
THE UNIVERSITY OF CALGARY

The Classical and Quantum Complexity of the Goldreich-Levin Problem

with Applications to Bit Commitment

by

Mark R. A. Adcock

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF Master of Science

DEPARTMENT OF Computer Science

CALGARY, ALBERTA

January, 2004

c 2004
© Mark R. A. Adcock

The author of this thesis has granted the University of Calgary a non-exclusive

license to reproduce and distribute copies of this thesis to users of the University

of Calgary Archives.

Copyright remains with the author.

Theses and dissertations available in the University of Calgary Institutional

Repository are solely for the purpose of private study and research. They may

not be copied or reproduced, except as permitted by copyright laws, without

written authority of the copyright owner. Any commercial use or publication is

strictly prohibited.

The original Partial Copyright License attesting to these terms and signed by the

author of this thesis may be found in the original print version of the thesis, held

by the University of Calgary Archives.

The thesis approval page signed by the examining committee may also be found

in the original print version of the thesis held in the University of Calgary

Archives.

Please contact the University of Calgary Archives for further information,

E-mail: uarc@ucalgary.ca

Telephone: (403) 220-7271

Website: http://www.ucalgary.ca/archives/

http://www.ucalgary.ca/archives
mailto:uarc@ucalgary.ca

Abstract

The classical Goldreich-Levin (G-L) theorem is presented as a block-box query prob

lem, referred to herein as the G-L problem. The query complexity of this problem

is bounded in both classical and quantum settings. The well-known upper bound

of the classical G-L problem is analyzed in a pedagogical manner. A proof of the

lower bound of the classical G-L problem is given using the techniques of classical

information theory. This classical analysis is then extended to the realm of quantum

computing by noting the similarity of the noiseless G-L problem to the inner-product

query problem solved by the quantum circuit defined by Bernstein and Vazirani (B

V). An upper bound of the query complexity of the quantum G-L problem is proven

by extension of the B-V circuit to incorporate noisy inner-product queries. The lower

bound of the query complexity of the quantum G-L problem is proven by adapting

the proof of the optimality of the quantum search algorithm to include modified

inner-product queries.

Both the classical and quantum versions of the Goldreich-Levin theorem have

cryptographic applications in the area of bit commitment. A discussion of the im

possibility of unconditional quantum bit commitment is followed by the presentation

of both classical and quantum bit commitment protocols that are based on the as

sumption of the existence of classical and quantum one-way permutations. The

relative security of the classical and quantum protocols are compared where it is

shown that the quantum version is quantitatively more secure.

iii

Acknowledgements

Firstly I would like to give special thanks to my supervisor, Dr. R.E. Cleve, for

his advice and guidance during the preparation of this thesis. Secondly I would

like to express my gratitude to my employer, General Dynamics Canada, for their

support. Finally, I wish to thank my family Lynn, Katie, Keith and Stephen for

their perseverance through the many hours I have spent in study.

iv

Table of Contents

Approval Page ii

Abstract iii

Acknowledgements iv

Table of Contents v

Introduction 1

Chapter 1 Preliminaries 4

1.0 Introduction . 4

1.1 Classical Information Theory . 4

1.1.1 Entropy . 5

1.1.2 Complexity Theory . 12

1.2 Quantum Information Theory . 16

1.2.1 Quantum bits . 16

1.2.2 Quantum gates . 18

1.2.3 Quantum measurement . 22

1.2.4 Quantum computation . 24

1.3 Overview of Cryptography . 32

1.3.1 Cryptographic Algorithms and Protocols 32

1.3.2 Bit Commitment . 36

Chapter 2 Classical Goldreich-Levin Theorem 41

2.0 Introduction . 41

2.1 Upper Bounding the Classical G-L Problem 43

2.1.1 The Problem . 43

2.1.2 The High Advantage Case . 45

2.1.3 General Case . 51

2.1.4 Improvement to General Case 63

2.2 Lower Bounding the Classical G-L Problem 68

2.2.1 Lower Bounding the Number of EQ Queries 69

2.2.2 Lower Bounding the Number of IP Queries 83

v

88 Chapter 3 A Quantum Goldreich-Levin Theorem
3.0 Introduction . 88

3.1 The Bernstein-Vazirani Problem . 88

3.2 Upper-Bounding the Quantum Goldreich-Levin Theorem 91

3.3 Lower Bounding the Quantum Goldreich-Levin Theorem 96

3.3.1 Equivalence of EQ Queries to Oracle Marking Queries 97

3.3.2 Lower Bounding the Number of EQ Queries 98

3.3.3 Lower Bounding the Number of IP Queries 100

3.4 Summary of Query Complexity of the G-L Problem 105

Chapter 4 Cryptograhic Applications 107

4.0 Introduction . 107

4.1 Classical Bit Commitment based on G-L Theorem 108

4.1.1 Complexity of Classical Hard Predicates 109

4.1.2 Protocol based on Classical G-L Theorem 112

4.2 History of Quantum Bit Commitment 114

4.2.1 Impossibility of Quantum Bit Commitment 115

4.3 Quantum Bit Commitment Based on G-L Theorem 119

4.3.1 Security of Quantum G-L Based Bit Commitment 120

4.3.2 Protocol Based on Quantum G-L Theorem 120

4.4 Quantum One-way Functions and Permutations 123

Conclusion 124

Bibliography 125

vi

List of Tables

1.1	 Some functions and their bounds . 15

2.2	 Hadamard Code Words for the 2-bit case 69

2.3	 Hamming Distances, Δ1, to Noisy Code Word z1 = [0001] 71

2.4	 Hamming Distances, Δ2, to Noisy Code Word z2 = [0001 0001 0001 1110] 72

2.5	 The first few values of rk = (4k + 2k)/2 and sk = (4k − 2k)/2. 73

3.6	 Summary of the query complexity of the classical and quantum G-L

problems . 105

vii

List of Figures

1.1	 Plot of the binary entropy (solid line) and a quadratic approximation

given in Equation 1.3 (dashed line). 7

1.2	 Entropy Venn diagram showing relationship between joint entropy

H(X, Y), conditional entropy H(X|Y) and mutual information I(X :

Y). 8

1.3	 Single qubit logic gates . 19

1.4	 The CNOT Gate: an example two-qubit logic gate 21

1.5	 Quantum circuit implementing Deutsch’s Algorithm 25

1.6	 The action of the operator Γ is to reflect the state |ψ) about the state

|A) . 29

1.7	 The action of the operator (2|ψ)(ψ| − I) is to reflect the state Γ|ψ)

about the state |ψ) . 30

1.8	 A naive bit commitment protocol . 37

1.9	 A naive bit commitment protocol based on a one-way permutation . . 39

2.10 The Goldreich-Levin Query Problem 42

2.11 Binomial Distributions for a · ek = 0 and a · ek = 1. 48

2.12 The columns Δk

k and Δ
k

k represent vectors of Hamming distances be
tween the noisy codeword zk, its complement zk and the matrix of

Hadamard codewords Hk and its complement Hk. 78

2.13 The column Δk+1
k+1 represents the vector of Hamming distances between

the noisy codeword zk+1 and the matrix of Hadamard codewords Hk.

It is formed by summing and concatenating the columns Δk

k and Δ
k

k

formed in Figure 2.12. 79

3.14 The Bernstein-Vazirani Circuit . 89

3.15 Quantum circuit C. 94

3.16 Circuit implementation of cont-Oa|x)|b) 98

3.17 Circuit equivalent to UEQ|x)|b) constructed from a cont-Oa gate . . . 99

3.18 The maximum effect of the operator cont-A is represented in C as the √ √

distance between 1 and 1 − p + i p 102

3.19 Simulating an IP query using a cont-A query. The last qubit, when

measured, is biased towards a · x. . 104

4.20 Circuit for predicting h . 109

4.21 A contrived probability distribution εy showing the 2

ε -good region. . 111

4.22 A bit commitment protocol based on classical G-L Theorem 113

4.23 Registers . 116

viii

http:formedinFigure2.12

4.24 A qubit commitment protocol based on quantum G-L Theorem. . . . 121

ix

Introduction

The bulk of this thesis deals with various aspects of the Goldreich-Levin (G-L)

Theorem and its application to cryptography. The G-L Theorem is concerned with

the reduction from the computational problem of inverting a one-way function to the

problem of predicting a single bit—a so-called hard predicate—associated with that

function. The G-L Theorem is presented as a black-box query (or oracle) problem

that we refer to as the G-L problem. In our study of this problem, we have divided

the thesis into four chapters. The first chapter deals with preliminaries — that is the

background required to understand the mathematical and physical concepts inherent

in the proofs. Those readers with the appropriate background can skim or skip this

section in its entirety. We now provide a brief overview of each of the chapters.

In the first chapter, we begin with an overview of classical information theory,

specifically focusing on the tools used in the proofs of the query complexity of the

classical G-L problem. This includes a discussion of entropy and related quantities

as well as a discussion of basic asymptotic notation. In our study of the mathemat

ical theory of information, we realize that information must exist in some physical

sense — either as a symbol written on a piece of paper or the physical position of a

switch. The language of physics is used to describe the physical states inherent in

our information. Physics went through a revolution when the quantum theory was

proposed and later demonstrated to accurately describe the behaviour of things at

atomic scales. The mathematics of the quantum theory is much richer than its clas

sical counterpart, and we will see that quantum information is also correspondingly

richer than its classical counterpart. We follow our discussion of classical information

1

2

theory with a brief introduction to quantum information and computing that we will

use in our study of the query complexity of the quantum G-L problem. We conclude

Chapter 1 with a brief overview of cryptography with the main focus on the concept

of bit commitment, which motivates the need for a hard predicate and introduces the

G-L Theorem. Bit commitment is a useful application of the G-L Theorem whose

reduction provides a means for us to compare the relative security of classical and

quantum bit commitment schemes.

In Chapter 2, we focus on the classical G-L Theorem. We expand on Goldreich

and Levin’s original proof and provide a detailed analysis of the upper bound of

the query complexity of this problem. The query complexity of the G-L problem is

dependent on the advantage of the oracle. We speak of the noiseless G-L problem

when the advantage is such that the oracle always returns the correct answer. Our

study of the upper bound is followed by an analysis employing the techniques of

classical information theory to provide a lower bound.

In Chapter 3, we introduce the quantum circuit used by Bernstein and Vazirani

(B-V) to solve the inner product (IP) query problem. We show how the solution given

by this circuit solves a problem that is equivalent to the noiseless G-L problem. We

then capitalize on this recognition to extend the B-V circuit’s applicability to noisy

IP queries whose probabilistic response relates to the classical theorem in a natural

way. We use this circuit to derive an upper bound of the query complexity of the

quantum G-L problem. We then adapt the proof of the optimality of the quantum

search algorithm to include modified inner-product queries in order to lower bound

the quantum G-L problem.

The final chapter focuses on applications of the classical and quantum G-L The

3

orems in the area of bit commitment. The concept of a quantum one way permu

tation is introduced. This is in turn used to develop protocols for both bit and

qubit-commitment schemes. The relative security of these quantum protocols are

compared to the equivalent classical protocols.

Chapter 1 Preliminaries

1.0 Introduction

The material presented in later chapters of this thesis requires some understand

ing of classical information theory, complexity theory, quantum information theory

and cryptography. The purpose of this chapter is to present an overview of these

large bodies of knowledge with a focus on the key concepts employed in the proofs

presented herein. The chapter begins with an introduction into the mathematical

foundation of information theory, where we focus on various aspects of Shannon en

tropy. This is followed by a brief introduction into the key concepts of quantum

computing where we introduce the definition of the qubit and the quantum circuit

representation of quantum algorithms. This framework is then expanded upon to in

clude some examples of quantum algorithms that find application later in the thesis.

The chapter concludes with a brief overview of the science of cryptography in which

we pay particular attention to the concept of bit commitment. The conflicting needs

of effective bit commitment provides motivation for the G-L Theorem.

1.1 Classical Information Theory

Information theory, as a distinct branch of mathematics, began in 1948 when Claude

Shannon published his landmark paper “A Mathematical Theory of Communication”

[30]. In this section, we discuss the major concepts of what we will refer to as classical

information theory as distinguished from quantum information theory.

4

5

1.1.1 Entropy

We begin by introducing the concept of Shannon entropy. We follow this with

definitions of conditional entropy and mutual information. We give examples of

specific calculations for clarity and, in some cases, perform some of the calculations

that are applied later on in the thesis.

The Shannon entropy of a random variable, X, is a measure of the average

uncertainty of the random variable. Alternatively it can be viewed as the amount of

information gained, on average, when we learn the value of X. The Shannon entropy

is written as a function of the probability distribution of X, p1, . . . , pn, as

H(X) ≡ H(p1, . . . , pn) ≡ − px log px. (1.1)

x

Note that in this definition the logarithm indicated by ‘log’ is taken to the base

2. We will use this convention throughout this thesis, while ‘ln’ indicates a natural

logarithm. There are other definitions of entropy such as minimum entropy and

maximum entropy defined in the literature, but we drop all adjectives and refer to

Shannon entropy simply as entropy for the remainder of this thesis.

It is instructive to specifically look at the entropy of a two-outcome random

variable

H(p) ≡ −p log p− (1 − p) log(1 − p), (1.2)

where p and 1−p are the probabilities of the two possible outcomes. This is sometimes

referred to as the binary entropy. The graph of the function H(p) is shown in Figure

1.1. The figure illustrates some of the basic properties of entropy — it equals 0 when

p = 0 or p = 1 and it takes on its maximum value of 1 when p = 1
2 . Intuitively, this

makes sense since when p = 0 or p = 1 there is no uncertainty, and the uncertainty

6

=
is maximum when p
 1
2 .
 For purposes later on in the thesis, we now derive an

1 1
2 − ε, and
 expression for H(p) when p is just slightly less than
 Thus we set p =
.
2

the binary entropy is expressed as

1
2 − ε) log(
1

2 − ε) − (
1
2 + ε) log(
1

2H(p) = −(
 + ε)

1
 2
 2

1 1− ε
 ln
 ln
+
 + ε
=
 2 2ln 2
 1 − 2ε
 1 + 2ε

1

1 1(ln 2 − ln (1 − 2ε)) +
 + ε (ln 2 − ln (1 + 2ε))
− ε
=
ln 2 2 2

1

1 1(ln 2 + 2ε) +
 + ε (ln 2 − 2ε)
≥
 − ε
2 2ln 2

4
ε2= 1 −
 . (1.3)

ln 2

Here we have used the relationship ±x ≥ ln(1 ± x) to create a quadratic bound in

ε for this entropy. For comparison with H(p), this bound is also plotted in Figure

1.1. Before moving on to the entropy of more than just a single random variable,

it is interesting to write down the entropy of a random variable that has a uniform

distribution over 2n outcomes. The entropy of such a random variable is

2n 2n

1 1
H(X) = − pi log pi = − log = log 2n = n. (1.4)

2n 2n
i=1 i=1

It is stated, but not proven, that the number of bits used to describe the random

variable is the maximum value that H(X) can take. It is left to the reader to prove

that this always occurs when the random variable is uniformly distributed.

So far we have defined the entropy of a single random variable. The joint entropy

is a measure of the uncertainty of a bivariate distribution. It is defined as

H(X, Y) = − p(x, y) log p(x, y). (1.5)
y x

7

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

p

Figure 1.1: Plot of the binary entropy (solid line) and a quadratic approximation
given in Equation 1.3 (dashed line).

The conditional entropy of a random variable given another random variable is the

expected value of the entropies of the conditional probability distributions averaged

over the conditioning random variable. It is defined as follows

H(Y |X) = p(x)H (Y |X = x) . (1.6)
x

A very useful quantity is the mutual information content of X and Y , which is a

measure of how much information X and Y have in common. If we add the informa

tion content of X, which is H(X), to the information content of Y , information that

H
(p

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

8

is common to both will have been counted twice in the sum. Subtracting the joint

information of (X, Y), which is H(X, Y), we obtain an expression for the mutual

information of X and Y as

I(X : Y) = H(X) + H(Y) − H(X, Y). (1.7)

Introducing the definition of conditional entropy given in Equation 1.6, Equation 1.7

is commonly rewritten as

I(X : Y) = H(X) − H(X|Y). (1.8)

H(X) H(Y)

H(Y|X)H(X|Y) H(X,Y)

I(X:Y)

Figure 1.2: Entropy Venn diagram showing relationship between joint entropy
H(X, Y), conditional entropy H(X|Y) and mutual information I(X : Y).

9

These various entropy definitions are most easily remembered when they are

expressed in the Venn diagram presented in Figure 1.2. We note the symmetry of

the mutual information in its arguments and use this to write down

H(X) − H(X|Y) = H(Y) − H(Y |X). (1.9)

This property is useful in defining a chain rule for entropy. We write down the

definition without proof (see [13, page 22] for a clear one):

n

H(X1, X2, . . . , Xn) = H(Xi|Xi−1, . . . , X1). (1.10)
i=1

In Chapter 2 in our proof of the classical lower bound of the G-L Theorem, we need

to develop an expression for how information about an unknown random variable is

revealed by a succession of random variables that are the result of “noisy” responses

to oracle queries. Equation 1.10 forms the basis for the desired expression. We first

explore the simple case where n = 3, and in keeping with notation we use in Chapter

2, we relabel the random variables used in Equation 1.10 and write

H(A, Y1, Y2) = H(A) + H(Y1|A) + H(Y2|Y1, A)

= H(Y1) + H(Y2|Y1) + H(A|Y1, Y2).

Solving this expression for H(A|Y1, Y2), we have

H(A|Y1, Y2) = H(A) + H(Y1|A) + H(Y2|Y1, A) − H(Y1) − H(Y2|Y1)
2

= H(A) + (H(Yi|A, Yi−1) − H(Yi|Yi−1)) . (1.11)
i=1

In the last equality in Equation 1.11, we assume that H(Y1|Y0) = H(Y1) and

H(Y1|A, Y0) = H(Y1|A). The quantity H(A|Y1, Y2) is interpreted as the amount

� �� � � �� �

10

of information we have about the random variable A given the information about

the random variables Y1 and Y2, which are the result of making m = 2 queries to our

“noisy” oracle. We readily extend Equation 1.11 to the general case where we make

m queries

m

(A|Y1, Y2, . . . , Ym) = H(A) + (H(Yi|A, Y1, . . . , Yi−1) − H(Yi|Y1, . . . , Yi−1)) .
i=1

(1.12)

We will make use of Equation1.12 in Chapter 2 where we wish to bound the number

of queries we have to make to the “noisy” oracle to determine the unknown random

variable A with reasonable probability.

We conclude this discussion of some of the properties of entropy by considering the

entropy of a bi-level probability distribution where 2n/2 elements of {0, 1}n each have

probability δ/2n/2 and 2n − 2n/2 elements each have probability (1 − δ)/(2n − 2n/2).

The entropy of this distribution is

δ δ 1−δ 1−δ= H 2n/2 , . . . , , 2n−2n/2 , . . . ,Hbi-level 2n/2 2n−2n/2

2n/2 2n−2n/2

2n/2 2n

δ δ 1 − δ 1 − δ
= − log − log

2n/2 2n/2 2n − 2n/2 2n − 2n/2
i=1 i=2n−2n/2

δ 1 − δ
= −δ log − (1 − δ) log

2n/2 2n − 2n/2

= −δ log δ + δ log(2n/2) − (1 − δ) log(1 − δ) + (1 − δ) log(2n − 2n/2)

= H(δ) + δ log(2n/2) + (1 − δ) log(2n − 2n/2). (1.13)

The entropy of an arbitrary distribution having 2n/2 elements with probability pi

http:Equation1.12

 � �� � � �� �

 � �� � � �� � � �� � � �� �

11

and 2n − 2n/2 elements with probability qi is written

2n/2 2n−2n/2

H p1, . . . , p2n/2 , q1, . . . , q2n−2n/2 = − pi log pi − qi log qi. (1.14)
i=1 i=1

2n/2 2n−2n/2

We have already mentioned that in Chapter 2 we bound the number of queries we

need to make to a “noisy” oracle in order to determine the value of an unknown

random variable. To assist in establishing this bound, we show that the entropy

of the bi-level distribution given in Equation 1.13 upper bounds the entropy of any
distribution with i pi = δ. It is of interest to note that this generalizes the spirit

of Equation 1.4, where we have H(X) ≤ H(uniform) = n. We thus make the claim

that the entropy of the arbitrary distribution given by Equation 1.14 is at most equal

to the entropy of the bi-level distribution. We prove the claim as follows:

δ δ 1−δ 1−δH 2n/2 , . . . , 2n/2 , 2n−2n/2 , . . . , 2n−2n/2 −H p1, . . . , p2n/2 , q1, . . . , q2n−2n/2

2n/2 2n−2n/2 2n/2 2n−2n/2

2n/2 2n

δ δ 1 − δ 1 − δ
= − log − log

2n/2 2n/2 2n − 2n/2 2n − 2n/2
i=1 i=2n−2n/2

2n/2 2n−2n/2

+ pi log pi + qi log qi
i=1 i=1

2n/2 2n−2n/2

δ 1 − δ
= − pi log − qi log

2n/2pi (2n − 2n/2)qii=1 i=1

2n/2 2n−2n/2

δ 1 − δ ≥ − pi 1 − − qi 1 −
2n/2pi (2n − 2n/2)qii=1 i=1

2n/2 2n/2 2n−2n/2 2n−2n/2

δ 1 − δ
= pi − + qi −2n/2 2n − 2n/2

i=1 i=1 i=1 i=1

= 0. (1.15)

We will now discuss some of the terminology of complexity theory that will be used

12

later in the thesis.

1.1.2 Complexity Theory

Complexity theory provides a methodology for analyzing the computational com

plexity of different computational problems. A computational problem’s complexity

is determined by the computational power needed to solve it. Computational com

plexity is often measured by two variables: T (for time complexity) and S (for space

complexity, or memory requirements). Both T and S are commonly parameterized

as functions of n, where n is the size of the input. In this thesis, we wish to bound

the number of oracle queries required to solve the G-L problem. We are particularly

interested in determining upper and lower bounds on the G-L query problem that are

asymptotically tight. The bounds will “cap” the number of oracle queries we need to

make and will be parameterized as a function of n, the number of bits in an unknown

string. We will use the O (‘big O’) notation to set asymptotically tight upper bounds

on the number of queries that a particular algorithm must make to determine the

value of the string. We then use the Ω (‘big Ω’) notation to set asymptotically tight

lower bounds on the number of queries that any algorithm must make to determine

the value of the string. Also, in several definitions used later in the thesis, we make

use of bounds that are not asymptotically tight. For these, we use the o (‘little o’)

notation for non-asymptotically tight upper bounds and the ω (‘little ω’) notation for

non-asymptotically tight lower bounds. We now provide definitions of each of these

bounds along the lines given in [10] and [32], and for the purpose of cross reference,

provide some examples.

