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Abstract

Random walks are a powerful tool for the efficient implementation of algorithms in clas-

sical computation. Their quantum-mechanical analogues, called quantum walks, hold

similar promise. Quantum walks provide a model of quantum computation that has re-

cently been shown to be equivalent in power to the standard circuit model. As in the

classical case, quantum walks take place on graphs and can undergo discrete or contin-

uous evolution, though quantum evolution is unitary and therefore deterministic until a

measurement is made. This thesis considers the usefulness of continuous-time quantum

walks to quantum computation from the perspectives of both their fundamental power

under various formulations, and their applicability in practical experiments.

In one extant scheme, logical gates are effected by scattering processes. The results of

an exhaustive search for single-qubit operations in this model are presented. It is shown

that the number of distinct operations increases exponentially with the number of vertices

in the scattering graph. A catalogue of all graphs on up to nine vertices that implement

single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a

novel scheme for universal quantum computation called the discontinuous quantum walk,

in which a continuous-time quantum walker takes discrete steps of evolution via perfect

quantum state transfer through small ‘widget’ graphs. The discontinuous quantum-walk

scheme requires an exponentially sized graph, as do prior discrete and continuous schemes.

To eliminate the inefficient vertex resource requirement, a computation scheme based

on multiple discontinuous walkers is presented. In this model, n interacting walkers

inhabiting a graph with 2n vertices can implement an arbitrary quantum computation

on an input of length n, an exponential savings over previous universal quantum walk

schemes. This is the first quantum walk scheme that allows for the application of quantum

error correction.
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The many-particle quantum walk can be viewed as a single quantum walk undergoing

perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I

extend this formalism to non-simple graphs. Examples of the application of equitable

partitioning to the analysis of quantum walks and many-particle quantum systems are

discussed.
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Chapter 1

Universal computation

1.1 Classical computation

Classical computation, as can be performed on an abacus, supercomputing cluster, or

anything in between, is at its most basic level nothing but the storage and manipulation

of information. The fundamental unit of information is the bit, and a single bit can

take on either of a pair of mutually exclusive values—True or False, yes or no, +5 V

or gnd—which are generally abstracted to be 0 and 1. The goal of computing is to

solve problems, or answer questions. Where mechanical and electronic devices provide a

distinct advantage in attaining this goal is in cases for which the same question may be

asked for a wide range of parameters, and a set of steps to find the answer can be laid out

in advance that will produce the correct answer regardless of which values are supplied to

the parameters. The set of steps is an algorithm, the values supplied for a given instance

of the parameters are the input to the algorithm, and the resulting answer is its output .

For example, the Pythagorean theorem allows the length c of the hypotenuse of a right

triangle to be found by taking the square root of the sum of the squares of the lengths

of the other two sides, a and b. This is true regardless of the values of a and b that are

provided, so long as they are positive real numbers. In this example the input is the pair

of values {a, b}, the algorithm is defined by the function

fc : (R+,R+) → R+

(a, b) 7→ c =
√
a2 + b2,

(1.1)

and the output is the value of c.

Much as, for example, the properties of the real numbers are not studied by attempt-
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UNIVERSAL COMPUTATION 1.1. Classical computation

ing to investigate each member of the continuum, a discussion of computation cannot

proceed solely by looking at individual algorithms. For this reason, a formalism dat-

ing back to Gödel [1], Church [2], and Turing [3] has been developed to abstract the

fundamental mathematical aspects constituting a computation away from the physical

processes involved in any particular implementation thereof.

1.1.1 Turing machines

What Turing proposed was a hypothetical machine, which now bears his name, that

embodies a specific model of computation. The detailed workings of a Turing machine

are unimportant here, save for one distinction between two classes of the machines.

Deterministic Turing machines are such that given a fixed input, they will always produce

the same output (if any), and in the same sequence of operations. The set of operations

available to a deterministic Turing machine consists only of functions in the mathematical

sense. On the other hand a non-deterministic Turing machine can make random choices

during its operation, so that a given input to an operation may lead to one of many

outputs. Therefore having a non-deterministic Turing machine execute an algorithm

repeatedly on a fixed input can lead to different outputs, and different times taken to

arrive at those outputs. There are multiple ways in which such randomness can be

employed. A randomized or non-deterministic algorithm always produces a correct result

in a random but bounded time if one exists (or correctly identifies in bounded time that

no such result exists), however if multiple correct results exist then which of them is

returned is a random variable. Probabilistic algorithms on the other hand have a known

probability to either produce an incorrect result, or to fail to produce a result. Algorithms

of the first kind are referred to as ‘Monte Carlo algorithms’, while those of the second

kind are ‘Las Vegas algorithms’.

Remarkably, Turing was able to show that in the deterministic case there exists a

2



UNIVERSAL COMPUTATION 1.1. Classical computation

universal Turing machine, in that one can describe a single Turing machine capable of

simulating any other, and therefore of computing any function that is computable by Tur-

ing machines. Independently Church developed a distinct model of computation known

as the λ-calculus, and Turing showed in an appendix to Reference [3] that a function

is calculable under the λ-calculus if and only if it is computable by a Turing machine.

That is, he proved that the two models of computation are equivalent, meaning that the

λ-calculus is Turing complete. Furthermore the non-deterministic Turing machine adds

nothing to the class of functions that can be computed by machine. In fact, it has come

to be accepted that the rigorously defined Turing-machine model of computation encap-

sulates the intuitive concept of what it means to say that a function is algorithmically

computable. This is presented more formally by the Church–Turing thesis, which can be

stated as follows:

The class of functions computable by a Turing machine corresponds

exactly to the class of functions which we would naturally regard as being

computable by an algorithm. (Reference [4], p. 125)

1.1.2 Algorithms and computational problems

The Church–Turing thesis has led to the definition of a computable function as a function

such that there exists a Turing machine that computes it. A related concept is that of

decision problems , in which a specified predicate is to be found either true or false,

dependent upon the input. For example, if x and k < x are positive integers, then

the predicate ‘x has a prime factor less than or equal to k’ is either true or false, and

determining which is the case is a computational decision problem.

Note that whether a function is computable (or predicate decidable) and whether

this can be done efficiently are two distinct issues. Furthermore, there exist randomized

algorithms that can solve problems significantly more quickly on average than is possi-

3



UNIVERSAL COMPUTATION 1.1. Classical computation

ble with only deterministic operations. For example, no deterministic polynomial-time

algorithm can approximate the volume of an arbitrary convex subset of d-dimensional

Euclidean space to within a multiplicative factor that is exponential in d [5]. That is,

any deterministic algorithm to perform this approximation to arbitrary accuracy must

take at least an exponential amount of time. Nevertheless, there exists a randomised

algorithm that runs in polynomial time and yet can provide such an arbitrarily accurate

approximation [6]. While the volume can be approximated with or without randomness,

making use of it provides an exponential speed-up to the running time.

The concept of universal computation allows algorithms to be studied in their own

right, independently of the computer chosen to run them, by abstracting computation

under a model of computing away from any specific physical architecture that might

implement the model. The result is the field of computational complexity, in which the

focus is on the behaviour of an algorithm in terms of how long it takes to run and how

much memory it requires, as functions of the size of its input. For instance, it is known

that as the size N of a list grows toward infinity, sorting the list takes on average a number

of operations proportional to N log(N), to first order. Therefore doubling the length of

the list roughly doubles the time required to sort it. This comparison of relative times

remains the same whether the computer doing the sorting is the latest supercomputer, a

programmable calculator, or ENIAC,1 even though the absolute times taken to sort any

specific list will vary drastically among these different devices.

Decision problems that accept an input of length N and can be decided in a time

that is a polynomial function of N belong to the complexity class P. More specifically, P

is the class of all decision problems that can be solved by a deterministic Turing machine

in a time that is bounded above by a polynomial function of the input size. For the

purposes of computational complexity, a process is said to be efficient with respect to a

1Unveiled in 1946, the Electronic Numerical Integrator And Computer was the world’s first compu-
tationally universal electronic computer.
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UNIVERSAL COMPUTATION 1.1. Classical computation

resource such as time whenever its use of that resource is polynomial. Thus P consists

of all decision problems that can be solved efficiently by deterministic Turing machines.

Another important complexity class is known as NP, for ‘non-deterministic polynomial’.

One can think of NP as the class of decision problems for which it is efficient to verify

with a deterministic Turing machine that a proposed solution is correct, but for which it

is not necessarily efficient to find correct solutions. One such problem has already been

mentioned: Given positive integers x and k < x, does x have a prime factor p ≤ k? If

such a prime number is proposed, determining whether it divides x is easily achieved

in polynomial time. However, there is no known classical algorithm that is capable of

producing such a p for arbitrary x and k in a time polynomial in the number of digits in

each of x and k. Note however that it is not known that an efficient classical algorithm

is impossible, so it may turn out that this problem is in P. In fact, it is not even known

whether there exist any problems in P that are not in NP! That is, while it is clear that

P ⊆ NP, it is unknown whether or not P
?
= NP. The generalizations of P and NP to

computational (or functional) problems, such as for example finding all prime factors of

an integer x, are known as FP and FNP, respectively.

Along with studying individual algorithms without needing to appeal to the specific

computer architecture that may implement them, another advantage of the abstraction

of computation is the ability to consider multiple models of computation, and compare

them all on an equal footing. Given a proposal for a new model of computing, one needs

only to show that it can simulate an arbitrary Turing machine, and conversely that a

Turing machine can simulate the new model, in order to know that the model is universal

and equal in power to all previous models of universal computation. It will be true of

course that the new model provides no new power in terms of which functions can or

cannot be computed, since it is equivalent to the Turing machine model. But just as it

is useful to be able to have multiple methods for solving specific problems—say, finding

5



UNIVERSAL COMPUTATION 1.1. Classical computation

the length of a hypotenuse from Equation (1.1), or by using trigonometry, or simply with

a ruler—new models can provide new ways of thinking about problems. Often a certain

model is particularly well suited to the description of a certain problem, motivating the

development of new classes of algorithms that can be implemented in any model, but

are perhaps only intuitive in one. One particular model of computation that carries

over particularly well to the case of quantum computing is the so-called circuit model of

computation.

1.1.3 The circuit model

As illustrated by the example of computing fc in Equation (1.1), a computation is a

process that accepts a set of input parameters, performs a calculation based on them,

and returns an output. In the case of fc the input parameters a and b and the resulting

output c can be arbitrary positive real numbers. Any real computer must be finite

however, and therefore can only make use of a finite number of bits when encoding

information. The circuit model demonstrates this fact explicitly, while also being Turing

complete. A circuit is composed of wires that carry bits of information, and gates

that enact transformations upon those bits. A logic gate on k bits performs a function

f : {0, 1}k → {0, 1}l for some positive integer l that may or may not be equal to k. For

example the not gate acts on a single bit, transforming 0 to 1 and 1 to 0; the exclusive-or

gate xor accepts two input bits and outputs a single bit equal to 1 if exactly one of the

inputs is 1, otherwise it outputs 0; and the three-bit Toffoli gate does nothing to two of

its input bits, but performs a not on the third bit only if the first two are both equal to

1. For this reason the Toffoli gate is also called the controlled-controlled-not or c-cnot

gate, since the values of the first two bits control whether a not operation is applied to

the third. Figure 1.1 shows an example three-bit circuit containing these three gates and

defining an example logical function f : {0, 1}3 → {0, 1}2. The input bit string a2a1a0 is

6
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a2

a1

a0

b1

b0

Toffoli
not

xor

f

Figure 1.1: Example classical circuit mapping three input bits to two outputs.

mapped to the output b1b0 according to the following truth table:

f : {0, 1}3 → {0, 1}2

000 7→ 10
001 7→ 11
010 7→ 11
011 7→ 10
100 7→ 00
101 7→ 01
110 7→ 00
111 7→ 01.

(1.2)

Note that in Figure 1.1 the not and xor gates appear above each other, indicating

that they are to be executed simultaneously. The output bits b0 and b1 do not depend

on whether the not is applied to the first bit before, after, or concurrently with the

application of xor to the second and third bits. These two gates can therefore be

parallelized . There is however no way to execute either of these gates at the same time as

the Toffoli gate in this circuit. That is, there are two distinct steps to the circuit, which

is therefore able to be drawn as two columns of gates across the wires. This leads to the

concept of the depth of a circuit, which is the minimum number of steps or columns in

which the gates can be performed. The circuit depth of f in this case is two. A related

concept is the width of a circuit, which is equal to the maximum number of parallel wires

appearing throughout its depth; in this case the width of the circuit for f is three.

7
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In general a problem to be solved under the circuit model can reasonably be expected

to have inputs of many different lengths. A specific circuit however is of a fixed size. For

instance, one might desire an algorithm that accepts two integers x and y, and returns

their product xy, regardless of the number of digits in either integer. No single circuit

can accomplish this, since however many wires it contains one might be presented with

values for x and y requiring a greater number of bits. For this reason, while it is not

uncommon to colloquially speak of ‘the’ circuit for multiplication, what is meant is the

family of circuits that implement the functions fmn(x, y) = xy, where the inputs x and y

are m- and n-bit integers, respectively, and m and n are allowed to independently range

over all positive integers. That is, there is a fixed finite circuit for each ordered pair

(m,n), and the family consists of the infinite set containing all such circuits.

1.1.4 Universal classical circuits

It turns out, rather remarkably, that the set of building blocks required to construct

an arbitrary computable function on an arbitrary number of bits contains only a few

elements. Along with wires that carry bit values, and which are allowed to cross over

each other to swap two bits, one needs only be able to provide ancillary bits initialized in

a standard state, say 0, and perform the logic gates from one of several small sets. One

such set consists of the two gates nand and fanout. The fanout gate makes copies of

bits; its defining map is

fanout : {0, 1} → {0, 1}2

0 7→ 00
1 7→ 11.

(1.3)

The nand gate, an abbreviation for not-and, does exactly those operations: it maps

two input bits to their logical-and, and then inverts the result. That is, nand maps two

input bits to 1 unless they are both initially equal to 1 themselves, according to

8
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nand : {0, 1}2 → {0, 1}
00 7→ 1
01 7→ 1
10 7→ 1
11 7→ 0.

(1.4)

Copies of nand and fanout can be used to construct a circuit that implements

any finite logic gate on an arbitrary number of bits. Thus these two gates are said to

form a universal gate set for classical computation. In discussions of such gate sets it is

generally assumed that the wires and ancillary bits are given. In fact fanout is usually

assumed as well, so that it is common to say for example that the one-gate set {nand}

is universal. Of course, it is certainly not the only universal gate set. For example, with

not and and it is trivial to construct a nand gate, and therefore {and,not} is a second

universal set. An important point is that any universal set of gates is not only equivalent

to every other in terms of what it can compute, but also in terms of how many copies

of the gates in the set are required to implement any given algorithm. ‘Equivalent’ in

this context means that if an algorithm can be constructed from m copies of the gates

from one universal set, then it can be built with gates from another universal set using

a number of copies that is a polynomial in m. Note also that due to the use of fanout

and the fact that logic gates such as nand are many-to-one, it is possible for the width

of a circuit to be greater than both the number of input bit and the number of output

bits.

1.2 Introduction to quantum computation

In his keynote address at the MIT Physics of Computation conference in 1981, Feynman

introduced—in an aside—the concept of “a new kind of computer—a quantum com-

puter”, which he described as “not a Turing machine, but a machine of a different kind”

[7]. His motivation at the time was the computational simulation of quantum systems,
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which even on today’s best computers more than thirty years later can only be simu-

lated in complete generality for on the order of a few tens of particles. This is because

a system of n particles each of dimension d evolves in a Hilbert space of dimension dn,

and a complex coefficient must be kept track of for each basis state of the space. A

standard single-precision real number in most modern computer architectures requires

32 bits to store; two such real numbers are required to encode a complex value. Even

for spin-1
2

particles with d = 2, a fifty-particle system requires over nine petabytes (over

9× 1015 bytes) of memory simply to store the state at any given time, and that does not

take into account the diagonalization of the 250-dimensional complex-valued Hamiltonian.

A few petabytes of memory may not be far beyond the limits of extant supercomput-

ers2 but the fact that each additional simulated particle further doubles the memory

requirements simply makes such simulations infeasible as a general solution. Further-

more, single-precision floating-point numbers do not come close to the exact simulation

in which Feynman was interested. His questions then were, could such simulations be

performed efficiently on a computer “with quantum computer elements”, and if so, what

elements would comprise a universal quantum computer, and which classes of quantum

systems would be intersimulable?

Such simulations are indeed a significant motivating factor for the development of

quantum computers, but Feynman’s discussion also asked another question that has led

to the development of the field of quantum information science, though he paid even less

attention it during his aside. If physical systems are inherently quantum mechanical, and

Turing machines are distinctly not, might there exist functions that are computable in the

intuitive sense—ones for which physically implementable algorithms can be devised—that

are nevertheless not computable by Turing machines? That is, might the Church–Turing

2For example, at the time of writing the fastest supercomputer in the world is the IBM Sequoia
BlueGene/Q installed at Lawrence Livermore National Laboratory in the US, which has 1.57 PB of
memory and can perform 16.32× 1015 floating-point operations per second [8].

10
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thesis fail when quantum computers are considered? To date the answer appears to

be ‘No’ in terms of the set of functions that are computable, but quantum computing

remains an active field of both theoretical and experimental research because it has been

shown that the time taken to calculate certain computable functions can be significantly

decreased if a quantum computer is available.

Motivated by the potential capabilities of quantum computers in the algorithmic,

rather than simulatory, sense, Deutsch developed in 1985 a fully quantum model for

computation, describing a quantum generalization of the universal Turing machine [9].

The central idea is to initialize a quantum system in a state that encodes a classical

bit string as input, and then allow the system to evolve quantum mechanically through

states that encode arbitrary superpositions of bit strings. Finally, a measurement is

performed that collapses the state of the system such that it once again encodes a single

classical bit string; this is the output of the computation. In analogy to the classical case,

any model for quantum computation that can both be simulated by a quantum Turing

machine and simulate an arbitrary one, is a model for universal quantum computation.

With the shift from classical to quantum Turing machines, come additional complexity

classes. In particular, the quantum generalizations of P and NP are BQP, for ‘bounded-

error quantum polynomial-time’, and QMA, for ‘quantum Merlin-Arthur’, respectively.

These classes are not defined as simply as by replacing the Turing machines in those of

P and NP with their quantum counterparts, however thinking of them as such is a useful

heuristic.

In the same paper, Deutsch also provided the first example of a task that a quantum

computer could perform in fewer steps than a classical one. Given a function on a single

bit, f : {0, 1} → {0, 1}, it must be the case that either f(0) = f(1), or f(0) 6= f(1).

Classically the only way to determine which of these cases applies is to evaluate both

f(0) and f(1), then compare the results. Quantum mechanically however, Deutsch’s

11
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algorithm can be used to determine which case holds with only a single call to the

function f . This was a remarkable first step for quantum computers, though of little

practical application. Furthermore, it turns out that Deutsch’s algorithm has four output

values: ‘f(0) = f(1)’, ‘f(0) 6= f(1)’, ‘error’, and ‘fail’. When the result is one of the first

two outputs, that statement is guaranteed to be true, and the probability of obtaining

‘error’ can be made arbitrarily small and thus neglected. However, the probability of the

algorithm’s returning ‘error’ is 1
2
, in which case nothing is learned about the relationship

between f(0) and f(1), and the algorithm must be run again. With repeated errors,

it might actually turn out that the quantum computer evaluates f more than twice in

order to answer the question in some instances, although since there is essentially a fifty

per cent success rate, the expected number of attempts required is two.

1.2.1 Quantum algorithms

Deutsch’s algorithm provides an example of a problem described under the quantum

query model, in which information about the problem to be solved can be obtained

through calls to a so-called oracle. In this case the oracle has complete knowledge of the

function f , but only returns one of its outputs at a time. The fewer the number of required

calls to the oracle, the more efficient the algorithm. Due to the probabilistic nature

of measurement outcomes in quantum mechanics, it is not uncommon for a quantum

algorithm to provide an answer to a question with only some probability less than unity,

as does Deutsch’s, but this is not a generic feature. The function f used in Deutsch’s

algorithm has a fixed input size of one bit. More generally, algorithms are expected to

solve problems with a variable input size, specified by n classical bits. In such cases the

algorithm defines a family of solutions—a family of circuits, in the case of the circuit

model discussed in the following section—such that for any allowed value of n, there

exists a member of the family that solves any instance of the problem with that input

12
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length.

In 1992 Deutsch and Jozsa provided the first example of a quantum algorithm that

both yields a correct answer with certainty and is more efficient than any classical solution

to the same problem, in that it requires fewer queries to the designated oracle [10]. While

interesting from the point of view of computational complexity, in that this result hints

at the possibility that the power of quantum computers may exceed that of classical

ones, the problem that they solve is of little practical interest. Furthermore it turns

out that although the Deutsch–Jozsa algorithm is exponentially more efficient than any

deterministic classical algorithm for the same task, it requires two oracle calls and there

exists a non-deterministic classical algorithm that is expected to take approximately three

queries. The quantum algorithm provides an absolute speed-up, but not a significant one.

Two years later, Shor presented a quantum algorithm capable of factoring an integer

exponentially more quickly than the fastest known classical algorithm [11]. This is of

great practical interest as a wide range of modern cryptographic protocols, including the

RSA encryption used to secure many online transactions [12], are secure only so long

as it remains difficult to factor large numbers. While this may sound like a coup for

quantum computers (and in many ways it is), theoretically speaking the difficulty of

the factoring problem is presently unknown—no classical algorithm yet exists that is as

efficient as Shor’s, but neither has it been shown impossible that one could be developed.

Therefore Shor’s algorithm provides no obvious theoretical distinction between the powers

of classical and quantum computers, despite being one of the most exciting practical

results to emerge. Finally, after a further two years, Grover provided a quantum algorithm

that can search an unordered database in quadratically less time than the best possible

classical algorithm is expected to take [13]. This result is potentially somewhat more

useful practically, but any database which is going to be accessed many times can be

classically indexed so as to be subsequently searched exponentially more quickly than by
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Grover’s algorithm. Such an indexing process is comparable to the task of sorting the

list which, as discussed in Section 1.1.1, takes O(N logN) operations. Grover’s search

runs in a time O(
√
N), so creating an index and searching classically becomes the more

efficient option if the database is to be searched more than Ω(
√
N) times. Nevertheless,

the specified problem is of some practical interest, and Grover’s algorithm does provide

an absolute, if only polynomial, speed-up over classical computers. The existence of these

algorithms was sufficient motivation to fuel the rapid growth seen since the turn of the

century in the fields of quantum computation and quantum information science.

1.3 Quantum bits and the quantum circuit model

As in the classical case, several models for quantum computation have been proposed

and shown to be equivalent to Deutsch’s universal quantum Turing machine. Perhaps the

most common of these, and the one to which the quantum walk schemes of subsequent

chapters are compared, is the quantum circuit model , so called in direct analogy to the

circuit model of classical computation. A brief overview of another model of quantum

computation can be found in Section 1.6, and the quantum walk model is discussed in

detail throughout subsequent chapters. Two properties are possessed by each of these

models, and indeed of every model of quantum computation. The first is that any

quantum algorithm can be efficiently recast to run under the model, and the second is

that conversely any instance of the model can be simulated efficiently by a universal

quantum computer, which is often taken to be described by the circuit model.

Figure 1.2 provides a simple example of a quantum circuit, using some of the gates

described in the current section. There are many similarities between the two circuit

models, quantum and classical, including the use of wires to carry information and gates

to transform it, and the ability to parallelize gates that act on disjoint subsets of the
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|a0〉

|a1〉

|a2〉

Z

H

H
|Ψout〉

b

Figure 1.2: Example quantum circuit on three qubits. The symbols H and Z
represent the Hadamard and Pauli-Z gates respectively, while the vertical
connection between rails is a cnot gate with the target qubit specified
by and the control by . The half-disc at the end of the lowest rail
represents a measurement of that qubit, which results in the classical bit
b, carried by a classical wire, while the two upper qubits exit the circuit
in the two-qubit state |Ψout〉.

wires at the same step of the algorithm.

Just as the classical bit can take on one of two mutually exclusive values, the funda-

mental unit of quantum information is defined in terms of two orthogonal states. However

as a quantum element, the quantum bit, or qubit , is able to take on any normalized state

in the two-dimensional Hilbert space C2 spanned by the computational basis states |0〉

and |1〉 and thus exist in an arbitrary superposition of the two values. The standard

representation of these states as ket vectors in C2 is

|0〉 .
=

(
1
0

)
, |1〉 .

=

(
0
1

)
. (1.5)

Their associated dual vectors are the bras

〈0| .
=
(
1 0

)
, 〈1| .

=
(
0 1

)
, (1.6)

and an inner product is given by a Dirac bracket, such as 〈i |j〉. Similarly, the outer

product |i〉〈j| yields a matrix.

