k+l−1 

|||ψk,l ) − |ψ0)|| ≤ 2Δi + 2p. (3.149)a a a 
i=0 i=k 

Note that we have used the triangle inequality in writing down Equation 3.149. We
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now wish to obtain the average value of |||ψk,l ) − |ψ0)|| over all values of a. We  a a

express this average as ⎞⎛⎞⎛ 
k−1 k+l−11 2 1 ) − |ψ0 

a Δi|||ψk+l 
a 

⎠2p (3.150)⎠ +
)|| ≤
 ⎝
 ⎝
 
N a N 

i=0 a∈{0,1}n i=k a∈{0,1}n 
N
 

From the Cauchy-Schwarz inequality, it is possible to prove that for any sequence of 
√ 

complex numbers ci subject to N
i=1 |ci|2 = 1, then N

i=1 |ci| ≤  N . The theorem 

can be applied to the first sum in Equation 3.150 since (Δi )2 = 1. Note a∈{0,1}n a

that, as stated earlier, our amplitude amplification problem is not defined for a = 0.  

However, we can exclude a = 0 from the sum and not affect the inequality. We thus 

express Equation 3.150 as ⎞⎛⎞⎛ 
k−1 k+l−11 2
 1
⎜⎜⎝
 Δi 

a 

⎟⎟⎠
 +
 
⎜⎜⎝
 2p
 

⎟⎟⎠
) − |ψ0 
a|||ψk+l 

a )|| ≤
 
N
N
 N
 

i=0 a∈{0,1}n i=k a∈{0,1}n 

a� a�=0 =0 

2k ≤ √ + l 2p. (3.151)
N 

√ √
If we set k ∈ o N in Equation 3.151, then l ∈ Ω 1/ p in order for 1 |||ψk+l) −

N a 

|ψ0)|| to be lower bounded by a positive constant. a

Next, we observe that a cont-A query can be used to simulate an IP query. The 

simulation is given by the circuit presented in Figure 3.19, where S is defined as 

S|b) = ib|b), for b ∈ {0, 1}. 

Lemma 7 If the last output qubit in the circuit presented in Figure 3.19 is measured 

then the probability that the outcome is a · x is (1 + 
√ 
p)/2. 

Proof sketch: Let C denote the circuit presented in Figure 3.19. It is straightfor­



104 

H 

H 

H 

H 

H 

H 

H 

H 

S 

A 

�|0) 

|xn) 

|x2) 

|x1) 

... 
... 

Figure 3.19: Simulating an IP query using a cont-A query. The last qubit, when 
measured, is biased towards a · x. 

nward to calculate that, for all x ∈ {0, 1} , 

√ √
1 +  p + i(−1)a·x 1 − p(x, a · x|C|x, 0) = .

2 

Taking the norm squared of this quantity yields (1 + 
√ 
p)/2. 

Using Lemma 7, any instance of the aforementioned amplitude amplification 

problem can be converted into an instance of the G-L problem. This means that the 

lower bound for amplitude amplification in Lemma 6 implies a corresponding lower 

bound for the G-L problem. 

Theorem 8 The G-L problem with bias parameter ε requires Ω(1/ε) IP queries if 
√ 

the number of EQ queries is o( 2n). 

Proof sketch: The proof follows from the above reduction of the amplitude amplifi­

cation problem to the G-L problem. Consider an instance of amplitude amplification 

with parameter p = ε2 . Suppose that the corresponding instance of the G-L prob­

lem, with IP  queries defined as in Figure 3.19, can be solved with o(1/ε) IP  queries 
√ 

and o( 2n) EQ queries. This algorithm would also solve the amplitude amplifi­
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√ 
cation problem with o(1/ 

√ 
p) cont-A queries and o( 2n) EQ queries, contradicting 

Lemma 6. 

3.4 Summary of Query Complexity of the G-L Problem 

We now summarize the complexity bounds of both the classical and quantum G-L 

problems. In Table 3.6, we present the upper and lower classical bounds and the 

Bound Number of Queries Notes 
Classical Upper 
Bound 

O n 
ε2 IP  queries and 

O 1 
ε2 EQ queries 

Algorithm defined in Section 2.1 
requires both queries. √

Classical Lower 
Bound IP  queries 

Ω n 
ε2 IP  queries or 

2
n 
2 EQ queries 

True for ε ≥ n2−n/3 

Classical Lower 
Bound EQ queries 

Ω 1 
ε2 EQ queries for 

unlimited IP  queries 
True for ε ≥ 1/ 2 · 2n/2 

Quantum Upper 
Bound 

O 1 
ε IP , IP † and 

EQ queries 
Algorithm defined in Section 3.2 
requires all three queries. 