The big O notation is particularly useful for studying the worst-case behaviour of

13

a specific algorithm. In this notation we only care about the term of the complexity

function that grows the fastest. For example, if the time complexity of a given

algorithm is 40n4 + 30n2 + 20 log2 n + 10, then the computational complexity is on

the order of n4 which is expressed O(n4). We formalize this notion in the following

definition.

Definition 1 An asymptotic upper bound of a function f(n) is g(n) and is written

f(n) = O(g(n)) provided the following conditions are met:

1. f and g are two functions f, g : N → R.

2. positive integers c and n0 exist so that for every integer n ≥ n0, f(n) ≤ cg(n).

We say that g(n) is an asymptotic upper bound for f(n), to emphasize that we are

suppressing constant factors. Intuitively, f(n) = O(g(n)) means that f is less than

or equal to g if we disregard differences up to constant factor.

When studying the behaviour of a class of algorithms, we wish to set lower bounds

on the resources required by any member of that class. We use the Ω notation for

this purpose. A formal definition of Ω notation is written along the lines of Definition

1.

Definition 2 An asymptotic lower bound of a function f(n) is g(n) and is written

f(n) = Ω(g(n)) provided the following conditions are met:

1. f and g are two functions f, g : N → R.

2. positive integers c and n0 exist so that for every integer n ≥ n0, f(n) ≥ cg(n).

In Chapters 2 and 3 of this thesis we will be comparing both upper and lower

bounds of classical and quantum algorithms designed to to solve the G-L query

14

problem. It is interesting to note that while determining an upper bound requires

just a specific algorithm be created and analyzed, determining a lower bound is

usually more involved. This difficulty arises because the lower bound is often the

result of some inherent constraint on the problem at hand that must be studied

outside of the context of any particular algorithm. Once a lower bound has been

proven for a given class of algorithms, no algorithm of that class can do better. Of

course, an algorithm of a different class can do better as we will show when we

provide lower bounds to both the classical and quantum G-L problem. Tools used

to determine lower bounds include those of information theory. We now wish to

introduce the concept of a tight bound. The bound on some problem A is said to be

tight if A is both O(f(n)) and Ω(f(n)). In this case we say that A = Θ (f(n)). We

now give definitions on non-asymptotic upper and lower bounds.

Another type of upper bound is one that is not asymptotically tight for which

we use the o-notation.

Definition 3 A non-asymptotic upper bound of a function f(n) is g(n) and is written

f(n) = o(g(n)) provided the following conditions are met:

1. f and g are two functions f, g : N → R.

2. for any c > 0, there exists some n0 > 0 such that for all n ≥ n0, f(n) < cg(n).

The statement f(n) = o(g(n)) means f(n) is “less than” any constant multiple of

g(n) for “big” values of n. We can thus think of f(n) as “eventually” being trapped

below all constant multiples of g(n). The definitions of O-notation and o-notation

are similar, but in o-notation the f(n) < cg(n) holds for all constants c > 0. Perhaps

the difference between the notations is most strikingly captured in the following. If

15

f (n)f(n) = O(g(n)), then assuming such a limit exists, limn→∞ g(n) = c; whereas if

f (n)f(n) = o(g(n)), then assuming such a limit exists, limn→∞ g(n) = 0. In our final

definition of this section, we define the non-asymptotically tight lower bound.

Definition 4 A non-asymptotic lower bound of a function f(n) is g(n) and is written

f(n) = ω(g(n)) provided the following conditions are met:

1. f and g are two functions f, g : N → R.

2. for all c > 0, there exists some n0 > 0 such that for all n ≥ n0, f(n) > cg(n).

The statement f(n) = ω(g(n)) means f(n) is “greater than” any constant multiple

of g(n) when we ignore “small” values of n. We can thus think of f(n) as “even

tually” being trapped above any constant multiple of g(n). Again, the definitions

of Ω-notation and ω-notation are similar, and we capture the difference between the

notations most strikingly in the following. If f(n) = Ω(g(n)), then assuming such
f (n)a limit exists, limn→∞ g(n) = c; whereas if f(n) = ω(g(n)), then assuming such a

limit exists, limn→∞
f
g(
(
n
n
)
) = ∞.

f(n) Notation
3n3

3n3

n100

nlog log n

nn

= O(n3)
 = o(n3)
= nO(1)

= nω(1)

= nω(n)

Table 1.1: Some functions and their bounds

We shall use these bounds frequently throughout the thesis. In Table 1.1, we

give some examples of functions and their membership or not in these sets. We now

give in introduction to the aspects of quantum information theory that we will be

making use of later in the thesis.

16

1.2 Quantum Information Theory

In order to study information in a quantum setting we need to expand several classical

concepts into the quantum domain. In this section, we firstly expand our concept

of a classical bit and introduce the concept of a quantum bit, which is termed a

qubit. We introduce the idea of a quantum circuit as an analogy to a classical

computer algorithm. Finally as preparation for proofs that will appear in Chapter

3, we introduce a simple quantum circuit in the study of Deutsch’s algorithm and

also study the slightly more involved Grover’s algorithm.

1.2.1 Quantum bits

What is a qubit? Just as a classical bit has a state, which can be either 0 or 1, a

qubit has two possible basis states |0) or |1). Here we are using the Dirac notation

to describe a quantum mechanical state where the symbol ‘|)’ is termed a ket - the

right syllable of bracket. The fundamental difference between bits and qubits is that

qubits can be in a state other than |0) or |1). It is possible to form superpositions

of states:

|ψ) = α|0)+ β|1). (1.16)

The numbers α and β are complex numbers subject to the constraint that |α|2+|β|2 =

1. Thus we can think of a qubit as a vector in a two-dimensional complex vector

space. The special states |0) and |1) are known as the computational basis states,

and form an orthonormal basis for this vector space. When it comes to measuring a

qubit, we get the result 0 with probability |α|2 and the result 1 with probability |β|2 .

It is remarkable that we can not examine a qubit to determine its quantum state,

17

but nonetheless we can achieve powerful results with qubits.

Before going into how we can manipulate qubits, we wish to describe them in the

langauge of linear algebra. The basis kets are written as the following two column

vectors ⎤⎡⎤⎡

1 0
 |0) =
 ⎥⎦

⎢⎣

0

;
 |1) =
 ⎥⎦

⎢⎣
 .
 (1.17)

1

Like a two-bit system, a two-qubit system has four possible basis states, which are

written as follows ⎤⎡⎤⎡⎤⎡⎤⎡
1 0 0 0

|00) =

⎢⎢⎢⎢⎢⎢⎢⎣

0

0

⎥⎥⎥⎥⎥⎥⎥⎦

; |01) =

⎢⎢⎢⎢⎢⎢⎢⎣

1

0

⎥⎥⎥⎥⎥⎥⎥⎦

; |10) =

⎢⎢⎢⎢⎢⎢⎢⎣

0

1

⎥⎥⎥⎥⎥⎥⎥⎦

; |11) =

⎢⎢⎢⎢⎢⎢⎢⎣

0

0

⎥⎥⎥⎥⎥⎥⎥⎦

. (1.18)

0 0 0 1

These basis vectors are often expressed using the outer or Kronecker product notation

⊗2|00) = |0) ⊗ |0) = |0)
 ⎤⎡⎤⎡
1 × 1 1
 ⎢⎢⎢⎢⎢⎢⎢⎣

1 × 0

0 × 1

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎣

0

0

⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎡⎤⎡

1 1
 ⎥⎦

⎢⎣
 ⊗
 ⎥⎦

⎢⎣
 (1.19)
=
 =
 .

0 0

0 × 0 0

This notation is extended to define an n-qubit state, e.g. ⎤
⎡

|00 . . . 0) = |0)⊗n =

⎢⎢⎢⎢⎢⎢⎢⎣

1

0

. ..

0

⎥⎥⎥⎥⎥⎥⎥⎦

.
 (1.20)

18

We now move on to define the quantum gates, which are used to manipulate qubits

in order to compute with them.

1.2.2 Quantum gates

A classical computer is built around logic gates ; in an analogous manner, a quantum

computer is built from a quantum circuit, which contains elementary quantum gates.

In this section, we introduce single and multiple qubit quantum gates. We state

that a universal set of quantum gates can be constructed from some basic single and

double qubit gates.

In a classical computer the non-trivial single bit logic gate is the NOT gate, whose

operation is defined by its truth table. The 0 and 1 states are interchanged by this

operation, in which 0 → 1 and 1→ 0. The analogous quantum NOT gate for a qubit

acts linearly on a single qubit state

α|0) + β|1) (1.21)→ α|1) + β|0).

It is convenient to represent this quantum NOT gate, conventionally written X, as

the two-by-two matrix
 ⎤
⎡

0 1

X =
 ⎥⎦

⎢⎣
 .
 (1.22)

1 0

As it turns out, all quantum gates acting on a single qubit can be described by

unitary two-by-two matrices. Recall that the matrix U is unitary if U †U = I, where

U † is the complex conjugate transpose of U . There are many non-trivial single qubit

19

gates. One of the most important in quantum computation is the Hadamard gate,
 ⎤⎡

1

H = √

1 1
 ⎥⎦⎢⎣ .
 (1.23)

2
 1 −1

This gate takes either of the computational basis states into an equal superposition

of these states. The effect of the two-qubit gates, X and H is illustrated in Figure

1.3. Before moving on to discuss two qubit gates, we develop an expression for the

α|0) + β|1) β|0) + α|1)
 X

|0)+|1) |0)−|1)
α|0) + β|1) α √ + β √

2 2
 H

Figure 1.3: Single qubit logic gates

effect of n Hadamard gates operating on an n qubit state. Recall that we used the

Kronecker product to express the two qubit basis states. If we wished to operate on

each of the two component qubits, we would analogously express the four-by-four

Hadamard matrix as ⎤⎡

1
H⊗2 = H ⊗ H =

2

⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎥⎥⎥⎥⎥⎥⎥⎦

.
 (1.24)

20

Of course we could extend this notation to n qubit states, but the effect of this

Hadamard on a given input state can be much more succinctly expressed. To see

how to proceed, we firstly explicitly write out the result for the n = 2 case:

H⊗2|00) = 1 (|00)+ |01)+ |10)+ |11))2

H⊗2|01) = 1 (|00) − |01)+ |10) − |11))2

H⊗2|10) = 1 (|00)+ |01) − |10) − |11))2

H⊗2|11) = 1 (|00) − |01) − |10)+ |11)). (1.25)2

There is an interesting pattern in how the plus and minus symbols are distributed

in these four equations. We can capture this relationship by looking at the inner

product of the input and output states. Defining z ∈ {0, 1}2 as the input states and

x ∈ {0, 1}2 as the output states, we express the inner product between the two states

as

(1) (1) ⊕ z(2) (2)z · x = z x x . (1.26)

Here z(i) is the ith bit of the state |z) and the resulting inner product is a single bit.

With this definition of the inner product we can rewrite the four equations 1.25 in

the following nicely compact form

1
H⊗2|z) = (−1)z·x|x). (1.27)

2
x∈{0,1}2

The reader can readily verify the correctness of this expression. It is particularly

satisfying how readily this representation extends to the n-qubit case:

1
H⊗n|z) = √ (−1)z·x|x). (1.28)

2n
x∈{0,1}n

21

In designing quantum circuits to solve particular problems, it is often the case that

the qubit registers are prepared in the n-qubit state |00 . . . 0), and this state is then

operated on by n Hadamard gates to produce an equal superposition of the 2n basis

states. Equation 1.28 with |z) = |00 . . . 0) thus appears often in the analysis of

quantum circuits. The final component required to make a useful quantum circuit

are the multiple qubit gates.

|A) _ |A)
Control

|B) _ |B ⊕ A)
Target

Figure 1.4: The CNOT Gate: an example two-qubit logic gate

The prototypical multiple qubit gate is the two qubit gate termed the controlled-

NOT (CNOT) gate. Figure 1.4 is the standard quantum circuit representation of

this gate. The upper qubit is referred to as the control qubit while the lower qubit

is referred to as the target qubit. The effect of this gate is to flip the target qubit

when the control qubit is 1. This effect is expressed in the following equations.

|00) → |00); |01) → |01); |10) → |11); |11) → |10).

22

The CNOT has the following matrix representation ⎤⎡

CNOT =

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎥⎥⎥⎥⎥⎥⎥⎦

.
 (1.29)

Before moving on to discuss the use of these elementary quantum gates in quantum

circuits, we introduce the semantics of quantum measurement.

1.2.3 Quantum measurement

It is postulated that closed quantum systems evolve according to unitary evolution.

However, when a measurement is made this simple picture breaks down. To explain

what happens, we give a very brief description of the effects of measurement on a

quantum system. See [27, Pages 84-90] for a more complete discussion.

We begin by defining the measurement operator Mm, where the the index m ∈

{0, 1}n refers to the measurement outcomes that may occur in an experiment in

volving an n-qubit system. The measurement operators satisfy the completeness

equation,

M † Mm = I. (1.30)m

m

If the state of a quantum system is |ψ) before a measurement is made, then the

probability that the result m occurs is

Pr[m] = (ψ|M † Mm|ψ), (1.31)m

23

and the state of the system after the measurement is

Mm|ψ)
. (1.32)

mMm
†

(ψ|M
 |ψ)

These two equations are understood by an example. Consider the measurement of a

qubit in the computational basis. This is a measurement on a single qubit with two

outcomes, which are defined by the two measurement operators ⎤
⎡

1 0
 ⎥⎦

⎢⎣
M0 = |0)(0| = ,

0 0

and
 ⎤
⎡

0 0
 ⎥⎦

⎢⎣
M1 = |1)(1| = .

0 1

0 + M1M
†

we would expect is required to completely describe the system. Continuing with our

example suppose the state being measured is |ψ) = α|0) + β|1), then the probability

of measuring outcome 0 is

Pr[m = 0] = (ψ|M0|ψ) = |α|2 . (1.33)

Similarly Pr[m = 1] = |β|2 . The state after measurement in the two cases is thus

M0|ψ) α
= |0) = |0)|α| |α|

M1|ψ) β
= |1) = |1), (1.34)|β| |β|

where we have ignored the global phase factors α/|α| and β/|β|. We see from this

simple example that the measurement operator as formulated in Equation 1.31 and

Equation 1.32 provides a consistent means for quantum measurement. The subject

†Note that M0M I, which means that the probabilities sum to one as
 =
 1

24

of measurement of quantum systems is much richer, and the interested reader is

directed to the referenced literature.

1.2.4 Quantum computation

An excellent example of a simple quantum circuit that shows the power of the quan

tum computer over the classical computer is known as Deutsch’s Algorithm [16].

The Bernstein-Vazarani Algorithm, which appears later on in the thesis, is similar

to this algorithm. Deutsch’s Algorithm determines a certain global property of an

unknown single-bit function f : {0, 1} → {0, 1}. The property of interest is whether

or not f is balanced or constant. On a single bit input, which can be either 0 or 1,

there are four possible outputs that any function can have. We can characterize the

four possible function categories as follows: ⎧ ⎪⎨

⎧ ⎪⎨

⎧ ⎪⎨

⎧ ⎪⎨
f(0) = 0
 f(0) = 0
 f(0) = 1
 f(0) = 1

f00 : ; f01 : ; f10 : ; f11 : .
 ⎪⎩
 f(1) = 0
 ⎪⎩
 f(1) = 1
 ⎪⎩
 f(1) = 0
 ⎪⎩
 f(1) = 1

Note that f00 and f11 are said to be constant functions while f01 and f10 are said to

be balanced functions for obvious reasons. The problem of determining whether f

is balanced or constant is termed a black-box or oracle problem. In these types of

problems, we are presented with a black box that computes f for us without revealing

f . If we had only classical information, two queries to the oracle are required to

determine if f is balanced or not. The remarkable feat that Deutsch’s Algorithm

accomplishes is that it can determine if the function is balanced or constant in just

one application of the black box. We present the circuit in Figure 1.5 where we have

marked the four states of interest. The effect of the box marked f in Figure 1.5 is

to modulo-two sum f(upper qubit) onto the lower qubit. This action can also be

25

represented by the operator Uf |x)|y) = |x)|y ⊕ f(x)). Since f : {0, 1} → {0, 1}, the

matrix representation of Uf is a permutation matrix, which is always unitary. We

now proceed with a step-by-step analysis of these states.

|0)

|1)
|Ψ

fH H

_H

0) |Ψ1) |Ψ2) |Ψ3)

Figure 1.5: Quantum circuit implementing Deutsch’s Algorithm

We begin by noting the input state is,

|Ψ0) = |0) ⊗ |1) = |01).

Note that we will suppress the Kronecker operator at times for convenience. Appli

cation of the Hadamard gates leaves us with the superposition

(|0)+ |1)) (|0) − |1))|Ψ1) = √ ⊗ √
2 2

= 1 [|0)(|0) − |1)) + |1)(|0) − |1))] .2

The next step is the core of the algorithm — the application of the black box Uf .

This unitary operator acts in a similar manner to that depicted in Figure 1.4. That

26

is the value of f is modulo-two summed with the bottom qubit as follows

|Ψ2) = 1 [|0)(|0 ⊕ f(0)) − |1 ⊕ f(0))) + |1)(|0 ⊕ f(1)) − |1 ⊕ f(1)))]2

= 1 (−1)f(0)|0)(|0) − |1)) + (−1)f (1)|1)(|0) − |1))2

1 1
= √ (−1)f(0)|0)+ (−1)f(1)|1) √ (|0) − |1)). (1.35)

2 2

Before applying the final Hadamard transformation, we note that Equation 1.35 has

two distinct outcomes corresponding to the constant case, where f(0) = f(1), and

the balanced case, where f(0) = f(1). We thus rewrite Equation 1.35 ⎧ ⎪⎨

1(0 1)|) − |) ⊗ √

± 1

2 2

√

1±√

1(0 1)+|) |) ⊗ √
2 2

(|0) − |1)) if f is constant

(|0) − |1)) if f is balanced.

|Ψ2) = ⎪⎩

The final Hadamard application reveals that the balanced and constant cases result

in different states of the upper qubit since

10±|) ⊗ ⎪ √⎩
⎧ ⎪⎨

2

±|1) ⊗ 1

√ (|0) − |1)) if f is constant
 |Ψ3) =
(|0) − |1)) if f is balanced.

2

We see that a single application of the circuit and a measurement of the upper qubit

reveals whether f is constant or balanced. This is quite remarkable when compared

to the classical case where two queries are required. Deutsch’s problem is generalized

to the n-bit case in the what is known as the Deutsch-Jozsa [17] problem. In the

n-bit classical case, we need to make 2n−1 + 1 queries (worst-case) whereas only

one query suffices for the quantum case using the Deutsch-Jozsa algorithm. The

Deutsch, Deutsch-Jozsa, Bernstein-Vazarani algorithms, along with Shor’s famous

factoring algorithm [31] are all applications of the quantum Fourier transform [27,

page 37]. Another interesting type of quantum algorithm is known as Grover’s search

algorithm.

27

We will use Grover’s algorithm [22], also called the quantum search algorithm,

in our proof of the quantum version of the Goldreich-Levin theorem in Chapter

3. We give an introduction to the algorithm here. If there are N = 2n different

elements in a list and we are required to search the list for a particular element,

on a classical computer Ω(N) operations are required to find the element. Grover’s
√

algorithm provides significant speed up requiring only O(N) operations to find the

element. In Chapter 3 we will show that this bound is in fact optimal. We now

describe Grover’s algorithm and provide an outline of a proof of an upper bound of

the algorithm.

In Grover’s algorithm, we are given an oracle Γ with f : {1, 2, . . . , N} → {0, 1}
defined as

Γ|x)|q) → |x)|q ⊕ f(x)), (1.36)

where x is the index list register and the oracle qubit |q) is flipped if f(x) = 1.

By definition f(x) = 1 if x is a solution to the search problem. Just as we did in
√

Deutsch’s algorithm if we set the oracle qubit initially in the state (|0) − |1))/ 2,

we can express the oracle more succinctly as

|0) − |1) Γ |0) − |1)|x) √ → (−1)f (x)|x) √
2 2

Γ|x) → (−1)f (x)|x). (1.37)

In order to simplify the description, in the last step of the preceding we have adopted

the convention of omitting the state of the oracle qubit because it remains unchanged.

The oracle is said to mark the solutions to the search problem by shifting the phase

of the solution. Grover’s search algorithm involves the repeated application of the

operator Γ and a second operator that we will now define.

28

The second operator involves the application of a conditional phase shift operator

with every computational basis state except |0) receiving a phase shift of −1. This

operator may be written CP hase = 2|0)(0| − I. For clarity, we derive the matrix

representation of this operator for the n = 2 case as

CP hase = 2|00)(00| − I
1 1 0 0 0 1 0 0 0

⎤⎡ ⎤⎡⎤⎡

= 2

⎢⎢⎢⎢⎢⎢⎢⎣

0

0

⎥⎥⎥⎥⎥⎥⎥⎦

1 0 0 0 −

⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

0 0 −1 0

⎥⎥⎥⎥⎥⎥⎥⎦

.

0 0 0 0 1 0 0 0 −1

If we apply Hadamard operators to both the left and right sides of CP hase, we can

define

H⊗n(2|0)(0| − I)H⊗n = 2|ψ)(ψ| − I, (1.38)

where the state |ψ) = √1
2n x∈{0,1}n |x) is the equal superposition of all the basis

states as defined in Equation 1.28 with |z) = |00 . . . 0). The action of this operator

on an arbitrary state is to reflect it through the state |ψ). This can be readily seen

by noting that

(2|ψ)(ψ| − I)|a) = 2p|ψ) − |a), (1.39)

where p = (ψ|a) is the projection of |a) onto |ψ). Thus we can view the action

of the operator presented in Equation 1.39 as inverting the sign of the amount of

|a) perpendicular to |ψ). This is a reflection of |a) through |ψ). This operator

is combined with the oracle operator Γ, in the definition of the Grover iteration

operator G, which is written

G = (2|ψ)(ψ| − I)Γ. (1.40)

��

� �

29

Grover’s algorithm is simply the repeated application of the operator G until the

output state is nearly the solution state. We now describe how a single iteration of

θ+ sin |)A 2

G gets us closer to the solution state. Consider a two dimensional vector space with

I|B)

|B)
θ|)ψ = cos 2

2
θ
2

θ
_

|A)

θ θΓ sin|) |) −ψ A= cos 22

Figure 1.6: The action of the operator Γ is to reflect the state |ψ) about the state
|A)

two basis vectors, |A) and |B), which are non-solutions (bad) and solutions (good)

respectively to the search problem. These states are defined as

1 |A) = √ |x)
N −M

x∈bad

1 |B) = √ |x). (1.41)
M

x∈good

Here we are assuming a search space of N elements of which there are M solutions.

It is apparent that |A) and |B) form an orthonormal basis. We can thus express the

equal superposition state as

N −M M |ψ) = |A)+ |B) (1.42)
N N

|B)

 �

 � �

30

in this basis. We start Grover iteration on this state. We will now describe some

pictures to get a feel for how the iteration works.