Since |ψ〉 is required to be normalized, a useful representation of the state is to set

α = cos( θ
2
) and β = eiφ sin( θ

2
) for real numbers θ ∈ [0, π] and φ ∈ [0, 2π), which leads
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to the common description of |ψ〉 as the point on a unit sphere, referred to as the unit

‘Bloch’ sphere, with polar angle θ and azimuthal angle φ. The computational basis states

|0〉 and |1〉 correspond to the north and south poles of the Bloch sphere. The coefficient

α can be chosen to be real without loss of generality, because the overall phase of any

quantum system has no effect on its measurement statistics, as shown in the next section.

1.3.1 Measuring a qubit

While a classical bit can take on either the state b = 0 or b = 1, the state of a qubit

is a two-dimensional vector with complex coefficients, and thus can take on any of a

continuum of states, expressed as

|ψ〉 = α|0〉+ β|1〉, (1.7)

with |α|2 + |β|2 = 1. Any quantum state such as this that can be expressed as a single

vector in a Hilbert space is referred to as pure; one can also consider mixed states, which

correspond to classical probability distributions over pure states, but doing so does not

increase the computational power of the circuit model, so for convenience attention is

restricted here to pure states only. In order for a qubit to reveal information—the result

of a computation, for example—to the classical world, it must be measured .

The measurement postulate of quantum mechanics states that to every classically

observable property of a quantum mechanical system there is associated a Hermitian

operator, the eigenvalues of which are the possible outcomes of the measurement. After

the measurement, the state of the system is given by the eigenvector corresponding to the

measurement result. An immediate consequence is that even though the set of allowed

states of a qubit is a continuum, as a two-dimensional system the classically accessible

results of a single-qubit measurement form a dichotomy because the measurement op-
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erator has only two eigenvectors. Given a Hermitian operator Λ with eigenvectors |λi〉

and corresponding eigenvalues λi, the probability of obtaining the outcome λi from the

measurement of a system in the state |φ〉 is |〈λi |φ〉|2. It is for this reason that an overall

phase on a quantum state is irrelevant. If θ is a real number and |φ〉 is any quantum

state, then |〈λi |φ〉|2 = |〈λi|eiθ|φ〉|2, so the states |φ〉 and eiθ|φ〉 are identical as far as

measurements are concerned.

For a specific example of a measurement, consider a single qubit. The allowed out-

comes of a measurement in the computational basis are 0 and 1, corresponding to the

basis states |0〉 and |1〉. Constructing the operator

Λ = 0|0〉〈0|+ 1|1〉〈1| =
(

0 0
0 1

)
(1.8)

one finds that the single-qubit state |ψ〉 of Equation (1.7) has probability of |〈0 |ψ〉|2 = |α|2

of producing the outcome ‘0’ and leaving the qubit in the state |0〉, and probability

|〈1 |ψ〉|2 = |β|2 of resulting in the output ‘1’, with the qubit left in the state |1〉. A

measurement in the computational basis is represented graphically in a circuit diagram

by a half disc, with a quantum wire input on the left and a classical wire carrying a single

bit value on the right, as depicted on the lowest rail of Figure 1.2.

Such a measurement is called projective because a state vector initially in some super-

position of the eigenvectors of the measurement operator is projected onto a single one

of them. A projector P is an operator such that P 2 = P , and is said to be orthogonal if

additionally P is Hermitian, P † = P . Any set {Pi} of orthogonal projectors that sum to

the identity,
∑

i Pi = I, yields a projective measurement. If the system to be measured is

in the state |ψ〉, then the measurement outputs result i with probability p(i) = 〈ψ|Pi|ψ〉,
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after which the system is left in the state

1√
p(i)

Pi|ψ〉. (1.9)

Projective measurements are not the only measurement formalism within quantum me-

chanics, nor the most general, yet they are sufficient for universal computation under

both the circuit model and the quantum walk models as discussed in the present work.

They are thus the only form of measurement used herein.

1.3.2 Single-qubit computational gates

Measuring a qubit is only interesting if its state represents an interesting quantity, such

as the result of a computation. In addition to measurements then, quantum-mechanical

equivalents to classical logic gates are required. Under the circuit model, the set of such

computational gates is exactly the set of unitary operations on qubits. Again, more

general transformations of quantum states exist, yet under the circuit model universal

computation is possible with only unitary gates; throughout this work the term ‘gate’ is

synonymous with ‘unitary operation’.

Classically there are exactly two logical operations that can map a single bit to a

single bit: the identity, which accepts a bit value as input and returns the same value

as output, and the bit flip, which accepts either 0 or 1 as input, then outputs the other.

The discussion of operations that can be performed on a single qubit is rather longer

however, as in general both input and output states can be of the form in Equation (1.7),

though again it is important to note that the coefficients α and β cannot be recovered

classically as output. Such a state can be used as input to a subsequent quantum gate,

but at the end of the computation only a single bit of information, either a 0 or a 1, can

be returned by a qubit.
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A one-bit logic gate on a classical bit is given by a transformation f : {0, 1} → {0, 1}

from the one-bit state space to itself. Similarly, a quantum logic gate on a single qubit

is any transformation F : C2 → C2 that preserves the vector norm. That is, given an

input qubit state |ψin〉 and an output qubit state |ψout〉 = F |ψin〉, whenever the input

state satisfies |〈ψin |ψin〉| = 1 it must also true that

|〈ψout |ψout〉| = |〈ψin|F †F |ψin〉|
!

= 1. (1.10)

This immediately specifies that the transformation F must be unitary, and so a general

quantum logic gate is often labelled ‘U ’. The requirement that qubit gates be unitary

leads to two important distinctions from the classical case, before any specific gates are

investigated. Firstly, the no-cloning theorem implies that the classical fanout gate

cannot be used to duplicate arbitrary quantum bits [14]. Nevertheless, it has been shown

that a quantum version of fanout that copies only the computational basis states—i.e.

classical bits—exactly is still a useful, and indeed powerful, quantum gate [15]. Secondly,

many of the most common classical logic gates are many-to-one maps, and therefore non-

invertible. The evolution of information through such gates is irreversible, and so not

unitary. In spite of these functional differences from the classical gates described thus

far, it is possible to implement universal classical computation in a reversible manner,

a fact shown by Bennett in 1973 [16] and used by Deutsch in his development of the

quantum Turing machine.

Any 2× 2 unitary matrix in U(2) represents a valid quantum logic gate in the circuit

model, however a few appear frequently and are deserving of particular note. Four of

these are the Pauli spin matrices and the identity,

X
.

=

(
0 1
1 0

)
, Y

.
=

(
0 −i
i 0

)
, Z

.
=

(
1 0
0 −1

)
, I

.
=

(
1 0
0 1

)
. (1.11)
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These operators are Hermitian as well as unitary, and together they form a basis for the

vector space of 2×2 Hermitian matrices; since they are Hermitian they generate additional

unitary matrices under exponentiation.3 This gives rise to the rotation operators given

by

RX(θ)
.

= e−iXθ/2 = cos
(
θ
2

)
I − i sin

(
θ
2

)
X, (1.12)

and likewise for RY and RZ . Any two of these rotations can be used to provide a de-

composition of an arbitrary single-qubit operation U with appropriate choices of rotation

angles. If U ∈ U(2), then there exist real numbers φ, θ1, θ2, and θ3 such that U can be

expressed exactly as

U = eiφRX(θ1)RZ(θ2)RX(θ3). (1.13)

Since a generic single-qubit unitary U maps |ψ〉 to another state vector |ψ′〉 = U |ψ〉 and

both |ψ〉 and |ψ′〉 are points on the Bloch sphere, U is also referred to as a rotation on

the Bloch sphere, and can be expressed as Rl(γ) for some axis l and angle γ.

Another single-qubit operator of note is the Hadamard matrix

H
.

=
1√
2

(
1 1
1 −1

)
=
X + Z√

2
, (1.14)

which maps each computational basis state to an even superposition of the two.

1.3.3 Two-qubit gates

One of the postulates of quantum mechanics states that the Hilbert space of a composite

system is tensor product of the state spaces of its constituents. In the case of qubits this

means that a two-qubit state is described by a normalized vector in C2 ⊗ C2, or more

generally an n-qubit state by a normalized vector in (C2)⊗n. A logical operator on n

3In fact, the matrices {iX, iY, iZ} span the Lie algebra su(2) and thus generate the Lie group SU(2)
of two-dimensional unitary matrices U with det(U) = 1.
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qubits is a unitary U ∈ U(2n); again, this ensures that normalized states are mapped to

normalized states. It turns out, in a manner formalized in the following section, that any

unitary operation on n qubits can be decomposed exactly into a sequence of one- and

two-qubit operations. As with single-qubit gates, there are certain two-qubit gates that

appear frequently and as such are worth introducing explicitly here. The controlled-not

(or controlled-X) and controlled-phase gates are given by

cnot
.

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 and cphase(φ)
.

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

 (1.15)

respectively, in the canonical two-qubit computational basis

|00〉 .
=


1
0
0
0

 , |01〉 .
=


0
1
0
0

 , |10〉 .
=


0
0
1
0

 , |11〉 .
=


0
0
0
1

 . (1.16)

Here the standard abbreviated form of the tensor product notation has been introduced,

wherein

|ij〉 .
= |i〉 ⊗ |j〉. (1.17)

These gates are referred to as ‘controlled’ because they either do or do not enact a single-

qubit gate (here not or phase) on the second ‘target’ qubit, depending on whether the

state of the first ‘control’ qubit is in the state |1〉 or |0〉.

The importance of such gates, indeed of almost all two-qubit operations, is their

ability to generate entanglement , which is a uniquely quantum-mechanical feature of

composite systems. Classically, if a system comprises two subsystems then the allowed

states of the system as a whole are simply the set of all possible pairs of allowed states

of the subsystems. Quantum mechanically, it may also be the case that each subsystem
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is in a well-defined single-qubit state, as for example in the two-qubit state

|Ψ〉 = (α|0〉1 + β|1〉1)⊗ (γ|0〉2 + δ|1〉2) = |ψ1〉 ⊗ |ψ2〉. (1.18)

Any two-qubit state that can be factored into a tensor product of two one-qubit states

like this, with appropriate choices for α, β, γ, and δ, is called separable or referred to as

a product state. However, there exist states in the Hilbert space C2 ⊗C2 that are not of

this form. Consider

|Φ+〉 .
=

1√
2

(|0〉1 ⊗ |0〉2 + |1〉1 ⊗ |1〉2) =
1√
2

(|00〉+ |11〉) , (1.19)

one of the four maximally entangled Bell states on two qubits. There is no way to

factorize this state into the form of Equation (1.18), and furthermore it can be shown

that there exists no basis in which the state factorizes, meaning that it is not possible to

describe the states of the constituent systems individually. They exist only in a collective

entangled state.

The physical interpretation of this becomes apparent when one considers performing

a measurement in the computational basis on, say, the first qubit subsystem. If the

outcome of the measurement is b ∈ {0, 1}, then immediately afterwards the state of the

system as a whole is |b〉 ⊗ |b〉, in which the second qubit is in the well-defined state |b〉.

That is, a measurement on one component of the system yields knowledge about the state

of another. The crucial aspect to the phenomenon of entanglement is not simply this

correlation however; if the initial state before measurement were instead |Ψprod〉
.

= |00〉,

then immediately after measuring the first qubit in the computational basis and obtaining

outcome 0, the second qubit would also be known to be in the state |0〉, but this would

not be interesting. Suppose that instead a measurement were made in the |±〉 basis
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defined by

|±〉 .
=

1√
2

(|0〉 ± |1〉) . (1.20)

In this basis the state |Ψprod〉 is given by

|Ψprod〉 =
1√
2

(|+〉1 + |−〉1)⊗ 1√
2

(|+〉2 + |−〉2) =
1

2
(|++〉+ |+−〉+ |−+〉+ |−−〉)

(1.21)

and thus a measurement of the first outcome that yields, for example, ‘+’ leaves the

system in the state

1√
2

(|++〉+ |+−〉) = |+〉1 ⊗
1√
2

(|+〉2 + |−〉2) . (1.22)

So learning the state of the first qubit in this basis reveals nothing about the state of the

second, which has an equal chance to be found in either of the |±〉 states if measured

itself.

On the other hand the entangled state |Φ+〉 appears in this transformed basis as

|Φ+〉 =
1√
2

(|++〉+ |−−〉) . (1.23)

A measurement of the first qubit in this basis that yields an outcome of ‘+’ leaves the

system in the state |++〉, and similarly an outcome of ‘−’ results in |−−〉. The states of

the two qubits are correlated in this basis as well, and in fact in every basis.

The importance to quantum computation of two-qubit gates such as cnot and

cphase is their ability to act on a product state and transform it into an entangled one,

at least for certain input product states. For example, the cphase gate acts trivially

on each of the two-qubit computational basis states in Equation (1.16), doing nothing

to three of them and merely adding an unimportant overall phase to |11〉. However, the
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input state

|Ψin〉 =
1√
2

(|0〉1 + |1〉1)⊗ 1√
2

(|0〉2 + |1〉2) =
1

2
(|00〉+ |01〉+ |10〉+ |11〉) (1.24)

is transformed into

|Ψout〉 = cphase(φ)|Ψin〉 =
1

2

(
|00〉+ |01〉+ |10〉+ eiφ|11〉

)
, (1.25)

which is an entangled state for every value of φ that is not an integral multiple of 2π.

Another two-qubit gate that is important to many schemes for quantum computation,

despite not being entangling, is the swap gate, which exchanges to qubits. In any

quantum computer qubits will be encoded in physical elements of a system, and it may

be that however these physical qubits are arranged, they can each only interact with

adjacent qubits. This would mean that, for example, the first cnot gate in Figure 1.2

could not be performed because qubits 1 and 3 are not adjacent. To circumvent this

problem the nearest-neighbour swap gate, defined in the two-qubit computational basis

as

swap
.

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (1.26)

can be used to interchange qubits 2 and 3 both before and after enacting cnot on the

qubits in positions 1 and 2.

Denote by cnotij the gate that implements a single-qubit not operation on the target

qubit j contingent upon the state of the control qubit i, and let swapij be the operation

that exchanges qubits i and j. If only nearest-neighbour operations are permitted—that

is, if these gates are restricted to cases in which j = i ± 1—then the cnot13 gate in
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Figure 1.2 can be replaced by the sequence of operations

cnot13 = swap23cnot12swap23. (1.27)

Thus swap is a useful gate, and one that features prominently in Chapter 6, despite

its not being required for the theoretical description of universal quantum computation

described next.

1.4 Universal quantum computation under the circuit model

The state space of even a single qubit is a continuum, and thus uncountably infinite.

Nevertheless, it has been shown that remarkably there exist finite sets of unitary gates

capable of efficiently approximating any given gate to arbitrary accuracy.

A quantum computation in its simplest terms is a unitary operation Uf that encodes

a function which transforms a given n-qubit input state into a state that is to be mea-

sured in order to determine the outcome of the computation. In looking for a quantum

equivalent of the concept of a universal gate, the question is, given such a Uf , how can

it be decomposed into a sequence of operations from a finite set? The first step toward

answering this question is to consider only those Uf that act on a single qubit, after

introducing the concept of an ε-approximation to an arbitrary unitary operation.

Definition 1.1 (Cf. Reference [17]). A unitary operation V , possibly comprising a se-

quence S of gates, provides an ε-approximation to a quantum gate U if

||U − V || .
= sup
|||ψ〉||=1

||(U − V )|ψ〉|| < ε. (1.28)

That is, taken over all normalized input states |ψ〉, the magnitude of the largest

difference between U |ψ〉 and V |ψ〉 is less than ε. The concept of approximating a desired
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gate to arbitrary accuracy without necessarily executing it exactly is what allows a finite

set of gates to be considered universal for a continuum of operations, as made concrete

by the following definition.

Definition 1.2 (Cf. Definition 4.3.4 of Reference [18]). A set of gates is said to be

universal for single-qubit gates if a sequence of gates from the set can provide an ε-

approximation to any single-qubit unitary gate.

This definition is primarily useful in conjunction with the following theorem, which

provides a sufficient criterion for determining whether a set of gates is universal for

single-qubit gates.

Theorem 1.1 (Theorem 4.3.5 of Reference [18]). If a set of two single-qubit gates (ro-

tations) G = {Rl(β), Rm(γ)} satisfies the conditions

1. l and m are non-parallel axes of the Bloch sphere, and

2. β, γ ∈ [0, 2π) are real numbers such that β
π

and γ
π

are not rational

then G is universal for single-qubit gates.

Theorem 1.1 shows that there indeed exist finite gate sets that are universal for

single-qubit computation, but it does not speak to the efficiency with which an arbitrary

operation can be simulated by the universal set, in terms of the number of times the

elements of the set must be applied in order to approximate the desired outcome. The

amazing fact that it is indeed possible for a finite set of gates to efficiently approximate

arbitrary single-qubit operations is the result of the Solovay-Kitaev theorem, stated below

as Theorem 1.2 in terms of the following definition.

Definition 1.3 (Cf. Definition 1 of Reference [17]). An instruction set G for single-qubit

operations is a set of quantum gates satisfying:
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1. The number of gates in the set, |G|, is finite.

2. All gates g ∈ G are in SU(2); that is, they are unitary with determinant 1.

3. For each g ∈ G, its inverse operation g† is also in G.

4. G is universal for single-qubit gates.

Theorem 1.2 (Solovay-Kitaev; cf. Theorem 1 in Reference [17]). Let G be an instruction

set for SU(2), and a desired accuracy ε > 0 be given. Then there is a constant c ≈ 2

such that for any U ∈ SU(2) there exists a finite sequence S of gates from G, of length

O(logc(1/ε)), such that S provides an ε-approximation to U .

It is the logarithmic dependency of the length of the approximating sequence on the

desired error tolerance that justifies the statement that the approximation is efficient.

1.4.1 Computing with two qubits

Local operations cannot generate entanglement, so it is clear that at least one two-qubit

gate must be part of any universal set of quantum gates. The following result, due to

Zhang et al. [19], shows that a single two-qubit gate (possibly executed multiple times)

in conjunction with a universal set of single-qubit gates can efficiently generate any two-

qubit gate.

Theorem 1.3. Let UC be either cnot, or cphase(φ) with φ ∈ [π
2
, π]. Given UC and

access to arbitrary single-qubit operations, any two-qubit gate U ∈ SU(4) can be simulated

exactly with at most six applications of UC, and seven local gates.

Here a local gate is a two-qubit gate of the form UA ⊗ UB, where {UA, UB} ∈ SU(2)

are single-qubit gates. If access to arbitrary exact single-qubit gates is not available,

each of the local gates must be approximated from an instruction set, in a sequence as

27



UNIVERSAL COMPUTATION 1.4. Quantum computation under the circuit model

in the Solovay-Kitaev theorem. This raises the question of whether a sequence of well-

approximated gates is itself well approximated, which is answered in the affirmative by

the chaining inequality of the following lemma.

Lemma 1.1 (Cf. Equation (4.63) of Reference [4]). If a sequence of unitary operators

V1, . . . , Vm is used to approximate a desired sequence U1, . . . , Um, then the individual

errors add at most linearly:

||(Um · · ·U1)− (Vm · · ·V1)|| ≤
m∑
i=1

||Ui − Vi||. (1.29)

This means that to simulate a sequence of 14 single-qubit gates—the most required

by Theorem 1.3—to an accuracy of ε, each gate should individually be simulated to an

accuracy of ε/14, leading immediately to the following corollary.

Corollary 1.1. Let UC be either cnot, or cphase(φ) with φ ∈ [π
2
, π]. If UC, a single-

qubit instruction set G, and an accuracy ε > 0 are given, then there is a constant c ≈ 2

such that for any two-qubit gate U ∈ SU(4) there exists a finite sequence S of gates from

G ∪ {UC} of length O(logc(14/ε)) such that S provides an ε-approximation to U .

Therefore arbitrary two-qubit gates can be simulated efficiently under the same condi-

tions for which single-qubit operations can, when a single appropriately chosen entangling

gate is added to the instruction set.

1.4.2 Many qubits

The next step is to consider a computation on n qubits. Theorem 1.1 states that a

finite set of one-qubit gates can be universal for single-qubit computation; Corollary 1.1

likewise shows that a finite set containing one- and two-qubit gates can be universal for

two-qubit operations, if at least one two-qubit gate in the set cannot be written as a

tensor product of one-qubit gates. One might wonder then whether a computation on n
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qubits in general requires at least one operation that cannot be decomposed into a tensor

product of lower-dimensional gates. It turns out that this is not the case, and indeed

the gate sets already discussed are universal for quantum computation on an arbitrary

number of qubits.

What does not carry over from two qubits to an n system is the ability to efficiently

simulate arbitrary operations—there exist unitary operations on n qubits that require

at least Ω(2n log(1/ε)/ log(n)) gates for an ε-approximation by any finite gate set [4].

Any finite gate set will have a ‘largest’ gate that acts on n0 qubits at once, yet there

exist unitary operations on n qubits for all n > n0. As n increases, the dimension of

the space in which the gates must act grows exponentially, while the gate size remains

fixed. This result should not be discouraging though, for the same is true classically

and nevertheless classical computers have proven themselves immeasurably useful. The

important point is not that some computations are difficult to perform, but rather that

certain particularly advantageous computations are not. Of those discovered to date

perhaps the most promising is the quantum Fourier transform, which plays a central

role in Shor’s factoring algorithm and which can be efficiently decomposed into one- and

two-qubit gates for any input size n. For the purposes of the present work however, it is

sufficient to know that such applications exist, and that any set of gates satisfying the

requirements of Corollary 1.1 is universal for quantum computation.

1.5 Quantum error correction

Classical computers generally only require error correction when communicating over

large distances that lead to significant signal attenuation. Bits are stored in physical

systems that are enormous on the quantum scale. The states of those systems that

encode the bit values 0 and 1 are so disparate that the probability of a bit’s ‘flipping’
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from its assigned value to the other, erroneous, value due to external noise such as

mechanical vibrations or thermal fluctuations is negligible. The state of a qubit on the

other hand can be easily and significantly altered by any external coupling, including to

other nearby qubits when no multi-qubit gate is being enacted. If such noise alters the

state of a qubit during a computation, an error is introduced because the encoded value

is no longer correct.

A straightforward tactic to counter bit-flip errors during classical communication is

to implement a repetition code, in which the bit values 0 and 1 are encoded in longer bit

strings as 00 · · · 0 and 11 · · · 1. The strings encoding the computational bits are called

code words, and if at a later time it is found that one of the bit strings is no longer equal

to either code word, then resetting all bits to the majority value of the string is likely to

fix the error. For example the three-bit repetition code is given by 0 = 000 and 1 = 111,

where an underlined value represents an encoded computational, or logical, bit, while the

non-underlined values correspond to values of physical bits used in the encoding. Given

a relatively trustworthy communications architecture in which it is reasonable to assume

that bits are more likely to remain correct than to flip, if it is found that a supposedly

encoding bit string is equal to 001, it is reasonable to conclude that the encoded bit

should be 0. Flipping the third encoding bit back to 0 corrects the error.

Unfortunately, three factors prevent such a code from being directly ported over to

the quantum domain to protect encoded qubits. One is that the no-cloning theorem

prevents the copying of arbitrary qubit states to create a repetition in the first place.

Another is that even were such an encoding possible, the act of measuring a qubit to

determine whether its state has changed, itself alters the state and the information it en-

codes is lost anyway. Finally, qubit states can be deformed continuously and thus there is

a continuum of errors that can occur. Amazingly, there nevertheless exist techniques for

overcoming these problems; this is the realm of quantum error correction and quantum
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error-correcting codes. A thorough exposition of the many significant results that have

shown how to solve these issues is beyond the scope of this thesis. However, that they

can be solved is of fundamental importance to any extensive discussion of quantum com-

puting, and the subject appears again in Chapter 6, wherein the first (to my knowledge)

construction of a quantum-walk scheme for error correction is presented. A brief intro-

duction is thus included here, and for more in-depth presentations the interested reader

is referred to a review article by Gottesman [20], and Chapters 5 and 10 respectively

of the textbooks by Mermin [21] and Nielsen and Chuang [4], from which the following

results are taken.

The no-cloning theorem states that it is impossible to duplicate an arbitrary quantum

state, but does not state that cloning a known state is forbidden. That is, while an

unknown state |ψ〉 and fiducial state such as |0〉 cannot reliably be transformed from

|ψ〉|0〉 into |ψ〉|ψ〉, the creation of states such as |0〉|0〉|0〉 and |1〉|1〉|1〉 (or even |ψ〉|ψ〉,

if |ψ〉 is specified) is allowed. This means that there is at least hope for the creation of

code words corresponding to computational basis states. With respect to the continuum

of possible unitary errors that a qubit can undergo, amazingly it suffices to be able to

detect and correct only the undesired action of the Pauli matrices. This is a consequence

of the fact that an arbitrary unitary operation can be expressed as a sequence of Pauli

rotations as in Equation (1.13), and that in turn these rotations can be written as a

linear combination of the identity and a Pauli matrix as in Equation (1.12).