Quantum Lower 
Bound IP  queries 

Ω 1 
ε IP  queries or 

Ω(2n/2) EQ queries 
True for ε >  0 

Quantum Lower 
Bound EQ queries 

Ω 1 
ε EQ queries for 

unlimited IP  queries 
True for ε ≥ 1/ 2 · 2n/2 

Table 3.6: Summary of the query complexity of the classical and quantum G-L 
problems 

upper and lower quantum bounds along with the constraints placed on them. 

In the next chapter, we present classical and quantum bit commitment protocols 

whose security measures are quantified by the reduction of the computational prob­

lem of inverting classical and quantum one way functions to that of predicting a hard 

predicate of those functions. We generate hard predicates using the inner product of 

certain n-bit strings and use them in both classical and quantum protocols. In order 

to establish the reduction, we make use of fact that (under reasonable conditions of 
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various parameters) Ω (n/ε2) IP  queries are required to solve the classical G-L prob­

lem, and Ω (1/ε) IP  queries are required to solve the quantum G-L problem. We are 

thus able to quantify the security of the bit commitment protocols in terms of the 

difficulty of inverting one-way functions. It is particularly satisfying to compare the 

relative security measures of the classical versus the quantum protocols, which result 

from the differing query complexities of the classical and quantum G-L problems. 



Chapter 4 Cryptograhic Applications
 

4.0 Introduction 

In this chapter, we discuss both classical and quantum bit commitment schemes 

based on the Goldreich-Levin Theorem. We begin by focusing on classical bit com­

mitment. Here we expand on the concept of a hard predicate that we introduced in 

Chapter 1. We first give a definition of a hard predicate and then study its com­

plexity by means of a reduction from the complexity of the problem of inverting a 

classical one-way permutation. We can view this complexity as a quantitative mea­

sure of the security of a bit commitment protocol based on the employment of this 

hard predicate. We conclude the classical discussions with a detailed description of 

a bit commitment protocol that employs a hard predicate derived from the classical 

Goldreich-Levin Theorem. 

We follow this with a section on quantum bit commitment schemes. We begin 

with a brief history of quantum bit commitment and repeat a proof of the impossibil­

ity of unconditional quantum bit commitment. We then go on to discuss quantum bit 

and qubit commitment schemes based on the quantum version of the G-L theorem. 

We do this in a manner that parallels our discussion of the classical bit commitment 

scheme. We firstly quantify the complexity of the hard predicate, which allows us to 

compare the relative security of the classical and quantum schemes. We then present 

bit and qubit commitment schemes both of which employ a hard predicate derived 

from the quantum Goldreich-Levin Theorem. 

In the final section, we note that bit (qubit) commitment schemes based on the 

107
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quantum G-L Theorem depend on the existence and implementation of a quantum 

one way permutation (QOWP). We conclude the chapter with a discussion of the 

current state of research into implementations of a QOWP. 

4.1 Classical Bit Commitment based on G-L Theorem 

In Chapter 1, we discussed bit commitment where we compared bit commitment 

using symmetric cryptography to bit commitment using one-way functions. We 

introduced the concept, and need, of a hard predicate of a one-way permutation. 

Here we are going to focus on classical bit-commitment using one-way permutations 

and hard predicates derived using the G-L theorem. We begin by slightly expanding 

the definition of a one-way permutation that we gave in Chapter 1. 

n nDefinition 10 Given a one-way permutation f : {0, 1} → {0, 1} as defined in 

˜ ˜ n nDefinition 5 in Chapter 1, let f denote the permutation f : {0, 1} × {0, 1} → 

n{0, 1}n × {0, 1} defined as f̃(y, x) = (f(y), x). It is evident that f̃ is also a OWP. 

nWith this definition of our OWP, we state that h : {0, 1}n ×{0, 1} → {0, 1} defined 

as 

h(y, x) =  y · x (4.152) 

˜is a hard predicate of f . Before discussing a bit-commitment protocol using the 

OWP f̃ and its hard predicate h, we will prove that h meets our definition (Chapter 

1) and give the corresponding dilution of f̃ . 
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4.1.1 Complexity of Classical Hard Predicates
 