In order to understand the action of Grover iteration, we present two figures. In

θθ3
2 |A)+ sin 32 |B)I|B) (2|ψ)(ψ| − I)Γ|ψ) = cos

 θ

2 |A)+ sin

|A) − sin

θ
2 |B)

|B)

 |ψ) = cos
 θ θ
 2 _

 |A)

θ
2

θ
2

θΓ|ψ) = cos
 2

θ

Figure 1.7: The action of the operator (2|ψ)(ψ|−I) is to reflect the state Γ|ψ) about
the state |ψ)

Figure 1.6, we show the action of the oracle Γ, which is a reflection about the |A)
axis (Remember that this oracle gives a minus sign to solution vectors). In Figure

1.7, we show the action of the operator 2|ψ)(ψ|−I, which is also a reflection but this

time about the starting state |ψ). Note that the net result of applying the operator

G to the starting state |ψ) has been to move it closer to being parallel to the solution

θ3
2 |A)+ sin 32 |B) is θ radians closer to the state |B).state |B). The state G|ψ) = cos

Furthermore if we start with the state G|ψ), then the state G2|ψ) will be 2θ radians

closer to |B) than the starting state |ψ). (Note that 2θ =
 θ
2 + 32

θ as the operator in

Equation 1.39 always reflects through the equal superposition state, |ψ)). Thus k

applications of the the operator G has the effect of rotating the state |ψ) kθ radians

�

31

towards |B). This continued application of G may be expressed as

2k + 1 2k + 1
Gk|ψ) = cos θ |A) + sin θ |B). (1.43)

2 2

We will now upper bound the number of times we have to apply the operator until

with high enough probability we have the solution.

N−M MStarting with the initial state of the system |ψ) = |A) + |B), we note
N N

Mthat we need to rotate through arccos
N radians in order to move the system to

|B). We thus define the number of Grover iterations
arccos M/N

nGI = CI , (1.44)
θ

where CI(x) is the closest integer to x. The arccos function provides us with a
convenient way to upper bound the number of iterations. Noting that nGI ≤ π

θ θand sin≥ 22

2θ

= M , we have
N

nGI ≤ π N
. (1.45)

4 M

NThus we see that nGI = O

M . Note that nGI depends on the number of solutions

M , but not on the identity of these solutions. Provided we know M , the search

algorithm is applicable as described. The interested reader is directed to [27, Section

6.3] for an explanation on how to remove the need for a knowledge of M . Thus for

the case where there is a single solution only, we have

nGI = O
√
N , (1.46)

as we stated earlier. We will have need to call on Grover’s search algorithm in

Chapter 3 of this thesis and will make use of the result given in Equation 1.46. We

now move on to discuss some of the concepts within cryptography that are pertinent

to proofs in later chapters.

32

1.3 Overview of Cryptography

Cryptography is usually associated the study of how effectively information may

be concealed from prying eyes during its transmission. Cryptographic protocols

have also been developed for other purposes such as two distant and un-trusting

parties wishing to share the result of a fair coin toss using digital communications

only. Bit commitment is related to such a protocol. All cryptographic protocols

may be analyzed using the techniques of information theory, complexity theory and

probability theory. In this section, we briefly discuss the concept of absolute security

and present some of the trade-offs between different techniques of more traditional

cryptography in light of quantum information. We then turn to the concept of bit

commitment and focus both on the quantification of its desirable characteristics and

on actual implementations.

1.3.1 Cryptographic Algorithms and Protocols

In this section we first discuss, in very general terms, cryptographic algorithms, which

are sometimes referred to as ciphers. We divide these algorithms into two categories

symmetric and asymmetric algorithms. We give some examples and discuss the

relative pros and cons of the two approaches. We then go onto to describe the

motivation for the more esoteric cryptographic protocol of bit commitment. We

provide some examples identifying deficiencies, which we will use to motivate the

need for the G-L Theorem.

A cryptographic algorithm is the mathematical function used for encryption and

decryption. The security of ciphertext transmission is based on a number of factors,

33

but for well-designed algorithms, of paramount importance is the key, denoted by k.

Plaintext is denoted by m for message, and the ciphertext is denoted c. Both the

encryption and decryption operations use the key, so the functions are expressed as

Ek(m) = c

Dk(c) = m. (1.47)

There are two general types of key-based algorithms: symmetric and public-key.

Symmetric algorithms, sometimes called conventional algorithms usually require that

the sender and the receiver agree on a key before they can communicate securely.

Note that this is a fundamental issue with this type of security algorithm. That is,

in order to communicate securely, we must first communicate securely!

Public-key algorithms, also known as asymmetric algorithms, are designed so that

the key used for encryption is different than the key used for decryption. Further

more, the decryption key cannot (at least in a reasonable amount of time) be calcu

lated from the encryption key. The algorithms are called “public-key” because the

encryption key can be made public. We now discuss some of the issues of balancing

these approaches against the need for quantifiable security.

The whole point of cryptography is to keep the plaintext secret from eaves

droppers. All algorithms exhibit varying degrees of resistance, so it is necessary

to quantify the degree to which an algorithm can withstand an attack made by a

cryptanalyst. Of paramount importance is the concept of unconditional security. An

algorithm is unconditionally secure if, no matter how much ciphertext a cryptana

lyst has, there is not enough information to recover the plaintext. Given unlimited

computing resources, only a one-time pad is unbreakable. To understand why this

http:security.An

34

is so, we construct a one-time pad and perform a little analysis. We start with a

n nmessage string m ∈ {0, 1} and a random key string, k ∈ {0, 1} . By random we

mean each key string occurs with probability Pk = 1/2n . We construct the cipher

text by modulo-two summing the key with the message such that

c = Ek(m) = m ⊕ k. (1.48)

Next we convince ourselves that the ciphertext has the same probability distribution

as the key. Assuming Pm is the probability of a message string, we calculate the

probability that the ciphertext is equal to any particular value as follows

Pr[c = z] = Pm · Pk

k,m∈{0,1}n

m⊕k=z

1
= Pm 2n

m k
k=m⊕z

1
= Pm · 2n

m

1
= . (1.49)

2n

From this we see that the ciphertext has the same probability distribution as the key,

but note the dependence of this upon Pk = 1/2n exactly. If the outcome probability

of a key differs at all from this value, information about the plaintext will be present

in the ciphertext. This will occur if the key is generated by a source that is only

pseudo-random, or if the number of message bits is greater than the number of key

bits since a key bit would then have to be used multiple times in construction of

the ciphertext. This latter fact highlights the impracticality of the one-time pad

since a new key of length at least that of the message to be exchanged is required

35

for each secret. If a protocol that does not have a one-time pad at its core is used

to secure communications, the eavesdropper with sufficient computational resources

can recover the message. Recognition of the impracticality of key distributions in

a classical setting has led to the development of ways to get around the problem.

Public-key cryptography skirts the issue by using the concept of trap-door one-

way functions to allow the encryption key to made public by the person wishing

to receive a secure message while the decryption key is kept private. Quantum key

distribution using a protocol like BB84 [14] solves the problem by exchanging the

key over a quantum channel, in a manner that ensures that any eavesdropping can

be detected. Discussion of these two very interesting parts of classical and quantum

cryptography is beyond the scope of this thesis and the interested reader is directed

to the references. We now turn our attention to bit commitment protocols.

Two parties, especially two un-trusting parties, may wish to do more than just

communicate securely. Using digital communications, they may wish to compute

a value such as the result of a fair coin toss, generate a shared random sequence,

authenticate each other’s identity or sign a contract. One of the key foundation

protocols applicable to these needs is called bit commitment. This important protocol

has many interesting applications as diverse and thought-provoking as zero-knowledge

proofs [29, pages 101-109]. Again, detailed discussion of applications is beyond the

scope of this thesis, and the reader is directed to the references for more information.

We now focus on the problem of implementing bit commitment with quantifiable

properties.

36

1.3.2 Bit Commitment

In this section we introduce the concept of bit commitment. We discuss several im

plementations of bit commitment protocols. We pay particular attention to bit com

mitment using one-way functions, which we use as a springboard into the Goldreich-

Levin theorem.

Bit commitment can best be understood using a simple physical example. Sup

pose Alice wants to commit to a prediction of a particular event in the future (e.g.,

whether a particular stock will be a winner or not), but she does not want to reveal

her prediction until sometime later. Bob, on the other hand, wants to make sure that

Alice cannot change her mind after she has committed to her prediction. A physical

implementation of this commitment might proceed as follows. Alice chooses a bit, 0

or 1, and writes it on a piece of paper, which she deposits in a locked box. She gives

the box to Bob but keeps the key. She cannot change what she wrote, and without

the key, Bob cannot open the box. But at some later point, Alice can give Bob the

key and reveal her bit. This concrete example illustrates the two key requirements

of an effective bit commitment scheme. The scheme must be both concealing and

binding. We will now discuss how to implement schemes without the encumbrances

of physical safes and keys.

Although bit commitment appears to be quite a simple concept, it is actually

quite difficult to come up with robust digital schemes. The difficulty arises in trying

to make the proposal simultaneously concealing and binding. In fact, unconditional

bit commitment is actually not possible. The proof of the impossibility of uncondi

tional classical bit commitment is beyond the scope of this thesis. (A sketch of the

37

proof of the impossibility of unconditional quantum bit commitment is presented in

Chapter 3.) However, we will illustrate that finding a protocol with reasonably good

concealing and binding properties is a challenge. Consider the following candidate

for a bit commitment protocol. Suppose Alice wishes to commit to a bit, b. She

selects a random n-bit string, r. She has a bit-commit function Commit(r, b) = r + b

(the addition is modulo 2n), which gives as output an n-bit commitment string, c,

which she sends to Bob. This protocol is illustrated in figure 1.8. It is assumed

®
��

A ®
��

B

1. b ∈ {0, 1}
2. r ∈μ {0, 1}n

3. c ← r + b
4. Commitment c
5. De-commitment b, r

6. Verify c ← r + b

Figure 1.8: A naive bit commitment protocol

that Bob also knows the bit-commit function, Commit(r, b). When Alice is ready

to de-commit, she sends the bit, b, and the random n-bit string, r to Bob, who then

verifies the bit that Alice committed to. On the face of it, this protocol appears

to satisfy our requirements that the scheme be both concealing and binding. It is

perfectly concealing in the sense that the commitment string, c is dependent on there

being 2n random strings. But is it binding? The answer is no because any particular

commitment string could equally be a commitment to 0 or to 1 since Bob has no

knowledge of which random string was selected. Thus a dishonest Alice can change

her commitment at will. We could add more steps to this protocol, such as having

Bob generate the string r and Alice encrypt the commitment with a one-time pad,

38

but we would still have a protocol with poor binding properties. We need another

approach to find a bit commitment protocol with reasonable concealing and binding

properties.

Other bit commitment protocols exist and of particular interest are those that use

one-way functions. We are now going to define a special case of a one-way function.

A one-way permutation, for which we will use the abbreviation OWP, is a length

preserving one-way function having a unique inverse and is defined as follows.

n nDefinition 5 A one-way permutatin f : {0, 1} → {0, 1} has the following proper

ties:

1. Given x, f(x) is computable in polynomial time.

2. Each f(x) has a unique inverse.

3. 	 Let A be any t(n)-time algorithm with success probability ε(n). If x is ran

domly selected from all n-bit strings, that is x ∈μ {0, 1}n, and y ← f(x) and

t(n) ω(1)Pr[A(y) ∈ f−1(y)] = ε(n), then
ε(n) ∈ n .

The last statement in this definition means that the ratio of the time resources to any

algorithm’s success probability is at best super-polynomial. See Table 1.1 for some

examples of functions that are super-polynomial. We can use a OWP to implement

a bit commitment scheme that is computationally concealing and perfectly binding.

We will first present another naive implementation, which is depicted in Figure 1.9.

We see that this protocol is indeed perfectly binding in that once Alice has made the

commitment, there is no way she can change it because the OWP is one-to-one. But

how concealing is it? The critical part of this protocol is how the string r and the

��

��

39

A B® ®
1. b ∈ {0, 1}
2. r ∈μ {0, 1}n−1

n n4. f : {0, 1} → {0, 1}
5. c ← f(r, b)

c6. Commitment
r, b 7. De-commitment

8. Verify c ← f(r, b)

Figure 1.9: A naive bit commitment protocol based on a one-way permutation

bit b are combined into the n-bit argument of the OWP. Indeed depending on the

specific combination, it is important to note that the protocol may not be concealing

at all. This is because it may be computationally very easy for Bob to determine

the single bit in the commitment string that the bears information about b. We note

that the OWP appears to solve the binding problem, but it would nice to quantify

the degree of concealment. Rather than mixing the commitment bit into the n-bit

argument of the one way function, it would be nice to somehow define a single bit

that is also hidden by the OWP. Ideally we would also like to quantify how hard it

is for Bob to determine the value of the commitment given this hard bit and any

other ancillary information necessary to make the commitment. For this we look to

the concept of a hard predicate of a one-way permutation.

A hard predicate of a OWP is a single bit that is easy to determine given x but is

hard to determine given f(x). We give the following definition of a hard predicate.

n nDefinition 6 A hard predicate of a one-way permutation f : {0, 1} → {0, 1} is a

nfunction h : {0, 1} → {0, 1} that has the following two properties:

1. h is computable in polynomial time.

40

2. Let A be any t(n)-time algorithm with success probability ε(n). If x ∈μ {0, 1}n ,

t(n) ω(1)and Pr[A(f(x)) = h(x)] = 1 + ε(n), then .2 ε(n) ∈ n

The next question is how do we find a hard predicate of f . For this we turn to the

Goldreich-Levin Theorem. This theorem provides a generic means for determining a

hard predicate given any one-way permutation. In Chapter 2 we state the Goldreich-

Levin Theorem and its adjunct, the Goldreich-Levin black-box query problem. We

proceed to develop upper and lower bounds for the query problem in a classical

setting. In Chapter 3, we repeat the analysis in a quantum setting. Finally in

Chapter 4, we return to the analysis of both quantum and classical bit commitment

protocols using the Goldreich-Levin Theorem.

http:problem.We

Chapter 2 Classical Goldreich-Levin Theorem

2.0 Introduction

The Goldreich-Levin (G-L) Theorem [20] was first presented and an upper bound

proven in 1989. An improvement to the original bound was discussed by O. Goldreich

in 1999 [21]. In this chapter, we explore the classical G-L Theorem as distinguished

from the quantum G-L Theorem, which we study in Chapter 3. Here, we give a

detailed analysis of both the original and the improved classical upper bounds and

prove the classical lower bound.

The context of the Goldreich-Levin (G-L) Theorem is to find a so-called hard

predicate for a one-way length preserving function f that is a one-way permutation.

Recall that as discussed in Chapter 1, a one-way permutation is loosely defined as a

permutation that uniquely maps an n-bit string, x, into another n-bit string, f(x),

where it is computationally easy to perform the mapping but computationally diffi

cult to invert the mapping. A hard predicate of a one-way permutation is a single bit,

h, which is hidden by the permutation f in the following sense. Given x, computing

h(x) is computationally easy, but given f(x), computing h(x) is computationally

difficult. Formal definitions of one way permutations and hard predicates are given

in Chapter 1, Definitions 5 and 6. The G-L Theorem offers a generic means for

constructing hard predicates given any one-way permutation. A key step in the re

duction of the G-L Theorem is the solution of a black-box, or oracle, query problem

referred to herein as the G-L problem.

The G-L problem is concerned with determining the number of times a two

41

42

part oracle must be queried in order to determine an unknown n-bit string a. The

two oracles are the inner-product oracle, IP , and the equivalence oracle EQ. The

query problem is presented pictorially in Figure 2.10. The inner-product of two n-bit

strings, a and x, is denoted a · x, and is defined as

(1) (1) + a(2) (n) (n)a · x = a x x(2) + · · ·+ a x . (2.50)

The additions here are modulo two, so the result of an IP query is a single bit.

As depicted in Figure 2.10, the IP oracle either returns the correct result of the

inner product of the string x with the string a or it returns the inverted result. The

x ∈ {0, 1}n IP(x) =

a · x
a · x

if x ∈ S
if x ∈ S

IP

1 if x = anx ∈ {0, 1} EQ(x) = 0 if x = a.

EQ

Figure 2.10: The Goldreich-Levin Query Problem

correctness of the result depends on whether the string x is a member of the set S

nor not. The set S ⊆ {0, 1} is chosen subject to the condition that |S| = (1 + ε)2n .2

The value of ε > 0 is termed the advantage of the IP oracle. The output of an

inner-product query is thus only slightly correlated with a · x in the sense that

Pr[IP(x) = a · x] ≥ 1
2 + ε. (2.51)

43

The EQ(x) oracle is used to determine if the input string, x, is equal to the unknown

string a or not.

The focus of this chapter is to determine both an upper and a lower bound of

the query complexity of the G-L problem. Firstly, we study the query complexity

of the problem using a specially constructed algorithm that makes use of these two

oracles. We bound the success probability of the algorithm, which enables us to

provide an upper bound on the number of queries required to determine the correct

value of the unknown string. Secondly, we provide a proof of the lower bound of the

query complexity by analyzing the amount of information that is revealed in each

IP query. We will discuss the generation and use of hard-core predicates in Chapter

4.

2.1 Upper Bounding the Classical G-L Problem

2.1.1 The Problem

The discussion presented in the following expands on the ideas given by M. Bellare

in his 1999 manuscript [3]. In solving the G-L query problem, we are allowed to use

any combination of the two oracles in our quest to determine a with the idea that we

wish to obtain the value using the fewest total number of queries. Of course we could

simply choose to use only EQ queries in which case we would determine the correct

value of a on average after making approximately 2n−1 queries, but an exponential

upper bound is not very interesting.

Can using the IP query reduce the number of queries? The answer is yes with

the amount of the reduction dependent on the value of ε, the advantage of the IP

44

oracle. Consider the case where ε is equal to
 1
2 ; that is, the IP oracle always returns

the correct value of the inner product. In this case we could adopt the strategy of

determining a one bit at a time. We would achieve this by sequentially offering the

basis strings, ek, (those strings with a one in the kth position and zeroes in all other

positions) to the IP oracle. This strategy would result in the correct value of a after

only n queries without even having to resort to the use of the EQ oracle. We see that

in this exact case, using only IP queries we make exponentially fewer queries than

we make by blindly using the EQ oracle. The analysis becomes more interesting in

the case where ε is less than
 1
2 . Before proceeding with the analysis of this case, we

must consider what we mean by the statement that the IP oracle is returning the

correct value of the inner product with probability
 1
2 + ε. Simply stated, it means

that there are a collection of good strings, for which the IP oracle returns the correct

value of the inner product, and a collection of bad strings for which it returns the

incorrect value. The ratio of good strings to the whole is
 1
2 + ε; while the ratio of

the bad strings to the whole is
 1
2 − ε.
 When ε is less than
 1

2 , the problem with the

approach we outlined for the case where ε =
 1
2 is that it is possible that some (or

all) of our basis strings could happen to be bad strings in which case the previous

strategy would not work at all.

In order to get around the problem of our basis strings potentially being in the

bad bunch, we compare two self-correcting strategies in two separate algorithms. We

carefully construct these algorithms and determine bounds on their success probabil

ity in terms of the number of bits n and the advantage ε. We then use these bounds

to estimate the query complexity of IP and EQ queries required to determine the

correct value of the string a.

45

2.1.2 The High Advantage Case

The high advantage case is where ε > 14 . We begin by considering the case, where ε

is very close to 1
2 , say 12 − δ. With this definition, we can rewrite Equation 2.51 as

Pr[IP(x) = a · x] ≥ 1 − δ. (2.52)

In order to develop a workable algorithm, we look toward the first self-correcting

strategy to remove the possibility that our input strings are all in the bad bunch.

This strategy reduces the worst case input string to the average case by invoking the

IP oracle only on random points. We achieve this by relying on the linearity of the

inner product, a · x = a · (x ⊕ r) ⊕ a · r. Here r is a random string. An algorithmic

strategy is to use

IP(x ⊕ r) ⊕ IP(r) (2.53)

to approximate IP(x).

We now introduce a simple algorithm, which we will refer to as ExtractA. This

algorithm is so named because its aim is to extract the unknown string a and because

it is the first of two such algorithms, ExtractA and ExtractB, that employ different

self-correction strategies. Algorithm ExtractA is presented in the box denoted Algo

rithm 1. Note that our algorithm queries the IP oracle twice for each input string

1: Input: ek
random

2: rk ←− { 0, 1} n

3: bit1 ←− IP(ek ⊕ r)
4: bit2 ←− IP(r)
5: Return bit1 ⊕ bit2

Algorithm 1: Algorithm ExtractA

— once with a random string and once again with the same random string added

46

to the input string. The algorithm then returns the difference, which is a single

bit having value 1 or 0. Although we will show that this is a workable strategy for

the high advantage case, we will also show that using two IP queries for each input

string severely limits the size of the advantage to which this strategy is applicable.

There are two IP queries in the approximation given by Expression 2.53. For each

individual query, the probability that the returned value is not equal to a · x is δ.

Since our algorithm must make two queries to the IP oracle, we have a bit more

work to bound its failure probability as follows:

Pr[IP(x ⊕ r) ⊕ IP(r) = a · x] ≤ Pr[IP(x ⊕ r) = a · (x ⊕ r) ∨ IP(r) = a · r]
r r

≤ Pr[IP(x ⊕ r) = a · (x ⊕ r)] + Pr [IP(r) = a · r]
r r

= δ + δ = 2δ.

Here, we have used the union bound to bound the probability of our algorithm failing.

The success probability of algorithm ExtractA is thus

Pr[ExtractA(ek) = a · ek] ≥ 1 − 2δ. (2.54)

Assuming the input, ek, are again the n basis strings and a new random string, r, is

drawn for each input, the probability that all n calls return the right answer is

(1 − 2δ)n ≥ 1 − 2nδ. (2.55)

If we want to keep the error probability limited to
 1
2 , then it is sufficient that δ ≤
 1

4 .
n

Thus we see that δ tends to 0 as n tends to infinity. If we keep within this very

restrictive bound, our algorithm has an error probability of at most
 1
2 , by making

2n queries to the IP oracle and 1 query to the EQ oracle; an error probability of

47

1 by making 4n queries to the IP oracle and 2 queries to the EQ oracle, and error 4

probability γ by making O n log 1
γ queries to the IP oracle and O log 1

γ queries

to the EQ oracle.