The first of the errors that must be corrected is an undesired X operation, which

turns |0〉 into |1〉 and vice versa, and is thus analogous to the classical bit flip error. A

uniquely quantum-mechanical error is the phase flip, which negates the relative phase

between the |0〉 and |1〉 components of a qubit; this corresponds to the action of Z. The

remaining Pauli matrix is Y = iXZ, which is therefore a combination of the bit- and

phase-flip errors.
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1.5.1 Three-qubit codes

It turns out that the straightforward encoding of the computational basis states as in the

classical repetition code, i.e. as

|0〉 = |000〉, |1〉 = |111〉, (1.30)

can be used to detect and correct a single X error. Under this code, an encoded qubit in

the state |ψ〉 = α|0〉 + β|1〉 corresponds to an encoding state of α|000〉 + β|111〉, which

is distinct from a tensor product three qubits each in the state α|0〉+ β|1〉 (unless either

α or β vanishes). The encoding of a single-qubit state α|0〉 + β|1〉 is accomplished with

two ancillary qubits in the fiducial |0〉 state and two cnot operations. With cnotij a

cnot gate affecting the target qubit j based on the state of control qubit i, the encoding

proceeds as

cnot13cnot12(α|0〉+ β|1〉)|00〉 = cnot13cnot12(α|000〉+ β|100〉)

= cnot13(α|000〉+ β|110〉)

= α|000〉+ β|111〉. (1.31)

Suppose three physical qubits have been used to encode a logical qubit of the form

|ψ〉, and after some time at most one of the qubits has undergone a bit flip. A syndrome

measurement is a measurement that can determine when and where a particular error has

occurred, without collapsing the encoded state and thus losing the quantum information.

A bit flip can be diagnosed under the three-qubit bit-flip code by measuring the four
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projectors

P0
.

= |000〉〈000|+ |111〉〈111|, (1.32a)

P1
.

= |100〉〈100|+ |011〉〈011|, (1.32b)

P2
.

= |010〉〈010|+ |101〉〈101|, (1.32c)

P3
.

= |001〉〈001|+ |110〉〈110|, (1.32d)

where Pi detects a bit flip on qubit i and a measurement result corresponding to P0

indicates that no (bit-flip) error has occurred. For example, suppose that the third

qubit has been flipped. The physical state is therefore |ψ̃〉 = α|001〉 + β|110〉, and a

measurement of the Pi returns 3 with certainty, since 〈ψ̃|P3|ψ̃〉 = 1. After the projective

measurement, the three qubits remain in the state |ψ̃〉, so applying the gate I ⊗ I ⊗X

transforms |ψ̃〉 7→ |ψ〉, and the error has been corrected. Similarly, measurement results

of 1 and 2 indicate errors that can be corrected by applying X ⊗ I ⊗ I and I ⊗X ⊗ I,

respectively, while an outcome of 0 shows that no qubit has been bit flipped.

A phase-flip error can be corrected in a similar manner when one observes that in

the |±〉 .
= 1√

2
(|0〉 ± |1〉) basis a phase flipping Z operator maps |±〉 7→ |∓〉, which is

effectively a bit flip in this rotated basis. The code words |0〉 = |+++〉 = H⊗H⊗H|000〉,

and |1〉 = |−−−〉 = H ⊗ H ⊗ H|111〉 and equivalently defined syndrome measurement

operators of the form in Equation (1.32), will identify and correct a single phase-flip

error.

In practice such projections onto highly entangled states are difficult to implement.

An alternative formulation of the three-qubit code achieves the same error-correcting

results, while requiring only single-qubit measurements. To accomplish this without

destroying the coherence between the three qubits of the code word, two further ancillary

qubits are introduced. Figure 1.3 shows a quantum circuit that encodes a single-qubit
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α|0〉+ β|1〉

|0〉

|0〉

|0〉

|0〉

X?

b

a

Xab̄

Xab

X āb

α|000〉
+β|111〉

Figure 1.3: Quantum circuit to detect and correct at most one bit-flip error using
the three-qubit code. The first two cnot gates transform the input state
α|0〉 + β|1〉 and two qubits in the fiducial |0〉 state into the three-qubit
state α|000〉+β|111〉. At most one X, or bit-flip, error might then occur.
The ancillary qubits on the upper rails are entangled with the possibly
corrupted three-qubit state, and measured individually. The outcomes a
and b of these measurements specify which qubit must be corrected with
an additional X gate; here ā

.
= not a. The final output is the original

encoded state.

state |ψ〉, and then after at most one X error has occurred entangles two ancillary qubits

with the encoded state to detect and correct the error.

The encoded state α|0〉 + β|1〉 is constructed by the first two cnot gates from a

single qubit in the input state α|0〉 + β|1〉 and two qubits in the fiducial |0〉 state, ac-

cording to Equation (1.31). At some point after the encoding, at most one bit flip occurs

in the state. That is, the three-qubit state is subject to one of the unitary operators

{XII, IXI, IIX, III}, but since this is an error it is unknown which of these is applied.

To identify the unknown operation, the ancillary qubits on the upper two rails are entan-

gled with the possibly corrupted qubits. If no error occurs, i.e. the intervening operation

is III, then the |000〉 term of the encoded state leaves the ancillary qubits in their ini-

tial state, |00〉, and the |111〉 term flips each of them twice—which is equivalent to not

flipping them at all. Thus when no error occurs, the measurement outcomes a and b will

both be 0, and since X0 = I, the final three gates leave the intact state untouched.

Suppose instead that the operation XII is applied, flipping the first qubit of the
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encoding state and leaving the erroneous state α|100〉 + β|011〉. Each of these terms

causes the upper ancillary qubit to be flipped once, and the lower to be flipped twice.

The classical outputs are thus (a, b) = (1, 0), leading to ab̄ = 1 so that the first encoding

qubit is flipped, correcting the error. A similar analysis shows that the errors IXI and

IIX lead to the outputs (a, b) = (1, 1) and (a, b) = (0, 1), respectively, and the error

in a physical qubit is corrected in each case, with no need to decode the logical qubit.

It is important to note that while this procedure reveals which bit, if any, is flipped, it

yields no information about the parameters α and β, and thus the encoded quantum

information remains intact. This procedure of introducing n − 1 ancillary qubits and

entangling each of them with a subset of the qubits in an n-qubit code applies to quantum

error-correcting codes in general. It allows syndrome measurements to be performed as

single-qubit measurements, and without decoding the logical qubits.

1.5.2 The nine-qubit Shor code

Correcting for both bit- and phase-flip errors requires longer code words, but can never-

theless still be accomplished. Shor proposed a nine-qubit code in which the code words

of the phase-flip code are themselves encoded under the bit-flit code, and showed that

this scheme is capable of correcting arbitrary single-qubit errors [22]. The first stage

of the encoding is the same as the three-qubit phase-flip code, with |0〉 7→ |+++〉 and

|1〉 7→ |−−−〉. The second stage is to encode each of these three qubits using the three-

qubit bit-flip code, leading to the encoding

|0〉 =
1

2
√

2
[(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)] , (1.33a)

|1〉 =
1

2
√

2
[(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)] . (1.33b)
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This process of nesting codes, wrapping the already encoded logical qubits of one code

into a second layer of encoding under another, is called concatenation. Concatenation is

particularly important not only because it can increase the number of single errors that

a code can protect against, but also because the threshold theorem of quantum error

correction guarantees that an error-prone quantum computer can efficiently simulate an

ideal quantum computer so long as the errors are random, and below a certain thresh-

old [23]. A certain class of codes referred to as ‘fault tolerant’ are able to be concatenated

repeatedly, decreasing the error level at each stage until it is below the threshold.

1.5.3 The seven-qubit Steane code

That the continuum of single-qubit errors can be protected against by detecting and

correcting a finite set of errors—namely X, Z, and XZ—is impressive. There are, how-

ever, inherent difficulties associated with the implementation of the three- and nine-qubit

codes. Specifically, enacting single-qubit gates on the logical qubits can require the use

of highly non-local physical gates on the underlying physical qubits. The seven-qubit

Steane code mitigates this issue while still correcting arbitrary single-qubit errors. Fur-

thermore the Steane code is fault tolerant , meaning that operations can be performed

on encoded logical qubits without decoding them, and a single error in the procedure

cannot propagate to more than one qubit. The three- and nine-qubit codes are not fault

tolerant.

Introduced by Steane [24], the seven-qubit Steane code is a so-called CSS code, named

for the developers Calderbank and Shor [25], and independently Steane [26], of this class

of codes. Its code words are

|0〉 =
1

2
√

2

(
|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉
)

(1.34a)
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Figure 1.4: Quantum circuit for the seven-qubit Steane code. The input state |ψ〉
on the middle rail is encoded into the logical state |ψ〉 by the first set of
Hadamard and cnot operations, after which an unknown unitary error
may or may not occur on a single qubit. The next two sets of Hadamards
and cnots entangle the ancillary qubits of the upper six rails with the
now-unknown seven-qubit state, after which a set of six single-qubit mea-
surements yield a set of bit values specifying which corrections Ui are to
be made, if any.

and

|1〉 =
1

2
√

2

(
|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉
)
, (1.34b)

The circuit to encode a logical qubit, perform a syndrome measurement, and correct a

diagnosed error is identical in spirit to the three-qubit version in Figure 1.3, but contains

four additional physical encoding qubits and four more ancillary qubits. It can be seen

in Figure 1.4.

Gates such as the Hadamard and Pauli operators can be implemented on the encoded

qubits with local operations on the encoding qubits. For example, a Hadamard oper-

ation on a logical qubit is simply H = H⊗7 and a logical cnot gate can similarly be
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UNIVERSAL COMPUTATION 1.6. Other models of quantum computation

implemented as cnot = cnot⊗7. Gates for which this is true are called transversal ,

and can be implemented fault tolerantly. The transversal property is not inherent to a

gate, but rather applies to a gate with respect to a given error-correcting code. For in-

stance, while the Hadamard operator is transversal under the seven-qubit code, it is not

so under the three qubit code. Note however that it is not a requirement that the logical

encoding of a gate be equal to multiple single-qubit copies of itself: in the nine-qubit

code, X = Z⊗9 and Z = X⊗9. Since X and Z can each be implemented via local gates

they are transversal.

The existence of a transversal implementation of a gate under a given code is sufficient

for that gate to be able to be performed fault tolerantly. Unfortunately, no code allows

all members of any universal gate set to be implemented transversally [27]. Thankfully

a transversal implementation is not a necessary condition for the fault tolerant imple-

mentation of a logical gate, and there do exist codes—including the seven-qubit Steane

code—that can be implemented fault tolerantly.

1.6 Other models of quantum computation

The circuit model is not the only model of quantum computation, though as is the

case with the various models of classical computing, each of the models of quantum

computation so far proposed is capable of simulating each of the others with at most

a polynomial increase in the runtime. Two other prominent and well-studied models

are measurement-based and quantum-walk quantum computation. As the focus of the

current work, the quantum-walk models are discussed in greater detail in subsequent

chapters.
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1.6.1 Measurement-based quantum computation

In the circuit model, the fiducial input is taken to be a product state. Entanglement is

generated throughout the execution of the circuit, in accordance with the algorithm being

implemented. Under the measurement-based or one-way model of quantum computation

the initial state is instead a highly entangled state referred to as a ‘resource state’.

One such resource is the cluster state [28], in which an array of two-level qubit-like

systems on the vertices of a square grid are each maximally entangled with their nearest

neighbours. The initial state is independent of the algorithm to be implemented, and

its entanglement is ‘consumed’ as single-qubit projective measurements are made on its

two-level constituents.

Since measurement outcomes are probabilistic, the results of one round of measure-

ments inform the choice of subsequent measurements. Starting at the left-hand side of

the array, specific elements of the cluster state and measurement bases are prescribed

based on the desired gate to be implemented. Local measurements on the entangled state

transform the state of the rest of the cluster in such a way as to propagate an encoded

n-qubit state across the cluster to the right, transforming it according to a chosen quan-

tum algorithm along the way. In this manner, the cluster state and local measurements

together are universal for quantum computation, but just as there exist many universal

sets of gates in the circuit model the cluster state is not unique in its status as a resource

for measurement-based quantum computing [29, 30].
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Chapter 2

Quantum walks

Quantum walks are the quantum-mechanical analogue of classical random walks. At

their simplest, these walks are the evolution of systems that inhabit and evolve on graphs,

which in this context are generalized lattice-like structures composed of vertices and edges

among them. For a given walk the graph encodes both the states the walker may occupy,

and the allowed transitions among them. A simple illustrative example can be found in

Figure 2.1. Due to the prominent nature of graphs within the realm of quantum walks,

a cursory introduction to graph theory precedes a review of quantum-walk systems.

2.1 Graph theory

A comprehensive discussion of graph theory is beyond the scope of this work, but as

repeated use of certain key concepts is made throughout it, a review of the relevant

notations and definitions is presented here. More thorough treatments can be found,

for example, in the textbooks by Biggs [31], Godsil and Royle [32], and Agnarsson and

Greenlaw [33].

A graph G = (V,E) is defined by a set V of vertices and a set E ⊆ V × V of edges

between pairs of vertices. A directed graph allows for an edge to connect vertex u to

vertex v, without also connecting v to u. Only undirected graphs, in which there is an

edge from u to v if and only if there is an edge from v to u, are considered here. An

edge “between” a vertex and itself is a self-loop. A weighted graph G = (V,E,w) is

a graph augmented by a weighting function w : E → R+ that assigns to each edge a

positive real number. A graph with no such function is called unweighted . Edge weights
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|1〉

|2〉

|3〉

|4〉
|5〉

|6〉

|7〉

(a)

Quantum walker:

|ψ〉 =
7∑
v=1

αv|v〉

Vertex basis state:

|v〉 .
=
(
0 · · · 1 · · · 0

)T
↑ vth entry

(b)

Figure 2.1: Illustrative example of a graph–quantum-walk system. (a) A graph con-
tains vertices labelled by states |vi〉. (b) The state of a quantum walker
on the graph is a normalized superposition of the vertex basis states,
which are represented canonically as the unit vectors |vi〉 with the ith
entry equal to 1.

can be thought of as transition rates, or as inversely proportional to a distance between

vertices (though actual distances in graphical representations of graphs generally carry

no meaning). If all weights in a given graph are integers, then the graph can also be

thought of as having multiple edges , meaning two or more unweighted edges between a

single pair of vertices. A simple graph is an unweighted graph with no self-loops. A

connected graph is one in which there is a sequence of edges joining any two vertices.

That is, given any pair of distinct vertices {u, v} ∈ V , there exists a sequence (e1, . . . , el)

of edges ei = (ui, vi) ∈ E connecting them, with u1 = u, vl = v, and ui = vi−1 for each

i ∈ {2, . . . , l}. Such a sequence is called a path; if u = v and the sequence is non-empty,

then it is called a cycle. A simple path is a path with no repeated vertices, and a cycle

with no repeated vertices other than the required repetition of the first vertex as the last

is a simple cycle.

A particularly useful description of a graph G is that of its adjacency matrix , defined

for an n-vertex graph as the n × n matrix A(G) = {auv}, with auv equal to the weight

of the edge between vertices u and v. The adjacency matrix is thus written in the vertex

basis , spanned by the orthonormal vectors {|v〉}Nv=1 where each |v〉 ∈ RN is the unit
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vector corresponding to the vth dimension as for example in Figure 2.1(b). When the

graph in question is clear from context, the adjacency matrix can also be written simply

as A, without the explicit dependence on G. For an unweighted graph all entries of the

adjacency matrix are either 0 or 1, and the adjacency matrix of an undirected graph

is symmetric. Finally, the degree of a vertex in an unweighted graph, possibly with

multiple edges, is the number of edges attached to the vertex; a graph is regular if all of

its vertices have the same degree. It is straightforward to see that the degree of a vertex

in an undirected, unweighted graph can be calculated as the sum of the entries in the

row (or column) corresponding to that vertex in the graph’s adjacency matrix.

2.1.1 Examples of common graphs and graph classifications

The complete graph on N vertices, denoted KN , has an edge between every pair of

vertices. With JN the all-ones N ×N matrix, the adjacency matrix of a complete graph

is

A(KN) = JN − IN =
∑
u6=v

|u〉〈v| =


0 1 1 1
1 0 1 · · · 1
1 1 0 1

...
. . .

...
1 1 1 · · · 0

 . (2.1)

For example, K5 can be seen in Figure 2.2(a).

Two graphs closely related to each other are the path and cycle on N vertices, PN

and CN respectively. The path has two ‘end’ vertices of degree 1, and N − 2 degree-2

vertices connected sequentially between the ends. The cycle is the same graph, with an

additional edge joining the ends directly to each other. The examples P5 and C5 are shown

in Figures 2.2(b) and (c), respectively. The adjacency matrix of the path is tridiagonal,

with ones on the first upper and lower diagonals, and zeroes on the main diagonal and

in every other entry; the adjacency matrix of the cycle contains two additional ones, in
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(a) K5 (b) P5 (c) C5

Figure 2.2: The complete, path, and cycle graphs on five vertices. (a) In the complete
graph K5, each vertex is connected to every other and thus has degree 4.
(b) The path P5 can be turned into (c) the cycle C5 by adding an edge
connecting the top vertex to the bottom.

the upper-right and lower-left corners:

A(PN) =
N−1∑
v=1

|v + 1〉〈v|+ H.c. =



0 1 0 0 0
1 0 1 · · · 0 0
0 1 0 0 0

...
. . .

...
0 0 0 · · · 0 1
0 0 0 1 0


, (2.2a)

and with vertices labelled modulo N so that N + 1 = 1,

A(CN) =
N∑
v=1

|v + 1〉〈v|+ H.c. =



0 1 0 0 1
1 0 1 · · · 0 0
0 1 0 0 0

...
. . .

...
0 0 0 · · · 0 1
1 0 0 1 0


. (2.2b)

Note that the definitions of K2 and P2 lead to the same graph of two vertices with a

single edge between them. Likewise K3 and C3 both describe a graph containing three

vertices connected by three edges so as to form a triangle. It is said that K2 is said to be

isomorphic to P2, and K3 to C3. In general if the adjacency matrices of two graphs are

equal up to a permutation of the vertex basis, then the graphs are isomorphic; a more
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|000〉

|001〉

|010〉

|100〉

|011〉

|101〉

|110〉

|111〉

(a)

|000〉

|001〉

|010〉

|100〉

|011〉

|101〉

|110〉

|111〉

(b)

Figure 2.3: (a) The 3-hypercube is simply a cube. (b) By rearranging the vertices
of the 3-hypercube into two columns, it can be seen that the graph is
bipartite.

precise definition is given here.

Definition 2.1. An isomorphism between two graphs Gi = (Vi, Ei, wi) for i ∈ {1, 2} is a

bijection f : V1 → V2 such that (u1, v1) ∈ E1 ⇔ (f(u1), f(v1)) ∈ E2, and ∀(u1, v1) ∈ E1,

w1(u1, v1) = w2(f(u1), f(v1)).

The problem of determining whether two graphs are isomorphic is in NP, although for

the vast majority of arbitrarily chosen pairs of graphs non-isomorphism can be established

efficiently. For example, if the graphs have different numbers of vertices then they cannot

be isomorphic. A related concept that arises if G1 and G2 are known to be the same

graph, i.e. when G1 = G = G2, is that of a graph automorphism.

Definition 2.2. An automorphism of a graph G = (V,E,w) is a permutation σ : V → V

such that (u, v) ∈ E ⇔ (σ(u), σ(v)) ∈ E and ∀(u, v) ∈ E, w(u, v) = w(σ(u), σ(v)).

Another example of a well-studied family of graphs is give by the n-hypercubes, or

simply n-cubes, on N = 2n vertices. For a specific n the vertices are labelled by the

n-bit strings representing the integers from 0 = 00 · · · 02 to N − 1 = 11 · · · 12, and there

is an edge between every pair of vertices whose labels differ on exactly one bit. Since for

every bitstring of length n there are exactly n bistrings that differ in exactly one bit, the
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(a) (b)

Figure 2.4: Two tree graphs. Both are connected and cycle-free, but (a) is unrooted
and unbalanced while (b) is a balanced binary tree of depth 5.

n-cube is regular with vertex degree n. For each vertex there is a unique vertex whose

label differs from that of the first in every bit; such pairs are called antipodes , and on any

hypercube there is an automorphism that relabels a given pair of antipodal vertices as

|00 · · · 0〉 and |11 · · · 1〉. The 2-cube is simply a square, isomorphic to C4, and the 1-cube

is the path on two vertices, isomorphic to both P2 and K2. The hypercube also provides

an example of a bipartite graph, in which the vertices can be partitioned into two sets

such that every edge of the graph connects a vertex in one of the sets to a vertex in the

other. Figure 2.3 depicts two representations of the 3-hypercube, one in which it appears

as a simple cube, and one in which its bipartite nature is manifest.

Finally, a tree is a graph in which there is a unique simple path between any two

vertices. That is, a connected graph that contains no cycles is a tree. The trees that

appear in the context of walk-based algorithms typically have one vertex singled out

as the root of the tree, which provides a natural arrangement of the vertices in layers

according to their distances to the root, in which case the parent of a vertex is its unique

neighbour that is closer to the root, while its children are the rest of its neighbours, which

are further from the root. Any vertex (other than the root) that has degree 1 is called a
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leaf . A d-ary tree is a rooted tree that has no vertices with more than d children, and a

tree is balanced if the distances from the root to each leaf differ by at most 1. Figure 2.4

contains two examples illustrating these features.

2.2 Classical random walks

A simple introduction to random walks is provided by the one-dimensional discrete-time

random walk on the line, or the infinite path graph Pℵ0 . The walker begins at the origin,

at position x = 0, and proceeds to take steps by flipping a coin and taking a pace to

the right, or incrementing its position on the line, if the coin comes up ‘heads’, and to

the left on ‘tails’. For simplicity, assume for now that the coin is fair. Since the walker

beings with certainty on the origin, the probability distribution of its position after zero

steps (i.e. before the first step) is given by p0(0) = 1. After one flip of the coin there is

a fifty per cent chance of the walker’s having moved to each of x = ±1, leading to the

probabilities {p1(−1) = 1
2
, p1(1) = 1

2
}. On the second step there are two paths the walker

can have taken that return it to the origin, and one path to arrive at each of x = ±2;

the probability distribution is given by {p2(−2) = 1
4
, p2(0) = 1

2
, p2(2) = 1

4
}.

Continuing in this manner, moving half of the probability on a site to each of its

neighbours for every step leads to the probability distributions in Table 2.1. The numer-

ators form Pascal’s triangle, padded with alternating empty sites, and the denominators

after s steps are 2s. To investigate the expected behaviour of this walk on the line, note

that the coin flips can be modelled as a sequence of random variables, (C1, C2, . . .), with

each Ci returning +1 if flip i is heads, and −1 if tails. The position of the walker after s

steps is therefore a random variable P given by

P (s) =
s∑
i=1

Ci. (2.3)
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Steps, s x = −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5
0 1
1 1

2
1
2

2 1
4

2
4

1
4

3 1
8

3
8

3
8

1
8

4 1
16

4
16

6
16

4
16

1
16

5 1
32

5
32

10
32

10
32

5
32

1
32

Table 2.1: Probability distribution over the first five steps of the discrete-time random
walk on the line with a fair coin.

Since the coin is fair, the expectation of each flip is 〈Ci〉 = 0, and so the expected

position of the walker is 〈P 〉 = 0 as well. It turns out that the probability distribution of

P approaches a Gaussian in the large-s limit, and while the origin is the position with the

single highest probability to find the walker, there is a significantly greater probability

to find it not at the origin.

This is captured by looking at the expected distance of the walker from the origin,

the square of which after s steps is

D2(s) =

∣∣∣∣∣
s∑
i=1

Ci

∣∣∣∣∣
2

=

(
s∑
i=1

Ci

)2

. (2.4)

The expansion of this expression contains s2 terms. Of these, s are of the form C2
i while

the remainder are CiCj for some i 6= j. The expectation value of D2 after s steps is

therefore

〈D2(s)〉 =
s∑
i=1

〈C2
i 〉+

∑
i 6=j

〈CiCj〉, (2.5)

in which the second sum vanishes because half of its summands equal +1 when the flips

i and j are the same, and half yield −1 when they are different. The first sum on the

other hand yields s because (+1)2 = (−1)2 = 1. Therefore, the expected distance of the

walker from the origin after s steps is
√
〈D2(s)〉 =

√
s. The probability distribution of

the classical discrete-time random walk on the line is demonstrated in Figure 2.5(a).
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The simplest generalization to this random walk is to make the coin unfair, yielding

heads with probability p and tails with probability 1−p. Another extension is to expand

the line to additional dimensions, such as a two-dimensional grid or three-dimensional

lattice, or more generally to arbitrary graphs. The walk is then defined by the underlying

graph and at each vertex a probability distribution over the attached edges. However,

the straightforward walk on a line with a fair coin will prove sufficient to demonstrate

the stark contrasts between quantum and classical walks.

The probability distribution for the discrete-time random walk on the line arises due

to the choice of initial state, the weighting of the coin—in this case equal between the two

options—and the structure of the graph on which the walker moves. Given the adjacency

matrix A for the infinite path, an initial vector ~p (0) = δu0 of probabilities over the integers

such that p
(0)
u is the probability to find the walker on vertex u initially, and a fair coin,

the probability distribution after s steps is given be

~p (s) =

(
1

2
A

)s
~p (0) .