In this section we investigate the complexity of the reduction of Goldreich and Levin 

from one-way permutations to hard predicates. With reference to Figure 4.20, we 

wish to show that any circuit, C, capable of guessing z = a · x given f(a) and x, 

with reasonable success probability and polynomial size would also be able to invert 

f(a) with reasonable success probability and polynomial size. This would contradict 

our definition of the one-way permutation, f , allowing us to conclude that no such 

circuit exists. More technically, we also provide a lower bound of the size of a circuit 

that predicts h from f̃ . In Figure 4.20, we prepare the input to circuit C by starting 

with two n-bit strings a and x and subjecting them to the one-way permutation f̃  

given in Definition 10. The quantities f(a) and x are thus the inputs to our circuit 

a 

x 

f 

f̃

f(a)
 

x
 

C
 z
 

Figure 4.20: Circuit for predicting h 

C, which returns the single bit z. What can we say about size of circuit C? In order 

to bound the answer to this question, we proceed with some definitions. The size of 

a classical circuit is understood to be relative to a suitable set of gates on one and 
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two bits.
 

n nDefinition 11 A permutation f : {0, 1} → {0, 1} is classically (δ, T )-hard to 

invert if there is no classical circuit C of size T such that Pra[C(f(a)) = a] ≥ δ. 

Now the standard requirement for the hard-to-invert condition is that f is (δ, T )­

hard to invert for all δ ∈ 1/nO(1) and T ∈ nO(1). The idea behind a hard-predicate 

is to concentrate the information that a one-way function “hides” about its input 

ninto a single bit. Intuitively, h : {0, 1} → {0, 1} is a hard-predicate of f if, given 

a ∈ {0, 1}n, it is easy to compute h(a); whereas, given f(a) for randomly chosen 

a ∈ {0, 1}n, it is hard to predict the value of the bit h(a) with probability significantly 

better than 1
2 . 

Goldreich and Levin showed that if f is one-way then h is hard to predict from 

f̃ . Instead of quantifying how well a circuit predicts h from f̃ as the amount by 

which Pry,x[C(g(y, x)) = h(y, x)] exceeds 1
2 , we adopt a related but slightly more 

complicated definition, that is suitable for our proof technique (we relate the two 

definitions in Lemma 9). 

Definition 12 A circuit C (δ, ε)-predicts h from f̃ if 

Pr[Pr[C(f̃(y, x)) = h(y, x)] ≥ 1
2 + ε] ≥ δ. (4.153) 

y x 

nTo explain Eq. 4.153 in words, call y ∈ {0, 1} ε-good if Prx[C(f̃(y, x)) = h(y, x)] ≥ 

1 
2 + ε for that value of y. Then Eq. 4.153 means Pry[y is ε-good] ≥ δ. 

In order to help get an intuitive feeling of these two measures of predication, we 

present Figure 4.21, which is a contrived example of how a probability distribution 

ε(y) might look for the n = 7 case. Note the global value of ε = E[εy] and region 
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Figure 4.21: A contrived probability distribution εy -good region.
 

where the y’s are
 ε 
2 -good. The following lemma, which relates the two measures of
 

prediction, is straightforward to prove by an averaging argument.
 

Lemma 9 If Pry,x[C(g(y, x)) = h(y, x)] ≥ 1 
2 + ε then G (ε/(1 − ε), ε/2)-predicts h
 

from f̃ .
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Proof: Let p = Pr[y is 2 
ε -good]. Then 

1 + ε ≤ Pr[C(g(y, x)) = h(y, x)|y is ε -good] Pr[y is ε -good] 2 2 2 

+ Pr[C(g(y, x)) = h(y, x)|y is not ε -good] Pr[y is not ε -good] 2 2 

< p  + (1
2 + 2 

ε )(1 − p), 

which implies p > ε/(1 − ε). 
+ 1/nO(1)Note in particular that, if Pry,x[C(g(y, x)) = h(y, x)] ≥ 2

1 then C 

(1/nO(1), 1/nO(1))-predicts h from g. 

nTheorem 10 If f : {0, 1}n → {0, 1} is classically (δ/2, T )-hard to invert then any 

classical circuit that (δ, ε)-predicts h from f̃ must have size Ω(Tε2/n). 