We conclude from the preceding analysis that we need to modify our strategy if

we wish to work outside the restriction of δ ≤ 4
1
n . We note that with the current

strategy, the success probability for each bit is only 1 − 2δ. The success probability

for an n-bit string is this quantity raised to the nth power, which rapidly goes to

zero with increasing n. We can improve this situation through a technique sometimes

called probability amplification. This involves making m > 1 calls to our algorithm

with the same value of ek, but with a new random sting r drawn each time. Since our

algorithm returns a bit each time, we can sum the result of the m queries, and if the

mresult is ≥ 2 conclude that the bit is a 1 otherwise it is 0. We present the improved

algorithm ExtractAI in the box denoted Algorithm 2. We now proceed to bound the

1: Input: ek, m
2: sum ←− 0
3: for i = 1 to m do
4: sum ←− sum + ExtractA(ek)
5: end for

m6: if sum ≥ then2
7: y(k) ←− 1
8: else
9: y(k) ←− 0

10: end if
11: Return y(k) { This is an estimate of the kth bit of a}

Algorithm 2: Algorithm ExtractAI

success probability of this algorithm. We recognize that the for loop in algorithm

ExtractAI is just a sequence of m Bernoulli trials with success probability p, where

we use the convention that for a successful trial the returned bit is 1. Thus there are

48

two cases we have to consider — where p ≥ 1 − 2δ, which corresponds to the case

a · ek = 1, or where p ≤ 2δ which corresponds to the case a · ek = 0. Either way,

the resulting probability distribution is Binomial, and we have to determine which

of the two cases it is. Figure 2.11 is a graphical representation of the two possible

distributions for m = 20 and δ = 1
8 . Note that the two probability distributions

show significant overlap in the region near m/2. If for the a · ek = 0 case, the sum

happened to be > m/2, we would make the wrong conclusion about the value of the

bit. Likewise for the a ·ek = 1 case if the sum happened to be < m/2, we would make

D
is

tib
ut

io
n

of
 R

an
do

m
 V

ar
ia

bl
e

X

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Number of Calls to Algorithm

Figure 2.11: Binomial Distributions for a · ek = 0 and a · ek = 1.

a ⋅ e
k
= 0 a ⋅ e

k
= 1

0 2 4 6 8 10 12 14 16 18 20

49

the wrong conclusion. The size of these tails of the distributions offers us a means

by which we can bound the error probability of our modified algorithm. We use

tail-inequalities to bound this overlap probability. Our strategy will be to sum the

result of m queries using the value m/2 as our decision threshold. This will improve

matters so that rather than having the very restrictive bound of δ inversely varying

with n, we can achieve acceptable success probability with a polynomial number of

queries and δ < 14 .

We begin the analysis by defining the random variable X = X1 + X2 + . . . +

Xm as the variable sum in algorithm ExtractAI. The Xi are binomially distributed

independent random variables, which allows us to apply the powerful Chernoff bound

to the distribution’s tail. However here we are going to apply the weaker Chebychev

bound because it is also applicable to pairwise independent random variables, which

we will be employing later when we solve the general case. The expected value and

the variance of a binomially distributed random variable are

μ(X) = mp

V ar(X) = m(1 − p)p. (2.56)

Chebychev’s inequality states

V ar(X)
Pr [|X − μ| > A] ≤ . (2.57)

A2

This inequality formalizes what we intuitively expect — that the probability that a

particular value falls greater than a certain distance from the mean of the distribution

diminishes as that distance increases. Now we have two cases to consider. Firstly

when ek · a = 1, we have p ≥ 1−2δ, and we want to find the probability that X < m
2 .

50

Secondly when ek · a = 0, we have p ≤ 2δ, and we want to find the probability that

mX > 2 . In both cases, it can be shown that the absolute distance from the mean

can be expressed as
m |X − μ| > − 2mδ. (2.58)
2

Combing the results of Equation 2.56 with Equation 2.57 and Equation 2.58 allows

us to write m m(1 − 2δ)(2δ)
Pr |X − μ| > − 2mδ ≤ . (2.59)

2 m 2

2 − 2mδ

The preceding bounds the error probability of Algorithm ExtractAI, which outputs a

single bit after a majority vote over the m queries. After simplification it is expressed

as
(1 − 2δ)(2δ)

Pr [ExtractAI(ek,m) = a · εk] ≤ . (2.60)
m(1

2 − 2δ)2

We note from this equation that there is a vertical asymptote at δ = 4
1 . We next

bound the probability of successfully recovering all n bits of the string a. We write

this success probability as:

(1 − 2δ)(2δ) n

Pr [(EAI(e1), EAI(e2), . . . , EAI(en)) = a] ≥ 1 −
m(1 − 2δ)2

2

n (1 − 2δ)(2δ)≥ 1 − , (2.61)
m (1

2 − 2δ)2

where we have used the shorthand EAI(ek) for ExtractAI(ek,m). Finally bounding

this success probability to a half, we have

1 n 8δ(1 − 2δ)≤ . (2.62)
2 m (1 − 4δ)2

This is > 0 when 0 < δ < 14 and approaches +∞ as δ → 1
4 +. It is instructive to

express Equation 2.62 in terms of a new variable ε 1 = 1 − 4δ, which allows us to
4

51

bound the number of calls over which we make a majority vote as

4

2
12n 1 − ε

.
 (2.63)
m ≤

4

2
1ε

We note that algorithm ExtractAI makes 2nm queries to the IP oracle. Thus for

> 0, which corresponds to δ <
1
4 , we provide an upper bound for the number of
 ε
1

4

IP queries as
n2

.
 (2.64)
qIP = O
4

2
1ε

We conclude this sub-section noting that probability amplification must form a

part of an effective algorithmic strategy, but we have to get past the “brick wall”

of δ
 =
 1
4 .
 Our current self-correction strategy performs two IP queries to extract

each bit before probability amplification. The two queries effectively doubles the

error probability resulting in the “wall” at δ =
 1
4 rather than at δ =
 1

2 as we desire.

We thus conclude that if we wish to solve for polynomially small ε, it may be more

promising to make only one IP query to extract each bit.

2.1.3 General Case

The general case is when 0 < ε ≤
 1
2 . In the high advantage case we ran our algorithm

over the n basis strings as input. We also relied on the linearity of the inner product

function and used repeated runs to amplify probability. In the general case, where

ε may be
 1
4 or less, we will again employ these tricks, but we also need an algorithm

that with high enough probability determines a · ek for a given ek while making only

one IP query. We will refer to this algorithm simply as Algorithm ExtractB. Before

we state and prove a theorem that bounds the probability that ExtractB will return

52

the correct value of a · x, we need to employ another clever trick. That is a method

for producing M pairwise independent strings from O(log(M)) random strings.

In order to explain this trick, we let m and M be integers with M = 2m − 1.

We define the set [m] = {1, . . . ,m} and the listing S1, . . . , SM of all the non-empty

subsets of [m] in the canonical order usually associated with counting binary numbers.

It is helpful to think of each of the members of SM , denoted Si, as being the bit

positions of those bits equal to 1 in the m-bit binary representation of the number

i. For example, the usual 4-bit representation of the number 3 is 0011. Reading the

first bit position from the right, we have the first and second bits equal to one as is

indicated by S3 = {1, 2}. This is not the only ordering we could imagine, but it is

straightforward to write the first several Si explicitly as

S1 = {1}

S2 = {2}

S3 = {1, 2}

S4 = {3}

S5 = {1, 3}

S6 = {2, 3}

S7 = {1, 2, 3}

S8 = {4}
...

SM = {1, 2, . . . ,m}.

Now let R = (r1, . . . , rm) be an m-tuple of m random n-bit strings. We use the

53

definition of R and our listing of the M subsets of [m] to construct the sequence

Q = (q1, . . . , qM). Each of the qi are formed as bitwise modulo-two sums of particular

n-bit strings selected from R as
qi = rj . (2.65)

j∈Si

For clarity, we again write down several of the qi explicitly as

q1 = rj = r1

j∈S1
q2 = rj = r2

j∈S2
q3 = rj = r1 ⊕ r2

j∈S3
q4 = rj = r3

j∈S4

. ..
qM = rj = r1 ⊕ r2 ⊕ · · · ⊕ rm.

j∈SM

It is important to note that whilst the rk are independent random variables, the qi

nare only pairwise independent since for every i, j ∈ [M] with i = j and a, b ∈ {0, 1}

Pr[qi = a and qj = b] = Pr[qi = a] · Pr[qj = b]. (2.66)

This can be understood by noting that if qi = qj , then there is some string rk that

belongs to one and not the other, and a modulo-two sum involving rk is unpredictable

from a sum not involving rk. This means having the value of one of them does not

help predict the value of another, but having the value of any two of them may help

predict the value of the others. This pairwise independence is a crucial property of

this construction that will be used to bound the query complexity.

54

Our new algorithm is also going to make one query IP (x ⊕ r), which is on a

random point. Again, we need to find a way to modulo-two subtract the effect of

adding a random string in order to approximate IP (x). Recall that we achieved this

in the high advantage case by making a second IP query as we did in Expression

2.53. To avoid making a second IP query here, we will achieve the same effect by

defining a sequence of M single bits constructed using the inner product function.

Our algorithm will then modulo-two subtract all possible values of these bits for each

query on a random point. As an aside, we will also see that this modulo-two summing

of all possible points will form the basis of probability amplification employed in

algorithm ExtractB. We first define the sequence of m bits B = (b1, . . . , bm) as

bk = a · rk. We then define the sequence of M bits D = (d1, . . . , dM) with each of

the bits calculated as

di = bj . (2.67)
j∈Si

We write the first several di explicitly as

d1 = bj = b1

j∈S1

d2 = bj = b2

j∈S2

d3 = bj = b1 ⊕ b2

j∈S3

...

dM = bi = b1 ⊕ b2 ⊕ · · · ⊕ bm.
j∈SM

We again use the linearity of the inner product function to write

a · (x⊕ rj) = (a · x) ⊕ (a · rj) = (a · x) ⊕ bj . (2.68)
j∈Si j∈Si j∈Si

55

Using Equation 2.67 and Equation 2.65, we rewrite Equation 2.68 as

a · (x ⊕ qi) = (a · x) ⊕ di. (2.69)

Finally Equation 2.69 is rearranged in order to approximate IP (x) by the following

quantity to be employed by our algorithm

IP (x ⊕ qi) ⊕ di. (2.70)

Armed with the Expression 2.70, we are now able to construct algorithm ExtractB.

Once we have constructed and offered a step-by-step analysis of the algorithm, we

state and prove a theorem bounding the algorithm’s success probability. We now

describe the intent of the algorithm.

We begin by noting that Expression 2.70 will form the heart of algorithm Ex

tractB. Comparing Expression 2.70 with Expression 2.53, which formed the heart

of algorithm ExtractA, we note two crucial differences. Firstly in Expression 2.70,

only one call is made to the IP oracle whereas two are made in Expression 2.53.

This means that the error probability will not be doubled, which we will show allows

algorithm ExtractB to work with polynomially small advantage rather than being

limited to an advantage only polynomially smaller than 1
4 as we saw in the high

advantage case. Secondly, in Expression 2.70 we note that the di are not explicitly

known. In algorithm ExtractB, we get around this problem by using a value of m

sufficiently small to permit us to try all of the 2m possible values of the di.

As with Algorithm ExtractA, Algorithm ExtractB performs a bit-by-bit extrac

tion of the unknown string a. Once we think we have a candidate string, we offer it

to the EQ oracle to see if it is the right one. We again perform probability ampli

fication for each of the bits we extract, but rather than doing this over m random

56

strings and two IP queries as we did in algorithm ExtractA, we do it with M pair-

wise independent strings and only one IP query modulo two summed with all of

the possible di bits. In the case of Algorithm ExtractA, we chose to bound the

post-amplification error probability using Chebychev’s inequality where the random

variables were Binomially distributed. In the case of Algorithm ExtractB, we must

bound the post-amplification error probability using Chebychev’s inequality because

the random variables are only pairwise independent. After we have described Al

gorithm ExtractB, we will state and prove a theorem of its success probability and

consequently bound the number of queries for polynomially small ε.

1: Input: ek, n, m, M
2: Initialize(ek, n,M)
3: for l = 1 to M do
4: Let B = b1 . . . bm be the binary representation of l − 1
5: for k = 1 to n do
6: Amplify(B, Tk)
7: end for

(1) (n)8: y ←− y . . . y
9: if EQ(y) = 1 then

10: a←− y
11: end if
12: end for
13: Return a

Algorithm 3: Algorithm ExtractB

The main part of Algorithm ExtractB is presented in the box denoted Algorithm

3, and its two subroutines, Initialize and Amplify, are presented in the boxes denoted

Algorithm 4 and Algorithm 5 respectively. In the first line of Algorithm ExtractB,

the subroutine Initialize is called. This subroutine returns the n by M table of the

57

1: Input: ek, n, M
2: for k = 1 to m do

random n3: rk ←− {0, 1}
4: end for
5: for i = 1 to M do
6:

7:

qi ←−

j∈Si

for k = 1

rj

to n do
8: Tk,i ←− IP(ek ⊕ qi)
9: end for

10: end for
11: Return T

Algorithm 4: Subroutine Initialize

results of the IP queries, ⎤⎡

T =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1,1 · · · T1,i · · · T1,M

. ..
. ..

. ..

Tk,1 · · · Tk,i · · · Tk,M

...
...

...

Tn,1 · · · Tn,i · · · Tn,M

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
 (2.71)

which will be used later on in the algorithm for probability amplification in a manner

similar to what we did in the high advantage case. We also denote Tk as the M -

component, kth row of T . We generate the table T by making nM calls to the IP

oracle as follows. For each of the n basis stings ek, an IP query is made with ek

modulo two summed with one of the M pairwise independent strings, Q, generated

from the m random n-bit stings, R, per Equation 2.65. Note that it is only in the

subroutine Initialize that the IP oracle is called. It is also helpful to note that

each Tk consists of the results of M IP queries made with the modulo-two sum of a

unique ek with each of the random strings Q. After this initialization step, in line 3

58

of Algorithm ExtractB we enter a loop in which we sequentially enumerate the M ,

m-bit strings, B. For each one of the m-bit strings and each of the n basis strings,

we then call the subroutine Amplify. It is in this subroutine that we perform the

probability amplification necessary to achieve an acceptable success probability.

1: Input: B, Tk

2: sum ←− 0
3: for i = 1 to M do
4:	 di ←− bj

j∈Si

5:	 ci ←− Tk,i ⊕ di

sum ←− sum + ci

6: end for
7: if	 sum ≥ M then2
8:	 y(k) ←− 1
9: else

10: y(k) ←− 0
11: end if
12: Return y(k) { This is an estimate of the kth bit of a}

Algorithm 5: Subroutine Amplify

In the subroutine Amplify, the counter sum is used as the basis for making the

majority vote decision in our estimate of each bit, a · ek. We begin the subroutine

by setting this counter to 0. One of the inputs to the subroutine is an m-bit string

B = b1 . . . bm. We use Equation 2.67 to generate M pairwise independent bits from

this input string. Each one of these M bits is then sequentially modulo-two summed

to the corresponding table entry Tk,i, which removes the effect of making the IP

query on a random point. The result of this operation is then arithmetically added

to the counter sum. Once this operation has been performed M times, a majority

Mvote decision is made by comparing the counter, sum, to 2 . If it is greater than

this value, we estimate that the bit a · ek is 1; otherwise it is 0. We then return this

59

estimate of the kth bit of a · x to the main algorithm.

Algorithm ExtractB thus performs a bit-by-bit extraction for all n bits by making

n calls to the subroutine Amplify for each m-bit string, B. Once a candidate string

has been returned by the subroutine, it is then offered to the EQ oracle to see if it is

the correct one. We note the key role that the EQ oracle plays in this algorithm —

without it there is little chance of success. This extraction continues for all possible

2m ∗values of the string B, and as a result, there will be a particular string B that

satisfies the relation bj = a · rj for j = 1, . . . ,m. It is for this particular string that

we have a chance of recovering the string a. To see this, consider that in the specific

case where i = 3 in subroutine Amplify we have

T(k,3) ⊕ d3 = IP (ek ⊕ q3) ⊕ d3

= IP (ek ⊕ r1 ⊕ r2) ⊕ (b1 ⊕ b2)

= IP (ek ⊕ r1 ⊕ r2) ⊕ (a · r1 ⊕ a · r2). (2.72)

The preceding has two outcomes, which may be expressed as

T(k,3) ⊕ d3 =

⎧ ⎪⎨

⎪⎩

a · ek if ek ⊕ r1 ⊕ r2 ∈ S
(2.73)

a · ek if ek ⊕ r1 ⊕ r2 ∈ S.

For the specific string B∗, Equation 2.72 and Equation 2.73 are true for all i. This

observation will allow us to bound the success probability of the algorithm ExtractB,

but first we state and prove a bound on subroutine Amplify ’s failure probability.

Theorem 1 Let M = 2m − 1 and B∗ be the m-bit string for which bj = a · rj for

j = 1, . . . ,m. Also, let ek be an n-bit string with a one in the kth position and zeroes

elsewhere, and let Tk be the M -component kth row of T . Then for any ek, we have

Pr[Amplify(B∗, Tk) = a · ek] ≤ 1/Mε2

60

Proof: Our proof parallels that presented in the low advantage case. We begin by

noting that the counter sum in subroutine Amplify is a random variable, which we

rename Y for convenience and express as

Y = Y1 + Y2 + . . . + YM . (2.74)

We again have two cases to consider, ek · a = 1, for which we label the random

variable Y (1), and ek · a = 0, for which we label the random variable Y (0). Given

these definitions, the expectations for the individual events comprising Y (1) and Y (0)

have the following forms

(1) (1) (1)
E Y := 1 · Pr Y = 1 + 0 · Pr Y = 0i i i

= Pr Yi
(1) = 1

= 2
1 + ε, (2.75)

and

(0) (0) (0)
E Y := 1 · Pr Y = 1 + 0 · Pr Y = 0i i i

= Pr Yi
(0) = 1

= 2
1 − ε. (2.76)

For both cases Yi = Yi
2, and the variance of Yi is simply expressed as

V ar[Yi] := E[Yi
2] − E[Yi]2

= E[Yi](1 − E[Yi])

= (1
2 + ε)(1

2 − ε)

1
= − ε2 . (2.77)

4

61

Note that we shall suppress the index that distinguishes the two cases whenever the

results are identical. Using μ to denote E[Y], the linearity of expectation tells us

that

μ(1) 1= M 2 + ε , and

μ(0) 1= M 2 − ε . (2.78)

We noted in Equation 2.66 that the q1, . . . , qM are pairwise independent random

variables. We observe that since the Yi are derived through the combination of

modulo-two sums with the qi and IP queries on a fixed set S, the Yi are also pairwise

independent. With this observation it can be shown [3, Lemma 5] that the variance

of the sum, Y can be expressed

V ar[Y1 + · · ·+ YM] = M · V ar[Yi]. (2.79)

We will again use Chebychev’s inequality to bound the failure probability. We have

two cases to consider. Firstly when ek · a = 1, we have E Yi
(1) ≥ 1

2 + ε, and

we want to find the probability that Y < M Secondly when ek · a = 0, we have

E Y
(0) ≤ 2

1 − ε, and we want to find the probability that Y > M In both cases,

2 .

i 2 .

it can be shown that the absolute distance from the mean can be expressed as

|Y − μ| > Mε. (2.80)

Using Chebychev’s inequality, which is give in Equation 2.57 along with Equation

2.80 and Equation 2.79, we write

M 4
1 − ε2

Pr [|Y − μ| > Mε] ≤ . (2.81)
(Mε)2

62

The preceding bounds the error probability of subroutine Amplify. After simplifica

tion, it is expressed

Pr[Amplify(B ∗ , Tk) = a · ek] ≤
1

4Mε2
−

1
M

≤ 1/Mε2 , (2.82)

which concludes the proof of Theorem 1.

We now turn our attention to bounding the failure probability of algorithm Ex

tractB. As discussed previously due to the loop considering all possible values of B,

we need only consider the case where bj = a · rj for j = 1, . . . ,m. In this case, we

note that the algorithm ExtractB calls the subroutine Amplify a total of n times with

n different values of ek but always with the same values of r1, . . . , rm and b1 . . . bm.

The probability that all of these calls return the wrong answer is upper-bounded by

n times the probability that the kth call returns the wrong answer. We thus bound

the failure probability of algorithm ExtractB as

Pr[ExtractB = a] ≤ n/Mε2 . (2.83)

In order to get a success probability of 1
2 , it is sufficient to set M = 2

ε
n
2 . We noted in

our discussion of the algorithm ExtractB that a total of nM IP queries and M EQ

queries were made. Denoting the number of IP queries made as qIP and the number

of EQ queries qEQ, we express the query complexity of algorithm ExtractB as

2n
qIP = O

ε2

n
qEQ = O . (2.84)

ε2

Equation 2.84 is an upper bound of the query complexity of G-L problem, which is

what we have been after, but it is not a tight bound. In the following section, we

63

show that we can achieve a tighter bound by incorporating linear block codes into

our algorithm.

2.1.4 Improvement to General Case

The idea of using linear block codes to improve the bounds given in the previous

section is discussed in high-level terms by O. Goldreich in his 1999 book, Modern

Cryptography, Probabilistic Proofs and Pseudo-Randomness [21]. We will now pro

vide a detailed discussion of how to improve these results by incorporating a linear

block code into our algorithm. This block code will be used to correct errors and

reduce the number of queries we require in order to obtain a satisfactory success

probability.

Linear block codes are an important class of error correcting codes, which are

widely used in the reliable transmission of information over noisy communication

channels. In communications theory an (n, k, t) binary block code that can correct

any combination of up to t errors, requires a total of n bits be transmitted. Of these,

there are k data bits and n−k redundant bits. The term linear refers to the formation

of a vector space by linear combinations of basis vectors. Thus we can state that

the set of all n-bit vectors over the finite-field GF (2) of k linearly-independent basis

vectors g1, g2, . . . , gk is a binary (n, k) linear block code C. If the gi are arranged as

rows of a k × n generator Matrix G, an n-bit codeword c can be expressed as ⎤
⎡

c = [i1, i2, . . . , ik]

⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

. ..

gk

⎥⎥⎥⎥⎥⎥⎥⎦

= iG. (2.85)

64

where i is a k-bit information vector.

Most of the block codes that have proven to be useful in practical applications

belong to a class of codes called cyclic codes. Cyclic codes are easy to encode and

many efficient decoding schemes have been defined. An illustrative example of cyclic

codes are the Bose-Chaudhuri-Hocqeunghem codes, usually referred to as BCH codes.

These codes form an infinite class of (n, k, t) cyclic block codes that have capabilities

for multiple-error detection and correction. In reference [26, page 121] it is shown

that for any positive integers m and t < n/2, there exists a binary BCH code with

block length n = 2m −1 having no more than mt redundant bits. Each such code can

correct up to t errors per n-bit codeword and is thus said to be a t-error-correcting

code.

Another class of linear block codes are the Justesen codes. These codes have

provably good asymptotic properties [23]. Asymptotically good codes exhibit the

property that for d ≥ 2t + 1 defined as the minimum distance of the code, the ratio

d/n remains nonzero as the block length n tends to infinity. We shall make use of

this property to reduce the number of IP queries required. In order to avoid sym

bol clashing, we will refer to an (n, k, t) code as a (cn, n, αcn) with n the number

of data bits corresponding to the length of the unknown string a as previously de

fined. For the purposes of this thesis, we give the following alternate definition of an

asymptotically good code.