= Ss~p (0). (2.6)

This definition of a step operator S can be applied more generally, as a matrix with

entries Suv equal to the probability for a walker on vertex v to step to u on a given

graph. An immediate consequence of this definition is that 0 ≤ Suv ≤ 1 for each entry

of S, and for every vertex v, ∑
u

Suv
!

= 1 (2.7)

in order to conserve probability. This procedure of multiplying the edge weights in an

adjacency matrix by the probability for a walker to step along each edge and acting

the resulting operator s times on an initial probability distribution can be applied to

arbitrary graphs and initial positions of the walker. A similar scheme will be employed

for the quantum case in Section 2.3, and the walk operator is also useful in defining the
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continuous-time random walk.

2.2.1 Continuous-time random walks

The continuous-time version of a classical random walk is described by using a sequence of

random variables to define the times at which steps are made, as well as one to determine

which steps can be made. That is, a sequence of random variables (T1, T2, . . .) drawn

from a distribution of strictly positive real numbers describes the waiting times between

steps, such that step s occurs at time

ts =
s∑
i=1

Ti. (2.8)

The distribution from which the times are drawn defines a mean transition rate γ, such

that for long walks it is expected that an average of γ steps are taken per unit time. If

at some time t the probability distribution describing the location of the walk is given

by ~p(t) then at a later time t+h, for some small but positive h, there is a probability γh

that a step has been taken and the step operation S has been applied to the probability

distribution, and a probability 1− γh that the distribution is unchanged. That is,

~p(t+ h) = (1− γh)~p(t) + γhS~p(t), (2.9)

which for strictly positive h can be rewritten as

~p(t+ h)− ~p(t)
h

= γ(S − I)~p(t). (2.10)

Taking the limit as h→ 0+ yields the differential equation ∂t~p(t) = γ(S − I)~p(t), which

has the solution

~p(t) = eγt(S−I)~p(0). (2.11)
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This is the evolution equation for the continuous-time random walk.

Note that probability is conserved by this equation, in that if
∑

v pv(0) = 1, then∑
v pv(t) = 1 for all times t > 0. This is due to the fact the rows of S each sum to unity,

so that

∑
v

pv(t) =
∑
v

(
eγt(S−I)~p(0)

)
v

=
∑
v

[
~p(0) +

(
∞∑
n=1

(γt)n

n!
(S − I)n

)
~p(0)

]
v

. (2.12)

By assumption the first term yields
∑

v pv(0) = 1, and since
∑

u Suv = 1 for each v,

∑
v

[(S − I)~p(0)]v =
∑
v

∑
u

(S − I)uvpv(0) =
∑
v

pv(0)

[∑
u

(S − I)uv

]
= 0. (2.13)

Combining these two equations leads to the conclusion that
∑

v pv(t) = 1, i.e. that the

total probability is equal to unity for all time.

The limiting behaviour of the continuous-time random walk on the line is the same

as that of its discrete-time counterpart. To see this, note that for large s,

eγt(S−I) ≈
(
I +

γt

s
(S − I)

)s
. (2.14)

Thus for long times t = s/γ, s � γ, the evolution of the continuous-time random walk

is governed by

es(S−I) ≈ Ss, (2.15)

which governs the discrete-time random walk, as in Equation (2.6).

Figures 2.5(a) and (b) depict the evolution of the probability distribution for the

discrete- and continuous-time random walks respectively, as well as the spreading of the

expected distance from the origin. In each case, one example random walk is superim-

posed on the distribution. The remainder of Figure 2.5 shows the evolution of comparable
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quantum walkers, which exhibit linear O(t) spreading in sharp contrast with the O(
√
t)-

width spread of the classical case. These results are elaborated upon in the next section.

2.3 Defining quantum walks

As with the classical random walk, there exist both discrete- and continuous-time versions

of the quantum walk. The primary focus of the work presented in this thesis is on

the continuous-time form of the quantum walk. The discrete-time model however was

historically the first to be described [34], and is analogous to the perhaps more intuitive

discrete-time classical random walk, so it is discussed first to provide an introduction to

quantum walks in general. In the remainder of this section, those definitions and aspects

of quantum walks that are salient to the current work are introduced. More in-depth

reviews can be found, for example, in References [35, 36].

2.3.1 Discrete-time quantum walks

As in the classical case, the quantum walker is defined as as a system with a partic-

ular state space and a mechanism for transitioning between states in a set of discrete

steps. However while the classical random walker moves randomly to a position that

is then known with certainty, the probability amplitude of the quantum walker moves

deterministically in a superposition that makes its position uncertain. Specifically, a

discrete-time quantum walk takes place in a position space Hp, augmented with a coin

degree of freedom living in a coin space Hc, so that the Hilbert space of the quantum

walk is H = Hp ⊗Hc. An orthonormal set of states associated with the vertices of

a graph yield a basis for the position space of a walk on that graph. As for the classi-

cal random walk, it is instructive to begin with the straightforward example of a walk

on a line, which already provides an example of the significant differences between the
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Probability density in plots (a)-(d):
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Figure 2.5: Comparison of the evolutions of four models of walk on the line. The
density plots (a)-(d) show the probability distribution of the (a) discrete-
time random, (b) continuous-time random, (c) discrete-time quantum,
and (d) continuous-time quantum walks. Each begins with certainty at
the origin at time t = 0. The superimposed red lines depict the expected
distance from the origin in each case. The classical probability distribu-
tions also show an example of one specific walk each. Plots (e) and (f)
contrast the probability distributions of the classical (light) and quantum
(dark) walks in the discrete- and continuous-time cases, respectively, at
time t = 50.
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behaviours of quantum and classical walks.

Consider the position space Hp = span{|v〉 : v ∈ Z} and two-dimensional coin Hilbert

space Hc = span{|R〉, |L〉} = C2. The first difference encountered in the discrete-time

quantum walk relative to a classical random walk is that the initial state of the coin must

be specified, as well as that of the walker. For example, in the basis |R〉 = (1 0)T and

|L〉 = (0 1)T , consider the initial state

|ψ(0)〉 .
= |0〉 ⊗ 1√

2
(|R〉+ i|L〉) (2.16)

and define the coin operation to be the Hadamard operator,

C
.

=
1√
2

(
1 1
1 −1

)
, (2.17)

which ‘flips’ the coin subspace by transforming each of the basis elements into an equal

superposition of the two of them. Once the coin has been flipped, a shift operator moves

the walker in the direction of the coin state; explicitly, define

S
.

=
∞∑

x=−∞

(|x+ 1〉〈x| ⊗ |R〉〈R|+ |x− 1〉〈x| ⊗ |L〉〈L|) , (2.18)

which is unitary since S†S = SS† = Ip ⊗ Ic = I, where Ip and Ic are the identity

operators of the position and coin spaces respectively. A single step of the quantum walk

consists of the application of a coin flip, followed by a shift. The shift operator acts

on the entire Hilbert space H , but the coin affects only its subspace Hc, at least as

commonly presented and as introduced in Equation (2.17); technically then one step of

the walk is accomplished by the operator S(Ip ⊗ C). For notational brevity however, it

is common practice to define the walk operator U
.

= SC, where the implicit inclusion of
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the appropriate identity is understood. The state of the walker after s steps is given by

|ψ(s)〉 .
= U s|ψ0〉, (2.19)

from which the probability for the walker to be found on vertex |v〉 can be found as

|〈v |ψ(s)〉|2. This probability distribution over a finite subset of the line, with initial

state given by Equation (2.16) and the Hadamard coin of Equation (2.17), is shown in

Figure 2.5(c), and contrasted with the probability distribution of the classical discrete-

time random walk in Figure 2.5(d).

As in the classical case the expected position of the walker after s steps,

〈P (s)〉 .
= 〈ψ(s)|

(
∞∑

v=−∞

v|v〉〈v|

)
|ψ(s)〉, (2.20)

vanishes in this example. Interestingly however, this is not the case for all fair coins.

There exist coins that are fair, in the sense that they map each coin state to an equal

superposition of the two, yet which due to different phases appearing in the initial su-

perposition of the coin state, the coin itself, or both, the expected position of the walker

shifts from the origin over time. The feature of note in the present case however, is that

even with a fair coin that maintains 〈P (s)〉 = 0 for all s, the expected distance from

the origin increases quadratically more quickly than the same quantity in a comparable

classical walk. For the quantum walk in question,

√
〈D2(s)〉 .

=

[
〈ψ(s)|

(
∞∑

v=−∞

v2|v〉〈v|

)
|ψ(s)〉

] 1
2

∝ s, (2.21)

as compared to the result of
√
s classically. This quadratic speed-up can be attributed to

interference phenomena. When a classical walker has the possibility to arrive on a given

vertex after having followed one of many paths, the probability to find it there is the sum
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of the probabilities to have taken each of the paths. For a quantum walk on the other

hand, it is the probability amplitudes that add. Since these can be negative, sometimes

the combinations of paths leading to a given vertex interfere destructively, decreasing or

eliminating the probability to find the walker there.

A discrete-time quantum walk on a more general graph follows the prescription out-

lined here, of putting the coin into a superposition of directions at each vertex, shifting

the walker along the edges of the graph, and repeating. If the graph is not regular then

multiple coins are required, at least one for each degree present in the graph, and possibly

as many as one for each vertex.

2.3.2 Continuous-time quantum walks

A simple observation suffices to begin a discussion of the continuous-time quantum walk,

first introduced by Farhi and Gutmann [37]: the adjacency matrix of an undirected

graph with real edge weights is real and symmetric, and therefore able to describe the

(Hermitian) Hamiltonian of a physical system. Given an undirected graph G = (V,E,w)

with adjacency matrix

AG
.

=
∑

(u,v)∈E

wuv|u〉〈v|, (2.22)

define the Hamiltonian of a quantum walker on G to be HG
.

= −AG, so that given an

initial normalized state

|ψ0〉 =
∑
v∈V

αv|v〉, (2.23)

the state of the walk at time t > 0 is given by the usual Schrödinger evolution,

|ψ(t)〉 = e−iHGt|ψ0〉 = eiAGt|ψ0〉. (2.24)
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Note that since the topology of the graph itself generates the time translations of the

walker, no coin degree of freedom is necessary. In particular, this means that a continuous-

time quantum walker requires no internal degrees of freedom.

Consider again the walk on the line for illustrative purposes. The required adjacency

matrix is

A =
∞∑

v=−∞

|v + 1〉〈v|+ H.c. (2.25)

and the initial state is taken once more to be |ψ0〉 = |0〉. The Hamiltonian has energy

eigenvalues Ek = −2 cos(k) with associated non-normalizable eigenstates |k〉 of the form

〈v |k〉 = eikv (2.26)

with k ∈ (−π, π]. The initial state can be expressed in the energy eigenbasis as

|0〉 =
1

2π

∫ π

−π
dk |k〉〈k|0〉 =

1

2π

∫ π

−π
dk |k〉, (2.27)

from which it is seen that the state of the walker evolves as

|ψ(t)〉 .
= e−iHt|0〉 =

1

2π

∫ π

−π
dk e2i cos(k)t|k〉. (2.28)

Insertion of the identity, resolved in terms of the vertex basis as
∑

v |v〉〈v|, determines

the evolution of the probability amplitude on each vertex of the graph,

|ψ(t)〉 =
1

2π

∫ π

−π
dk e2i cos(k)t

∞∑
v=−∞

|v〉〈v|k〉 =
∞∑

v=−∞

(
1

2π

∫ π

−π
dk e2i cos(k)teikv

)
|v〉. (2.29)

This analysis allows the probability distribution of the location of the walker on a finite

subset of the infinite line to be plotted at arbitrary times. Such plots can be seen in

Figure 2.5, showing the evolution of |〈v |ψ(t)〉|2 over time.
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The absence of a coin space in the continuous quantum walk and dependence upon

one in the discrete case imply that the two models are not isomorphic in any limit.

Nevertheless the behaviours of the two walks on the line are qualitatively very similar, as

can be seen by comparing Figure 2.5(c) to (d), and (e) to (f). Despite the lack of a direct

isomorphism between the two models, there do exist limits in which their behaviours can

be shown to be not merely qualitatively similar, but quantitatively equivalent [38, 39].

2.4 Periodicity and perfect state transfer

Classical random walks have, by definition, random evolution. It is therefore impossible

to know which vertex it will occupy after any number of steps. In particular, if a walk

begins on one vertex there is no way to determine in advance if or when it will arrive

on a specified second vertex, or return to the first. Quantum walks on the other hand

evolve unitarily under Schrödinger’s wave equation for discrete systems, and just as a

the ripples propagating away from a pebble dropped into the centre of a circular pond

will interfere constructively to reconverge at the centre, a quantum walker on a graph

can undergo constructive interference such that it returns with certainty to its starting

vertex. Similarly, there exist graphs on which the state of a walker originating on one

vertex will transfer with unit probability—that is, perfectly—to a second vertex. This

phenomenon is called perfect state transfer (PST) [40–43], and appears repeatedly, along

with generalizations of it, in later chapters.

The simplest example of perfect state transfer is provided by a walker initialized on

one of the two vertices of P2, the path graph on two vertices, shown in Figure 2.6(a).

The adjacency matrix of this graph is equal to the Pauli-X operator,

AK2 =

(
0 1
1 0

)
= X, (2.30)
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and a walker initialized on vertex |1〉 will evolve according to

|ψ(t)〉 = exp (iAK2t) |1〉 = cos(t)|1〉+ i sin(t)|2〉. (2.31)

In general there is a non-zero probability to find the walker on either of the two vertices,

but for times t1,n
.

= nπ and t2,n
.

= (2n+ 1)π
2
, n ∈ Z,

〈1 |ψ(t1,n)〉 = 〈2 |ψ(t2,n)〉 = 1, (2.32)

and the location of the walker is known with certainty. Thus there is perfect state transfer

from vertex |1〉 to vertex |2〉 in time π/2, and the graph is periodic with period π. Note

that it is possible for a vertex or a subset of vertices within a graph to be periodic, while

other vertices are not. In the case of P2 however, both vertices have the same period and

so the graph as a whole is said to be periodic.

The conditions dictating whether or not a graph exhibits perfect state transfer or is

periodic are related to the spectrum of its adjacency matrix. If a graph has two vertices

|u〉 and |v〉 that are equivalent up to an automorphism, then it cannot exhibit PST

between them unless the ratios of differences of pairs of distinct eigenvalues are rational

[42]. Furthermore, if there is PST between vertices |u〉 and |v〉 in time tp then each of |u〉

and |v〉 is periodic in time 2tp [44]. To see the importance of the spectrum of a graph to

perfect state transfer, consider first graph periodicity. If a graph with adjacency matrix

A is periodic, then there exists some time tp > 0 at which the resulting unitary evolution

operator is proportional to the identity. That is, for some phase θ ∈ [0, 2π) it must be

the case that

U(tp)
.

= eiAtp !
= eiθI. (2.33)

At the same time, this operator yields a spectral decomposition in terms of its eigenvalues
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λi and corresponding eigenvectors |φi〉,

U(t)
.

= eiAt =
∑
i

eiλit|φi〉〈φi|. (2.34)

Since the |φi〉 form an orthonormal basis, this sum resolves to the identity if there exists a

time at which the phase factors can be factored out. Expanding on this line of reasoning,

Godsil proves the following result.

Theorem 2.1 (Cf. Theorem 3.1 in Reference [45]). A graph G is periodic if and only if

the ratio of any two of its non-zero eigenvalues is rational.

When this rationality condition is satisfied it is straightforward to see that there exists

a time tp at which G is periodic. For each eigenvalue λi of the adjacency matrix A of G

there exist integers pi and qi, qi 6= 0, such that λi = λ1pi/qi. There then exists a common

denominator q such that defining p̃i = qpi/qi leads to

λi = λ1
p̃i
q
. (2.35)

Therefore at time tp
.

= πq/λ1, the phases in Equation (2.34) become iλitp = iπp̃i, and

since the p̃i are integers, and U(tp) = −I.

Return now to the specific case of perfect state transfer on the one-segment path

P2. If another vertex is added to the line, turning it into the graph of Figure 2.6(b),

the path P3 on three vertices, it can be shown that there is perfect state transfer from

each end of the line to the other in time tp = π/
√

2 and the middle vertex is periodic in

the same time. The graph as a whole is thus periodic in twice the transfer time, with

period T =
√

2π. One might conjecture that this trend will continue for path graphs of

arbitrary length, but the next in the sequence, P4, provides a counter-example. Indeed,

for all N > 3, there is no perfect state transfer or periodicity on PN . The graphs P2 and
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(a) K2 (b) P3

√
3 2

√
3

(c) Weighted line on four vertices

(d) P4

Figure 2.6: Three graphs that exhibit perfect state transfer and one that doesn’t. (a)
K2 has PST from each vertex to the other and (b) P3 from each end to
the other. Both graphs are periodic. (c) This weighted version of P4 also
exhibits PST and periodicity, however the unweighted (d) P4 in contrast
is not periodic, and does not exhibit PST between any pair of vertices.

P3 have eigenvalues {±1} and {0,±
√

2} respectively, but the eigenvalues {±ϕ,±ϕ−1} of

P4 (with ϕ the golden ratio) do not satisfy the criterion of Theorem 2.1.

However, if the line on four vertices is reweighted as in Figure 2.6(c), then it is peri-

odic, and exhibits PST from each vertex |v〉 to its mirror image |5− v〉 (v ∈ {1, . . . , 4})

in time tp = π/2. It turns out that this trend continues, and a line of arbitrary length can

be made to exhibit perfect state transfer by choosing appropriate weights for its edges.

For a line on N vertices, the appropriate weight for the edge between vertices |v〉 and

|v + 1〉 is

w(v, v + 1) =
√
v(N − v). (2.36)

The eigenvalues of the adjacency matrix are {−(N − 1),−(N − 3), . . . , N − 1}, which

are all integral and therefore all pairwise ratios of non-zero eigenvalues are rational.

Remarkably the time to cross the path is tp = π/2, independent of its length. Since the

eigenvalues are integers, one simply takes p̃i = λi and q = λ1 to satisfy Equation (2.35).

With λ1 = N−1 the largest eigenvalue, the period of the graph becomes tp = πq/λ1 = π.

In half the period, PST occurs between mirrored vertices.

This behaviour was first described by Christandl et al. in the context of quantum spin

chains [41]. They consider a chain of spin-1
2

stationary particles with nearest-neighbour
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interactions, and show that the evolution of the single-excitation subspace corresponds

to a quantum walk on the line, undergoing perfect state transfer if the couplings of the

spin chain are tuned to match the described edge weights.

The spin-chain model of quantum state transfer on graphs was introduced by Bose,

who considered only uniform couplings along the length of the chain [40] and thus could

obtain perfect transfer only across two or three spins. Given a set of N spins in a one-

dimensional lattice with nearest-neighbour couplings, the (fixed) positions of the spins

are readily identified with vertices and the couplings between them with edges in PN .

For example, with τi,i+1 = τi+1,i a tunable coupling constant, consider the simple XY

coupling of the Hamiltonian

HXY = −1

2

N−1∑
i=1

τi,i+1 (XiXi+1 + YiYi+1) . (2.37)

The Pauli spin operators on spin i areXi, Yi, and Zi, and the HamiltonianHXY commutes

with the total z component of the spin,
∑

i Zi, which is therefore conserved. Thus the 2N -

dimensional Hilbert space of N spins decomposes into invariant subspaces, each with a

constant total spin projection in the z direction. Of interest here are the one-dimensional

zero-excitation subspace H0 spanned by the all-spin-down state |↓↓ · · · ↓〉, which will

encode one of the computational basis states of a qubit, and the N -dimensional one-

excitation subspace H1, which will encode the other and that is spanned by the states

with a single up spin and N − 1 down spins, {|↑↓↓ · · · ↓〉, |↓↑↓ · · · ↓〉, . . . , |↓ · · · ↓↑〉}.

The evolution of a state in H1 can be mapped to a quantum walk on a weighted path

on N vertices, with weights specified by Equation (2.36) and vertex |v〉 corresponding to

the state in which spin v is up and the rest down. A single-qubit state |ψ〉 = α|0〉+ β|1〉

with |α|2 + |β|2 = 1 can be transmitted from one end of the chain to the other as follows.

(Here the computational states are underlined to distinguish them from vertex states;
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this convention is used throughout the subsequent chapters.) The spin chain is cooled

to its ground state, |↓↓ · · · ↓〉, which is a zero-energy eigenstate of HXY . The first spin

in the chain is then rotated into the state α|↓〉 + β|↑〉, encoding |ψ〉, the state to be

transferred. The state of the spin chain is thus

|Ψ(0)〉 = α|↓〉⊗n + β|↑〉 ⊗ |↓〉⊗(n−1), (2.38)

which then evolves under HXY . The state |↓〉⊗n is stationary, while the state with

coefficient β maps to a quantum walk on PN initially on the first vertex, |1〉. With

the coupling constants τi,i+1 tuned to match the corresponding edge weights as given by

Equation (2.36), the walker evolves in time tp = π/2 to vertex |N〉, leaving the spin chain

in the state

|Ψ(tp)〉 = α|↓〉⊗n + β|↓〉⊗(n−1) ⊗ |↑〉. (2.39)

The state of the final spin in the chain is α|↓〉+β|↑〉, and the computational state initially

encoded by the first spin has been perfectly transferred to the final spin.

ThisXY model further allows the dynamics of quantum walks on more general graphs.

A quantum walk on an N -vertex graph G = (V,E,w) can be mapped to the single-

excitation subspace of a system of N spin-1
2

particles under a spin-preserving Hamiltonian

of the form

HXY (G) = −1

2

∑
(u,v)∈E

w(u, v) (XuXv + YuYv) , (2.40)

which is a straightforward generalization of Equation (2.37) to arbitrary weighted graphs.

2.5 Multiple walkers on a graph

In Chapter 6, multiple quantum walkers evolving and interacting on a single graph are

used to significantly decrease the number of vertices required to simulate a given compu-
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tation, as compared to the schemes presented in the intervening chapters. A convenient

description of multiple walkers—in particular indistinguishable ones—on a single graph

is provided by the second-quantized notation commonly used to describe many-particle

quantum systems. A thorough treatise on the subject can be found, for example, in the

textbook of Fetter and Walecka [46], but a brief introduction sufficient for the subsequent

discussion is provided here.

In quantum mechanics, particles of a given type are generally indistinguishable. For

example, given two protons there exist no experiments capable of determining that this

is the first proton, and that is the second; there are simply two protons. This is not to

say that all protons must be in the same state. A pair of protons can well exist in a state

described as “one proton has energy E1 and one proton has energy E2”, but unlike a

classical system in which one could say, for example, that “the red ball is moving quickly

and the green ball is stationary” there is no way quantum mechanically to colour the

protons so as to specify which one has which energy. This experimental fact presents a

problem to the traditional first-quantized notation of quantum mechanics, in which a two-

proton state |E1〉 ⊗ |E2〉 is perfectly valid. The solution within first quantization begins

with the introduction of the permutation operator P , which interchanges two particles.

Interchanging the particles twice returns them to their initial state, P 2|ψ〉⊗|φ〉 = |ψ〉⊗|φ〉,

so

P |ψ〉 ⊗ |φ〉 = ±|φ〉 ⊗ |ψ〉. (2.41)

Particles obeying P |ψφ〉 = +|φψ〉 are called bosons , while those that acquire a non-trivial

phase under exchange, P |ψφ〉 = −|φψ〉, are fermions .1

A two-particle state that represents the statement “one particle is in state |ψ〉 and

1At least, these are the only possibilities in three (or more) dimensions. For particles confined to two
dimensions, topological considerations allow for so-called anyons, which can acquire any phase factor eiθ

when they are interchanged.
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another is in state |φ〉” can be written

|Ψ12〉 =
1√
2

(|ψφ〉 ± |φψ〉) , (2.42)

where the relative phase factor ±1 depends on whether the particles are bosons or

fermions. Constructing such a state is referred to as (anti)symmetrization, since the

result is a multi-particle state that is either symmetric or antisymmetric under exchange.

This procedure succeeds in creating multi-particle states that accurately represent the

physically allowed states of collections of multiple particles, the notation quickly becomes

unwieldy; the extension of Equation (2.42) to n particles contains n! terms.

2.5.1 Second-quantized notation

An alternative method with which to describe multi-particle quantum states is called

second quantization, simply because historically it was the second formalism developed

for the description of quantized systems. States representing multiple particles are con-

structed with the use of ‘creation’ operators c† that add another particle to a given state,

and a zero-particle state called the vacuum and denoted either |vac〉 or |0〉. For example,

the two-particle state of Equation (2.42) becomes

|Ψ12〉 = c†ψc
†
φ|vac〉. (2.43)

The symmetry (or antisymmetry) of the state is determined by the commutation rela-

tions of the creation operators c†, and their Hermitian conjugates c, called annihilation

operators.

For bosons two creation operators commute, as do two annihilation operators, while

a creation operators commutes with annihilation operators except for that corresponding
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to the same state:

[c†ψ, c
†
φ]

.
= c†ψc

†
φ − c

†
φc
†
ψ = 0, (2.44a)

[cψ, cφ]
.