Proof sketch: The proof of this theorem is essentially a reduction from the 

problem of inverting f to the problem of (δ, ε)-predicting h. One begins by assuming 

that a circuit C of size o(Tε2/n) (δ, ε)-predicts h from g and then shows that, by 

making O(n/ε2) calls to both C and f (plus some additional computations), f can 

be inverted with probability δ/2. The total running time of the inversion procedure 

is o((n/ε2)(Tε2/n)) = o(T ), contradicting the fact that f is (δ/2, T )-hard to invert. 

4.1.2 Protocol based on Classical G-L Theorem 

As discussed in Chapter 2, the classical G-L Theorem and its attendant query prob­

lem are concerned with finding an unknown string based on information exposed by 

the response to inner-product queries. It should not be surprising then that a bit 

commitment protocol based on the G-L Theorem has at its core the inner-product 

based hard predicate expressed in Equation 4.152. The protocol is depicted in Figure 
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4.22. We assume that both Bob and Alice have access to a one-way permutation 

n nf : {0, 1} → {0, 1} . First the commitment phase of the protocol is analyzed 

followed by the de-commitment phase. Commitment proceeds as follows. 

A B® ® 
1. z ∈ {0, 1} 

n2. (a, x) ∈ {0, 1} × 01n 

3. c ← z ⊕ (a · x). 
4. b ← f(a) 

b, x, c 5. Commitment 
a6. De-commitment 

7. Verify b ← f(a) 
8. Compute z ← c ⊕ (a · x) 

Figure 4.22: A bit commitment protocol based on classical G-L Theorem 

1. Alice wishes to commit to bit z ∈ {0, 1}. 

n2. Alice generates two random n-bit strings, a and x with (a, x) ∈ {0, 1}n×{0, 1} . 

3. Alice computes a concealed bit using the inner product of her two strings, 

c ← z ⊕ (a · x). 

4. Alice computes the one-way permutation of one of the strings, b ← f(a). 

5. Alice sends her commitment, which consists of b, x, c to Bob. 

The transmission from Alice is evidence of commitment. The commitment is un­

conditionally binding since there is no way Alice can change her commitment. The 

commitment is computationally concealing since as noted in Theorem 10, a classical 

circuit that (δ, ε)-predicts h from g must have size Ω(Tε2/n). We started with a 

lower bound of Ω(T ) for inverting the one way permutation f , but now we have 



114 

a weaker lower bound — by a dilution factor of Ω(n/ε2) — for breaking the hard 

predicate. We use this factor as a measure to which this bit commitment protocol 

is computationally concealing. We note that b and x are n-bit strings, while c is a 

single bit. Thus, this protocol requires O(n) bits for the commitment phase. The 

de-commitment proceeds when Alice decides it is time to reveal her bit. 

1. Alice sends a, the second of the two random strings to Bob. 

2. Bob checks the validity of this string by evaluating the one-way function: b ← 

f(a). 

3. If Bob is satisfied that Alice did not change her commitment (binding property 

of the protocol), he computes the bit Alice committed to: z ← c ⊕ (a · x). 

The de-commitment phase requires that n bits be exchanged. Before discussing the 

quantum versions of the hard predicate and the quantum bit commitment protocol, 

we discuss some of the history of quantum bit commitment and give a proof of the 

impossibility of unconditional bit commitment. 

4.2 History of Quantum Bit Commitment 

Over the years, various schemes have been proposed for implementing quantum bit 

commitment. One was even claimed to be unconditionally secure — the paper [6] 

appeared in FOCS’93 — but it turned out that the proof was wrong. In fact, not 

only was this scheme insecure, but it was subsequently proven that is impossible to 

implement unconditional bit commitment with quantum information. Proofs were 
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given by Mayers (1995/1997) [25] and by Lo and Chau (1996) [24]. The central idea 

of both proofs is based on the Schmidt decomposition of bi-partite quantum states. 

Although it is impossible for a bit commitment protocol to be both perfectly 

concealing and perfectly binding, it is possible for it to be both partially concealing 

and partially binding. Spekkens and Rudolph [33] and others [7] have explored the 

trade-offs between the degree of bindingness and concealment that can be achieved 

simultaneously in any bit commitment protocol. In the following section, we give a 

proof sketch that addresses the non-existence of “perfect” bit commitment schemes. 

We then briefly explore an“almost” perfectly concealing scheme. 