Definition 7 For an asymptotically good code, there exists positive constants c' and

α' with the following property: For all n, there exists a c ≤ c' and an α ≥ α' such

that there exists an (cn, n, αcn) code.

65

This follows from [23]. An important point to note is that the error correcting

capability is proportional to the total number of bits transmitted. It is of interest

to note that with our new definition of n, the BCH codes appear to exhibit this

desirable “asymptotic” property with c ' = 4 and α ' = 1/16 despite the fact that

strictly speaking, the BCH codes are asymptotically bad [26, page 136]. We can

deduce this desirable property of the BCH codes from studying tables of primitive

BCH codes [26, pp. 122-123]. Since the BCH codes are of such practical importance,

proving that Definition 7 is true for the BCH codes may be of some interest.

We now show how incorporating an (cn, n, αcn) code leads to a reduction in the

number of IP queries made by algorithm ExtractB. We redefine the cn× n generator

matrix G as ⎤⎡

G =

⎢⎢⎢⎢⎢⎢⎢⎣

g11 g12 . . . g1cn

g21 g22 . . . g2cn

.. .
..

gn1 gn2 . . . gncn

⎥⎥⎥⎥⎥⎥⎥⎦

.
 (2.86)

We express a cn-bit codeword, y, in terms of an n-bit information vector x and the

generator matrix G as

[y1, y2, . . . , ycn] = [x1, x2, . . . , xn]G. (2.87)

Note that we used the index k in Section 2.1.1 to identify the basis strings ek. Here

we change this index to κ to avoid confusion with the use of k in the literature as the

number of data bits in a linear block code. Denoting the cn, n-bit column vectors

of the matrix G as zκ and using Equation 2.85, we modify algorithm ExtractB. We

thus present the modified algorithm, ExtractBI in the box marked Algorithm 6.

http:ExtractB.We

66

1: Initialize(zk, cn,M)
2: for l = 1 to M do
3: Let B = b1 . . . bm be the binary representation of l − 1
4: for κ = 1 to cn do
5: Amplify(B, Tk)
6: end for

(1) (cn)7: . . . yyreceived ←− y
8: y ←− Decode yreceived

G−19: x ←− y ·
10: if EQ(x) = 1 then
11: a ←− x
12: end if
13: end for
14: Return a

Algorithm 6: Algorithm ExtractBI

In the previous section, we showed that it was sufficient to we set M = 2n/ε2 .

We will now show that instead of making M depend on the number of bits and the

advantage, we can make it depend on the advantage only. We set

M =
β

with β > 2. (2.88)
ε2

Defining q as the error probability given by Equation 2.81, we have

1 1
q ≤ = . (2.89)

Mε2 β

We assume we have an efficient, binary-cyclic code that corrects any combination

of t = αcn or less errors. We run algorithm ExtractBI, which for each value of M

makes cn calls to subroutine Amplify. Each of the calls are again made with Tκ, but

T is constructed in subroutine Initialize on input zκ = (g1κ, g2κ, . . . , gnκ) rather than

eκ. We use the zκ because we wish to perform a bit-by-bit extraction of ya, which

is the codeword of the n-bit string a. The zκ are the appropriate input strings since

67

each of the bits of ya are

ya
(κ) = g1κ ⊕ g2κ ⊕ . . . ⊕ gnκ. (2.90)

Thus each of the y(κ) generated by the subroutine Amplify are estimates of the bits

of the cn-bit codeword ya. Once we have extracted all cn bits, we remove errors from

the received code word using an efficient Decode algorithm — see for example the

Kasami decoding algorithm [26, page 157]. Finally we calculate a candidate solution

string x using G−1 and offer the result to the EQ oracle. We now bound the success

probability of this algorithm.

What is the chance that the offering to the EQ oracle is incorrect? It is the same

as the chance that we get more than αcn errors in the cn-bits of the string yreceived.

In order to determine this probability, we first recognize that the value of each of

these cn bits is a random variable with success probability p = 1 − q. The calls to

the subroutine Amplify thus constitute a sequence of Bernoulli trials. We use tails of

the Binomial distribution to bound the probability of having more than αcn errors.

Defining the random variable Y to be the number of successes in cn trials, we use the

bound on the left tail of the binomial distribution given in [10, page 122] as follows

cn−αcn−1
cn i cn−iPr[Y < (cn − αcn)] = p q
i

i=0

(1 − α)cnq cn (1−α)cn< p q αcn

cnp − (1 − α)cn (1 − α)cn
(1 − α)q≤
(α − q)

≤
q

(2.91)
(α − q)

Setting this probability to at most a 1
2 , and using Equation 2.89 and Equation 2.91

68

we have

3

β < . (2.92)
α

Combining the results of Equation 2.88 and Equation 2.92, we have M < 3/αε2 .

Finally noting that the algorithm ExtractBI makes a total of nM IP queries and M

EQ queries, we bound the query complexity as

n
qIP = O

ε2

1
qEQ = O . (2.93)

ε2

Equation 2.93 is an upper bound of the query complexity of G-L problem. In

the following section, we will demonstrate that these are essentially tight bounds by

giving lower bounds to qIP and qEQ.

2.2 Lower Bounding the Classical G-L Problem

In the previous section we developed a rather complex algorithm that solves the G-L

problem with O(n/ε2) IP queries and O(1/ε2) EQ queries. But is the algorithm

optimal? If we restrict ourselves to classical information, is there some clever scheme

that will solve it with fewer steps? In this section we answer these questions. We

first provide a lower bound on the number of EQ queries required in the case where

we can perform an unlimited number of IP queries. We follow this with a section

where we use classical information theory to determine the minimum number of IP

queries required to solve the problem whenever the number of EQ queries is less than

2n/2 . We conclude that the aforementioned upper bound is indeed a tight bound.

69

2.2.1 Lower Bounding the Number of EQ Queries

We begin by considering the case where we need to determine the minimum number

of EQ queries required regardless of the number of IP queries performed. Here we

can imagine that IP queries are cheap, and we can use them freely in order to limit

the number of EQ queries required. We now propose a theorem.

Theorem 2 For n = 2k and ε = 2·
1
2k , the instance of the G-L problem requires

Ω(1/ε2) EQ queries, regardless of how many IP queries are performed.

The proof is quite complex. In upper-bounding the G-L problem, we discussed

the use of linear block codes. We now look to a specific code, the Hadamard Code,

to represent the situation after we have applied 2n noisy IP queries. For n = 2k, a

nsingle Hadamard code word is hk : {0, 1} → {0, 1}2n defined as hk(a)x = a ·x, where

a, x ∈ {0, 1}n. Thus x is an index into the 2n components of hk(a). For illustrative

purposes, we construct the table of codewords for the n = 2 case in Table 2.2. From

a h1(a)
00 0000
01 0101
10 0011
11 0110

Table 2.2: Hadamard Code Words for the 2-bit case

Table 2.2 we then form and label the matrix H1 of Hadamard code words as ⎤⎡

H1 =

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0

⎥⎥⎥⎥⎥⎥⎥⎦

.
 (2.94)

70

The rows and columns of Hk can thus be expressed as Hk(a, x) = a · x for a, x ∈

{0, 1}2k . Note that the definition of the 4 × 4 matrix H1 given here is slightly

different from the 4 × 4 matrix H⊗2 in Equation 1.24. In fact what we have here

is equivalent to taking the log to base −1 of each of the elements of the usual H⊗2 .

In this section alone, we will use the symbol H to represent this 0-1 version of

H. Each of the codewords in Table 2.2 has a Hamming distance Δ = 2 to each

of the other codewords. It is easily shown that for the m-dimensional Hamming

code, the Hamming distance to all other code words is m/2. A received codeword

having < m/4 errors will thus uniquely decode to the correct codeword. Since the

Hadamard code is formed by the same inner product operation as IP queries and the

G-L problem has noisy IP queries, we are motivated to explore the error correcting

capability of the Hadamard code in our quest to lower bound the EQ queries.

In the G-L problem, we have noisy IP queries. Again for illustrative purposes,

consider the n = 2 case with ε = 1
4 — that is, one of our strings is bad. Here we

mhave 1 = 4 , so we see that we are just over the “edge” of the ability of the code

to uniquely recover a code word. As it turns out, when this code is just passed its

ability to uniquely correct, we see an interesting and self-similar structure that we

will exploit in our proof of Theorem 2. To further understand this, suppose that

some a ∈ {0, 1}2 is encoded as h1(a), which is then sent through a noisy channel

in which one bit is flipped. Note that the process of generating h1(a) would involve

making four IP queries, and we would not know which one of the queries returned

a “bad” result. However, if the resulting string is z1 = [0 0 0 1], then what can be

deduced about what a was? We present the Table 2.3 to answer this question. In the

bottom row we have the received vector z1 = [0 0 0 1], and in the rightmost column

71

we have the vector of Hamming distances Δ1 = [1 1 1 3] between z1 and the rows of

H1. Each component of Δ1 is formed from z1 and each row of H1 as

Δ1,a = (z1,x ⊕ h1(a)x). (2.95)
x∈{0,1}2

Clearly, one can deduce that a ∈ {00, 01, 10}, but nothing else. We note that we now

a h(a) Δ1

00 0000 1
01 0101 1
10 0011 1
11 0110 3
z1 0001

Table 2.3: Hamming Distances, Δ1, to Noisy Code Word z1 = [0001]

only have to perform at most 3 EQ queries instead of the at most 4 EQ queries that

would be required if we had not at first performed our 4 “free” IP queries. Since this

list of possible a strings for the n = 2 and ε = 4
1 case is smaller than the complete list,

we are motivated to determine how this list size grows as a function of n and ε. As

we increase n, we note that the larger Hadamard matrices are constructed in a self

similar manner, and we also construct our codewords in a self-similar manner. To get

a feel for how the list grows, we construct a similar analysis for the n = 4 case, where

6 bits of h2(a) are flipped. If the result is the codeword z2 = [0001 0001 0001 1110],

then there will be 10 possibilities for a. We see this by looking at Table 2.4 where

we note that there are 10 possible code words at Hamming distance 6 away and 6

possible code words at Hamming distance 10 away. To summarize what we see in

Tables 2.3 and 2.4, we have a number of “close” code words and a number of “far”

codewords. We would like to determine formulas for both the number and the actual

Hamming distance of these two types of codewords as functions of ε.

72

a h(a) Δ2

0000 0000 0000 0000 0000 6
0001 0101 0101 0101 0101 6
0010 0011 0011 0011 0011 6
0011 0110 0110 0110 0110 10
0100 0000 1111 0000 1111 6
0101 0101 1010 0101 1010 6
0110 0011 0011 1100 1100 6
0111 0110 0110 1001 1001 10
1000 0000 0000 1111 1111 6
1001 0101 0101 1010 1010 6
1010 0011 0011 1100 1100 6
1011 0110 0110 1001 1001 10
1100 0000 1111 1111 0000 10
1101 0101 1010 1010 0101 10
1110 0011 1100 1100 0011 10
1111 0110 1001 1001 0110 6
z2 0001 0001 0001 1110

Table 2.4: Hamming Distances, Δ2, to Noisy Code Word z2 = [0001 0001 0001 1110]

We begin by defining formulas for two key quantities, which we denote as rk and

sk. As we construct several lemmas that will support the proof of Theorem 2, we

will see the quantities rk and sk appearing in several roles.

Lemma 2.1: If rk and sk satisfy the recurrence

rk+1 = 3rk + sk

sk+1 = 3sk + rk (2.96)

with boundary conditions r0 = 1 and s0 = 0, then rk = (4k + 2k)/2 and sk =

(4k − 2k)/2.

73

Proof: The proof is a simple induction over k. We begin by noting that the

formulas for rk and sk are true for the base case where k = 0 since

r0 = (40 + 20)/2, and

s0 = (40 − 20)/2.

We now assume that rk = (4k + 2k)/2 and sk = (4k − 2k)/2 are true for an arbitrary

case where we set k = k0 and then calculate the formulas for rk0+1 and sk0+1 . Thus

we have

rk0+1	 = 3rk0 + sk0

= 3(4k0 + 2k0)/2 + (4k0 − 2k0)/2

= (4k0+1 + 2k0+1)/2. (2.97)

Similarly we have,

sk0+1	 = 3sk0 + rk0

= 3(4k0 − 2k0)/2 + (4k0 + 2k0)/2

= (4k0+1 − 2k0+1)/2, (2.98)

which completes the proof.

For reference we have written the first several terms of sk and rk in Table 2.5. As an

k sk rk 4k

0 0 1 1
1 1 3 4
2 6 10 16
3 28 36 64

Table 2.5: The first few values of rk = (4k + 2k)/2 and sk = (4k − 2k)/2.

74

aside, it may be of interest to some readers to note that an alternate proof of Lemma

2.1 could be given by expressing the conditions of the Lemma as the following matrix

equation ⎤⎡⎤⎡⎤⎡

3 1
sk+1 sk⎢⎣

⎥⎦
 =
 ⎢⎣

⎥⎦
⎢⎣

⎥⎦

rk+1 1 3 rk ⎤
⎡
 k+1 ⎡ ⎤

3 1 0
 ⎥⎦⎢⎣
⎥⎦

⎢⎣ (2.99)
=
 .

1 3 1

The square matrix in Equation 2.99 can be diagonalized as ⎤⎡⎤⎡⎤⎡⎤⎡
1−√
2

1√
2

√−1 1√
2 2

3 1
 2 0
 ⎥⎦

⎢⎣
 =
⎢⎣

⎢⎣
⎥⎦

⎢⎣
⎥⎦

⎥⎦
 (2.100)
.

√√1 1

2 2
√√1 1

2 2
1 3
 0 4

Finally solving for sk and rk, we have ⎤⎡⎤⎡ k ⎡ ⎤⎡⎤
(4k−2k)3 1 0sk 2⎢⎣

⎥⎦
 =
 ⎥⎦
⎢⎣

⎥⎦
⎢⎣ =
 ⎢⎣

⎥⎦
 (2.101)
.

(4k+2k)rk 1 3 1 2

In Tables 2.3 and 2.4, we introduced the noisy code words z1 and z2. We now

wish to define a recurrence formula for zk and to establish that the quantities rk and

sk represent the numbers of zeroes and ones respectively in the codeword zk.

Lemma 2.2: If the noisy codeword zk ∈ {0, 1}4k satisfies the recurrence

zk+1 = zkzkzkzk, (2.102)

with boundary condition z0 = 0, then there are rk = (4k + 2k)/2 zeroes in zk and

sk = (4k − 2k)/2 ones .

Proof: For the base case k = 0 it is clear since for z0 = 0, we have r0 = 1 and

s0 = 0. We assume that the statement of the lemma holds for a particular k, then

75

by the recurrence given in Equation 2.102, zk+1 consists of three copies of zk each

of which contains rk zeroes and sk ones and one copy of zk which contains sk zeroes

and rk ones. Thus we see that the numbers of zeroes and the numbers of ones satisfy

the same recursion formulas that appear in Lemma 2.1. By Lemma 2.1, we conclude

that there are rk = (4k + 2k)/2 zeroes in zk and sk = (4k − 2k)/2 ones in zk as

required.

The numbers rk and sk will now be shown to be relevant both to the number

of potential solutions that are “close” to Hadamard code words and to the actual

Hamming distance of these potential solutions. With reference to Table 2.5, it is

interesting to note that s1, r1 and s2, r2 appear as both the “close” and the “far”

Hamming distances, in the vectors Δ1 and Δ2 in Tables 2.3 and 2.4. The numbers

also appear as the quantities of these terms in a complementary manner. We will

exploit these facts in forming the central Lemma that we will use in our proof of

Theorem 2.

Lemma 2.3: There are (4k +2k)/2 possible values of h(a) ∈ {0, 1}4k with Hamming

distance (4k − 2k)/2 from zk and (4k − 2k)/2 possible values of h(a) with Hamming

distance (4k + 2k)/2 from zk.

Proof: We note the interesting relationship between Hamming distances, Δ1 and

Δ2 and the code words z1 and z2 in Tables 2.3 and 2.4 respectively. We see that Δ1

can be formed by replacing each zero in z1 by s1 and each one in z1 by r1. We also

see that Δ2 is formed similarly by replacing each zero in z2 by s2 and each one in z2

by r2. We thus define Δj
k as zk with each zero replaced by sj and each one replaced

by rj . Its complement Δ
j

k is defined as zk with each zero replaced by rj and each

one replaced by sj . For example with this definition, we can write Δ1
1 = [1 1 1 3],

76

Δ2
1 = [6 6 6 10] and Δ

2
2 = [10 10 10 6 10 10 10 6 10 10 10 6 6 6 6 10]. We next define the

quantity Γk(w,M), which is a 4k-element vector produced from the arguments w, a

string of length 4k, and M a 4k × 4k matrix. The entry in component x of this vector

is the Hamming distance between w and row x of M . Note that ⎡ ⎤
4k 4k 4k ⎣ ⎦Γk(zk, Hk) = zk,j ⊕ Hk(1, j), zk,j ⊕ Hk(2, j), . . . , zk,j ⊕ Hk(4k, j) ,

j=1 j=1 j=1

(2.103)

where Γk(zk, Hk) is a 4k vector consisting of the 4k Hamming distances between zk

and each of the 4k rows of Hk.

Our strategy for proving Lemma 2.3 is as follows. We know that by the proof of

Lemma 2.2 and by the definition of Δk
k, it consists of rk entries having value sk and

sk entries having value rk. It is sufficient to show that these entries are Hamming

distances. Thus, establishing that the equality

Γk(zk, Hk) = Δk
k (2.104)

holds is sufficient to complete the proof. We prove this equality by induction over

k. For the base case, we specifically choose k = 1 rather that k = 0 in order to

explicitly write out a sample calculation of Equation 2.103. Thus using Equation

77

2.103 and our definitions of z1 and H1 we note that ⎤⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 ⊕ H1(1, 1) + 0 ⊕ H1(1, 2) + 0 ⊕ H1(1, 3) + 1 ⊕ H1(1, 4)

0 ⊕ H1(2, 1) + 0 ⊕ H1(2, 2) + 0 ⊕ H1(2, 3) + 1 ⊕ H1(2, 4)

0 ⊕ H1(3, 1) + 0 ⊕ H1(3, 2) + 0 ⊕ H1(3, 3) + 1 ⊕ H1(3, 4)

0 ⊕ H1(4, 1) + 0 ⊕ H1(4, 2) + 0 ⊕ H1(4, 3) + 1 ⊕ H1(4, 4)

⎥⎥⎥⎥⎥⎥⎥⎦

Γ1(z1, H1) =

⎤⎡⎤⎡
1 s1 ⎢⎢⎢⎢⎢⎢⎢⎣

1

1

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎣

s1

s1

⎥⎥⎥⎥⎥⎥⎥⎦

= Δ1
1. (2.105)=

3 r1

Similarly, we have ⎤⎡⎤⎡
3 r1 ⎢⎢⎢⎢⎢⎢⎢⎣

3

3

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎣

r1

r1

⎥⎥⎥⎥⎥⎥⎥⎦

= Δ
1
1. (2.106)
Γ1(z1, H1) = Γ1(z1, H1) =

1 s1

The need for this latter equation will become apparent during the inductive step.

It is a little more involved to prove the general case, which is proven by induction

on k0. We first assume that Γk(zk, Hk) = Δk
k for all k up to k0. In the inductive step,

we show that Γk0+1(zk0+1, Hk0+1) = Δk0+1 Before proceeding to the inductive step, k0+1.

we need to make some further definitions. We have already defined zk+1 in Equation

2.102, we now give a recursive expression for Hk+1 in terms of Hk in Equation 2.107.

We note that Hk+1 has four rows each containing either four copies of Hk (the first

row), or two copies of Hk and Hk, in different column positions of the other three

78

rows. ⎤⎡

Hk+1 =

⎢⎢⎢⎢⎢⎢⎢⎣

Hk Hk Hk Hk

Hk Hk Hk Hk

Hk Hk Hk Hk

Hk Hk Hk Hk

⎥⎥⎥⎥⎥⎥⎥⎦

.
 (2.107)

Since zk+1 also has four elements, formed from three copies of zk and one copy of

zk, we see that there are four separate Hamming distance vectors that we have to

account for. By inspection of Equation 2.103, we can reduce these four cases to the

following two cases:

Γk(zk, Hk) = Γk(zk, Hk)

Γk(zk, Hk) = Γk(zk, Hk) = Γk(zk, Hk). (2.108)

We pictorially represent the construction of all four cases in Figure 2.12.

Γk(zk, Hk) = Δk
k Γk(zk, Hk) = Δ

k
k

Hk
Δk

k Hk
Δ

k
k

zk zk

Γk(zk, Hk) = Δ
k
k Γk(zk, Hk) = Δk

k

Hk
Δ

k
k Hk

Δk
k

zk zk

Figure 2.12: The columns Δk
k and Δ

k
k represent vectors of Hamming distances be

tween the noisy codeword zk, its complement zk and the matrix of Hadamard code-
words Hk and its complement Hk.

79

We are now ready to make the inductive step, which will actually require two steps

— one for the Hamming distances and one for the quantities of these distances. We

assume that Γk0 (zk0 , Hk0) = Δk0 and Γk0 (zk0 , Hk0) = Δ
k0 are true for some k0. Note k0 k0

that we have shown both of these to be true for the base case in Equations 2.105

and 2.106. We now begin the first part of the inductive step. Using Equation 2.108

and the definitions of zk+1 and Hk+1, we write an expression for the first 4k0 entries

of Γk0+1(zk0+1, Hk0+1), which is

+ Δ
k0 = Δk0+13Γk0 (zk0 , Hk0) + Γk(zk0 , Hk0) = 3Δk0 . (2.109)k0 k0 k0

This equation has been formed from the four constituents of zk+1 and the four con

Γk+1(zk+1, Hk+1) = Δk+1
k+1

Hk

Hk

Hk

Hk

zk

Hk Hk

Hk Hk

Hk Hk

Hk Hk

zk zk

zk+1

Hk

Hk

Hk

Hk

zk

Δk
k

Δk
k

Δk
k

Δk
k

+Δk
k

+ Δ
k
k

+Δk
k

+ Δ
k
k

+Δk
k

+Δk
k

+ Δ
k
k

+ Δ
k
k

+ Δ
k
k

+Δk
k

+Δk
k

+ Δ
k
k

=Δk+1
k

=Δk+1
k

=Δk+1
k

= Δ
k+1
k

= Δk+1
k+1

Figure 2.13: The column Δk+1
k+1 represents the vector of Hamming distances between

the noisy codeword zk+1 and the matrix of Hadamard codewords Hk. It is formed
by summing and concatenating the columns Δk

k and Δ
k

k formed in Figure 2.12.

stituents of the first row of Hk+1 as depicted in Figure 2.13. The last equality of

Equation 2.109 is true since each of the Hamming distances rk0 and sk0 , which are

the constituents of Δk0 and Δ
k0 , are combined here in a manner consistent with the k0 k0

80

recursion given in Equation 2.96. This results in the Hamming distances rk0+1 and

sk0+1 consistent with our definition of Δk
k
0
0

+1 . With reference to Figure 2.13 we see

that the elements of Equation 2.109 also form the second 4k0 entries and the third

4k0 entries of Γk0+1(zk0+1, Hk0+1). The final 4k0 entries of Γk0+1(zk0+1, Hk0+1) are

= Δ
k0+1

Γk0 (zk0 , Hk0) + 3Γk(zk0 , Hk0) = Δk
k
0
0
+ 3Δ

k0
. (2.110)k0 k0

We can now take the second part of the inductive step, where we want to establish

the quantities of Hamming distances. In correspondence with the four rows of Hk0+1,

the first, second and third 4k0 entries of Δk0+1 are as per Equation 2.109 and the k0+1

fourth 4k0 entries are as per Equation 2.110. We can thus write the expression ⎤⎡

Γk0+1(zk0+1, Hk0+1) =

⎢⎢⎢⎢⎢⎢⎢⎣

3Γk0 (zk0 , Hk0) + Γk(zk0 , Hk0)

3Γk0 (zk0 , Hk0) + Γk(zk0 , Hk0)
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.111)

3Γk0 (zk0 , Hk0) + Γk(zk0 , Hk0)

Γk0 (zk0 , Hk0) + 3Γk(zk0 , Hk0)

in Δk0+1 and Δ
k0+1

k0 k0
Since the quantities of sk0+1 and rk0+1 are now combined in

a manner consistent with the recursion given in Equation 2.102, we can express

Equation 2.111 as ⎤⎡

Γk0+1(zk0+1, Hk0+1) =

⎢⎢⎢⎢⎢⎢⎢⎣

Δk0+1
k0

Δk0+1
k0

Δk0+1
k0

Δ
k0+1
k0

⎥⎥⎥⎥⎥⎥⎥⎦

= Δk0+1
k0+1, (2.112)

thus completing the inductive proof of Equation 2.104.