= cψcφ − cφcψ = 0, (2.44b)

[cψ, c
†
φ]

.
= cψc

†
φ − c

†
φcψ = δψφ, (2.44c)

where the Kronecker δψφ vanishes except when ψ = φ, in which case it evaluates to 1. A

similar set of relations holds for fermionic creation and annihilation operators, with the

commutators replaced with anti-commutators, such as {c†ψ, c
†
φ}

.
= c†ψc

†
φ + c†φc

†
ψ = 0.

The actions of these operators are most naturally seen in the occupation-number or

Fock basis, in which the number of particles occupying each of an orthogonal set of states

is explicitly stated. For example, consider the graph P3 of Figure 2.6(b); there are three

distinct vertices on which a particle, or quantum walker, can exist. The state of M

identical particles on this graph exists in the Hilbert space spanned by the states

(c†1)m1(c†2)m2(c†3)m3|vac〉 .
= (c†1)m1(c†2)m2(c†3)m3|010203〉

.
= |m1m2m3〉 (2.45)

for non-negative integers mv subject to
∑

vmv = M . For a single walker on the graph,

the states c†v|vac〉 correspond directly to the states of the vertex basis |v〉.
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Chapter 3

Computing with quantum walks

The initial motivation for the study of quantum walks within the realm of quantum infor-

mation lay in their analogy to classical random walks, and their algorithmic applications

[47]. In particular, the fact that the quantum walk on a line spreads quadratically more

quickly than a classical random walk was identified as a possible source of speed-ups in the

algorithmic context of sampling and exploring structured spaces [48, 49]. This projection

was realized in some of the first quantum walk applications, which were to problems with

previously known quantum algorithms exhibiting speed-ups over their classical coun-

terparts. In particular, quantum-walk search algorithms yield the quadratic speed-up

exhibited by Grover’s algorithm [50, 51]. In 2004 Ambainis presented a quantum-walk

algorithm for the element-distinctness problem that was not only more efficient than pre-

vious non-walk-based algorithms, but in fact optimal [52]. This result was later extended

to the problem of subset finding [53]. Triangle finding and its generalization to clique

finding are problems related to the properties of graphs that can be solved by quantum

walks on graphs [54].

Before providing a discussion of universal quantum computation in Section 3.3, two

other quantum walk-based algorithms, for evaluating nand trees and traversing glued

trees, are described here in more detail to provide some intuition into the general concept

of computing with quantum walks. As with triangle finding, these algorithms make use

of quantum walks on graphs to answer questions about those same graphs.
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3.1 Quantum walk algorithms

The first quantum walk algorithm was provided along with the introduction of the

continuous-time quantum walk by Farhi and Gutmann who show that a walker travers-

ing a tree graph can solve decision problems [37], though a quantum walker does so no

more quickly than a classical one. As described in Section 1.1.2, a decision problem

requires a Boolean answer (i.e. yes or no) dependent on the specified input to a partic-

ular question. For example in the Boolean satisfiability problem, or SAT, one is given

a set of Boolean-or clauses such as {(x1 or x2), (x1 or x2 or not x3)}, and asked to

determine whether there is an assignment of the variables xi such that all clauses are

satisfied simultaneously, meaning that their logical and evaluates to true. A simple

example is that (x1 or x2) and (x1 or not x2) = true under either of the two vari-

able assignments (x1, x2) = (1, 1) and (x1, x2) = (1, 0), so in this case the answer is ‘yes’.

The satisfiability problem with clauses of k variables is referred to as k-SAT, with 2SAT

and 3SAT being of particular note because 2SAT is in P while the Cook–Levin Theorem

states that 3SAT is NP-complete [55]. Indeed SAT as a whole is NP-complete since it

subsumes 3SAT, and together these were the first problems shown to be so.

3.1.1 Traversing glued trees

The first quantum walk algorithm to provide a speed-up over classical methods was

the traversal of randomized glued trees [56], which was an extension to the quantum

walk algorithm for the traversal of glued trees [57]. The latter provides a speed-up over

classical random walk algorithms, but not over all possible algorithms. A glued-trees

graph is given by a pair of constant-depth trees, the leaves of which have been connected

from one tree to the other. If each leaf in either tree is connected randomly to exactly

two leaves of the other tree, the result is a randomized glued-trees graph. An example of

each type of gluing can be seen in Figure 3.1.
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|in〉 |out〉

(a)

|in〉 |out〉

(b)

Figure 3.1: (a) Glued trees, which a quantum walk can traverse exponentially more
quickly than a classical random walk. (b) A randomized gluing of the
trees, which a quantum walk can traverse exponentially more quickly
than any classical algorithm.

Childs, Farhi, and Gutmann introduce a problem that is solved exponentially more

quickly by a quantum walk than by a classical random walk , and provide a modification

to the problem such that the quantum version exponentially outperforms any possible

classical algorithm . The initial problem is to traverse a pair of binary trees whose leaves

have been pairwise identified, or ‘glued’, walking from the root of one tree to the root of

the other. Figure 3.1(a) illustrates this construction with glued trees of depth n = 3.

Consider a classical random walker that enters the graph at the |in〉 vertex, the left-

hand root of the glued trees in Figure 3.1(a). The problem is for the walker to reach

the |out〉 vertex of the right-hand root in order to exit the graph. This is obviously a

straightforward task if at each step the walker has complete knowledge of the graph and

can always know which vertices are closer to |out〉 than its current position. To make

the problem non-trivial it is instead framed in terms of a query model, wherein at each

step the walker is allowed to make one query to a so-called oracle, which has complete

knowledge of the graph and the position of the walker upon it, but which will tell the

walker only the identities of the vertices adjacent to its current vertex. The difficulty

of the problem is then proportional to the number of queries the walker must make, on

average. For the first step the oracle will reveal two vertices to the walker, which then
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moves one step close to the exit regardless of its choice. On each subsequent step, until

it reaches the middle of the graph, the walker is given three neighbouring vertices, two

of which are closer to the exit. It is therefore twice as likely to step to the right as to

the left and is likely to rapidly arrive at the centre, where the leaves are glued together.

At this point it is equally likely to move left or right, but regardless of the direction it

travels the walker will become once again twice as likely to step toward the leaves as

toward the nearest root. This tendency for the walker to prefer remaining near the leaves

by a factor of 2:1 means that it is highly unlikely for the walker to reach the other end

of the trees, or indeed to return to its starting point. More specifically, having begun its

walk on the left-hand root of a pair of glued trees of depth n, the probability to find the

walker on the right-hand root after any number of steps is less than 2−n, meaning that

the probability to traverse the trees in a time polynomial in n is exponentially small as

a function of n.

In the quantum case, on the other hand, Childs et al. show that after a evolving on

the glued-trees graph for a polynomial length of time after starting on the left-hand root,

a continuous-time quantum walker has a probability of at least Ω(1/n) to be found on the

right-hand root. While this is still not a large probability, it is polynomially rather than

exponentially small in n. Therefore by executing the walk O(n) times, the probability

to find the right-hand root can be made arbitrarily close to unity in a polynomial time.

That is, the quantum walk is exponentially faster than the classical random walk in the

completion of this task. However, even within the query model a non-random classical

walk can find the |out〉 vertex as quickly as the quantum walker. By remembering a

list of all vertices it has already visited, a non-random classical walker can reach the

central column of vertices in exactly n steps by always choosing to move to a previously

unvisited vertex. It then moves into the second half of the glued trees, continuing to only

transition to previously unvisited vertices. This may well bring it back to the centre, but
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because the central vertices are degree 2 while the rest of the internal vertices are degree

3, this can be detected; if it happens s steps after the walker first left the middle, then

by retracing the last s/2 steps and choosing the other path, the walker can be sure of

progressing toward the exit.

This is the motivation behind the randomized gluing of trees exemplified in Fig-

ure 3.1(b). There is no classical strategy that allows |out〉 to be reached with a sub-

exponential number of steps on average, because the central vertices can no longer be

distinguished by their degree. Of course, employing the standard technique of evolving a

quantum walker according to the unitary operator generated by the graph Hamiltonian is

akin to allowing a classical walker to see its position relative to the entire graph. Compar-

ison of such evolution with the classical query model would not be meaningful, so Childs

et al. provide a continuous-time quantum query model under which a quantum computer

equipped with a unitary oracle operator U can efficiently approximate a continuous-time

quantum walk on the graph. The nature of the oracle operator is to bit-wise add the

label u of the ith neighbour of vertex v to an ancillary vertex label x according to

U |i, v, x〉 = |i, v, x⊕ u〉, (3.1)

and with it the quantum walk simulated under the circuit model solves the glued-tree

traversal problem using a number of one- and two-qubit gates and a number of calls to

the oracle operation that are each polynomial in the depth n of each of the trees. More

generally, it has since been shown that any algorithm presented in the continuous-time

quantum query model can be simulated by a quantum circuit making discrete queries

with at most a logarithmic increase in the total query time [58, 59].
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1 0 0 0 1 1 0 1

1 1 0 1

0 1

1

Input →

Result −→

Figure 3.2: Example evaluation of a nand tree on eight input bits. The input values
are assigned to the leaves of the tree, and the vertices in each succes-
sively smaller layer contain the values equal to the logical-nand of their
neighbours in the preceding layer, until the answer appears in the root.

3.1.2 Evaluating nand trees

While traversing a pair of glued binary trees shows with certainty that there exist tasks

that a quantum walk can perform exponentially more quickly than any classical algo-

rithm, the specific task in and of itself is not particularly interesting. A problem whose

solution more obviously represents the implementation of a computation is the evaluation

of nand trees, which is an alternative formulation of 2SAT and can be stated as follows.

Given an N = 2n-bit binary string, assign the bits sequentially to the leaves of an

n-level binary tree. For each pair of leaves sharing a parent, assign to that parent the

value given by the nand of their values. Repeat this process, assigning to each vertex in

the tree the nand value of its two children, until the single value of the root has been

determined. This value is the desired solution to the nand-tree evaluation, an example

of which can be found in Figure 3.2.

Farhi, Goldstone, and Gutmann provide a quantum-walk based algorithm for the

evaluation of a nand tree on N input bits in a time proportional to
√
N , whereas

the optimal classical runtime is proportional to N0.753 >
√
N [60].1 This polynomial

speed-up is small compared with the exponential speed-up of the glued-trees traversal,

but it is nevertheless another example of a task that a quantum walk can accomplish in

1The exponent 0.753 is an approximation to the exact result of log2( 1+
√
33

4 ).
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· · · · · ·

0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0

|−L〉 |0〉 |L〉

Figure 3.3: Example graph for evaluating a nand tree with a continuous-time quan-
tum walker.

strictly less time than any classical algorithm. Furthermore, the algorithm is of particular

interest here as its method of computing foreshadows the scheme for universal quantum

computation by quantum walk, described in Section 3.3.

It is straightforward to illustrate the evaluation of a nand tree by placing values

on the vertices, but there is no mechanism by which to actually ascribe values to the

vertices of a simple graph. Instead, the values of the input bits are assigned by way of

the connectivity of the graph. To accomplish this, an additional row of 2n vertices is

added to a binary tree, one for each leaf, and an edge is added between the leaf and

associated new vertex for each input bit to be set equal to 1. Additionally, a linear graph

of length 2L + 1, for some sufficiently large L as will be discussed soon, is added to the

graph with its central vertex connected to the root of the modified tree. The result is a

graph similar to that in Figure 3.3, with the vertices of the lower ‘rail’ labelled from −L

to L so that the tree attaches to vertex |0〉.

Consider for a moment only the rail, which is constructed on the 2L + 1 vertices

{|−L〉, . . . , |L〉} with adjacency matrix

Arail =
L−1∑
x=−L

|x〉〈x+ 1|+ H.c. (3.2)
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The Hamiltonian of the system is taken to be the negative of the adjacency matrix of

the graph. In the large-L limit, the rail supports momentum eigenstates |k〉 of the form

〈x |k〉 ∝ eikx (3.3)

with corresponding energies E(k) = −2 cos(k), for k ∈ (−π, π]. For k > 0, the states

|k〉 and |−k〉 correspond to plane waves of equal energy but opposite directions of

propagation—right-moving and left-moving, respectively. The evaluation of the nand

tree is accomplished by the scattering of a quantum walker whose state initial state is a

right-moving wave packet, incident upon the attached tree from the left-hand side of the

rail. With the tree attached at its root to vertex |0〉 of the rail, the supported eigenstates

of the system take the form on the rail of

〈x |k〉 =

eikx +R(k)e−ikx, x < 0;

T (k)eikx, x ≥ 0,
(3.4)

where R(k) and T (k) are momentum-dependent reflection and transmission coefficients

for the scattering process of the walker’s evolution through the nand tree. What Farhi,

Goldstone, and Gutmann show is that if ν ∈ {0, 1} is the value to which the nand tree

evaluates, then T (π/2) = ν. That is, if the tree evaluates to ν = 1 then a plane wave

with momentum k = π/2 has unit transmission, and if the tree evaluates to ν = 0 then

the wave exhibits perfect reflection. Furthermore, eigenstates with momenta near kπ/2

also have transmission coefficients close to ν. Therefore, remarkably, the result of the

evaluation can be determined simply by looking for a quantum walker on the right-hand

side of the rail. A quantum walker initialized as a propagating wave packet initially on the

left-hand rail with a momentum profile tightly peaked near π/2 has a high probability to

be found at a later time in a similarly shaped packet on either the right-hand or left-hand
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rail, depending on whether the nand tree evaluates to 1 or 0.

Based on the group velocity of the wave packet,

v(k) =
dE

dk
= 2 sin(k), (3.5)

the quantum walker traverses the rail with speed v(π/2) = 2 and so travels a distance L—

from the centre of the left-hand rail to either the centre of the right-hand side or back

to its starting point—in a time L/2. It turns out that the probability of successfully

evaluating the nand tree in this way can be made arbitrarily close to 1 when L, and

therefore a run-time, is proportional to
√
N . This ensures that the wave packet consists

primarily of eigenstates with energies sufficiently close to π/2 that their transmission

coefficients are within the desired error tolerance of ν. Thus not only does this method

of scattering a quantum walker off of a graph with topology dictated by a problem yield

a solution to that problem, but it does so more quickly than the best possible classical

algorithm. As in the glued-trees example, and indeed all quantum walk algorithms, this

result can again be simulated under the quantum query model in a similar time.

3.2 Graph scattering

Finding graphs that exhibit reflection and transmission coefficients that transform a

quantum walker such that its final state encodes the result of a desired computation is

central to the continuous-time quantum-walk model of universal computation. Motivated

by this fact, Varbanov and Brun provide a formalism for the analysis of scattering off of

arbitrary finite graphs with arbitrary numbers of attached tails [61], the relevant features

of which are summarized here. Let G be a finite graph with adjacency matrix AG, on

N vertices {v}Nv=1, each associated to a normalized state |v〉 in the Hilbert space of the

graph, HG. These states are pairwise orthogonal, obeying 〈u |v〉 = δuv, and thus provide
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a basis for the N -dimensional HG. To each vertex v are attached mv ≥ 0 tails, which

are semi-infinite path graphs on additional vertices {xv,m}∞x=1. The index v specifies the

vertex to which the tail is attached, and m ∈ {1, . . . ,mv} indexes the tail among those

attached to vertex v. That is, |xv,m〉 is the basis state associated with vertex x of the

mth tail attached to vertex v. Each tail is described by an adjacency matrix

A
(v,m)
tail

.
=
∞∑
x=1

|(x+ 1)v,m〉〈xv,m|+ H.c. (3.6)

and the full scattering system, comprising the scattering graph G plus tails, has adjacency

matrix

A
.

= AG +
N∑
v=1

mv∑
m=1

(
A

(v,m)
tail + |v〉〈1v,m|+ |1v,m〉〈v|

)
, (3.7)

where the sum over m contributes no terms whenever mv = 0. With the scattering graph

defined, the Hamiltonian governing the evolution of a quantum walk on it is simply

H = −A. The goal now is to characterize the eigenstates of this operator, in particular

their reflection and transmission coefficients with respect to G when there is an incoming

(i.e. toward G) momentum component on exactly one tail.

Denote by |kv,m〉 such an energy eigenstate with momentum k ∈ (0, π) incoming on

tail m of vertex v. On this tail, the state takes the form

〈xv,m |kv,m〉 = e−ikx +Rv,m(k)eikx, (3.8)

and on the other tails, specified by ordered pairs (u, l) 6= (v,m), there is at most an

outgoing component,

〈xu,l |kv,m〉 = T
(v,m)
u,l (k)eikx. (3.9)

Note the apparent sign change in the exponentials of Equation (3.8) as compared to

those appearing in the nand-tree case in Equation (3.4). This is due to the fact that
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the incoming component on the nand-tree has support on vertices labelled by negative

positions while here all tail vertices are labelled by positive numbers, which increase away

from the scattering graph.

Finally, the restriction of the momentum state to the graph G is denoted |kv,m〉G so

that

|kv,m〉 = |kv,m〉G +
∞∑
x=1

[
e−ikx +Rv,m(k)eikx

]
|xv,m〉+

∑
(u,l)6=(v,m)

∞∑
x=1

T
(v,m)
u,l (k)eikx|xu,l〉.

(3.10)

The behaviour of the state away from the scattering graph on any of the tails dictates

that the corresponding energy must be E(k) = −2 cos(k). With these definitions in

place, Varbanov and Brun show that the restriction of the eigenstate to G satisfies the

equation (
eik

N∑
u=1

mu|u〉〈u| − 2 cos(k)IN −HG

)
|kv,m〉G = 2i sin(k)|v〉, (3.11)

where IN is the N -dimensional identity matrix. Once this set of N coupled equations

has been solved for |kv,m〉G, the scattering coefficients can be read off as

Rv,m(k) = 〈v |kv,m〉G − 1, (3.12a)

T
(v,m)
u,l (k) = 〈u |kv,m〉G . (3.12b)

A further consideration when analysing the scattering of a quantum walker by a graph,

and that is the effective length of the scattering graph. Clearly as a walker is scattered

by a graph G it must take some finite time to travel through it, which is captured by the

effective length of the graph from the incoming tail to each of the outgoing ones.

The simplest case is that of two tails, attached to the two ends of a linear graph with
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· · ·· · · · · ·
|31,1〉

|21,1〉

|11,1〉

|1〉 |2〉 |3〉 |L〉 |L+ 1〉

|1L+1,1〉

|2L+1,1〉

|3L+1,1〉
G

Figure 3.4: Demonstration of the effective length of a graph. A linear graph G of L
segments, with a semi-infinite tail attached at each end, should have an
effective length `G(k) equal to the actual length L of the graph in this
simple case.

L segments. That is, G has L+ 1 vertices with adjacency matrix

AG =
L∑
v=1

|v + 1〉〈v|+ H.c. (3.13)

and the two semi-infinite tails are attached at |1〉 and |L+ 1〉. This setup is shown

in Figure 3.4. The definition of the scattering system fixes the phase of a plane wave

on the first vertex of G so that it vanishes, since 〈1 |kv,m〉 = 1, and on the last vertex

〈L+ 1 |kv,m〉 = T
(1,1)
L+1,1(k). However since this system is simply an infinite line, and given

the phase on vertex |1〉, it must also be the case that 〈L+ 1 |kv,m〉 = eikL. That this phase

shift over a length L is equal to the phase of the transmission coefficient through the same

length motivates the definition of the effective length of a graph between incoming tail

(v,m) and outgoing tail (u, l) more generally as [62]

`
(v,m)
u,l (k)

.
=

d

dk
arg T

(v,m)
u,l (k). (3.14)

Note that the effective length need not be the same between arbitrary pairs of attachment

vertices.
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3.3 Universal quantum walk-based computation

To show that quantum walks are universal for quantum computation, Childs proposed

a model influenced by the scattering method of calculation discussed in the previous

sections [62]. A sufficiently long rail—infinite, in the ideal case—is assigned to each

computational basis state to be simulated, so that for an n-qubit calculation, 2n rails

are required. A quantum walker on the graph is then able to encode an n-qubit state

in its position, with one rail assigned to each of the computational basis states. As

with the nand-tree evaluation, a quantum walker is initialized on the left-hand ‘input’

side of the rails, and then propagates to the right for a set amount of time, at which

point a measurement on the right-hand ‘output’ side of the rails yields the result of the

computation. Also akin to the nand-tree algorithm, it is the scattering properties of

graphs attached to the rails between the input and output sections that enable the final

state of the walker to encode the result. These graphs, termed widgets , are simple, finite,

and small, with the largest of the set proposed by Childs having only seven vertices.

3.3.1 Simulating a single-qubit gate

The general setup for the simulation of a single qubit is portrayed in Figure 3.5. Given

a finite graph G, four semi-infinite tails are attached to it. The graph simulates a single-

qubit gate if two of them can be identified as the computational |0〉 rail, and the other

two as the |1〉 rail. That is, if the position of the walker is measured and it is found to be

on a vertex of the |0〉 rail then the computational state of the single encoded qubit is |0〉,

and likewise for the |1〉 rail. If the walker is located on a vertex of the widget graph G,

then in general no computational state is encoded. This ability of the system to evolve

through states that do not encode quantum information, yet return to the computational

space and continue the implementation of an algorithm is in contrast with the standard

circuit model, in which at every instant of evolution the qubits encode a computational

78



COMPUTING WITH QUANTUM WALKS 3.3. Universal quantum walk computation

G

· · ·

· · ·

· · ·

· · ·

|0in〉

|1in〉

|0out〉

|1out〉

Figure 3.5: Schematic representation of the setup to implement a single-qubit gate
by graph scattering. G takes the place of a finite graph to which four tails
have been attached; half-open circles represent input and output vertices,
when open on the left and right, respectively. Note that the tails need
not be attached to four distinct vertices.

state. This difference arises again in Chapter 6, where it is highlighted in more detail.

Consider a quantum walker in a wave-packet state localized on the |0in〉 tail and

propagating toward the graph G, with a momentum profile tightly peaked about some

momentum k. In general the walker will scatter into a superposition of wave packets

propagating away from G along all four tails. Letting the indices i and j run over the

tail labels {0in, 0out, 1in, 1out}, this transition of probability amplitudes from an incoming

wave packet on one tail to a superposition of outgoing packets on four can be described

by the scattering matrix

S(k)
.

=

∑
i

Ri(k)|i〉〈i|+
∑
i,j
i 6=j

T
(j)
i (k)|i〉〈j|

 , (3.15)

which is unitary [61]. For specific combinations of G and k however, there will be no

reflection back along |0in〉 and no transmission to the |1in〉 tail. In such cases, there is

perfect transfer of the walker from |0in〉 to a normalized superposition of |0out〉 and |1out〉.

If for the same combination of G and k a similar walker propagating toward G along the

|1in〉 rail also transfers perfectly to the two output rails, then the unitary evolution of

the walker through the graph can also be interpreted as a transformation on the qubit
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encoded by the position of the walker, under the unitary operator

U =

T (0in)
0out

T
(1in)
0out

T
(0in)
1out

T
(1in)
1out

 . (3.16)

There is one more ingredient to this scheme, that of the effective lengths of the paths

through the graph. As described in Section 3.2, the effective length between two of the

four tails attached to G captures the fact that a walker takes a finite amount of time to

propagate through the graph from one to the other, if indeed it does so at all, and is a

momentum-dependent quantity. In order to maintain the spatial coherence of the walker

as it propagates through G from the input to the output tails, one of two situations

must occur. Either G transfers probability from each input to a superposition of the

outputs, in which case the four effective lengths through the graph must all be equal, or

it transfers probability from each input to a single output, in which case the two lengths

must be equal. Note that while probability cannot transfer between two vertices if there

is no path between them, the existence of a path does not guarantee that probability will

transfer at all momenta.

3.3.2 A universal single-qubit gate set

This section briefly summarizes the widgets used in Reference [62] to create a set of

gates universal for single-qubit computation. There are two sets of widgets employed

by the scheme, serving distinct purposes. The first, shown in Figure 3.6, contains the

computational widgets that provide a set of gates universal for quantum computation in

the ideal case of infinitely long tails supporting plane-wave states. The second, presented

in Figure 3.7, is required when the tails are of finite length and the state of the walker

is a propagating wave packet rather than a plane wave, or even if it is initialized on a

single vertex in a superposition of all momentum states.
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|0in〉

|1in〉

|0out〉

|1out〉

(a) Phase shifter

|0in〉

|1in〉

|0out〉

|1out〉

(b) Basis changer

|00in〉
|01in〉
|10in〉
|11in〉

|00out〉
|01out〉
|10out〉
|11out〉

(c) cnot

Figure 3.6: Computational widgets providing a universal gate set, due to Childs [62].
The phase shifter and basis changer together are universal for single-qubit
operations, and the addition of the cnot gate results in a set universal
for quantum computation.