4.2.1 Impossibility of Quantum Bit Commitment 

Suppose Alice and Bob share two quantum registers as depicted in figure 4.23. Pure 

states of these two registers together are elements of the Hilbert space HA ⊗HB. We  

define the bases as HA : {|x) : x ∈ {0, 1}n} and HB : {|y) : y ∈ {0, 1}m}. A basis 

nfor HA ⊗HB is thus {|x)|y) : x ∈ {0, 1} , y  ∈ {0, 1}m}. Now Alice wishes to commit 

to a bit b ∈ {0, 1}. She creates the state |ψb) ∈ HA ⊗ HB and sends the second 

register to Bob. Can this bit commitment scheme be simultaneously concealing and 

binding? 

In order to show that it can not be, we consider the case where the commitment 

is perfectly concealing. That is where Bob can not distinguish between |ψ0) and 

|ψ1). If Bob decides to measure his register, the result is completely determined by 

trHA |ψb)(ψb|— that is by the partial trace achieved by tracing out register A. For the 

perfectly concealing case, the reduced density operators must be indistinguishable, 

and thus trHA |ψ0)(ψ0| = trHA |ψ1)(ψ1|. We now invoke the powerful technique of 
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Register A Register B 

n qubits m qubits 
HA HB 

Figure 4.23: Registers 

Schmidt Decomposition. With this technique if we have |ψb) ∈ HA ⊗HB , then it is 

k √possible to write |ψb) = ρj |μj )|νj ) where {|μ1), . . . , |μk}) and {|ν1), . . . , |νk})j=1 

are orthonormal sets and p1, . . . , pk ∈ {0, 1} with pj = 1. Because the reduced j 

density operators are indistinguishable, the Schmidt decompositions for Alice’s two 

possible commitments, |ψ0) and |ψ1), may be written [27, page 110] 

|ψ0) = αi|γi)|φi)
i 

|ψ1) = αiU(|γi))|φi), (4.154) 
i 

where U is a unitary operator acting on A alone. In other words we can that say 

there exists a unitary operator acting on HA such that 

(U ⊗ I)|ψ0) = |ψ1), (4.155) 

which means that Alice can change her commitment at will. Since Alice can change 

her commitment without affecting Bob’s register, we conclude that quantum bit 

commitment cannot be simultaneously concealing and binding. 

We offer a concrete example for the two qubit case to illustrate the above concept. 
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Alice prepares the two states 

1 1 |ψ0) = √ |0)|0) + √ |1)|1)
2 2

1 1 |ψ1)	 = √ |+)|0) + √ |−)|1). (4.156)
2 2

We also express these two states as the column vectors 

|ψ0) = √ (4.157)
 

1 −1 

She selects one of these two states and sends the second qubit to Bob. Now in order 

to convince ourselves that Bob can not distinguish which of these state his qubit 

represents, we will calculate the reduced density operator of |ψ0) and |ψ1) by tracing 

out the first qubit in each of the states of Equation 4.156. 

(4.158)
 

(4.159)
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concealing. However with U = H in Equation 4.155, we express the operator ⎤⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣
 

1 0  1  0  

0 1  0  1  

1 0  −1 0 

0 1  0  −1 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 
1
 

U ⊗ I = H ⊗ I = √
 (4.160)

2
 

Applying this operator to the state |0), we have 
  ⎤⎡⎤⎡ 
1 0 1 0  1
 ⎢⎢⎢⎢⎢⎢⎢⎣
 

0 1 0  1 
  

1 0  −1 0
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0
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1
 1
 √
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2
 2
 

0 1  0  −1 1
 ⎤
⎡
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

1
 

1
 

1
 

−1
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

1 = |ψ1). (4.161)=
 2 

Thus we can clearly see in this example that Alice is able to change her commitment 

at will without Bob being aware. 

So far we have considered the case where the protocol is perfectly concealing — 

that is where the two reduced density operators ρA 
0 = ρA 

1 . What happens if the 

protocol is “almost” perfectly concealing? We think of “almost” concealing as the 

probability of error (PE) of Bob guessing the state as being exponentially close to a 

half, which we write as   
 − PE 

  
≤ 2−αn . (4.162)1 

2 

In [7] and [25] it is shown that under these conditions, there exist purifications |ϕ0) 
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and |ϕ1) of the density operators ρA and ρA respectively that are very nearly the same 0 1 

state. Thus the square of the inner product between these states may be expressed 

(ϕ0|ϕ1)2 ≥ 1 − 2−αn . (4.163) 