We now use the definition of the vector Δk
k to complete the proof of Lemma 2.3.

We have already established that there are rk zeroes and sk ones in zk in our proof

81

2

of Lemma 2.2. In our definition of Δk
k, we replaced all the zeroes of zk with sk and

all the ones of zk with rk resulting in a vector consisting of rk values of Hamming

distance sk and sk values of Hamming distance rk. Thus there are (4k +2k)/2 possible

values of h(a) ∈ {0, 1}4k with Hamming distance (4k −2k)/2 from zk and (4k −2k)/2

possible values of h(a) with Hamming distance (4k + 2k)/2 from zk as required.

We are now ready to use the results of the proofs of Lemmas 2.1, 2.2 and 2.3 to

prove Theorem 2.

Proof of Theorem 2: We define the IP oracle in terms of the noisy codeword zk as

IP (x) = zk,x, where zk,x denotes the bit of zk in component x. We want to establish

that IP (x) = zk,x is correct on ()+εk2
1 ·
4k inputs and incorrect on (1

2−εk) ·4k inputs.

We show this by noting that IP (x) is correct for the “close” Hamming distances sk.

Thus we have

sk = (4k − 2k)/2

1 −
 1
2·2k · 4k

− εk) · 4k , (2.113)

=
 2

1
2= (

where we have used εk = 1/(2 ·2k) to establish this equality. We have already shown

in the proof of Lemma 2.3 that the quantity of vectors having Hamming distance sk

is rk. Since sk + rk = 4k, we conclude that IP (x) is correct on rk = (1
2 + εk) · 4k

inputs as required. Similarly we conclude that IP (x) is incorrect on sk = (1−εk) ·4k

inputs.

82

The quantity of vectors rk having Hamming distance sk constitutes the size of

the list we have to search using EQ queries. We thus express rk in terms of εk as

rk	 = (1
2 + εk) · 4k

= (1 1
2 + εk) · 4ε2

k

1 1
= + .	 (2.114)

(8ε2
k) (4εk)

This means that, for n = 2k and εk = 1/(2 · 2k), if a is encoded into h(a) and if

there are fraction of (1
2 − εk) errors, which result in the string zk, then there will

2k	 4kbe a number of values of a ∈ {0, 1} that, when encoded as h(a) ∈ {0, 1} , are

consistent with zk. The list of consistent values of a is of size 1 + 1 , which is (8ε2) (4εk)
k

Ω(1/ε2) as required.

The preceding proof settles the case where n = 2k and ε = 1/(2 · 2k) (which

means that n and ε satisfy the relationship ε = 1/(2 ·2n/2)). We claim that as long as

ε ≥ 1/(2·2n/2), the Ω(1/ε2) EQ query lower bound holds. A rough sketch of the claim

follows. We define a slightly modified noisy code word zk,1, where in the last step

of our recursive definition of zk we substitute zk+1 = zkzkzkzk for zk+1 = zkzkzkzk.

Given this substitution, we obtain the quantity of vectors rk,1 = (4k−1 + 2k−1)/2

having “close” Hamming distance sk,1 = (4k−1 − 2k−1)/2 to zk,1 for a slightly larger

εk,1 = 2/(2 · 2k). We note that rk,1 is still of size Ω(1/ε2
k,1). If we define zk,m as the

noisy codeword where we continue this replacement of zk+1 = zkzkzkzk for the last

m steps of our construction (and still use Equation 2.102 for the first k −m steps) ,

our list of “close” Hamming distance vectors grows like

rk,m = (4k−m + 2k−m)/2,	 (2.115)

83

while the advantage grows like

εk,m = 2m/(2 · 2k) = 1/(2 · 2k−m). (2.116)

Inserting this expression into Equation 2.115, we have

rk,m =
1

4 · ε2
k,m

+
1

2 · εk,m
= Ω ε2

k,m , (2.117)

which completes the sketch. We will next use an information theoretical approach

to lower bound the number of IP queries.

2.2.2 Lower Bounding the Number of IP Queries

We show that any classical algorithm solving the G-L problem with constant prob

ability must make Ω(n/ε2) IP queries (for a reasonable range of values of ε). This

proof was first presented in [1].

Theorem 3 Any classical probabilistic algorithm solving the G-L problem with suc

cess probability δ > 0 requires either more than 2n/2 EQ queries or Ω(δn/ε2) IP
√
n2−n/3queries when ε ≥ .

Proof: The proof uses classical information theory, bounding the conditional mu

tual information about an unknown string that is revealed by each IP query, in

conjunction with an analysis of the effect of EQ queries.

It is useful to consider an algorithm to be successful on a particular input if and

only if it performs an EQ query whose output is 1 (at which point the value of a has

been determined).

We begin by showing that it is sufficient to consider algorithms (formally, deci

sion trees) that are in a convenient simple form. First, by a basic game-theoretic

84

argument [35], it suffices to consider deterministic algorithms, where their input

data—embodied in the black-boxes for IP and EQ queries—may be generated in

a probabilistic manner. Second, it can be assumed that all EQ queries occur only

after all IP queries have been completed. To see why this is so, start with an algo

rithm that interleaves IP and EQ queries, and modify it as follows. Whenever an

EQ query occurs before the end of the IP queries, the modified algorithm stores the

value of the input to the query and proceeds as if the result were 0. Then, at the end

of the IP queries, each such deferred EQ query is applied. The modified algorithm

will behave consistently whenever the actual output of a deferred EQ query is 0, and

also it will perform (albeit later) any EQ query where the output is 1. Henceforth,

we consider only algorithms with the above simplifications.

Now we describe a probabilistic procedure for constructing the black boxes that

nperform IP and EQ queries. First, a ∈ {0, 1} is chosen randomly according to the

nuniform distribution. Then a set S ⊆ {0, 1} is chosen randomly, uniformly subject

to the condition that |S| = (1 + ε)2n (assuming that ε2n is an integer). Then 2 ⎧ ⎪⎨

⎪⎩

a · x if x ∈ S

IP(x) = (2.118)

a · x if x ∈ S

and
 ⎧ ⎪⎨

⎪⎩

1 if x = a

EQ(x) = (2.119)

0 if x = a.

Consider an algorithm that makes m IP queries. If m ≥ δn/ε2 then the theorem

is proven. Otherwise, since ε ≥ √
n2−n/3, we have

δn ≤ δ22n/3m < . (2.120)
ε2

85

We proceed by determining the amount of information about a that is conveyed

by the application of m IP queries. Let A be the {0, 1}n-valued random variable

corresponding to the probabilistic choice of a ∈ {0, 1}n, and let Y1, Y2, . . . , Ym be the

{0, 1}-valued random variables corresponding to the respective outputs of the m IP

queries. Let H be the Shannon entropy function (see, e.g., [13]). Then, for each

i ∈ {1, 2, . . . ,m},

H(A|Y1, Y2, . . . , Yi) = H(A|Y1, . . . , Yi−1)−H(Yi|Y1, . . . , Yi−1)+H(Yi|A, Y1, . . . , Yi−1).

(2.121)

Combining the above equations yields

m

H(A|Y1, Y2, . . . , Ym) = H(A) + (H(Yi|A, Y1, . . . , Yi−1) −H(Yi|Y1, . . . , Yi−1)) .
i=1

(2.122)

(See Equation 1.11 and Equation 1.12 for a detailed derivation of this expression.)

We shall now bound each term on the right side of Eq. 2.122. Since the a priori

distribution of A is uniform, H(A) = n. Also, since the entropy of a single bit is at

most 1, H(Yi|Y1, . . . , Yi−1) ≤ 1 for all i ∈ {1, 2, . . . ,m}. Next, we show that, for all

i ∈ {1, 2, . . . ,m},

H(Yi|A, Y1, . . . , Yi−1) ≥ 1 − (16/ ln 2)ε2 . (2.123)

To establish Eq. 2.123, it is useful to view the set S as being generated during the

execution of the IP queries as follows. Initially S is empty, and when the first IP

query is performed on some input x, x is placed in S with probability 1
2 + ε and in

S with probability 1
2 − ε. The inputs to subsequent IP queries are also placed in

either S or S with an appropriate probability, which depends on how the inputs to

86

previous queries are balanced between S and S. After the execution of the first i−1

queries, the input to the ith query is placed in S with probability

(1 + ε)2n − j2 (2.124)
2n − (i− 1)

,

where j ∈ {0, 1, . . . , i−1} is the number of previous inputs to queries that have been

placed in S. Using Eq. 2.120, the above probability can be shown to lie between

1
2 − 2ε and 1

2 + 2ε. It follows that

H(Yi|A, Y1, . . . , Yi−1) ≥ H(1 + 2ε, 1 − 2ε)2 2

= −(1
2 + 2ε) log(2

1 + 2ε) − (1
2 − 2ε) log(2

1 − 2ε)

≥ 1 − (16/ ln 2)ε2 , (2.125)

where we have used Equation 1.3 in the second inequality. This establishes Eq. 2.123.

Now, substituting these inequalities into Eq. 2.122, we obtain

H(A|Y1, . . . , Ym) ≥ n− (16/ ln 2)mε2 . (2.126)

Intuitively, the IP queries yield information about the value of A in terms of their

effect on the probability distribution of A conditioned on the values of Y1, . . . , Ym.

Eq. 2.126 lower-bounds the decrease in entropy that is possible.

From the conditions of the theorem, it can be assumed that, after the IP queries,

2n/2 EQ queries are performed. The algorithm succeeds with probability at least δ

nonly if there exist 2n/2 elements of {0, 1} whose total probability (conditioned on

Y1, . . . , Ym) is at least δ. In Equation 1.15, we established that the maximum entropy

that a distribution with this property can have is for a bi-level distribution, where

2n/2 n − 2n/2elements of {0, 1} each have probability δ/2n/2 and 2n elements each

 � �� � � �� �

87

have probability (1 − δ)/(2n − 2n/2). Therefore,

δ δ 1−δ 1−δH(A|Y1, . . . , Ym) ≤ H 2n/2 , . . . , , 2n−2n/2 , . . . ,2n/2 2n−2n/2

2n/2 2n−2n/2

= H(δ, 1 − δ) + δ log(2n/2) + (1 − δ) log(2n − 2n/2)

< 1 + δn/2 + (1 − δ)n

= n − δn/2 + 1. (2.127)

Combining Eq. 2.126 with Eq. 2.127, yields m > (ln 2)(δn − 2)/(32ε2) ∈ Ω(δn/ε2),

as required.

In this chapter, we have established that the classical upper bound to the G-L

problem requires O n IP queries and O 1 EQ queries. We have also established
ε2 ε2

that any classical algorithm requires Ω 1 EQ queries and Ω n IP queries (under
ε2 ε2

reasonable conditions of various parameters). We conclude that our bounds are

indeed tight and that we are justified in stating that the total number of IP and

EQ queries required to solve the classical G-L problem are

qIP = Θ n/ε2 ,

qEQ = Θ 1/ε2 . (2.128)

In the next chapter, we study and bound the query complexity of the quantum G-L

problem.

Chapter 3 A Quantum Goldreich-Levin Theorem

3.0 Introduction

The classical G-L problem is based upon an inner product oracle. The Bernstein-

Vazirani circuit also solves an inner product query problem although its discovery

was unrelated to the analysis of hard predicates. In this chapter, we first analyze

the query complexity of the Bernstein-Vazirani circuit. We compare the results with

that of the noiseless classical G-L problem. We follow this with a detailed analysis

of the same circuit but with the introduction of noise and show how this is readily

interpreted as an upper bound of the general quantum G-L problem. The chapter

concludes with a proof of the lower bound of query complexity of the quantum G-L

problem.

3.1 The Bernstein-Vazirani Problem

The circuit presented by Bernstein-Vazirani in their 1993 paper [4] is an elegant

example of a quantum circuit whose query complexity represents a polynomial speed

up over its classical counterpart. An n+1 qubit state is presented to the input of the

circuit. At the output of the circuit, the first n qubits are in the state |a). Measuring

this state constitutes a single IP query and produces the bits of the unknown string a.

The Bernstein-Vazirani circuit is presented in Figure 3.14. We will now demonstrate

that the bits of a are recoverable in a single query by proceeding with a step-by-step

analysis of the circuit using the numbered vertical lines in Figure 3.14 as reference.

88

� �

89

H
IP(x)

H H

H H

H

HH

��

a10

0
 a2

a
n
0

1 1

1 2 3 4

Figure 3.14: The Bernstein-Vazirani Circuit

1. The input state is the n + 1 qubit basis state

|Ψ1) = |00...0)|1).

2. After the application of the n + 1 Hadamard transformations, we obtain an

equal superposition of all the basis states ⎛ ⎞
1 1 |Ψ2) = √ ⎝ |x)⎠ √ (|0) − |1)) .
2n 2

x∈{0,1}n

We have used H⊗n|z) = √1
2n x∈{0,1}n (−1)z·x|x) and that the input state is

|z) = |00 . . . 0) to express this result.

90

3. With IP (x) = a · x, we modulo-two sum the result on to the bottom qubit to

achieve the following result ⎛ ⎞
1 1 ⎝ ⎠|Ψ3) = √ (−1)a·x|x) √ (|0) − |1)) .
2n 2

x∈{0,1}n

This results from what is sometimes referred to as phase kickback. To appreciate

this interesting effect, we note that a · x can have the value 0 or 1. For a · x =

1, we have |0 ⊕ 1) − |1 ⊕ 1) = (−1)1(|0) − |1)), and for a · x = 0, we have

|0 ⊕ 0) − |1 ⊕ 0) = (−1)0(|0) − |1)). Since phase can be picked up for each of

the 2n values of x, we bring the phase factor (−1)a·x into the sum.

4. Writing down the effect of the application of the final n + 1 Hadamard trans

formations is a little more involved. We begin by writing down ⎛ ⎞

|Ψ4) = H⊗n ⎝ 1 √
2n ⎛

x∈{0,1}n

(−1)a·x|x)⎠ |1)
⎞

=
1
2n ⎛

⎝

x∈{0,1}n

(−1)a·x

w∈{0,1}n

(−1)x·w|w)⎠ |1)
⎛ ⎞ ⎞

= ⎝

w∈{0,1}n

⎝ 1
2n

x∈{0,1}n

(−1)x·(a⊕w)⎠ |w)⎠ |1)

= |a)|1).

The last step is achieved by noting that ⎧ ⎪ ⎨ 1 if a = w1
(−1)x·(a⊕w) = , ⎩ 2n

x∈{0,1}n
⎪ 0 if a = w

since a ⊕ w = 0 if and only if a = w.

91

We conclude that measuring the first n qubits of the B-V circuit gives us the n

bits of the unknown string a with only one query. This compares with n queries in

the noiseless classical case where the advantage, ε = 2
1 . This polynomial speed up

of the noiseless quantum case over the noiseless classical case motivates us to study

how the B-V circuit can be adapted to simulate noisy quantum IP queries. We will

now present an upper-bound to the quantum G-L problem.

3.2	 Upper-Bounding the Quantum Goldreich-Levin Theo

rem

In this section we adapt the B-V circuit to perform a noisy quantum inner prod

uct query. Here we think of “noisy” as pertaining to our definition of a unitary

transformation that implements an imperfect quantum inner product theory. This

is a different usage of the term “noisy” than the common usage, which pertains to

quantum bit flips or phase flips to which error-correcting codes may be applied [27,

Chapter 10]. In this section, we first provide definitions of IP and EQ queries in

the quantum case in terms of unitary operations. We do this in a manner that is

sufficiently general so that, whenever an implementation of a more general IP or EQ

query is given as a general quantum circuit consisting of elementary quantum gates

and measurements, a unitary query corresponding to our definition can be efficiently

constructed from it.

Definition 8 A quantum inner product query (with bias ε) is a unitary transforma

tion UIP on n + m qubits, or its inverse U †
IP, such that UIP satisfies the following two

properties:

92

n1. If x ∈ {0, 1} is chosen randomly according to the uniform distribution and

the last qubit of UIP|x)|0m) is measured, yielding the value w ∈ {0, 1}, then

Pr[w = a · x] ≥
 1
2 + ε.

n2. For any x ∈ {0, 1} and y ∈ {0, 1}m, the state of the first n qubits of UIP|x)|y)
is |x).

The first property captures the fact that, taking a query to be a suitable application

of UIP followed by a measurement of the last qubit, Eq. 2.51 is satisfied. Any imple

mentation of a quantum circuit that produces an output that is a ·x with probability

on average
 1
2 + ε can be modified to consist of a unitary stage UIP followed by a

measurement of one qubit. The second property is for technical convenience, and

any unitary operation without this property can be converted to one that has this

property, by first producing a copy of the classical basis state |x). Moreover, given

a circuit implementing UIP, it is easy to construct a circuit implementing U †
IP.

Definition 9 A quantum equivalence query is the unitary operation UEQ such that,

nfor all x ∈ {0, 1} and b ∈ {0, 1},

UEQ|x)|b) =

⎧ ⎪⎨

⎪⎩

|x)|b) if x = a
(3.129)

|x)|b) if x = a,

where b = ¬b.

nFor the quantum G-L problem, a ∈ {0, 1} and information about a is available

only from quantum IP and EQ queries and the goal is to determine a. We can now

state and prove the result about quantum algorithms for the G-L problem (which is

similar to a result in [12] in a different context).

93

Theorem 4 There exists a quantum algorithm solving the G-L problem with con

stant probability using O(1/ε) UIP, U †
IP and UEQ queries in total. Also, the number

of auxiliary qubit operations used by the procedure is O(n/ε).

The proof is by a combination of two techniques: the algorithm in [4] for the

exact case (i.e., when ε = 1
2), which is shown to be adaptable to “noisy” data in [12]

(with a slightly different noise model than the one that arises here); and amplitude

amplification [8, 22, 9].

Since UIP applied to |x)|y) has no net effect on its first n input qubits, for each

x ∈ {0, 1}n ,

UIP|x)|0m) = |x) (αx|vx)|a · x) + βx|wx)|a · x)) , (3.130)

where αx and βx are nonnegative real numbers, and |vx) and |wx) are m − 1 qubit

quantum states. If the last qubit of UIP|x)|0m) is measured then the result is: a · x

with probability αx
2 , and a · x with probability βx

2 . Therefore, since, for a random

uniformly distributed x ∈ {0, 1}n, measuring the last qubit of UIP|x)|0m) yields a · x

with probability at least 1
2 + ε, it follows that

1 α2 1≥ + ε (3.131)2n x 2
x∈{0,1}n

2
1
n βx

2 ≤ 1
2 − ε. (3.132)

x∈{0,1}n

Now, consider the quantum circuit C in Figure 3.15. We will begin by showing

that (a, 0m , 1|C|0n , 0m , 0) is real-valued and

(a, 0m , 1|C|0n , 0m , 0) ≥ 2ε, (3.133)

which intuitively can be viewed as an indication of the progress that C makes towards

finding the string a. To establish Eq. 3.133, note that the operation C can be

94

n qubits

m qubits

⎧⎨
⎩

⎧⎨
⎩

X

H

H

H

H

H

H

UIP U †
IP

Z

�

Figure 3.15: Quantum circuit C.

decomposed into the following five operations:

1. Operation C1: Apply H to each of the first n qubits, and a NOT operation to

the last qubit.

2. Operation C2: Apply UIP to the first n + m qubits.

3. Operation C3: Apply a controlled-Z to the last two qubits.

†4. Operation C4: Apply UIP to the first n + m qubits.

5. Operation C5: Apply H to each of the first n qubits.

We note that since (a, 0m , 1|C|0n , 0m , 0) = (a, 0m , 1|C5C4C3C2C1|0n , 0m , 0), the quan

tity (a, 0m , 1|C|0n , 0m , 0) is the inner product between state C3C2C1|0n)|0m)|0) and

95

state C4
†C5

†|a)|0m)|1). These states are

C3C2C1|0n)|0m)|0) = C3C2 √1
2n

x∈{0,1}n

|x)|0m)|1)

= C3 √1
2n

x∈{0,1}n

|x) (αx|vx)|a · x) + βx|wx)|a · x)) |1)

= √1
2n

x∈{0,1}n

|x) αx(−1)a·x|vx)|a · x) + βx(−1)a·x|wx)|a · x) |1)

= √1
2n

x∈{0,1}n

(−1)a·x|x) (αx|vx)|a · x) − βx|wx)|a · x)) |1),

(3.134)

and

C†
4 C

†
5|a)|0m)|1) = C†

4
√1

2n

x∈{0,1}n

(−1)a·x|x)|0m)|1)

= √1
2n

x∈{0,1}n

(−1)a·x|x) (αx|vx)|a · x) + βx|wx)|a · x)) |1).

(3.135)

It follows from Eq. 3.134 and Eq. 3.135 (and using the fact that (x|y) = 0 whenever

x = y) that

(a, 0m , 1|C|0n , 0m , 0) = 1 α2 − β2
2n x x

x∈{0,1}n

≥ (2
1 + ε) − (2

1 − ε)

= 2ε, (3.136)

which establishes Eq. 3.133.