...

|in〉 |out〉

(a) Momentum filter

|in〉 |out〉

(b) Momentum separator

Figure 3.7: Non-computational widgets of Reference [62]. (a) The momentum filter
has perfect transmission from |in〉 to |out〉 only at momenta π/4 and 3π/4;
other momenta are either reflected or transmitted to the semi-infinite
tail extending upward, and chaining m such filters in series results in a
transmission probability exponentially small in m for all momenta not
equal to π/4 or 3π/4. (b) The momentum separator also has perfect
transmission from |in〉 to |out〉 at both k = π/4 and k = 3π/4, but
crucially the effective length seen by k = 3π/4 is an order of magnitude
larger than that seen by k = π/4, so this widget introduces a spatial
separation between the two momentum components not removed by the
momentum filter.
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The computational widgets in Figure 3.6 all have perfect transmission at momentum

k = π/4. In his original formulation, Childs takes the system Hamiltonian to be equal

to the adjacency matrix, H = A, rather than its negative; this results in his discussion’s

invoking k = −π/4, but being functionally equivalent to the current summary. The phase

shifting widget of Figure 3.6(a) has an effective length of `(π/4) = 3 from each input to

its corresponding output, but with transmission coefficients

T
(0in)
0out

(π/4) = e3iπ/4, (3.17a)

T
(1in)
1out

(π/4) = eiπ/2, (3.17b)

the portion of the walker on the |1〉 rail acquires a phase of −π/4 relative to that on

the |0〉 rail. Here T
(a)
b (k) is the transmission coefficient for a plane wave of momentum k

scattering from tail a to tail b [cf. Equation (3.9)]. The encoded computational state of

a walker incident on this widget in initial state |ψin〉 = α|0in〉+ β|1in〉 is transformed by

the computational unitary operator

Ups =

(
1 0
0 e−iπ/4

)
(3.18)

to the state |ψout〉 = α|0out〉 + e−iπ/4β|1out〉. The phase gate Ups differs in the sign of

the applied phase from that of Reference [62], since therein the transmission coefficients

of Equations (3.17a) and (3.17b) are e−3iπ/4 and e−iπ/2 respectively, each differing in the

sign of its phase due again to Childs’ choice of Hamiltonian as H = A. This difference is

unimportant to the computational scheme.

The other single-qubit widget of the scheme, seen in Figure 3.6(b), simulates a basis-
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changing gate. Its transmission coefficients from the input to output vertices are

T (0in)
0out

T
(1in)
0out

T
(0in)
1out

T
(1in)
1out


∣∣∣∣∣∣∣
k=π/4

= − 1√
2

 eiπ e3iπ/2

e3iπ/2 eiπ

 (3.19)

which, up to an overall phase factor, defines the computational unitary effected by the

basis-changing widget,

Ubc
.

= − 1√
2

(
i 1
1 i

)
. (3.20)

Together the single-qubit gates Ups and Ubc form a single-qubit instruction set, capable

of efficiently simulating any single-qubit gate since iU6
psUbcU

6
ps = H, and the Hadamard

operator together with the π/8 phase gate U7
ps generate SU(2) [4].

3.3.3 Simulating an entangling gate

Perhaps surprisingly, introducing entanglement between qubits simulated by a quantum

walk can be more straightforward than implementing a single-qubit gate. This is due

to the fact that a single quantum walker encodes computational states in its position,

and therefore each computational state can be addressed individually; adding a phase

to those rails encoding states in which the value of a pair of qubits is |11〉 simulates a

cphase gate between them, for example. Even more trivial to implement is the cnot

gate, which forms part of the universal gate set in Reference [62].

More explicitly, consider the simulation of two qubits. The walker propagates on

four rails, one for each of the computational basis states |00〉, |01〉, |10〉, and |11〉, and

simply interchanging the 10 and 11 rails—or merely keeping track of a relabelling of

them—will effect a cnot gate with the first qubit as control and the second as target.

This is depicted in Figure 3.6(c), along with the widgets constituting a universal set of
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gates which together show that continuous-time quantum walks are indeed universal for

quantum computation.

3.3.4 Computing on finite graphs

The general formulation of the continuous-time quantum-walk model of computation

described so far depends on semi-infinite tails in order to support plane-wave momentum

eigenstates. While this simplifies the analysis, a scheme that required infinitely many

vertices to implement, even in theory, would not be of practical interest. However, Childs

shows that the tails attached to the computational graph can be truncated at a length

polynomial in m, the number of gates to be simulated, in exchange for an increase in

the expected runtime of the simulation that is also polynomial in m. It is intuitive that

such a truncation should be possible with minimal effect on the dynamics of the walker,

because the magnitude of the group velocity in Equation (3.5) is bounded above by

v(π/2) = 2; boundary effects will take a finite time to reach a walker initialized sufficiently

far from the truncation point. Furthermore, it is possible to initialize the walker on a

single vertex to avoid the requirement of constructing a propagating wave packet. These

two tasks, tail truncation and single-vertex initialization, are collectively made possible

without compromising the computational power of the walker by the momentum filter

and separator widgets shown in Figure 3.7. The filter widget transmits perfectly only at

momenta k = π/4 and k = 3π/4, while the separator introduces a delay between these

two components. Thus a time can be determined at which the probability amplitude of

the π/4 momentum component will be spatially isolated on the output tails.

More specifically, the momentum filter of Figure 3.7(a) has perfect transmission be-

tween its |in〉 and |out〉 vertices at momenta k = π/4 and k = 3π/4, while other momen-

tum components are either at least partially reflected, or transmitted along the semi-

infinite tail extending upward from the widget and away from the computational graph.
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When the widget is repeated mF times in sequence, the magnitude of the transmission

coefficient from the first |in〉 to the last |out〉 is exponentially small in mF for momenta

not close to π/4 or 3π/4 [62]. The computational widgets also have perfect transmission

at both k = π/4 and k = 3π/4, however their behaviours are different at these to mo-

mentum values. For example, the phase-shifting widget predictably shifts the phase of a

walker on the |1〉 rail by −3π/4 relative to the |0〉 rail, as opposed to by −π/4. In general

this might not present a problem since different momentum components propagate with

different velocities and thus become spatially separated, however the two momenta in

question happen to have the same group velocity, v(π/4) = v(3π/4) =
√

2.

The momentum separator widget in Figure 3.7(b) is thus introduced to spatially

separate the desirable momentum components near k = π/4 that are simulating the

computation from the undesirable components near k = 3π/4, which are not. This

widget has perfect transmission from |in〉 to |out〉 at both k = π/4 and k = 3π/4 (as well

as at k = π/2) but crucially the effective length of the widget differs at the two momenta

of interest: `(π/4) = 2(7 − 4
√

2) ≈ 2.686, while `(3π/4) = 2(7 + 4
√

2) ≈ 25.31. Thus

with this widget the momentum components participating in the quantum computation

can be spatially isolated from the other transmitted components.

An n-qubit quantum circuit containingm gates from the universal set {Ups, Ubc,cnot}

can be simulated by a continuous-time quantum walker on a graph constructed as follows.

The computational graph comprises the widgets corresponding to the gates of the circuit,

to which are attached 2n input and 2n output tails, labelled by the computational basis

states. Between the computational graph and the |0〉⊗n input tail, mF
.

= log(Θ(m2))

momentum-filter widgets are inserted, followed by a momentum separator. A measure-

ment can be timed such that if it finds the walker on the output rails then it must

have arrived there with momentum π/4, and the computation succeeds. If the walker is

located elsewhere in the graph, the system must be re-initialized and the computation
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run again. The probability of success for a single run is at least Ω(1/m2) [62], so the

computation is expected to complete successfully in a number of runs—and therefore a

time—polynomial in the number of gates m.

3.4 Computing with discrete-time quantum walks

Since a discrete-time quantum walk proceeds as a sequence of unitary operations with-

out reference to any underlying generating Hamiltonian, the eigenstate analysis of graph

scattering processes used to describe the continuous-time walk does not transfer directly

to analysis of the discrete case. Nevertheless, the rails–as–computational–states model

provides a good starting point for seeking a computationally universal discrete-time quan-

tum walk. Indeed, this is the route taken by Lovett et al. in the first demonstration of a

universal quantum computation scheme using discrete-time quantum walks [63].

The primary challenge to the creators of this scheme was the fact that while it is

trivial to create a discrete-time quantum walk that propagates in only one direction on

a line—simply use the Pauli-X operator as the coin and initialize the walker on one

vertex with its coin in a basis state of X—its direction of propagation cannot be so well

controlled on a graph containing vertices of degree greater than two. Since the position

states associated to vertices of the graph are not conjugate to momentum states on the

graph, one cannot simply construct a propagating wave packet for the initial state of

the walker. To surmount this problem, Lovett et al. began by investigating scenarios

under which a discrete-time walker can undergo perfect state transfer (cf. Section 2.4)

on graphs with degree greater than two.

Their discrete-time analogue to the degree-two wires of Figure 3.5 employs graphs with

multiple edges. A line of vertices with two edges between each, as shown in Figure 3.8,

with the four-dimensional Grover coin
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· · ·
|1〉 |2〉 |3〉 |4〉 |5〉 |6〉

|↖〉
|↙〉

|↗〉
|↘〉 · · ·

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉

|↖〉
|↙〉

|↗〉
|↘〉

Figure 3.8: Quantum wire for a discrete-time quantum walker. A walker initialized
on vertex |1〉 can be made to propagate to the right, remaining localized
on a single vertex after each step. (Inset) Labelling scheme for the four
states of the coin on each vertex of degree four.

C
(4)
φ

.
=

eiφ

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 (3.21)

acting at each vertex, will propagate a walker in an appropriately chosen initial state

in one direction along the quantum wire with certainty. Specifically, in the vertex basis

{|↖〉, |↙〉, |↗〉, |↘〉} defined graphically in Figure 3.8 in terms of the direction the four

edges leave each vertex, one step of the discrete-time quantum walk is given by

SC
(4)
φ

[
|x〉 ⊗ 1√

2
(|↖〉+ |↙〉)

]
= |x+ 1〉 ⊗ eiφ

√
2

(|↖〉+ |↙〉) (3.22)

and repeated application of the walk operator SC(4) transfers the walker perfectly one

vertex to the right, acquiring a phase φ each time.

With a scheme in place for the propagation of a walker along a rail, it remains only to

find a set of gates that simulates universal quantum computation. As with the continuous-

time proposal, the generation of computational entanglement comes essentially for free

in the form of the cnot gate that results from interchanging the |10〉 and |11〉 rails,

as shown in Figure 3.9. Along with this, Lovett et al. provide, coincidentally, the same
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|00〉in

|01〉in

|10〉in

|11〉in

|00〉out

|01〉out

|10〉out

|11〉out

Figure 3.9: cnot widget of the discrete-time quantum walk model. Interchanging
the quantum wires carrying two of the basis states results in the imple-
mentation of an X gate on the second qubit only if the first qubit is in
the state |1〉.

universal single-qubit gate set as Childs does, though with different graph topologies and

of course a different evolution scheme.

The discrete-time phase gate, presented in Figure 3.10, adds vertices of degree two to

the graph, and uses the Pauli-X gate for the coin operator on them:

C(2) .
= X =

(
0 1
1 0

)
. (3.23)

Each rail transfers a walker from |li〉 to |ri〉 in two steps, but while the walker on the

upper rail picks up two eiφ phase factors from the coin C(4), the walker on the lower rail

acquires only the one as it leaves |l1〉 since C(2) does not depend on φ. Thus a walk

initially in the superposition

|ψin〉 = (α|l0〉+ β|l1〉)⊗
1√
2

(|↖〉+ |↙〉) , (3.24)

with |α|2 + |β|2 = 1, propagates through the phase gate in two steps of the walk, ending

up in the state

|ψout〉 =
(
α|r0〉+ βe−iφ|r1〉

)
⊗ 1√

2
(|↖〉+ |↙〉) , (3.25)

up to an unimportant overall phase. That is, the widget in Figure 3.10 takes two time
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|0〉in

|1〉in

|0〉out

|1〉out

|l0〉 |u〉 |r0〉

|l1〉

|v〉

|w〉 |r1〉

Figure 3.10: Phase widget of the discrete-time quantum walk model. A walker inci-
dent from the left traverses the two rails in the same number of steps,
but acquires a different phase when it passes |u〉 as compared to when
it crosses |v〉 and |w〉.

steps to effect the computational unitary

Ups =

(
1 0
0 e−iφ

)
. (3.26)

For their universal gate set Lovett et al. specify φ = −π/4.

The final requirement is a basis-changing gate to turn each single-qubit computational

basis state into a superposition of the two. This is achieved with a vertex of degree

eight at which all of the input and output wires for a single qubit meet, as shown in

Figure 3.11. The structure itself is straightforward but as with finding a mechanism by

which to propagate the walker in a single direction, the key to the implementation of the

basis-changing gate lies in the choice of the coin, defined in Reference [63] to be

C(8) .
=

1

2



0 0 0 0 1 i i −1
0 0 0 0 i 1 −1 i
0 0 0 0 i −1 1 i
0 0 0 0 −1 i i 1
i −1 1 i 0 0 0 0
−1 i i 1 0 0 0 0
1 i i −1 0 0 0 0
i 1 −1 i 0 0 0 0


. (3.27)

The basis in which this operator is expressed is the canonically numbered unit vectors
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|0〉in

|1〉in

|0〉out

|1〉out

|1〉

|2〉
|3〉

|4〉

|5〉

|6〉
|7〉

|8〉

|0〉in

|1〉in

|0〉out

|1〉out

|1〉

|2〉
|3〉

|4〉

|5〉

|6〉
|7〉

|8〉
Figure 3.11: Basis-changing widget of the discrete-time quantum walk model. Mix-

ing between the two computational rails is achieved with a vertex of
degree d = 8, at which the coin C(8) defined in the text puts a walker
incoming along the left-hand dual edges attached to either computa-
tional rail into a superposition of all four right-hand edges representing
both computational rails. The subsequent shift operator propagates the
walker one step to the right, now in a different superposition of the two
computational rails.

|1〉 .
= (1 0 0 0 0 0 0 0)T , |2〉 .

= (0 1 0 0 0 0 0 0)T , and so on, with the states

assigned to the eight-dimensional coin degree of freedom as depicted in the inset of

Figure 3.11. An incoming walker encoding the computational state α|0〉 + β|1〉 arrives

on the degree-eight vertex |v(8)〉 in the state

|ψin〉 = |v(8)〉 ⊗ 1

2
[α(|1〉+ |2〉) + β(|3〉+ |4〉)] , (3.28)

which the coin C(8) transforms into

|ψout〉 = |v(8)〉 ⊗ e3iπ/4

√
2

[(α− iβ)(|5〉+ |6〉)− i(α + iβ)(|7〉+ |8〉)] (3.29)

The subsequent shift operation propagates the walker another step to the right, back

onto the computational rails in a state encoding (α − iβ)|0〉 − i(α + iβ)|1〉, up to an

overall phase. That is, the walker undergoes the computational basis-changing operation
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Ubc
.

=
1√
2

(
1 −i
−i 1

)
, (3.30)

the same gate as obtained in the continuous-time scheme, Equation (3.20), up to an

overall phase factor. In combination with the phase shifting widget, this basis changer

forms an instruction set for single-qubit computation by discrete-time quantum walk.
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Chapter 4

Single-qubit gates by graph scattering

Childs’ proof of the quantum-computational universality of quantum walks introduces

the concept of treating a finite graph as a scattering centre when semi-infinite tails are

attached to it [62]. Motivated by this result, Varbanov and Brun derive a set of equations

with which the reflection and transmission coefficients can be computed given an arbitrary

finite simple graph, with an arbitrary number of tails attached to any or all of its vertices

[61]. The combination of these results—a model for computing by scattering walkers off

of graphs, and a prescription for calculating the behaviour of such a walker incident on

any finite simple graph—raises some obvious questions. For example, do other universal

gate sets exist at momentum k = π/4? What about at other momenta? Does increasing

the number of vertices in the scattering-centre graph increase the number of graphs that

simulate quantum gates, or does the generally greater complexity of the internal structure

of the graphs restrict many of them from exhibiting perfect transmission from the input

rails to the output ones?

Motivated by questions such as these, I collaborated with Benjamin Blumer to ex-

haustively search the set of non-isomorphic simple graphs on nine or fewer vertices over a

range of momenta for those resulting in scattering coefficients that could be interpreted as

implementing a single-qubit gate on a quantum walker encoding a computational state.

The search was accomplished numerically with a computer code written by Mr. Blumer,

whom I advised during the process. I then added routines to filter out those results that

appeared to provide computational unitaries but contained differing effective lengths for

the paths through the graph, as described in greater detail in Section 4.1.2. My contribu-

tion also consisted in the analysis of the data output by the code to determine from a set
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of scattering coefficients a meaningful description of the associated single-qubit gate, fur-

ther aggregation of the elements of data set as detailed in Section 4.1.3, and the writing

of the manuscript that became Reference [64] and the basis for the current chapter.

4.1 Searching for computational unitaries

To treat a graph-scattering process as a single-qubit gate—that is, as a unitary operation

on the encoded computational space—only graphs with exactly four tails attached to

them are considered, and the tails {(vi,mi)}4
i=1 are relabelled as {bin, bout}1

b=0. It is also

notationally convenient to identify momentum states on the tails as, for example, |k, 0in〉

as opposed to |k0in
〉. In general a walker incoming on tail 0in scatters according to

|k, 0in〉 7→ R0,in(k)|k, 0in〉+ T
(0,in)
1,in (k)|k, 1in〉+

1∑
b=0

T
(0,in)
b,out (k)|k, bin〉, (4.1a)

and likewise |k, 1in〉 is transformed as

|k, 1in〉 7→ R1,in(k)|k, 1in〉+ T
(1in)
0,in (k)|k, 0in〉+

1∑
b=0

T
(1,in)
b,out (k)|k, bin〉. (4.1b)

These transformations are captured by the first two columns of the S matrix for the

scattering process, defined as

S
.

=



R0,in T
(1,in)
0,in T

(0,out)
0,in T

(1,out)
0,in

T
(0,in)
1,in R1,in T

(0,out)
1,in T

(1,out)
1,in

T
(0,in)
0,out T

(1,in)
0,out R0,out T

(1,out)
0,out

T
(0,in)
1,out T

(1,in)
1,out T

(0,out)
1,out R1,out


(4.2)

in Reference [61], where it is also shown to be unitary.

The computational scheme dictates that a walker propagating toward the graph along
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the input tails scatters such that at a later time it is propagating away from G along the

output rails. To achieve this, it must be the case that

R0,in(k)
!

= R1,in(k)
!

= T
(0,in)
1,in (k)

!
= T

(1,in)
0,in (k)

!
= 0. (4.3)

That is, there is neither reflection along an input rail nor transmission from one input to

the other. When the conditions of Equation (4.3) are met, the scattering equations (4.1)

of incoming walkers simplify to

|k, 0in〉 7→ T
(0,in)
0,out |k, 0out〉+ T

(0,in)
1,out |k, 1out〉, (4.4a)

|k, 1in〉 7→ T
(1,in)
0,out |k, 0out〉+ T

(1,in)
1,out |k, 1out〉, (4.4b)

so that a walker approaching the graph with momentum k in an arbitrary superposition

of the two input tails,

|ψin〉 = α|k, 0in〉+ β|k, 1in〉, (4.5)

is transformed to a superposition on the output tails by the operator

W
.

=

T (0,in)
0,out T

(1,in)
0,out

T
(0,in)
1,out T

(1,in)
1,out

 . (4.6)

This matrix is the lower-left block of S, which for the case in which Equation (4.3) holds

can be written as



0 0 T
(0,out)
0,in T

(1,out)
0,in

0 0 T
(0,out)
1,in T

(1,out)
1,in

T
(0,in)
0,out T

(1,in)
0,out R0,out T

(1,out)
0,out

T
(0,in)
1,out T

(1,in)
1,out T

(0,out)
1,out R1,out


.

=

(
0 B
W C

)
. (4.7)
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Since this is merely a special case of the general S matrix it must still be unitary, and

therefore

S†S =

(
0 W †

B† C†

)(
0 B
W C

)
=

(
W †W W †C
C†W B†B + C†C

)
!

=

(
I2 0
0 I2

)
, (4.8)

from which it is immediately seen that W is unitary. Thus an arbitrary input state of

the form in Equation (4.5) with |α|2 + |β|2 = 1 is transformed by the presence of the

widget graph G to the output state

|ψout〉 = W |ψin〉, (4.9)

where the action of W can be interpreted as a single-qubit unitary gate on the encoded

computational space. The goal then, in the search for computational unitaries effected

by graph scattering, is to identify those graphs for which the conditions of Equation (4.3)

are satisfied at particular k values, and for each determine the corresponding unitary W .

4.1.1 Enumerating graphs

The number of non-isomorphic graphs on N vertices does not have a simple closed-form

solution in general, but the quantities are well catalogued for values of N sufficient for

our purposes [65]. The first few terms, for N = 1 to N = 11, are

1, 2, 4, 11, 34, 156, 1044, 12 346, 274 668, 1 2005 168, 1 018 997 864. (4.10)

The growth is super-exponential, and it is for this reason that the search was truncated

after graphs of N = 9 vertices.

The ‘nauty’ (no automorphisms, yes?) suite of graph-theoretic software tools and

libraries [66] includes the utility ‘geng’ (generate graphs), which is capable of efficiently
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producing the adjacency matrices for all non-isomorphic simple graphs onN vertices. The

software routines we prepared proceed as follows. Using geng, a list of the 288 266 graphs

on nine or fewer vertices is prepared. For each graph, for each way to attach four tails

to it, and for each of the nine distinct momentum values k = (p/q)π with p ∈ {2, 3, 4, 5}

and q ∈ {1, . . . , p−1}, all partitions of the tails into two input and two output are tested

to see if the conditions of Equation (4.3) are satisfied to numerical precision. Specifically,

the conditions are taken to be satisfied if the sum of the magnitudes of the transmission

coefficients to the output tails is at least 1 − 10−11. If they are, then that set of graph,

momentum, and tail attachments becomes a candidate single-qubit gate. These tests

involve the numerical construction of Equation (3.11) and its solution for the coefficients

of the vector |k, vm〉G in order to populate the gate matrix W using Equation (3.12), and

are accomplished with the GNU Scientific Library [67] and LAPACK [68] mathematical

programming libraries, integrated with our custom code. A candidate unitary is discarded

if its transformation matrix W has already been found at the same momentum for a

previously tested widget of the same effective length, though a count is kept for each

computational unitary operation of how many configurations produce it.

4.1.2 Comparing effective lengths

The final test to perform is to calculate the effective lengths for all paths through each

candidate graph, and record the configuration as a valid single-qubit gate only if they are

compatible. As described briefly in the description of Childs’ model of computation in

Section 3.3.1, there are two distinct scenarios under which the lengths can be compatible

to implement a gate. If all four entries of the gate operation W are non-zero, then there

are paths from each input rail to both output rails, yielding a total of four paths through

the widget graph. In this case, the four lengths must be equal. Alternatively, either the

diagonal or off-diagonal entries can vanish, in which case only the two effective lengths
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derived from the non-zero entries of W must be equal. It is important to treat these cases

independently, because when T (k) vanishes for a path through the graph, the derivative

of its argument at that momentum is irrelevant; there is no transmission. Thus requiring

that this derivative agrees with those on paths for which there is transmission is too

restrictive a condition.

For each candidate graph a nine-point finite-difference stencil is used to calculate the

effective length of each path with non-zero transmission through the graph, implemented

directly in C code with the complex-number data type defined by the GNU Scientific

Library. If all calculated lengths are equal then the candidate graph indeed simulates a

single-qubit gate, and its adjacency matrix is recorded along with the tail attachment

configuration, momentum, W matrix, and effective length, as well as a unique record

identifier.

4.1.3 Analysis

The total number of combinations of graph, tail attachments, and momentum under the

parameters chosen is 1 262 489 148. Of these 1 960 316, or just over 0.15%, meet all of

the requirements to simulate a single-qubit gate by graph scattering. Within this set

of gates there is a great amount of redundancy, in that many single-qubit unitaries can

be implemented at a given momentum and with a certain effective length by multiple

non-isomorphic widget graphs. When this redundancy is taken into account, the number

of distinct gates reduces substantially to 3380. A complete listing of these gates can

be found in Table A.1 of Appendix A. While 3380 is a small percentage of the original

number of combinations evaluated, the number of gates is seen to grow exponentially as

a function of the number of vertices in the scattering graph, as shown by Figure 4.1.

Further analysis of the raw data involves their aggregation according to a variety of

binning criteria. It is clear from symmetry arguments that the graph on one vertex with
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1 2 3 4 5 6 7 8 9
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Graphs resulting in unitaries

Distinct unitaries
Distinct non-identity unitaries

Vertices in widget
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Figure 4.1: Total number of graphs resulting in unitary operators, as well as the
number of distinct unitaries found as a function of number of vertices.
Here operations are considered distinct if they arise from graphs with
different effective lengths or at different momenta.

four tails attached to it cannot transfer a walker from one tail to only one or two of the

remaining three and therefore no computational unitaries are expected on one vertex, and

indeed none are found. Given two disconnected vertices it becomes trivial to implement

either of the identity and X gates by attaching two tails to each vertex; if the two vertices

are connected to each other then it turns out that no combination of attachment points

allows for zero reflection along an incoming rail at any momentum, so no additional gates

on two vertices are possible. These two gates on widgets of two disconnected vertices are

shown in Figure 4.2 along with a third gate that can be implemented on five vertices,

which is the smallest widget size that admits an operation other than I or X.