We now show that Alice can “almost” perfectly cheat. If she wants to unveil b = 0,  

she maps |ϕ0) into |ψ0) and continues as if she has b = 0 in mind. Now if she wants 

to cheat and unveil b = 1, she executes on |ϕ0) the unitary transformation F that 

would map |ϕ1) into |ψ1). She obtains the state F |ϕ0). The square of the inner 

product between the desired state F |ϕ1) and the actual state F |ϕ0), is the same 

as given in Equation 4.163, which is exponentially close to 1. So, for all practical 

purposes, Alice can cheat as in the “perfect” case by applying this transformation 

F and then continuing as if she has b = 1 in mind. From this sketch, we conclude 

that quantum bit commitment is insecure. It is of interest to note that there is a 

trade-off between the degree of concealment of quantum bit commitment and how 

binding it is. 

Since quantum information does not permit unconditional bit commitment, we 

look to computationally strong bit commitment schemes. Next we present a per­

fectly binding and computationally concealing bit commitment scheme based on the 

quantum Goldreich-Levin theorem. 

4.3 Quantum Bit Commitment Based on G-L Theorem 

Here we are going to focus on bit-commitment using quantum one-way permutations 

and hard predicates derived using the G-L theorem. 
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4.3.1 Security of Quantum G-L Based Bit Commitment 

Our quantum version of the Goldreich-Levin Theorem is the following. 

n nTheorem 11 If f : {0, 1} → {0, 1} is quantumly (δ/2, T )-hard to invert then any 

quantum circuit that (δ, ε)-predicts h from g must have size Ω(Tε). 

Proof: As in the classical case, the proof is essentially a reduction from the 

problem of inverting f to the problem of (δ, ε)-predicting h. Let b = f(a) be an  

input instance—the goal is to determine a from b. We will show how to simulate 

EQ and IP queries in this setting and then apply the bounds in Theorem 8. It is 

easy to simulate an EQ query (relative to a) by making one call to f and checking 

if the result is b. Suppose that there exists a circuit G of size o(Tε) that (δ, ε)­

predicts h from f̃ . Thus, Pry[Prx[G(g(y, x)) = h(y, x)] ≥ 1 
2 + ε] ≥ δ. Note that, with
 

probability at least δ, a is ε-good, in the sense that Prx[G(g(a, x)) = h(a, x)] ≥ 1 
2 +ε.
 

When a is ε-good, computing G(f̃(a, x)) = G(b, x) is simulating an IP query for x 

(relative to a). It follows from Theorem 8 that a can be computed with circuit-size 

o((1/ε)(Tε)) = o(T ) with success probability at least δ/2 (where 1/2 is the success 

probability of the algorithm that finds a when a is ε-good and δ is the probability 

that a is ε-good to begin with). This contradicts the (δ/2, T )-hardness of inverting 

f , thus such a  G cannot exist. 

4.3.2 Protocol Based on Quantum G-L Theorem 

We begin by presenting a bit commitment protocol based on a quantum one-way per­

mutation (QOWP). We assume that both Bob and Alice have access to the QOWP 
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n nf : {0, 1} → {0, 1} . The protocol appears identical to the classical protocol pre­

sented in figure 4.22. In direct comparison to the classical case, here we again started 

with a lower bound of Ω(T ) for inverting the quantum one way permutation f , but 

now the dilution factor for breaking the hard predicate is only Ω(1/ε) compared 

to Ω(n/ε2) for the classical case. To get a feel for the relative difference between 

the best possible quantum and the best possible classical reductions, we offer the 

following example. Consider the case where T = n3 and ε = 1/n. If we start with a 

classical one-way function that requires a computational cost of Ω(n3) to invert and 

apply the Goldreich-Levin Theorem to construct a classical hard-predicate then the 

reduction implies only that the computational cost of predicting the predicate with 

probability 1
2 + 

n 
1 is lower bounded only by a constant. However, if we start with 

a quantum one-way function that requires a computational cost of Ω(n3) to invert  

and apply our quantum version of the G-L Theorem then the computational cost 

of predicting the predicate with probability 1
2 + 

n 
1 is lower bounded by Ω(n2). We 

A	 B® 	 ® 
1. |ψ) 

n2. a1, a2, x1, x2 ∈ {0, 1}
3. |ψ ' ) = Xh(a1,x1)Zh(a2,x2)|ψ)
4.	 b1 ← f(a1) and b2 ← f(a2)
 

|ψ ' ), b1, b2, x1, x2
5. Commitment 
a1, a26. De-commitment 

8. Verify b1 ← f(a1), b2 ← f(a2) 
9. Compute Zh(a2,x2)Xh(a1,x1)|ψ ' ) 

Figure 4.24: A qubit commitment protocol based on quantum G-L Theorem. 