Note that Eq. 3.133 implies that, if C is executed on input |0n)|0m)|0) (=

|0n , 0m , 0)) and the result is measured in the classical basis, then the first n bits

of the result will be a with probability at least |(a, 0m , 1|C|0n , 0m , 0)|2 ≥ 4ε2 . There

fore, if this process is repeated O(1/ε2) times, checking each result with an EQ query,

96

then a will be found with constant probability. A more efficient way of finding the

value of a is to use amplitude amplification [8, 22, 9] using the transformation C and

its inverse C† in combination with EQ queries. The procedure is to compute for an

appropriate value of k

(−CU0C
†UEQ)kC|0n , 0m , 0)	 (3.137)

(where U0 = I − 2|0n , 0m , 0)(0n , 0m , 0|), measure the state, and perform an EQ query

on the result. Such a computation consists of O(k) UIP, U †
IP, and UEQ queries. Since

the number of solutions is known to be one, we set k = π/(8ε) as discussed in

our study of Grover’s algorithm in section 1.2.4. As shown in [9], the expected total

number of executions of C, C†, and UEQ until a successful EQ query occurs is O(1/ε).

†This implies that O(1/ε) UIP, UIP, and UEQ are sufficient to succeed with constant

probability.

3.3	 Lower Bounding the Quantum Goldreich-Levin Theo

rem

In the previous section we developed a straightforward quantum algorithm that solves

the quantum G-L problem with O(1/ε) IP queries and O(1/ε) EQ queries. In this

section we firstly determine the quantum lower bound on the number of EQ queries

required by using both the result of the classical EQ lower bound and by evoking

the well known lower bound on quantum search algorithms. We follow this with a

section where we modify the proof of optimality of the quantum search algorithm in

order to develop the lower bound on the number of IP queries. We conclude that

the aforementioned upper bound is essentially a tight bound.

97

3.3.1 Equivalence of EQ Queries to Oracle Marking Queries

In the proof of the optimality of the search algorithm given in [2] and elsewhere,

we are allowed to apply the marking oracle Oa which gives a phase shift of −1 to

the solution |a) and leaves all other states invariant. This gate is interleaved with

unitary operations U1, U2, . . . , Uk in constructing the proof. The optimality proof is

directly applicable to the problem of lower bounding the number of EQ queries and

with slight modification can be made applicable to the problem of lower bounding

the number of IP queries. In both cases we need to show that the Oa oracle can be

used to simulate the EQ oracle. We begin by noting that the EQ oracle given by

Equation 3.129 can be written as

UEQ|x)|b) = |x)|b⊕ δx,a), (3.138)

which can also be nicely represented as the unitary matrix ⎤⎡

UEQ =

⎢⎢⎢⎢⎢⎢⎢⎣

[X]δx,a 0 · · · 0

[X]δx,a0 · · · 0
.

[X]δx,a0 0

⎥⎥⎥⎥⎥⎥⎥⎦

.
 (3.139)

Assuming that the marking oracle only marks the unique state |a), this oracle can

be written as

Oa|x) = (−1)δx,a |x). (3.140)

We define the controlled marking oracle as

cont-Oa|x)|b) = (−1)(δx,a)·b|x)|b), (3.141)

the circuit for which is presented in Figure 3.16. The cont-Oa operator can also be

98

. .. (−1)(δx,aOa|x) .. .)·b|x)

_|b) |b)

Figure 3.16: Circuit implementation of cont-Oa|x)|b)

nicely represented as the unitary matrix ⎤⎡
[Z]δx,a 0 · · · 0

0 [Z]δx,a · · · 0
...

...

0 0 [Z]δx,a

⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎦

.
cont-Oa = (3.142)

Multiplying Equation 3.142 on both sides by I ⊗H we have
 ⎤⎡

UEQ =

⎢⎢⎢⎢⎢⎢⎢⎣

H[Z]δx,a H 0 · · · 0

0 H[Z]δx,a H · · · 0
...

...

0 0 H[Z]δx,a H

⎥⎥⎥⎥⎥⎥⎥⎦

(3.143)
,

where we have used the relation X = HZH to establish the equality with UEQ.

We present a circuit that is equivalent to Equation 3.138 in Figure 3.17. We thus

conclude that we can directly simulate Oa queries with EQ queries and vice versa.

3.3.2 Lower Bounding the Number of EQ Queries

In Section 2.2.1 in our study of the classical case we showed that after performing an

unlimited number of IP queries, we still have to search a list of length Ω(1/ε2) using

99

_

|x) ...
... |x)

|b) |b ⊕ δx,a)

Oa

H H

Figure 3.17: Circuit equivalent to UEQ|x)|b) constructed from a cont-Oa gate

EQ queries. In Section 1.2.3 in our discussion of quantum circuits, we showed that
√

Grover’s quantum search algorithm requires O N operations to search a list of

N elements. It turns out that this upper bound is optimal, and one of the proofs is

based on what is sometimes called the Hybrid Argument. A proof is not presented

here, but the reader is directed to [27, pages 269-275] for an interesting discussion

and proof of the optimality of the quantum search algorithm. Thus we can conclude
√

that a circuit searching a list of N elements requires Ω N operations. We now

propose a theorem that lower bounds the number of quantum EQ queries, and give

a proof sketch that makes use of the preceding.

Theorem 5 For ε ≥ 1/(2 · 2n/2), the instance of the quantum G-L problem with

bias parameter ε requires Ω(1/ε) EQ queries regardless of how many IP queries are

performed.

Proof sketch: If we were to apply an unlimited number of noisy quantum IP

queries, we would still need to apply the quantum EQ oracle a number of times in

order to decide on the correct answer. As we demonstrated in Section 2.2, Theo

rem 2, there are Ω(1/ε2) possible answers after applying an unlimited number of

100

IP queries. Intuitively this means that we must search a subspace whose size is

Ω(1/ε2). Accordingly by the optimality of the quantum search algorithm, we must

use Ω(1/ε) EQ queries. Thus the upper bound on EQ queries presented in the

algorithm developed in Section 3.2 is indeed a tight bound.

3.3.3 Lower Bounding the Number of IP Queries

We are now going to modify the optimality proof to include two queries. The first

query is the EQ query. The second query will be based on the operator A (and A†)

parameterized by p ∈ [1/2n , 1] . We define A as the unitary operation acting on n

nqubits such that, for all y ∈ {0, 1}

√
A|y) = 1 − p|y)+ i p|y ⊕ a). (3.144)

We will later show that this operator is closely related to the IP oracle. In order to

gain an appreciation for the form of the operator for the n = 2 case with a = 01 and

sin θ =
√
p, we present its matrix representation as follows ⎤⎡

A2 =

⎢⎢⎢⎢⎢⎢⎢⎣

cos θ i sin θ 0 0

i sin θ cos θ 0 0

0 0 cos θ i sin θ

0 0 i sin θ cos θ

⎥⎥⎥⎥⎥⎥⎥⎦

.
 (3.145)

Note that |(a|A|0)|2 = p. The second type of query is a controlled-A operation,

denoted as cont-A, where cont-A|y)|b) = (Ab|y))|b), for all y ∈ {0, 1}n and b ∈ {0, 1}.
Consider the following amplitude amplification problem. There is an unknown

na ∈ {0, 1} such that a = 0. Information about a is available by EQ, cont-A, and

cont-A† queries. The goal is to determine a. The well-known amplitude amplification

101

algorithm solves this problem using O(1/
√
p) EQ, cont-A, and cont-A† queries. We

first show that this is optimal in the number of cont-A, and cont-A† queries.

Lemma 6 The amplitude amplification problem requires Ω 1/
√
p cont-A or cont-A†

√
queries if the number of EQ queries is o(2n).

Proof: This is straightforward to prove using the hybrid method. The proof is

similar to the hybrid lower bound proof for searching with just EQ queries, except

that cont-A and cont-A† queries can be interleaved into the computation—and need

to be accounted for.

The key idea is to bound the effect that each cont-A and cont-A† query can have

on a quantum state. The relevant result is that, for any quantum state |ψ),

|||ψ) − cont-A|ψ)|| ≤ 2p. (3.146)

We can view the result of the operator cont-A on a state |ψ) as producing a new

state with Euclidean distance D = |||ψ)−cont-A|ψ)|| from |ψ). Since the eigenvalues
√

of I − cont-A are either 0 or 1 − (1 − p + i p), the distance D is the same as the
√ √

distance on the complex plane between 1 and 1 − p + i p, which we present in

Figure 3.18. We stress that this is the maximum effect that the operator cont-A can

have on any state. Note that the size of p is greatly exaggerated in Figure 3.18 for

the sake of clarity. We are interested in providing a bound to the distance D. By

inspection we can use the Pythagorean theorem to write

2
D2 = p + 1 − 1 − p

= 2 − 2 1 − p (3.147)

�

102

i I

√ √
1 − p + i p

 √ D = |||ψ) − cont-A|ψ)||p

 √ 1 − p

 _
1

Figure 3.18: The maximum effect of the operator cont-A is represented in C as the √ √
distance between 1 and 1 − p + i p

√
We note that for 0 ≤ p ≤ 1, 1 − p ≥ 1 − p. We use this to bound the distance

given in 3.147 as

D ≤ 2p. (3.148)

We now explain the use of this result in modifying the hybrid method. The hy

brid approach works by replacing the marking oracle queries, Oa, with the identity

operator. In our modification, we envision an arbitrary ordering of Oa, cont-A and

cont-A† queries. We define the state |ψ0) as the state |ψk,l) where we have replaced a a

k, EQ queries and l, cont-A (and cont-A†) queries with the identity operator. We

are interested in bounding the average value of this distance |||ψk,l) − |ψ0)|| over all a a

a ∈ {0, 1}n . We define the maximum effect of the marking oracle at the ith step as

|||ψi+1) − |ψi)|| = 2Δi . We use this and our bound given in Equation 3.148 to write a a a

k−1 k+l−1

|||ψk,l) − |ψ0)|| ≤ 2Δi + 2p. (3.149)a a a
i=0 i=k

Note that we have used the triangle inequality in writing down Equation 3.149. We

103

now wish to obtain the average value of |||ψk,l) − |ψ0)|| over all values of a. We a a

express this average as ⎞⎛⎞⎛
k−1 k+l−11 2 1) − |ψ0

a Δi|||ψk+l
a

⎠2p (3.150)⎠ +
)|| ≤
 ⎝
 ⎝

N a N

i=0 a∈{0,1}n i=k a∈{0,1}n
N

From the Cauchy-Schwarz inequality, it is possible to prove that for any sequence of
√

complex numbers ci subject to N
i=1 |ci|2 = 1, then N

i=1 |ci| ≤ N . The theorem

can be applied to the first sum in Equation 3.150 since (Δi)2 = 1. Note a∈{0,1}n a

that, as stated earlier, our amplitude amplification problem is not defined for a = 0.

However, we can exclude a = 0 from the sum and not affect the inequality. We thus

express Equation 3.150 as ⎞⎛⎞⎛
k−1 k+l−11 2
 1
⎜⎜⎝
 Δi

a

⎟⎟⎠
 +

⎜⎜⎝
 2p

⎟⎟⎠
) − |ψ0
a|||ψk+l

a)|| ≤

N
N
 N

i=0 a∈{0,1}n i=k a∈{0,1}n

a� a�=0 =0

2k ≤ √ + l 2p. (3.151)
N

√ √
If we set k ∈ o N in Equation 3.151, then l ∈ Ω 1/ p in order for 1 |||ψk+l) −

N a

|ψ0)|| to be lower bounded by a positive constant. a

Next, we observe that a cont-A query can be used to simulate an IP query. The

simulation is given by the circuit presented in Figure 3.19, where S is defined as

S|b) = ib|b), for b ∈ {0, 1}.

Lemma 7 If the last output qubit in the circuit presented in Figure 3.19 is measured

then the probability that the outcome is a · x is (1 +
√
p)/2.

Proof sketch: Let C denote the circuit presented in Figure 3.19. It is straightfor

104

H

H

H

H

H

H

H

H

S

A

�|0)

|xn)

|x2)

|x1)

...
...

Figure 3.19: Simulating an IP query using a cont-A query. The last qubit, when
measured, is biased towards a · x.

nward to calculate that, for all x ∈ {0, 1} ,

√ √
1 + p + i(−1)a·x 1 − p(x, a · x|C|x, 0) = .

2

Taking the norm squared of this quantity yields (1 +
√
p)/2.

Using Lemma 7, any instance of the aforementioned amplitude amplification

problem can be converted into an instance of the G-L problem. This means that the

lower bound for amplitude amplification in Lemma 6 implies a corresponding lower

bound for the G-L problem.

Theorem 8 The G-L problem with bias parameter ε requires Ω(1/ε) IP queries if
√

the number of EQ queries is o(2n).

Proof sketch: The proof follows from the above reduction of the amplitude amplifi

cation problem to the G-L problem. Consider an instance of amplitude amplification

with parameter p = ε2 . Suppose that the corresponding instance of the G-L prob

lem, with IP queries defined as in Figure 3.19, can be solved with o(1/ε) IP queries
√

and o(2n) EQ queries. This algorithm would also solve the amplitude amplifi

105

√
cation problem with o(1/

√
p) cont-A queries and o(2n) EQ queries, contradicting

Lemma 6.

3.4 Summary of Query Complexity of the G-L Problem

We now summarize the complexity bounds of both the classical and quantum G-L

problems. In Table 3.6, we present the upper and lower classical bounds and the

Bound Number of Queries Notes
Classical Upper
Bound

O n
ε2 IP queries and

O 1
ε2 EQ queries

Algorithm defined in Section 2.1
requires both queries. √

Classical Lower
Bound IP queries

Ω n
ε2 IP queries or

2
n
2 EQ queries

True for ε ≥ n2−n/3

Classical Lower
Bound EQ queries

Ω 1
ε2 EQ queries for

unlimited IP queries
True for ε ≥ 1/ 2 · 2n/2

Quantum Upper
Bound

O 1
ε IP , IP † and

EQ queries
Algorithm defined in Section 3.2
requires all three queries.

Quantum Lower
Bound IP queries

Ω 1
ε IP queries or

Ω(2n/2) EQ queries
True for ε > 0

Quantum Lower
Bound EQ queries

Ω 1
ε EQ queries for

unlimited IP queries
True for ε ≥ 1/ 2 · 2n/2

Table 3.6: Summary of the query complexity of the classical and quantum G-L
problems

upper and lower quantum bounds along with the constraints placed on them.

In the next chapter, we present classical and quantum bit commitment protocols

whose security measures are quantified by the reduction of the computational prob

lem of inverting classical and quantum one way functions to that of predicting a hard

predicate of those functions. We generate hard predicates using the inner product of

certain n-bit strings and use them in both classical and quantum protocols. In order

to establish the reduction, we make use of fact that (under reasonable conditions of

106

various parameters) Ω (n/ε2) IP queries are required to solve the classical G-L prob

lem, and Ω (1/ε) IP queries are required to solve the quantum G-L problem. We are

thus able to quantify the security of the bit commitment protocols in terms of the

difficulty of inverting one-way functions. It is particularly satisfying to compare the

relative security measures of the classical versus the quantum protocols, which result

from the differing query complexities of the classical and quantum G-L problems.

Chapter 4 Cryptograhic Applications

4.0 Introduction

In this chapter, we discuss both classical and quantum bit commitment schemes

based on the Goldreich-Levin Theorem. We begin by focusing on classical bit com

mitment. Here we expand on the concept of a hard predicate that we introduced in

Chapter 1. We first give a definition of a hard predicate and then study its com

plexity by means of a reduction from the complexity of the problem of inverting a

classical one-way permutation. We can view this complexity as a quantitative mea

sure of the security of a bit commitment protocol based on the employment of this

hard predicate. We conclude the classical discussions with a detailed description of

a bit commitment protocol that employs a hard predicate derived from the classical

Goldreich-Levin Theorem.

We follow this with a section on quantum bit commitment schemes. We begin

with a brief history of quantum bit commitment and repeat a proof of the impossibil

ity of unconditional quantum bit commitment. We then go on to discuss quantum bit

and qubit commitment schemes based on the quantum version of the G-L theorem.

We do this in a manner that parallels our discussion of the classical bit commitment

scheme. We firstly quantify the complexity of the hard predicate, which allows us to

compare the relative security of the classical and quantum schemes. We then present

bit and qubit commitment schemes both of which employ a hard predicate derived

from the quantum Goldreich-Levin Theorem.

In the final section, we note that bit (qubit) commitment schemes based on the

107

108

quantum G-L Theorem depend on the existence and implementation of a quantum

one way permutation (QOWP). We conclude the chapter with a discussion of the

current state of research into implementations of a QOWP.

4.1 Classical Bit Commitment based on G-L Theorem

In Chapter 1, we discussed bit commitment where we compared bit commitment

using symmetric cryptography to bit commitment using one-way functions. We

introduced the concept, and need, of a hard predicate of a one-way permutation.

Here we are going to focus on classical bit-commitment using one-way permutations

and hard predicates derived using the G-L theorem. We begin by slightly expanding

the definition of a one-way permutation that we gave in Chapter 1.

n nDefinition 10 Given a one-way permutation f : {0, 1} → {0, 1} as defined in

˜ ˜ n nDefinition 5 in Chapter 1, let f denote the permutation f : {0, 1} × {0, 1} →

n{0, 1}n × {0, 1} defined as f̃(y, x) = (f(y), x). It is evident that f̃ is also a OWP.

nWith this definition of our OWP, we state that h : {0, 1}n ×{0, 1} → {0, 1} defined

as

h(y, x) = y · x (4.152)

˜is a hard predicate of f . Before discussing a bit-commitment protocol using the

OWP f̃ and its hard predicate h, we will prove that h meets our definition (Chapter

1) and give the corresponding dilution of f̃ .

109

4.1.1 Complexity of Classical Hard Predicates

In this section we investigate the complexity of the reduction of Goldreich and Levin

from one-way permutations to hard predicates. With reference to Figure 4.20, we

wish to show that any circuit, C, capable of guessing z = a · x given f(a) and x,

with reasonable success probability and polynomial size would also be able to invert

f(a) with reasonable success probability and polynomial size. This would contradict

our definition of the one-way permutation, f , allowing us to conclude that no such

circuit exists. More technically, we also provide a lower bound of the size of a circuit

that predicts h from f̃ . In Figure 4.20, we prepare the input to circuit C by starting

with two n-bit strings a and x and subjecting them to the one-way permutation f̃

given in Definition 10. The quantities f(a) and x are thus the inputs to our circuit

a

x

f

f̃

f(a)

x

C
 z

Figure 4.20: Circuit for predicting h

C, which returns the single bit z. What can we say about size of circuit C? In order

to bound the answer to this question, we proceed with some definitions. The size of

a classical circuit is understood to be relative to a suitable set of gates on one and

110

two bits.

n nDefinition 11 A permutation f : {0, 1} → {0, 1} is classically (δ, T)-hard to

invert if there is no classical circuit C of size T such that Pra[C(f(a)) = a] ≥ δ.

Now the standard requirement for the hard-to-invert condition is that f is (δ, T)

hard to invert for all δ ∈ 1/nO(1) and T ∈ nO(1). The idea behind a hard-predicate

is to concentrate the information that a one-way function “hides” about its input

ninto a single bit. Intuitively, h : {0, 1} → {0, 1} is a hard-predicate of f if, given

a ∈ {0, 1}n, it is easy to compute h(a); whereas, given f(a) for randomly chosen

a ∈ {0, 1}n, it is hard to predict the value of the bit h(a) with probability significantly

better than 1
2 .

Goldreich and Levin showed that if f is one-way then h is hard to predict from

f̃ . Instead of quantifying how well a circuit predicts h from f̃ as the amount by

which Pry,x[C(g(y, x)) = h(y, x)] exceeds 1
2 , we adopt a related but slightly more

complicated definition, that is suitable for our proof technique (we relate the two

definitions in Lemma 9).

Definition 12 A circuit C (δ, ε)-predicts h from f̃ if

Pr[Pr[C(f̃(y, x)) = h(y, x)] ≥ 1
2 + ε] ≥ δ. (4.153)

y x

nTo explain Eq. 4.153 in words, call y ∈ {0, 1} ε-good if Prx[C(f̃(y, x)) = h(y, x)] ≥

1
2 + ε for that value of y. Then Eq. 4.153 means Pry[y is ε-good] ≥ δ.

In order to help get an intuitive feeling of these two measures of predication, we

present Figure 4.21, which is a contrived example of how a probability distribution

ε(y) might look for the n = 7 case. Note the global value of ε = E[εy] and region

111

0.5

0.4

E[ε
y
] = ε

ε/2

ε
y
 is

"ε/2−good"

showing the ε
2

0 20 40 60 80 100 120

D
is

tr
ib

ut
io

n
of

 R
an

do
m

 V
ar

ia
bl

e
ε y

0.3

0.2

0.1

0

y ∈ {0,1}7

Figure 4.21: A contrived probability distribution εy -good region.

where the y’s are
 ε
2 -good. The following lemma, which relates the two measures of

prediction, is straightforward to prove by an averaging argument.

Lemma 9 If Pry,x[C(g(y, x)) = h(y, x)] ≥ 1
2 + ε then G (ε/(1 − ε), ε/2)-predicts h

from f̃ .

112

Proof: Let p = Pr[y is 2
ε -good]. Then

1 + ε ≤ Pr[C(g(y, x)) = h(y, x)|y is ε -good] Pr[y is ε -good] 2 2 2

+ Pr[C(g(y, x)) = h(y, x)|y is not ε -good] Pr[y is not ε -good] 2 2

< p + (1
2 + 2

ε)(1 − p),

which implies p > ε/(1 − ε).
+ 1/nO(1)Note in particular that, if Pry,x[C(g(y, x)) = h(y, x)] ≥ 2

1 then C

(1/nO(1), 1/nO(1))-predicts h from g.

nTheorem 10 If f : {0, 1}n → {0, 1} is classically (δ/2, T)-hard to invert then any

classical circuit that (δ, ε)-predicts h from f̃ must have size Ω(Tε2/n).

Proof sketch: The proof of this theorem is essentially a reduction from the

problem of inverting f to the problem of (δ, ε)-predicting h. One begins by assuming

that a circuit C of size o(Tε2/n) (δ, ε)-predicts h from g and then shows that, by

making O(n/ε2) calls to both C and f (plus some additional computations), f can

be inverted with probability δ/2. The total running time of the inversion procedure

is o((n/ε2)(Tε2/n)) = o(T), contradicting the fact that f is (δ/2, T)-hard to invert.

4.1.2 Protocol based on Classical G-L Theorem

As discussed in Chapter 2, the classical G-L Theorem and its attendant query prob

lem are concerned with finding an unknown string based on information exposed by

the response to inner-product queries. It should not be surprising then that a bit

commitment protocol based on the G-L Theorem has at its core the inner-product

based hard predicate expressed in Equation 4.152. The protocol is depicted in Figure

��

��

113

4.22. We assume that both Bob and Alice have access to a one-way permutation

n nf : {0, 1} → {0, 1} . First the commitment phase of the protocol is analyzed

followed by the de-commitment phase. Commitment proceeds as follows.