This shows that even after grouping together widgets according to the gate they

implement, and the momentum and effective length at which they do so, there is still

more redundancy within the set of gates identified, since there are exactly two possible

gates on two vertices yet Figure 4.1 indicates that nearly 100 two-vertex gates were

found. The exact number is 72, which is easily understood since each combination of

graph, momentum, and tail attachments that results in a single-qubit gate is recorded.
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

I X RZ(−π/2)

Figure 4.2: With only two vertices it is trivial to implement the identity gate I and
the Pauli-X or swap operation at any momentum. The smallest number
of vertices on which a gate other than I or X can be implemented is
five, as for example in the widget shown here to implement RZ(−π/2) at
momentum k = π/2.

The nG = 1 graph of two disconnected vertices yields a gate at every momentum value,

in particular at each of the nk = 9 of them in our investigation. For each of the na = 4

partitions of four tails attachments into two pairs, the output tails can be labelled so

as to implement one of the nu = 2 unitaries I or X. Therefore the number of expected

widgets to be identified should be nGnknanu = 1× 9× 4× 2 = 72, as it is. Clearly such

redundancy is only likely to get worse as the number of vertices is increased—consider,

for example, how many non-isomorphic graphs on nine vertices include two disconnected

vertices that will exhibit exactly the same behaviour—so the primary task in performing

the analysis of the generated data is to further aggregate the data so as to determine the

actual growth in the number of available operations with widget size at each momentum.

To this end, Figure 4.3 shows the counts of the set of distinct unitaries (points labelled

‘ ’ in Figure 4.1) separated by momentum; in each case the increase is still exponential

in the number of widget vertices.

4.2 Findings

Of the 3380 distinct combinations of W -matrix, momentum, and effective length, 2496

yield gates other than the identity. This of course means that there are 3380−2496 = 884

different combinations of momentum and effective length at which the identity gate
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Figure 4.3: Number of graphs resulting in distinct unitaries, as presented in Fig-
ure 4.1, separated by the walker momentum.

can be simulated. This wide array of identities is far from trivial; in a multi-qubit

quantum walk-based computation, the controlled version of a single-qubit unitary U can

be implemented in a straightforward manner, but only if the identity can be performed

at the same momentum and with the same effective length as the widget implementing

U . While it is always trivial to implement an identity operation at any momentum

for an integral effective length, widgets exist with non-integral effective lengths, both

rational and irrational. Of the 2496 widgets that simulate operations other than the

identity, 2234 have a commensurate identity widget and can thus be used to implement

multi-qubit controlled versions of the same gates.

However, there is still redundancy in this gate set. There is no reason that two

consecutive widgets must have the same effective length, only those in parallel. That is,

if two widgets implement a given single-qubit unitary operation at momentum k, then

they should not be considered distinct even if they have different effective lengths. Taking

this into account reduces the total number of distinct unitaries to 332. Figure 4.4 shows

the distribution of these gates at each momentum value investigated, from which it is

clear that the number of gates is still an exponential function of the number of vertices
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Figure 4.4: Number of distinct single-qubit gates available as a function of widget
size. Single-qubit gates are considered distinct if they perform differ-
ent computational unitary operations or if they are available at distinct
momenta, but not if they differ only in their effective lengths.

for momenta that are integral multiples of π/2, π/3, and π/4. The small uptick at nine

vertices for integral multiples of π/5 indicates that walkers at these momenta may not be

incapable of computation, although the additional unitaries do not form a universal set.

They are rotations of the Bloch sphere by irrational multiples of π, but are all X rotations

so without a second axis of rotation cannot simulate arbitrary single-qubit operations.

At momentum k = π/4 the available gates include the Pauli-X, -Y , and -Z gates,

as well as the identity operation and the universal set identified by Childs. In total 28

distinct single-qubit unitary operations can be simulated by a walker at k = π/4 with

access to widgets on nine or fewer vertices. At k = 3π/4 there are also 28 unitaries,

23 of which are also found at k = π/4. With momentum k = π/2 the walker can

simulate 56 rotations of the Bloch sphere about 32 non-parallel axes, while for k = π/3

and k = 2π/3 there are 102 and 98 rotations respectively, about 59 different axes in

each case. The distribution of these axes of rotation across the surface of the Bloch

sphere can be seen in Figure 4.5 for k ∈ {π/3, π/2, 3π/2}; the axes of rotation at other

momenta all lie in either the equatorial plane of the Bloch sphere, or along its prime
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Figure 4.5: Distribution of the axes of rotation about which single-qubit unitaries
can be effected at momenta π/2, π/3, and 2π/3. That is, there exists
at least one non-trivial rotation R(θ,φ) about each axis defined by these
points (θ, φ) on the upper hemisphere of the Bloch sphere. Symbols are
as in Figure 4.4.

meridian. The reflection symmetries about φ = 0 and φ = ±π/2 are due to the different

configurations of attachment points available for each graph. If a given widget performs

a single-qubit rotation about the (θ, φ) axis of the Bloch sphere when the attachment

vertices for (|0〉in, |1〉in, |0〉out, |1〉out) are (|1〉, |2〉, |3〉, |4〉), then swapping the inputs and

outputs by re-attaching the tails in the order (|3〉, |4〉, |1〉, |2〉) results in a rotation about

(θ,−φ). Interchanging the inputs with each other and doing the same for the outputs,

i.e. re-ordering the tails as (|2〉, |1〉, |4〉, |3〉), leads to a rotation about (θ, π−φ), which is

equivalent to conjugating the original gate by X.

There are 16 unitaries that can be produced by graphs on five vertices, eight of which

are ‘new’ in the sense that they cannot be produced by four or fewer vertices. Similarly,

there are 24 new unitaries on six vertices, and 30 more on seven. These 62 unitary

operators are produced by only 15 representative graphs, in concert with a variety of

tail attachment and momentum configurations. One of these graphs yields gates at two

variations of attachment points that lead to non-isomorphic infinite graphs once the tails
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are included. This increases the number of distinct widget graphs to 16, all of which are

shown in Figure 4.6.

4.2.1 Notable results

Figure 4.7 showcases four graphs that produce interesting and perhaps unexpected re-

sults. While there is no reason to assume a priori that this scattering formalism will

not produce any rotations by irrational multiples of π for the configurations that are

discussed, neither is it intuitive that this should be the case given that the graphs are

scattering plane waves with momentum values that are rational fractions of π. Neverthe-

less, over 100 rotations through angles that numerically appear to be irrational fractions

of π are identified. These individual results can be checked analytically by solving Equa-

tions (3.11) and (3.12) exactly in the cases of interest; those that were so checked bore

out the apparent irrationality indicated by the numerical results. Figure 4.7(a) depicts

one such case, a graph that implements the transformation ZRZ [arctan(5
√

3/11)] up

to a global phase at momentum k = π/3. Besides the novelty of obtaining irrational

multiples of π under the circumstances, these graphs are inherently useful because any

two rotations about non-parallel axes by irrational multiples of π form a universal set for

single-qubit quantum computation [18].

Effective length is another feature of the widgets that provides some intriguing results.

The momentum separator of Figure 3.7(b) has irrational effective lengths at each of

the momenta it transmits perfectly, but it is only effective for a walker propagating on

a single rail and as such cannot act as a widget in a computational graph. Graphs

are identified that can act as single-qubit widgets, with either rational yet non-integral

or irrational effective lengths from each input to each output. Figure 4.7(b) shows a

graph on only five vertices that is capable of acting as an identity gate with an effective

length of ` = 1/2; at the momenta in question, no graph exists on fewer than five
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.6: The graphs with five, six, or seven vertices that implement single-qubit
unitaries which are unavailable on fewer vertices. The five-vertex graphs
(a) and (b) result in eight distinct unitaries under different tail attach-
ment configurations and different momentum values. The six-vertex
graphs (c)-(i) yield a total of 24 unitaries, and the seven-vertex graphs (j)-
(p) lead to 30. Note that while (c) and (d) are isomorphic, they represent
two distinct, non-isomorphic configurations once tails are attached.
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Figure 4.7: Some graphs that exhibit non-intuitive properties. At k = π/3, (a) per-
forms a Z rotation through an angle of arctan

(
5
√

3/11
)
, followed by a Z

gate. Also at k = π/3, (b) is an identity gate with an effective length of
` = 1/2. Finally at k = π/4, (c) performs the basis-changing operation√
X and (d) implements an identity, each with the irrational effective

length of ` = 5− 2
√

2.

vertices that has a non-integral effective length and implements a single-qubit unitary.

Finally Figure 4.7(c) shows a single-qubit widget that has an irrational effective length of

` = 5− 2
√

2. This graph implements the basis-changing operation
√
X, and remarkably

the graph in Figure 4.7(d) acts as an identity gate with this same irrational length.

Of the 3380 graphs capable of implementing single-qubit unitaries, 2614 of them

have non-integral effective lengths. Of these, 1072 appear numerically to have irrational

lengths, including the ‘longest’ graph identified, which has effective length ` = 350 +

156
√

5 ≈ 698.826. This extreme effective length due to a comparatively small number of

vertices (i.e. 9 � 700) is another observed phenomenon whose presence is not initially

obvious. Such a length corresponds to the incoming wave packet’s having been localized in

the region of the graph for a significant duration, and is reminiscent of a diverging negative

scattering length, approaching unitarity in traditional quantum scattering theory. Almost

20% of the unitaries identified have effective lengths ` ≥ 10, with greater than 1% having

` ≥ 100. In the same vein, it is also noteworthy that no widgets with negative effective
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· · ·

· · ·
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Figure 4.8: Graph that implements a Hadamard gate, up to an overall phase, at
momentum k = π/2.

lengths were identified. As the derivative of the argument of the transmission coefficient

there is nothing mathematically restricting the effective length to positive values, and

indeed many graphs exhibit negative effective lengths over a range of momenta, but

never at those corresponding to perfect transmission within the range of parameters in

this study.

Additionally, Figure 4.8 shows a graph on nine vertices that implements a Hadamard

operation, up to an overall phase, at momentum k = π/2. This graph as identified by

our analysis was recently employed in a new proposal for universal quantum computation

with multiple walkers [69].

4.3 Widgets as resources

In describing new models for quantum computation, an important consideration is al-

ways that of quantifying the associated resource costs, generally in terms of relatively

abstracted concepts such as space, time, and energy, as opposed to specific objects such

as beam splitters and transistors. While Childs makes it clear that he does not propose

this single-walker scattering model as an experimental prescription for the implemen-

tation of a quantum computer, his work has nevertheless spawned numerous attempts

to simulate quantum walk-based algorithms in laboratory situations [70–76]. Without

such experiments in mind however, Childs presents an analysis in terms of the number

of tails and computational wires required to implement a circuit containing m widgets
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on n qubits. Specifically, he determines that mF = log Θ(m2) filter widgets and tails of

length Θ(m2) are required. This in turn can be used to quantify the number of vertices

required by the graph, which is a meaningful contribution to the resource requirements

of the model since state preparation and final measurement are performed in the vertex

basis.

Given a circuit containing m1 single-qubit gates and m2 two-qubit gates, the Solovay-

Kitaev theorem, Theorem 1.2, guarantees that each of the single-qubit gates can be

simulated with accuracy ε using at most O(logc(1/ε)) elements of the universal set of

gates available as widgets, where c is a constant independent of ε. Corollary 1.1 states

that each of the two-qubit gates can be likewise simulated with O(logc(14/ε)) widgets.

This leads to a total of

m = O[m1 logc(1/ε) +m2 logc(14/ε)] (4.11)

widgets on n qubits. Each single-qubit widget requires at most a constant O(1) number

of vertices when there is a single qubit to be simulated, but must be repeated 2n−1 times

when n qubits are encoded; the two-qubit cnot gate used to construct arbitrary two-

qubit gates simply requires 2n vertices and an appropriate rearrangement of the edges

attaching them to the previous widget in the graph. Thus each of the m widgets requires

O(2n) vertices, so the total number of vertices in the computational graph is

Nc = O(2nm). (4.12)

Additional vertices must be attached to the computational graph to form the 2×2n input

and output tails, and mF = log Θ(m2) filter widgets, each containing an additional tail.
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Each tail must be at least O(m2) vertices long, resulting in

Nt = O
[
(2n +mf )m

2
]

= O
[
(2n + logm)m2

]
(4.13)

further vertices in the tails. The total number of vertices in the graph as a whole is

therefore

Nv = Nc +Nt = O
[
2n(m+m2) +m2 logm

]
= O

[
(2n + logm)m2

]
. (4.14)

The depth of the graph grows polynomially as a function of the number of gates to be

simulated, which translates into an efficient runtime for the simulation since the walker

simply traverses the polynomial number of widgets at a constant speed of O(1). However,

the exponential growth in the width of the graph with the number of qubits means that

this model cannot be implemented directly as described in a scalable manner.
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Chapter 5

Discontinuous quantum walks

The method of computing with a discrete-time quantum walker discussed in Section 3.4

and Reference [63] transfers a quantum walker from one widget to the next perfectly, and

thus requires neither tails to support momentum eigenstates nor a high probability of

needing to execute the computation multiple times before the walker returns an answer.

In light of this and the discussion in Section 2.4 of perfect state transfer for continuous-

time walkers, one might wonder whether these same results are possible for computing

with a continuous-time quantum walk. In Reference [77] we show that they are, when an

element of global control, akin to the flipping of a coin in the discrete-time case, is added

to the walk. The resulting scheme is referred to as a discontinuous quantum walk, as it

performs a quantum computation by subjecting a quantum walker to discrete steps of

continuous evolution; the term is simultaneously a tongue-in-cheek portmanteau and an

accurate description of the evolution of the walker, which occurs over a set of intervals

on a graph with temporally piecewise-constant but discontinuous edge weights.

5.1 Perfect state transfer on an unweighted line

Perfect state transfer and its generalization to transfer between subsets of vertices are

useful properties from the point of view of quantum information processing. With ap-

propriately designed graphs, such as the nand trees of Section 3.1.2, a walker can be

transported such that its arrival in a particular location on the graph encodes the re-

sult of a computation. This arrival occurs at set intervals when the state of the walker

is restricted to a well-defined subset of vertices, though in general throughout its evo-
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lution the state of the walker is spread out over a larger portion—possibly all—of the

graph. Though it is not phrased in this manner, the scheme for universal computation

by continuous-time quantum walk of Reference [62] and Section 3.3 conceptually involves

the transfer of a walker from its initial state on the subset of vertices corresponding to

the |0〉⊗n input tail on one side of the computational graph, to the subset of vertices of

the 2n output tails on the opposite end of the graph, though in this case the transfer is

not perfect. In the idealized version with semi-infinite tails and a walker in a momentum

eigenstate there is of course no actual propagation or transport, and when the graph is

made finite there exist components of the walker carried away by the momentum filters as

well as reflected back along the input tails or internally within the computational graph.

Nevertheless, the concept of perfect state transfer from one subset of vertices to another

provides an excellent model for the goal of the scheme.

Perfect state transfer between subsets of vertices is also an obvious component of

the discrete-time quantum walk scheme of Reference [63] and Section 3.4, in which the

computational rails are designed specifically to localize the walker after s steps of the

walk on those vertices a distance s from its initial location. As discussed in Section 3.1.2,

PST appears in specific quantum walk-based algorithms such as that in Reference [60] for

evaluating nand trees, in which the initial state of the walker is localized to the vertices

of the input tail, and the final state is localized on the input/output rail as a whole,

with no population remaining in the computational graph despite the walker’s having

traversed it at intermediate times. As in Childs’ scheme, when the tails are truncated

to a finite length the transfer is not perfect, but conceptually the idea of perfect state

transfer is still present.

The weighted line of M segments in Figure 5.1(a) transfers a continuous-time walker

perfectly from one end to the other, but unlike the discrete-time version of the rail the

walker is not localized on any vertex during its journey along the line. This makes the
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· · ·
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(a) Weighted line

· · ·
(b) Unweighted line of alternating graph segments

Figure 5.1: Two methods of perfect state transfer through M + 1 vertices on a line.
(a) A linear graph with always-on edges of appropriately tuned weights
transfers a walker between the left-most and right-most vertices in time
π/2. (b) If the edges are unweighted but can be turned on and off in an
alternating fashion, the walker transfers from each vertex to the next in
time π/2, traversing the entire line of M segments in time Mπ/2.

prospect of finding widgets to successfully transform the state of a localized continuous-

time quantum walker in a computationally meaningful manner as it traverses a compu-

tational rail daunting. Furthermore, concatenating two graphs that each exhibit perfect

state transfer does not in general result in a graph that also exhibits PST. This is made

clear by the path graph, since a walker on P2 can undergo PST from one vertex to the

other, but while two concatenated copies of P2—i.e. P3—exhibits perfect state transfer

between its ends, adding on even one more segment results in a graph on which no PST

occurs between any pair of vertices. Thus attempts to create a universal set of widgets

for a continuous-time quantum walk to be able to simulate quantum computations akin

to the discrete-time model must use a different strategy.

There exists a straightforward adaptation to the line however under which the walker

is still transferred perfectly yet also relocalizes on intermediate vertices before its traversal

of the line is complete. Consider the two graphs — one with solid edges, one with dashed

— in Figure 5.1(b). The vertices are fixed but the graphs can each be enabled or disabled

by switching their edge weights between 0 and 1. If a walker is initially on one of the

vertices and only one set of edges is enabled, then even though there are M/2 edges in the

graph, the walker only ‘sees’ one of them so that its evolution is effectively governed by
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K2. It simply transfers back and forth between the initial vertex and the one connected

to it [cf. Equations (2.31) and (2.32)]. This switching between graphs to affect the

evolution of the walker in a sequence of steps is directly analogous to the interleaving of

coin and shift operations in the discrete-time quantum walk model, but with an explicit

Hamiltonian defined to generate each of the unitary operations and with no requirement

for a coin degree of freedom.

5.1.1 State transformation by perfect state transfer

For a positive integer n ≥ 1, consider a set V of at least 2n vertices, some subset of which

has been uniquely assigned to each of the integers from 0 to 2n−1. That is

V = V0 ∪ V1 ∪ · · · ∪ V2n−1 ∪ V⊥, (5.1)

where the individual subsets Vi are non-empty and pairwise disjoint; V⊥ may or may not

be empty, but is disjoint from the other subsets. One can then define a quantum walk

on a graph on V such that if a measurement in the vertex basis locates the walker on a

vertex in Vi, then the walk is to be interpreted as having encoded the computational basis

state given by the n-bit binary expansion of i. If the walker is found on a vertex in V⊥

then no computational state is encoded. The goal will be to determine graphs on V such

that the evolution of a walker effects a computational operation. For example, in the

graph-scattering theory of the previous chapter n = 1 and the two computational-vertex

sets are those of the rails,

Vb = {xbin}
∞
x=1 ∪ {xbout}

∞
x=1 (5.2)

for the two bit values b ∈ {0, 1}. The vertices of the widget constitute V⊥.

Given such a collection of vertices, let VG ⊆ V⊥ and suppose that there exist i and
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j such that {u} ⊆ Vi and {w} ⊆ Vj. Consider a finite, weighted, undirected graph

G(VG, E, w) on the vertex set VG = {vi}Ni=1, with adjacency matrix AG. Let |vu〉 and

|vw〉, not necessarily distinct, be two vertices of G to which |u〉 and |w〉, respectively,

have been attached. This attachment creates a new larger graph with adjacency matrix

AG+E
.

= AG + (|u〉〈vu|+ |w〉〈vw|+ H.c.) , (5.3)

where ‘G+E’ is a shorthand notation representing the graph G with two edges attached.

There are two distinct possibilities when this is the case: either u and w are part of the

same set so that i = j, or they are not. First, suppose these vertices both encode the

same computational basis state. Then if the graph G is such that there is perfect state

transfer from u to w in time t1, a walker initially on vertex u at time t = 0 will evolve

into the state

|ψ(t1)〉 = exp (iAth) |u〉 = eiϕ|w〉 (5.4)

for some real ϕ. If a different graph similarly defined also exhibits PST between its two

additional vertices in the same time but yielding a different phase factor on the resulting

state, then these two graphs can simulate the action of a phase gate on a single qubit,

identified by the single bit at which the binary expansion of i differs from that of the set

containing the computational vertices of the second graph.

Alternatively, suppose that the two vertices u and w each encode a different compu-

tational basis state and the graph G in this case is such that the subset of vertices {u,w}

is periodic in time t2. That is, the graph exhibits perfect state transfer from this subset

back onto itself. Then a single-qubit rotation can be said to have been simulated. Given

a normalized initial state |ψ0〉 = α|u〉+ β|w〉 and a time-evolved state

|ψ(t)〉 = eiAt (α|u〉+ β|w〉) , (5.5)
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such that 〈vi |ψ(t2)〉 = 0 for each vertex |vi〉 of G, it must also be the case that |ψ(t2)〉 =

γ|u〉 + δ|w〉 for some γ and δ such that |γ|2 + |δ|2 = 1, and therefore the state of the

walker at this later time once again encodes a computational state, having undergone

the transformation to γ|u〉+ δ|w〉.

Under these scenarios, the graph G is called a widget graph, and the two edges

connecting |u〉 and |w〉 to G are referred to as a transport graph. These ideas form

the basis of the discontinuous quantum walk scheme for universal computation; they are

made explicit and given concrete examples in the following sections.

5.2 Hybridizing discrete- and continuous-time computation

With two parallel copies of the alternating two-graph line it becomes possible to encode

a logical qubit, with each line acting as a computational ‘transport’ rail. Small widget

graphs can be interspersed along and between the two rails as in Figure 5.2, and if each

widget also exhibits PST but transforms the state of the walker either by adding a phase

or transferring it from a single input vertex to a superposition of two output vertices

then an encoded computational operation can be performed. In this manner, a quantum

walker taking discrete steps of continuous evolution can simulate universal quantum

computation. To affect the relative phases of the encoded |0〉 and |1〉 states, equivalent

to a rotation RZ(θ) of the qubit by an angle θ about the Z axis, one needs to add an

identity widget to the first rail and a phase widget to the second. A continuous-time

quantum walker must take the same amount of time to traverse each of these widgets,

which must exhibit PST. To create a universal single-qubit gate set one also requires

a rotation about an orthogonal axis X or Y . This requires a widget that connects the

two rails, in such a way that after continuous evolution for a specified time the initial

superposition of the amplitude on the two rails is transferred to a different superposition

114



DISCONTINUOUS QUANTUM WALKS 5.2. Hybridizing computation

G1

G2

G3

G4

G5

G6

|0in〉

|1in〉

|0out〉

|1out〉

x = 0 1 2 3 4 5 6

Figure 5.2: Layout of scheme for a discontinuous quantum walk on one qubit. The

transport graphs G
(1)
T (solid edges), G

(2)
T (dotted), and G

(3)
T (dashed)

are each simple unconnected graphs over a single vertex set. The com-
putational graph GC , containing the elements Gi, is constructed from
a universal set of widgets. The enabling of the transport graphs in a
prescribed sequence causes a walker initially in a superposition of the
vertices at x = 0 to undergo PST to x = 6, arriving in a transformed
superposition. Open-circle vertices represent those to which the widgets
Gi attach.

of |0〉 and |1〉, under the generalized version of PST in which a walker on a subset

of vertices is transferred perfectly to another subset, occupying intervening vertices at

intermediate time but leaving no amplitude outside the final subset at the end-time of

the evolution.

Figure 5.2 demonstrates all of these elements combined to form a single-qubit gate

via hybrid discrete-continuous quantum walk. The circled Gi elements indicate widget

graphs to be attached to the network of transport rails; they are chosen from a universal

set of widget graphs, one example of which is presented in Section 5.3, and comprise

the computational graph GC . The construction of GC is algorithm dependent, but once

specified it remains in place throughout the computational protocol, which requires a

level of global control only to switch among the three sets of transport segments in a
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prescribed sequence such that at most one is enabled at any given time.

5.2.1 Protocol for discontinuous computation

A walker is initialized on the left-most vertex of the |0〉 rail at x = 0, and the solid

transport graph G
(1)
T is enabled. Note that at any given time only one transport graph

— G
(1)
T , G

(3)
T , or G

(2)
T — is enabled, so when one is stated to be on it is implied that

the others are off. The widgets Gi attached to the horizontal transport rail segments are

designed such that after a time th, the walker has transferred with unit probability to

x = 1. The next step is taken with G
(3)
T enabled for a time tm

.
= π/2, moving the walker

across the subgraph K2 to x = 2 [cf. Equations (2.31) and (2.32)]. The graphs Gi for the

vertical rail segments are such that after a time tv, with G
(1)
T enabled again, either the

state of the walker remains unchanged or is transformed into a superposition of the |0〉

and |1〉 rails at x = 2. In either case G
(2)
T is the next to be enabled, again for time tm,

moving the walker to x = 3, possibly in a superposition of the two rails. This sequence

now repeats: G
(1)
T for th, G

(3)
T for tm, G

(1)
T for tv, G

(2)
T for tm. Each iteration moves the

walker three x positions to the right in a time of th + tv + π, enacting operations upon

it along the way. After traversing the whole graph, involving some number of iterations,

the state of the walker at the output on the right will encode the desired arbitrary single-

qubit state α|0〉+β|1〉, with |α|2 + |β|2 = 1. The next step is to expand this scheme from

single-qubit operations to universal quantum computation, which follows from universal

single-qubit computation plus a two-qubit entangling gate.