note that a bit commitment scheme the same as discussed in Section 4.1.2 could be 
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modified to incorporate a quantum one-way function. All other aspects of the pro­

tocol would be the same, except that the dilution factor is now only Ω(1/ε). Finally, 

and perhaps of more interest, we explain how a qubit commitment scheme can be 

constructed. First the commitment phase of the protocol is analyzed followed by the 

de-commitment phase. Commitment proceeds as follows. 

1. Alice wishes to commit to the qubit |ψ). 

n2. Alice randomly chooses a1, a2, x1, x2 ∈ {0, 1} . 

3. Alice constructs the state |ψ ' ) = Xh(a1,x1)Zh(a2,x2)|ψ). 

4. Alice computes the one-way permutation twice: b1 ← f(a1) and b2 ← f(a2). 

5. Alice sends her commitment,which consists of (|ψ ' ), b1, b2, x1, x2) to Bob. 

Clearly, the scheme is perfectly binding. Intuitively, the scheme is computation-

ally concealing, because h(a1, x1) and h(a2, x2) “look random” to Bob. We give a 

rough sketch of why we can make this conclusion in the following. If Bob can use 

his information to efficiently distinguish between the qubit that he receives from 

Alice in the commitment stage and a totally mixed state (density matrix 1
2 I) then 

this procedure can be adapted to distinguish between the pair of bits r1 = h(a1, x1) 

and r2 = h(a2, x2) and a pair of truly random bits, which would violate the result 

proven in Theorem 11. A quantum circuit that (δ, ε)-predicts h from g must have size 

Ω(T/ε). We started with a lower bound of Ω(T ) for inverting the one way permuta­

tion f , but now we have a weaker lower bound — by a dilution factor of Ω(1/ε)— for 

breaking the hard predicate. We note that the commitment requires that one qubit 
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and O(n) bits be exchanged. The de-commitment proceeds when Alice decides it is 

time to reveal her bit. 

1. Alice sends a1, a2 to Bob. 

2. Bob checks if	 f(a1) =  b1 and f(a2) =  b2, rejecting if this is not the case. 

Otherwise, Bob accepts. 

3. If Bob is satisfied that Alice did not change her commitment (binding property 

of the protocol), he computes the qubit Alice committed to: Zh(a2,x2)Xh(a1,x1)|ψ ' ). 

The de-commitment phase requires that O(n) bits be exchanged. We note that in 

order to realize quantum bit and qubit protocols, we require a realizable quantum 

one-way function. 

4.4 Quantum One-way Functions and Permutations 

At the time of writing this thesis, little is known about quantum one-way functions 

and permutations. Other than to cite some references from the literature, further 

discussion is out of scope of this thesis. 

In their 2000 paper, titled Quantum Public-Key Cryptosystems [28] by Okamato, 

Tanaka and Uchiyama discuss some interesting candidates. 



Conclusion
 

We have proven tight bounds of the classical and quantum Goldreich-Levin (G-L) 

Problem to be Θ(n/ε2) and Θ(1/ε) respectively. We have also presented uncondi­

tionally binding and computationally concealing bit and qubit commitment proto­

cols based on hard predicates derived from the classical and quantum G-L Theorem. 

These protocols are dependent on the existence of classical and quantum one way 

permutations. Finally, we have shown that the difference between the classical and 

quantum bounds result in the quantum protocols having quantitatively better secu­

rity than the classical protocols. 

Although it appears that the door is closed and the story of the G-L Theorem 

is complete, this is not the case. We believe that if a simpler circuit relationship 

between A queries and IP  queries could be developed rather than what we have 

shown in Chapter 3, a more elegant proof of the quantum lower bound of both EQ 

and IP  queries could be determined. It would be of particular interest to see the 

quantum EQ lower bound proven without reference to the classical EQ lower bound. 

We also await any news on classical or quantum one way functions. 

In parting we note that the analysis of the upper bound of the classical G-L 

Problem is much more involved than the analysis of the upper bound of the quantum 

G-L Problem. It appears that the inner product of two strings is one of those global 

properties that is particularly suitable to solution using the equal superposition of 

quantum states, which allows us to avoid the complexity of the classical analysis. 
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