A B® ®
1. z ∈ {0, 1}

n2. (a, x) ∈ {0, 1} × 01n

3. c ← z ⊕ (a · x).
4. b ← f(a)

b, x, c 5. Commitment
a6. De-commitment

7. Verify b ← f(a)
8. Compute z ← c ⊕ (a · x)

Figure 4.22: A bit commitment protocol based on classical G-L Theorem

1. Alice wishes to commit to bit z ∈ {0, 1}.

n2. Alice generates two random n-bit strings, a and x with (a, x) ∈ {0, 1}n×{0, 1} .

3. Alice computes a concealed bit using the inner product of her two strings,

c ← z ⊕ (a · x).

4. Alice computes the one-way permutation of one of the strings, b ← f(a).

5. Alice sends her commitment, which consists of b, x, c to Bob.

The transmission from Alice is evidence of commitment. The commitment is un

conditionally binding since there is no way Alice can change her commitment. The

commitment is computationally concealing since as noted in Theorem 10, a classical

circuit that (δ, ε)-predicts h from g must have size Ω(Tε2/n). We started with a

lower bound of Ω(T) for inverting the one way permutation f , but now we have

114

a weaker lower bound — by a dilution factor of Ω(n/ε2) — for breaking the hard

predicate. We use this factor as a measure to which this bit commitment protocol

is computationally concealing. We note that b and x are n-bit strings, while c is a

single bit. Thus, this protocol requires O(n) bits for the commitment phase. The

de-commitment proceeds when Alice decides it is time to reveal her bit.

1. Alice sends a, the second of the two random strings to Bob.

2. Bob checks the validity of this string by evaluating the one-way function: b ←

f(a).

3. If Bob is satisfied that Alice did not change her commitment (binding property

of the protocol), he computes the bit Alice committed to: z ← c ⊕ (a · x).

The de-commitment phase requires that n bits be exchanged. Before discussing the

quantum versions of the hard predicate and the quantum bit commitment protocol,

we discuss some of the history of quantum bit commitment and give a proof of the

impossibility of unconditional bit commitment.

4.2 History of Quantum Bit Commitment

Over the years, various schemes have been proposed for implementing quantum bit

commitment. One was even claimed to be unconditionally secure — the paper [6]

appeared in FOCS’93 — but it turned out that the proof was wrong. In fact, not

only was this scheme insecure, but it was subsequently proven that is impossible to

implement unconditional bit commitment with quantum information. Proofs were

115

given by Mayers (1995/1997) [25] and by Lo and Chau (1996) [24]. The central idea

of both proofs is based on the Schmidt decomposition of bi-partite quantum states.

Although it is impossible for a bit commitment protocol to be both perfectly

concealing and perfectly binding, it is possible for it to be both partially concealing

and partially binding. Spekkens and Rudolph [33] and others [7] have explored the

trade-offs between the degree of bindingness and concealment that can be achieved

simultaneously in any bit commitment protocol. In the following section, we give a

proof sketch that addresses the non-existence of “perfect” bit commitment schemes.

We then briefly explore an“almost” perfectly concealing scheme.

4.2.1 Impossibility of Quantum Bit Commitment

Suppose Alice and Bob share two quantum registers as depicted in figure 4.23. Pure

states of these two registers together are elements of the Hilbert space HA ⊗HB. We

define the bases as HA : {|x) : x ∈ {0, 1}n} and HB : {|y) : y ∈ {0, 1}m}. A basis

nfor HA ⊗HB is thus {|x)|y) : x ∈ {0, 1} , y ∈ {0, 1}m}. Now Alice wishes to commit

to a bit b ∈ {0, 1}. She creates the state |ψb) ∈ HA ⊗ HB and sends the second

register to Bob. Can this bit commitment scheme be simultaneously concealing and

binding?

In order to show that it can not be, we consider the case where the commitment

is perfectly concealing. That is where Bob can not distinguish between |ψ0) and

|ψ1). If Bob decides to measure his register, the result is completely determined by

trHA |ψb)(ψb|— that is by the partial trace achieved by tracing out register A. For the

perfectly concealing case, the reduced density operators must be indistinguishable,

and thus trHA |ψ0)(ψ0| = trHA |ψ1)(ψ1|. We now invoke the powerful technique of

116

Register A Register B

n qubits m qubits
HA HB

Figure 4.23: Registers

Schmidt Decomposition. With this technique if we have |ψb) ∈ HA ⊗HB , then it is

k √possible to write |ψb) = ρj |μj)|νj) where {|μ1), . . . , |μk}) and {|ν1), . . . , |νk})j=1

are orthonormal sets and p1, . . . , pk ∈ {0, 1} with pj = 1. Because the reduced j

density operators are indistinguishable, the Schmidt decompositions for Alice’s two

possible commitments, |ψ0) and |ψ1), may be written [27, page 110]

|ψ0) = αi|γi)|φi)
i

|ψ1) = αiU(|γi))|φi), (4.154)
i

where U is a unitary operator acting on A alone. In other words we can that say

there exists a unitary operator acting on HA such that

(U ⊗ I)|ψ0) = |ψ1), (4.155)

which means that Alice can change her commitment at will. Since Alice can change

her commitment without affecting Bob’s register, we conclude that quantum bit

commitment cannot be simultaneously concealing and binding.

We offer a concrete example for the two qubit case to illustrate the above concept.

117

Alice prepares the two states

1 1 |ψ0) = √ |0)|0) + √ |1)|1)
2 2

1 1 |ψ1)	 = √ |+)|0) + √ |−)|1). (4.156)
2 2

We also express these two states as the column vectors

|ψ0) = √ (4.157)

1 −1

She selects one of these two states and sends the second qubit to Bob. Now in order

to convince ourselves that Bob can not distinguish which of these state his qubit

represents, we will calculate the reduced density operator of |ψ0) and |ψ1) by tracing

out the first qubit in each of the states of Equation 4.156.

(4.158)

(4.159)

= trHA

= trHA

=

, Bob is unable to distinguish |ψ0) from |ψ1), so this protocol is perfectly

=

ρ

ρ

Since ρ
 = ρ

⎤
⎡

⎥⎦

⎤
⎡

.

⎥⎥⎥⎥⎥⎥⎥⎦

1

1

⎢⎢⎢⎢⎢⎢⎢⎣

1
2|ψ1) =

⎥⎥⎥⎥⎥⎥⎥⎦

0

0

⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎡⎤⎡
1	 1

⎥⎦

0

1
20
11

22

0
1
2

1
2

11

0 0 0 1 0

22 ⎢⎣

⎢⎣

⎤|−)(−|
−

⎤	

⎥⎦
⎢⎣

|1)(1|

=

=

⎥⎦

⎡|0)(0| +
0 0

1
2

1
2

1

1

⎡⎤
11

|ψ1) = |+)(+| +

2⎢⎣
 1
2 −

2+
⎥⎦

⎢⎣

1
2

+
⎥⎦

22

⎤|ψ0) =
1 0

⎡

1
2

1

11
22

2

1
2

⎡

⎢⎣
 1
2

A
0

A
1

A
1

A
0

118

concealing. However with U = H in Equation 4.155, we express the operator ⎤⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎥⎥⎥⎥⎥⎥⎥⎦

.

1

U ⊗ I = H ⊗ I = √
 (4.160)

2

Applying this operator to the state |0), we have
 ⎤⎡⎤⎡
1 0 1 0 1
 ⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1

1 0 −1 0

⎥⎥⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢⎢⎢⎢⎣

0

0

⎥⎥⎥⎥⎥⎥⎥⎦

1
 1
 √
(U ⊗ I)|ψ0) √
=

2
 2

0 1 0 −1 1
 ⎤
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

−1

⎥⎥⎥⎥⎥⎥⎥⎦

1 = |ψ1). (4.161)=
 2

Thus we can clearly see in this example that Alice is able to change her commitment

at will without Bob being aware.

So far we have considered the case where the protocol is perfectly concealing —

that is where the two reduced density operators ρA
0 = ρA

1 . What happens if the

protocol is “almost” perfectly concealing? We think of “almost” concealing as the

probability of error (PE) of Bob guessing the state as being exponentially close to a

half, which we write as
 − PE

≤ 2−αn . (4.162)1

2

In [7] and [25] it is shown that under these conditions, there exist purifications |ϕ0)

119

and |ϕ1) of the density operators ρA and ρA respectively that are very nearly the same 0 1

state. Thus the square of the inner product between these states may be expressed

(ϕ0|ϕ1)2 ≥ 1 − 2−αn . (4.163)

We now show that Alice can “almost” perfectly cheat. If she wants to unveil b = 0,

she maps |ϕ0) into |ψ0) and continues as if she has b = 0 in mind. Now if she wants

to cheat and unveil b = 1, she executes on |ϕ0) the unitary transformation F that

would map |ϕ1) into |ψ1). She obtains the state F |ϕ0). The square of the inner

product between the desired state F |ϕ1) and the actual state F |ϕ0), is the same

as given in Equation 4.163, which is exponentially close to 1. So, for all practical

purposes, Alice can cheat as in the “perfect” case by applying this transformation

F and then continuing as if she has b = 1 in mind. From this sketch, we conclude

that quantum bit commitment is insecure. It is of interest to note that there is a

trade-off between the degree of concealment of quantum bit commitment and how

binding it is.

Since quantum information does not permit unconditional bit commitment, we

look to computationally strong bit commitment schemes. Next we present a per

fectly binding and computationally concealing bit commitment scheme based on the

quantum Goldreich-Levin theorem.

4.3 Quantum Bit Commitment Based on G-L Theorem

Here we are going to focus on bit-commitment using quantum one-way permutations

and hard predicates derived using the G-L theorem.

120

4.3.1 Security of Quantum G-L Based Bit Commitment

Our quantum version of the Goldreich-Levin Theorem is the following.

n nTheorem 11 If f : {0, 1} → {0, 1} is quantumly (δ/2, T)-hard to invert then any

quantum circuit that (δ, ε)-predicts h from g must have size Ω(Tε).

Proof: As in the classical case, the proof is essentially a reduction from the

problem of inverting f to the problem of (δ, ε)-predicting h. Let b = f(a) be an

input instance—the goal is to determine a from b. We will show how to simulate

EQ and IP queries in this setting and then apply the bounds in Theorem 8. It is

easy to simulate an EQ query (relative to a) by making one call to f and checking

if the result is b. Suppose that there exists a circuit G of size o(Tε) that (δ, ε)

predicts h from f̃ . Thus, Pry[Prx[G(g(y, x)) = h(y, x)] ≥ 1
2 + ε] ≥ δ. Note that, with

probability at least δ, a is ε-good, in the sense that Prx[G(g(a, x)) = h(a, x)] ≥ 1
2 +ε.

When a is ε-good, computing G(f̃(a, x)) = G(b, x) is simulating an IP query for x

(relative to a). It follows from Theorem 8 that a can be computed with circuit-size

o((1/ε)(Tε)) = o(T) with success probability at least δ/2 (where 1/2 is the success

probability of the algorithm that finds a when a is ε-good and δ is the probability

that a is ε-good to begin with). This contradicts the (δ/2, T)-hardness of inverting

f , thus such a G cannot exist.

4.3.2 Protocol Based on Quantum G-L Theorem

We begin by presenting a bit commitment protocol based on a quantum one-way per

mutation (QOWP). We assume that both Bob and Alice have access to the QOWP

��

��

121

n nf : {0, 1} → {0, 1} . The protocol appears identical to the classical protocol pre

sented in figure 4.22. In direct comparison to the classical case, here we again started

with a lower bound of Ω(T) for inverting the quantum one way permutation f , but

now the dilution factor for breaking the hard predicate is only Ω(1/ε) compared

to Ω(n/ε2) for the classical case. To get a feel for the relative difference between

the best possible quantum and the best possible classical reductions, we offer the

following example. Consider the case where T = n3 and ε = 1/n. If we start with a

classical one-way function that requires a computational cost of Ω(n3) to invert and

apply the Goldreich-Levin Theorem to construct a classical hard-predicate then the

reduction implies only that the computational cost of predicting the predicate with

probability 1
2 +

n
1 is lower bounded only by a constant. However, if we start with

a quantum one-way function that requires a computational cost of Ω(n3) to invert

and apply our quantum version of the G-L Theorem then the computational cost

of predicting the predicate with probability 1
2 +

n
1 is lower bounded by Ω(n2). We

A	 B® 	 ®
1. |ψ)

n2. a1, a2, x1, x2 ∈ {0, 1}
3. |ψ ') = Xh(a1,x1)Zh(a2,x2)|ψ)
4.	 b1 ← f(a1) and b2 ← f(a2)

|ψ '), b1, b2, x1, x2
5. Commitment
a1, a26. De-commitment

8. Verify b1 ← f(a1), b2 ← f(a2)
9. Compute Zh(a2,x2)Xh(a1,x1)|ψ ')

Figure 4.24: A qubit commitment protocol based on quantum G-L Theorem.

note that a bit commitment scheme the same as discussed in Section 4.1.2 could be

122

modified to incorporate a quantum one-way function. All other aspects of the pro

tocol would be the same, except that the dilution factor is now only Ω(1/ε). Finally,

and perhaps of more interest, we explain how a qubit commitment scheme can be

constructed. First the commitment phase of the protocol is analyzed followed by the

de-commitment phase. Commitment proceeds as follows.

1. Alice wishes to commit to the qubit |ψ).

n2. Alice randomly chooses a1, a2, x1, x2 ∈ {0, 1} .

3. Alice constructs the state |ψ ') = Xh(a1,x1)Zh(a2,x2)|ψ).

4. Alice computes the one-way permutation twice: b1 ← f(a1) and b2 ← f(a2).

5. Alice sends her commitment,which consists of (|ψ '), b1, b2, x1, x2) to Bob.

Clearly, the scheme is perfectly binding. Intuitively, the scheme is computation-

ally concealing, because h(a1, x1) and h(a2, x2) “look random” to Bob. We give a

rough sketch of why we can make this conclusion in the following. If Bob can use

his information to efficiently distinguish between the qubit that he receives from

Alice in the commitment stage and a totally mixed state (density matrix 1
2 I) then

this procedure can be adapted to distinguish between the pair of bits r1 = h(a1, x1)

and r2 = h(a2, x2) and a pair of truly random bits, which would violate the result

proven in Theorem 11. A quantum circuit that (δ, ε)-predicts h from g must have size

Ω(T/ε). We started with a lower bound of Ω(T) for inverting the one way permuta

tion f , but now we have a weaker lower bound — by a dilution factor of Ω(1/ε)— for

breaking the hard predicate. We note that the commitment requires that one qubit

123

and O(n) bits be exchanged. The de-commitment proceeds when Alice decides it is

time to reveal her bit.

1. Alice sends a1, a2 to Bob.

2. Bob checks if	 f(a1) = b1 and f(a2) = b2, rejecting if this is not the case.

Otherwise, Bob accepts.

3. If Bob is satisfied that Alice did not change her commitment (binding property

of the protocol), he computes the qubit Alice committed to: Zh(a2,x2)Xh(a1,x1)|ψ ').

The de-commitment phase requires that O(n) bits be exchanged. We note that in

order to realize quantum bit and qubit protocols, we require a realizable quantum

one-way function.

4.4 Quantum One-way Functions and Permutations

At the time of writing this thesis, little is known about quantum one-way functions

and permutations. Other than to cite some references from the literature, further

discussion is out of scope of this thesis.

In their 2000 paper, titled Quantum Public-Key Cryptosystems [28] by Okamato,

Tanaka and Uchiyama discuss some interesting candidates.

Conclusion

We have proven tight bounds of the classical and quantum Goldreich-Levin (G-L)

Problem to be Θ(n/ε2) and Θ(1/ε) respectively. We have also presented uncondi

tionally binding and computationally concealing bit and qubit commitment proto

cols based on hard predicates derived from the classical and quantum G-L Theorem.

These protocols are dependent on the existence of classical and quantum one way

permutations. Finally, we have shown that the difference between the classical and

quantum bounds result in the quantum protocols having quantitatively better secu

rity than the classical protocols.

Although it appears that the door is closed and the story of the G-L Theorem

is complete, this is not the case. We believe that if a simpler circuit relationship

between A queries and IP queries could be developed rather than what we have

shown in Chapter 3, a more elegant proof of the quantum lower bound of both EQ

and IP queries could be determined. It would be of particular interest to see the

quantum EQ lower bound proven without reference to the classical EQ lower bound.

We also await any news on classical or quantum one way functions.

In parting we note that the analysis of the upper bound of the classical G-L

Problem is much more involved than the analysis of the upper bound of the quantum

G-L Problem. It appears that the inner product of two strings is one of those global

properties that is particularly suitable to solution using the equal superposition of

quantum states, which allows us to avoid the complexity of the classical analysis.

124

Bibliography

[1] M. Adcock and R. Cleve,	 “A quantum Goldreich-Levin theorem with cryp
tographic applications”, Proc. Symposium on Techincal Aspects of Computer
Science (STACS 2002), pp. 323–334, 2002.

[2] A. Ambainis, M. Mosca, A. Tapp and R. de Wolf, “Private quantum channels”,
Proc. 41st Ann. IEEE Symp. on Foundations of Computer Science (FOCS ’00),
pp. 547–553, 2000.

[3] M. Bellare, “The Goldreich-Levin Theorem”, Manuscript, 1999.

(Available at http://www-cse.ucsd.edu/users/mihir/.)

[4] E. Bernstein and U. V. Vazirani, “Quantum complexity theory”,	 SIAM J. on
Comput., Vol. 26, No. 5, pp. 1411–1473, 1997.

[5] M. Blum and S. Micali, “How to generate cryptographically strong sequences of
pseudo-random bits”, SIAM J. on Comput., Vol. 13, No. 4, pp. 850–864, 1984.

[6] G. Brassard, C. Crpeau, R.	 Jozsa, and D. Langlois. “A quantum bit commit
ment scheme provably unbreakable by both parties” In 34th Annual Symposium
on Foundations of Computer Science, pp. 362-371, November 1993.

[7] G. Brassard, C. Crépeau, D. Mayers and L. Salvail, “A brief review on the
impossibility of quantum bit commitment”, Los Alamos preprint archive quant
ph/9712023, December 1997.

[8] G. Brassard and P. Høyer, “An exact quantum polynomial-time algorithm for
Simon’s problem”, Proc. Fifth Israeli Symp. on Theory of Computing and Sys
tems, pp. 12–23, 1997.

[9] G. Brassard, P. Høyer, M. Mosca and A. Tapp,	 “Quantum amplitude ampli
fication and estimation”, To appear in Quantum Computation and Quantum
Information: A Millennium Volume, AMS Contemporary Mathematics Volume.
Available on the LANL preprint archive as quant-ph/0005055, 2000.

[10] T. H. Cormen, C. E. Leiserson and R.L. Rivest,	 Introduction to Algorithms,
MIT Press, Cambridge, MA 1990.

[11] H. F. Chau and H.-K. Lo,	 “One way functions in reversible computations”,
Cryptologia, Vol. 21, No. 2, pp. 139–148, 1997.

125

http://www-cse.ucsd.edu/users/mihir

126

[12] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp,	 “Quantum entanglement
and the communication complexity of the inner product function”, Proc. of the
First NASA International Conf. on Quantum Computing and Quantum Com
munications, Colin P. Williams (Ed.), Lecture Notes in Computer Science 1509,
Springer-Verlag, pp. 61-74, 1999.

[13] T. M. Cover and J. A. Thomas,	 Elements of Information Theory, John Wiley
and Sons, 1991.

[14] C. H. Bennett and G. Brassard, Proc. IEEE International Conference on Com
puters, Systems, and Signal Processing, IEEE Press, Los Alamitos, Calif.,A400
(1984), p. 175.

[15] C. Crépeau, F. Légaré and L. Salvail, “How to convert the flavor of a quantum
bit commitment”, to appear in Advances in Cryptology — EUROCRYPT 2001.

[16] D. Deutsch, “Quantum Theory, the Church-Turing principle and the Universal
Quantum Computer”, Proceedings of the Royal Society (London), A400 (1985):
97-117.

[17] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computa
tion”, Proceedings of the Royal Society (London), A439 (1992): 553-558.

[18] P.	 Dumais, D. Mayers, and L. Salvail, “Perfectly concealing quantum bit
commitment from any one-way permutation”, Advances in Cryptology — EU
ROCRYPT 2000, B. Preneel (Ed.), Lecture Notes in Computer Science 1807,
Springer-Verlag, pp. 300–315, 2000.

[19] M. R. Garey and D. S. Johnson,	 Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., 1979.

[20] O. Goldreich and L. Levin,	 “Hard-core predicates for any one-way function”,
Proc. 21th Ann. ACM Symp. on Theory of Computing (STOC ’89), pp. 25–32,
1989.

[21] O.	 Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudo-
Randomness, Springer, 1999.

[22] L. K. Grover,	 “A fast quantum mechanical algorithm for database search”,
Proc. 28th Ann. ACM Symp. on Theory of Computing (STOC ’96), pp. 212–
219, 1996.

[23] J. Justesen,	 “A class of constructive asymptotically good algebraic codes”,
IEEE Trans. Inform. Theory, 18:652-656, 1972.

127

[24] H.-K. Lo and H. F. Chau, “Is quantum bit commitment really possible?”, Phys.
Rev. Lett., Vol. 78, No. 17, pp. 3410–3413, 1997.

[25] D. Mayers, “Unconditionally secure bit commitment is impossible”, Phys. Rev.
Lett., Vol. 78, No. 17, pp. 3414–3417, 1997.

[26] A. Michelson and A. Levesque,	 Error-Control Techniques for Digital Commu
nication, John Wiley and Sons, 1985.

[27] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor
mation, Cambridge University Press, Cambridge, UK, 2000.

[28] T. Okamato, K. Tanaka and S. Uchiyama	 “Quantum Public-Key Cryptosys
tems”, CRYPTO 2000, LNCS 1880, pp. 147–165, 2000.

[29] B. Schneir, Applied Cryptography, Second Edition, John Wiley and Sons, New
York, NY 1996.

[30] C. E. Shannon, “A Mathematical Theory of Communication”, The Bell System
Technical Journal, Vol. 27, pp. 379–423, 1948.

[31] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer”, SIAM J. on Computing, Vol. 26, No. 5,
pp. 1484–1509, 1997.

[32] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Com
pany, Boston, MA 1997.

[33] R. W. Spekkens and T. Rudolph, “Degrees of concealment and bindingness in
quantum bit commitment protocols”, Phys. Rev. A, Vol. 65, 012310, 2002.

[34] B. M. Terhal and J. A. Smolin, “Single quantum querying of a database”, Phys.
Rev. A, Vol. 58, No. 3, pp. 1822–1826, 1998.

[35] A. C.-C. Yao,	 “Lower bounds by probabilistic arguments”, Proc. 24th Ann.
IEEE Symp. on Foundations of Computer Science (FOCS ’83), pp. 420–428,
1983.