The simulation of two qubits requires four computational rails, and additional vertical

connections among them. The number of transport graphs required does not change, and

indeed is independent of the number of qubits to be simulated, though the sequence in

which they are enabled is altered slightly to accommodate the additional connections

between rails. Figure 5.3 illustrates the setup for the simulation of two qubits. In general
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|00in〉

|01in〉

|10in〉

|11in〉

|00out〉

|01out〉

|10out〉

|11out〉

x = 0 1 2 3 4 5

Figure 5.3: Extension of the discontinuous quantum walk scheme to two qubits. The
horizontal portion of the protocol remains unchanged, and a second col-
umn of widgets is added to the vertical sequence; in general there are n
such columns for the simulation of n qubits.
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to simulated n qubits, the number of horizontal computational rails is 2n as in the

continuous-time scheme, though also as in that scheme this affects only the width of the

graph and not its depth; the number of positions at which vertical inter-rail connections

are required is only n for each iteration of the protocol. This is the case even though the

simulation of a single-qubit gate on qubit i out of n requires a connection between rails

|b1 · · · 0i · · · bn〉 and |b1 · · · 1i · · · bn〉 for all 2n−1 combinations of the bit values bj, j 6= i,

because those connections happen concurrently at the same position x.

There are three distinct step types that can be taken by the discontinuous quantum

walker. A horizontal step Sh is taken when transport graph G
(1)
T is enabled for a time th,

followed by G
(3)
T for a duration tm. A vertical step S(i)

v consists in the walker’s evolving

with the transport graph G
(1)
T enabled for a time tv followed by the graph G

(i)
T for tm.

For example, in Figures 5.3, Sh transports the walker from x = 0 to x = 2, S(2)
v evolves

it through the vertical inter-rail links at x = 2 and then moves it to x = 3, where S(3)
v

propagates it to x = 4. This sequence now repeats to move the walker through the second

sets of horizontal and vertical widget graphs. When n qubits are to be simulated, the

order of steps required to move the walker from the beginning of ones set of horizontal

gates to the beginning of the next is

S .
= Sh,S(2)

v ,S(3)
v , . . . ,S(i)

v︸ ︷︷ ︸
n steps

, (5.6)

where the final step S(i)
v is of type i = 2 for an odd number of qubits, or i = 3 for an

even number. The total duration of this sequence is th + tm +n(tv + tm). A computation

on n qubits proceeds as follows. A walker is initialized on the vertex at x = 0 on the

|00 · · · 0〉 rail and the three transport graphs are cycled according to the sequence of steps

S. After each iteration of S the state of the walker is in a superposition of the vertices at

a position x ≡ 0 (mod n + 2); after all required steps, say m of them, have been taken,
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a measurement in the vertex basis of the position of the walker identifies one of the 2n

vertices at position x = m(n + 2) which in turn yields the outcome of the simulated

computation as an n-bit string.

If additional runs of the algorithm are required, for example to build up statistics of

the output state, then they can be run almost in parallel with multiple walkers. Once

the first walker has reached the input node to the second round at position x = n + 2,

a second walker can be started at the input node of the first round, x = 0. With no

additional cost, the same sequence S of transport graphs moves both walkers through

the computation simultaneously, neither affected by the other’s presence. When the first

walker reaches the set of final output vertices, it remains there at the final x position while

the last set of transport rails that it traversed is off. During this time it can be measured

and ejected from the system before those rails cycle on again. This prevents the first

walker from moving backward into the graph toward the second one. The whole process

can of course be repeated for further additional walkers. Furthermore, the dependence

of the distance between walkers on the number of qubits can be removed, making the

separation constant, if the widgets are chosen such that th = tv and the number of vertical

steps in (5.6) is odd. This requires the simulation of an odd number of qubits, which can

always be arranged by the addition of an extra qubit if needed. In such a case S(3)
v = Sh

and the entire sequence S becomes simply 1
2
(n + 1) repetitions of the sequence Sh,S(2)

v .

Therefore the second walker can be initialized at x = 0 after the first of these shorter

sequences, i.e. when the first walker reaches x = 4, independent of n. For example, with

n = 3 qubits the order in which the graphs are enabled for two walkers is

Walker 1 →
Steps:

Walker 2 →

Round 1︷ ︸︸ ︷
Sh,S(2)

v , ︸ ︷︷ ︸
Round 1

Sh,S(2)
v ,Sh,S(2)

v ,

Round 2︷ ︸︸ ︷
· · · . (5.7)

The universal gate set described in the next section is of this form, with th = tv.
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µI µI

(a)

µ1 µ1µ2

µ3

(b)

µbc

(c)

Figure 5.4: A set of widgets providing universal computation. (a) With µI
.

=
√

3/2,
this identity widget GI turns a horizontal rail segment into an identity
gate. (b) Edge weights µ1

.
= 5
√

3/8, µ2
.

= 15/8, and µ3
.

= 21/8 allow this
phase widget GP to give the walker a phase factor of e−iπ/2 relative to
what it acquires traversing the identity widget. (c) This single weighted
segment, with µbc

.
= 2
√

3, splits the state of a walker on a computational
rail into a superposition of both rails, effecting a change of basis.

5.3 A universal widget set

The set of widgets defined in this section contains graphs that, when inserted in a com-

putational graph, can simulate phase gates and a basis-changing gate that together are

efficiently universal for single-qubit computations. Depicted in Figure 5.4, their state-

transfer properties are discussed here, followed by their application to single-qubit gates.

Consider first the two-edge weighted line in Figure 5.4(a) with edge weights µI
.

=√
3/2. When attached to a transport rail as in Equation (5.3), this widget becomes

a reweighted version of the line in Figure 5.1(a), which therefore exhibits PST in an

appropriately reweighted time. Specifically, instead of evolving under the adjacency

matrix

A
(4)
line

.
=


0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2
0 0 0 2 0

 (5.8)

for a time π/2 as it would to traverse the line with known PST, the walker evolves under

120



DISCONTINUOUS QUANTUM WALKS 5.3. A universal widget set

the Hamiltonian furnished by the adjacency matrix AI+E = 1
2
A

(4)
line for a time π. Since

exp
(

iA
(4)
linet
)

= exp (iAI+E2t) (5.9)

and the line defined in Equation (5.8) transfers the walker from one end to the other, so

too does the widget graph GI attached to the transport rails, described by AI+E, but

in twice the time. Since this widget may be inserted on a single computational rail, the

resulting phase after PST maybe be computationally significant. The evolution between

the attached vertices |u〉 and |w〉 is

exp (iAI+Eth) |u〉 = |w〉, (5.10)

where th
.

= π has been defined based on the time taken for PST to occur.

The next widget graph is the weighted square GP shown in Figure 5.4(b) which has

adjacency matrix

AP
.

=


0 µ1 0 µ2

µ1 0 µ3 0
0 µ3 0 µ1

µ2 0 µ1 0

 , (5.11)

with edge weights µ1
.

= 5
√

3/8, µ2
.

= 15/8, and µ3
.

= 21/8. Again labelling the two

additional vertices as |u〉 and |w〉, attached to GP at vertices |v1〉 and |v4〉 respectively,

in the basis ordering of Equation (5.11), a walker on one attached vertex evolves to the

other as

exp (iAP+Eth) |u〉 = e−iπ/2|w〉. (5.12)

Clearly then this widget attached to one computational rail can be combined with the

widget GI on the other computational rail to effect a phase gate in time th.
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The third widget under consideration is the single weighted edge of Figure 5.4(c)

which unlike the other two does not exhibit PST between the attached vertices; instead,

when the edge weight is µbc
.

= 2
√

3, a walker initially in an arbitrary superposition of the

vertices |u〉 and |w〉 transfers in time tv
.

= π to a different superposition of those vertices,

having zero overlap with the vertices of Gbc. That is, it undergoes a change of basis. A

walker initially on vertex |u〉 evolves in time tv according to

exp (iAbc+Etv) |u〉 = cos(
√

3π)|u〉+ i sin(
√

3π)|w〉. (5.13)

Due to the symmetry of the graph, it must be the case that a walker beginning its

evolution on |w〉 evolves to the same state, but with |u〉 and |w〉 interchanged. That is,

if |u〉 ≡ |0〉 and |w〉 ≡ |1〉 then the widget simulates the computational unitary

Ubc =

 cos(
√

3π) i sin(
√

3π)

i sin(
√

3π) cos(
√

3π)

 , (5.14)

which is equal to the X rotation RX(−2
√

3π).

Finally, there must be a method for implementing a single-qubit identity operation

for the inter-rail vertical sections of the computational graph. This is in fact straightfor-

ward to implement by simply not inserting a widget at those positions in the graph (or

equivalently, inserting the widget Gbc modified to have edge weight µbc = 0). Since the

specified evolution time tv = π and the single edge K2 is periodic in time π, the missing

edge causes a walker on either |u〉 or |w〉 to return to its initial state, up to an overall

phase, in time tv.
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|00in〉

|01in〉

|10in〉

|11in〉

|00out〉

|01out〉

|10out〉

|11out〉

Figure 5.5: Example circuit executing four two-qubit gates. The first column of wid-
gets applies a phase shift to |01〉 and |11〉 relative to |00〉 and |10〉, im-
plementing the local gate I ⊗

√
Z. The second column performs an X

rotation on the two states in which the first qubit is in state |1〉, and does
nothing to the other two, effecting a cRX gate on the pair of qubits. The
third column implements RX ⊗ I, and the fourth, a cphase gate.

5.3.1 Constructing gates from widgets

These four widgets, those of Figure 5.4 plus the vertical identity, can be added to the

transport rails in a variety of combinations, such as those demonstrated in Figure 5.5.

In particular, if the horizontal identity widget GI is attached to each rail encoding qubit

i in state |0〉, and the phase widget GP to the remaining rails on which the same qubit

is in state |1〉, then Equations (5.10) and (5.12) show that the phase gate

√
Z =

(
1 0
0 e−iπ/2

)
(5.15)

can be simulated on that qubit. If the positions of the two widgets are swapped so that

GI applies to |1〉 and GP to |0〉, then
√
Z
†

is performed instead, up to an overall phase.

Equation (5.14) already shows how a basis-changing RX gate can be implemented when

only one qubit is present. The same operation can be performed on qubit i out of n by

inserting the widget Gbc between each of the pairs of rails such that all other qubits are

equal. That is, the widget should join |b1 · · · 0i · · · bn〉 and |b1 · · · 1i · · · bn〉, for each of the
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2n−1 bitstrings b1 · · · bi−1bi+1 · · · bn.

A two-qubit entangling gate is also required, and the implementation of
√
Z by the

application of a phase to a single computational basis state suggests a straightforward

method for the implementation of a controlled-
√
Z gate, c

√
Z. With four rails encoding

two qubits, simply attaching the phase widget GP to the |11〉 rail and the identity widget

GI to the |00〉, |01〉, and |10〉 rails shifts the phase of the |11〉 basis state by e−iπ/2 relative

to the other three states, simulating the computational unitary

c
√
Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i

 . (5.16)

Repeating this obviously results in a full cz operation. Furthermore, this method trivially

extends to larger numbers of qubits, making the implementation of multiply-controlled

operations no more difficult than that of local gates. Similarly, applying the basis-

changing operation Ubc between only a subset of the vertical rails on a given qubit allows

for the implementation of controlled version of the RX gate as well, as demonstrated in

Figure 5.5.

5.4 Resource considerations

Up to unimportant overall phases, the single-qubit gate set described thus far for the

discontinuous quantum walk model of computation is

{
I,
√
Z,
√
Z
†
, TX

}
, (5.17)
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where Tl
.

= Rl(−2
√

3π). This set also generates

TY =
√
Z
†
TX
√
Z, (5.18)

and as X and Y are non-parallel axes of the Bloch sphere and −2
√

3π is an irrational

multiple of π, Theorem 1.1 states that the set {TX , TY } is universal for single-qubit

computation. To see that the available widgets generate a set that is efficiently universal,

define matrices

A =
(√

Z
)2

TX

(√
Z
)2

, (5.19a)

B =
√
ZTX
√
Z
†
, (5.19b)

and let

G =
{√

Z,
√
Z
†
, TX , TY , A,B

}
. (5.20)

Then G is closed under inverse, since

√
Z
√
Z
†

=
√
Z
†√
Z = I, (5.21a)

ATX = TXA = I, (5.21b)

BTY = TYB = I. (5.21c)

Therefore G satisfies the conditions of Definition 1.3 and is an instruction set for SU(2).

Thus the Solovay-Kitaev theorem, Theorem 1.2, guarantees that an arbitrary single-qubit

unitary can be efficiently approximated to arbitrary accuracy by the gates of G.

Consider as in Section 4.3 a given circuit to be implemented, containing m1 single-

qubit gates and m2 two-qubit gates. As in the continuous-time case, each of the two-qubit

gates can be simulated exactly with a constant number of the available entangling gates
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and a constant number of arbitrary single-qubit gates. Thus the number of single-qubit

gates that must be approximated to accuracy ε by elements of the set G is mg = m1 +m2,

and the number of gates required from the set is

m = O[m1 logc(1/ε) +m2 logc(14/ε)], (5.22)

the same as in Equation (4.11). Each widget plus transport rail segments requires a

constant number of vertices, repeated on up to 2n rails for a total of O(2n) vertices

per widget. Unlike in the continuous-time case, there are no additional vertices to be

attached in tails; the total number of vertices in the graph as a whole is therefore

Nv = O(2nm), (5.23)

a polynomial savings in m over the continuous-time model. As in both previous models,

the exponential size of the graph in this case appears only in its width, allowing the

walker to cross the depth that is polynomial in the number of gates in a similarly scaled

time.

5.5 Computational read-out

When the walker has traversed the computational graph, having transferred through the

m widgets comprising the circuit and arrived at the final set of vertices at x = xf , all

three transport graphs are disabled. At this point, the position of the walker is in a

superposition of the 2n disconnected vertices at position xf and will remain so as long

as the edges of the transport graph G
(1)
T are not present. A measurement of the walker

in the vertex basis collapses its state onto a single vertex, revealing the bitstring that

is the result of the computation. Alternatively, a measurement of p ≤ n qubits can be
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accomplished either in a single step with a set of 2p physical measurement operators, each

spatially delocalized across 2n−p vertices, or as a sequence of p single-qubit measurements,

each requiring two measurement operators delocalized over 2n−1 vertices.

The discontinuous-walker scheme provides the best-case scenario of there being a one-

to-one mapping between the computational basis states and a subset of 2n vertices from

the graph. For z ∈ {0, . . . , 2p − 1}, let z1 · · · zp be the p-bit binary expansion of z. To

make a measurement of qubits {ik}pk=1, let Vz be the set of integers between 0 and 2n− 1

whose n-bit binary expansions have bit value zk at bit position ik. Then the required

measurement operators are

{
Pz

.
=
∑
v∈Vz

|v〉〈v|

}2m−1

z=0

. (5.24)

Clearly there are 2p values of z, and for each z there are 2n−p unspecified bit values so

|Vz| = 2n−p. To implement p′ single-qubit measurements, simply set p = 1 and repeat

p′ times. This exponential growth in the spatial extent of the required measurement

operators is why the single-walker quantum-walk schemes for computation are proposed

primarily in terms of computational capability, and not in terms of possible physical

implementations. It also makes the prospect of implementing quantum error correcting

codes in such systems impractical at best. With these considerations in mind, the next

logical step is to consider the possibility of computing with multiple walkers. Doing so

provides access to a tensor-product structure in the Hilbert space of the system, which

can be easily exploited to encode qubits on an exponentially smaller graph than that

required with only a single walker. This idea forms the basis of the next chapter.
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5.6 Summary

The discontinuous quantum walk scheme shows how to harness phenomenon of perfect

state transfer for universal quantum computation. With only one walker, the computa-

tional model is based on one rail per computational basis state, as developed in prior

quantum walk schemes, both continuous and discrete. As in the discrete-time model, the

discontinuous walker does not require the excess tails used in the continuous case to sup-

port well-defined momentum states, or momentum filters that prevent most of the walker

from participating in the computation. The use of perfect state transfer ensures that the

walker completes the quantum computation with certainty. Unlike in the discrete case,

the Hamiltonian generating the time translation of the walker is clearly specified, and

site-dependent coins of multiple dimensions are not required, nor indeed any coin at all.

The cost associated with these modifications is an additional amount of global control,

which is analogous to the coin and shift operations employed by discrete-time quan-

tum walks with site-independent coins. The required control is algorithm independent,

conforming to a well-defined, preprogrammed sequence.

The widgets described in Section 5.3 are efficiently universal for quantum compu-

tation, generating the instruction set G of Equation (5.20), so they provide a proof-of-

principle scheme for the implementation of arbitrary quantum algorithms. However, they

are neither unique nor are they likely to be a preferred set given some specific applica-

tion. Alternative choices of single and double-rail graphs (generating single-qubit gates)

might generate particular desired gates (such as the Hadamard or π/8 gate) more read-

ily. Multi-qubit gates (such as the universal three qubit Toffoli gate) could be found by

graphs linking multiple rails with widgets that exhibit the generalization of perfect state

transfer to subsets of vertices. A desired unitary on n qubits would conceivably have a

more efficient decomposition in terms of a larger widget set.
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Chapter 6

Multiple walkers and the Bose–Hubbard model

The previous chapters have presented three distinct schemes for computing with quan-

tum walkers, each of which requires a number of vertices exponential in the number of

qubits to be simulated. This is not surprising, because a system of n qubits inhabits a

Hilbert space spanned by 2n computational basis states and a single quantum system,

with no tensor product structure, is being used to address each of them uniquely. One

straightforward adaptation that allows for the exponentially growing Hilbert space with-

out necessitating a similarly sized graph is to employ multiple quantum walkers. As a

step in that direction, a framework for the description of multiple non-interacting quan-

tum walkers, distinguishable or not, has been put forth in the discrete-time case [78].

However, if there are multiple walkers on a graph and they do not interact then there

is no meaningful difference from the situation of multiple distinct copies of the single-

walker situation. Non-interacting walkers evolve independently of each other, so while

they can be useful if many runs are required to build up statistics of the output state, no

essentially new dynamics can be present. In the discrete-time quantum walk, effective

interactions between otherwise non-interacting walkers can be induced through the shar-

ing or swapping of coins [79], and entanglement can arise between a single walker and

its coin [80]. Continuous-time quantum walks on the other hand have no coin degree of

freedom, so they must rely on inter-walker interactions to introduce additional dynamics

and generate entanglement.

There is evidence that on a given graph, multiple interacting continuous-time walkers

are more computationally powerful than either a single walker or multiple non-interacting

ones, when applied to the graph isomorphism problem [81], though it has been shown
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that the number of such walkers must scale with the size of the graph [82, 83]. Since a

single quantum walker is universal for quantum computation, given appropriate graphs

on which to walk, it seems clear that additional walkers will not remove this power,

and thus multiple walkers are also universal for quantum computation. However what is

not immediately obvious is whether the added walkers can allow a multi-walker system

to simulate the same computation as a single walker, but on an exponentially smaller

number of vertices. In Reference [84] we show that indeed this is the case by presenting an

explicit construction of an efficiently universal gate set based on multiple discontinuous

quantum walkers, in which the number of walkers and size of the underlying graph are

both linear in the number of qubits to be simulated; this model and an exposition thereof

is the basis of the current chapter.

The Bose–Hubbard model, defined as it applies to quantum walks on graphs in the

next section, also provides an excellent description of bosonic atoms confined to the sites

of an optical lattice [85]. Such systems have been proposed as candidates for generating

entanglement through two-qubit gates [86] and more generally for implementations of

quantum computers [87], using continuously time-varying potentials in the adiabatic

limit. A more recent review of these and similar schemes, with an emphasis on the

proposed experimental implementations, can be found in Reference [88]. Due to the

strong link between the Bose–Hubbard model and ultracold atomic systems there are a

number of similarities between the content of these papers and the work in this chapter

and Reference [84]; there are also several distinctions between these bodies of work.1

The most notable of these lies in the internal degrees of freedom required to encode

1It has come to my attention while editing this thesis, several months after the publication of my
manuscript [84] on which this chapter is based, that Ionicioiu and Zanardi [89] had previously presented a
scheme for quantum information processing under the Bose–Hubbard model that has significant overlap
with some of the work in this chapter. There are minor cosmetic differences between our two proposals,
but the qubit encoding and many of the gates are essentially identical and I regret not having become
aware of their contribution earlier. However their focus is on cold trapped atoms, and the portions of
this chapter that relate the scheme to quantum walks and perfect state transfer, and which describe
quantum error correcting codes for multiple discontinuous walkers, remain distinct.
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qubits in spin or energy states of the atoms: in quantum walk schemes for computation,

position of the only degree of freedom available to the walkers, and is the mechanism

used to encode quantum information. Additionally, the quantum-walk nature of the

present work provides an important correspondence between the discontinuous evolution

of interacting indistinguishable particles on polynomial-sized graphs, and that of a single

discontinuous quantum walker on an exponentially larger graph. That is, a number of

walkers linear in the number of qubits to be simulated n, walking on a vertex set of a

size also linear in n, has the same power as a quantum walk with a constant number of

walkers (in particular, one) on a graph with a number of vertices exponential in n.

6.1 Multiple walkers on a graph

A set of quantum walkers inhabiting a single graph is a particular case of a quantum

many-body system on a generalized lattice. It is convenient to describe such systems with

second-quantized notation, particularly for the case of indistinguishable walkers, and the

graph-based nature of a quantum walk makes the Bose–Hubbard model an obvious choice

for the description of multiple walkers on a graph. The Bose–Hubbard Hamiltonian as it

applies here can be written for a weighted graph G = (V,E,w) as

HG = −
∑
〈u,v〉

τuvc
†
ucv +

g

2

∑
v

Nv(Nv − 1) +
∑
v

µvNv, (6.1)

where the first sum runs over neighbouring vertices 〈u, v〉 such that (u, v) ∈ E and the

second runs over all vertices v ∈ V . The edge weight between u and v is τuv = τvu, which

can be thought of as the hopping rate between the sites. The operator c†v creates a walker

on vertex v, g is the on-site interaction strength between pairs of walkers occupying the

same vertex, and Nv
.

= c†vcv is the number operator on vertex v. A local potential µv can

be applied to each site, and it is assumed that µv = 0 in general except when otherwise
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specified.

In the case of a single walker either Nv or Nv − 1 vanishes for every vertex with only

a single walker present, and since the occupation basis {c†v|vac〉}v∈V is isomorphic to the

vertex basis {|v〉}v∈V , the remaining sum is

∑
〈u,v〉

τuvc
†
ucv =

∑
〈u,v〉

τuv|u〉〈v| = AG, (6.2)

the adjacency matrix of G. Here

|vac〉 .
= |0102 · · · 0v〉 (6.3)

is the vacuum state on the graph, in which no walkers are present and consequently

all vertices are unoccupied. Thus Equation (6.1) recovers the expected description of a

single quantum walker, H = −A.

6.1.1 Primary and secondary graphs

The graph G on which the quantum walkers evolve, which defines the hopping rates τuv

and yields the system Hamiltonian in the single-walker case, is the primary graph of

the multi-walker system. When M ≥ 2 walkers are present on a graph, one can also

consider the secondary graph G(M), in which the Fock occupation-number states over G

with a total occupation of M comprise the vertex set, and allowed transitions among

them provide edges and their weights [90]. For example consider Figure 6.1, in which the

path on three vertices P3 is taken to be the primary graph, and the secondary graphs

induced by one and two walkers upon it are shown. The vertex labels of the secondary

graph are expressed in the second-quantized notation introduced in Section 2.5.1. Entry

v of the ket specifies the number of walkers on vertex v in the primary graph; for example

in Figure 6.1(c) the state |110〉 represents the presence of one walker on each of the first
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|1〉 |2〉 |3〉

(a) Primary graph

|100〉 |010〉 |001〉

(b) Secondary graph with one walker

|200〉 |101〉 |002〉

|110〉 |011〉

|020〉

√
2

√
2

√
2

√
2

(c) Secondary graph with two walkers

Figure 6.1: Primary graph and corresponding secondary graphs induced by one and
two walkers. (a) The primary graph P2, to which an arbitrary number
of walkers can be added, has three vertices. (b) With a single walker
present the vertex labels are rewritten as Fock states, each showing the
number of walkers on all three vertices, but the structure of the graph is
unchanged. (c) Adding a second walker increases the number of vertices
and results in a weighted graph with self-loops of weight g. (Unspecified
edge weights are equal to 1.)

two vertices, and zero walkers on the third. As expected, the single-walker secondary

graph is isomorphic to the primary graph, due to the correspondence between the singly

occupied states c†v|vac〉 and the vertex basis states |v〉. The number of vertices in the

secondary graph corresponding to M walkers on an N -vertex primary graph is equal

to the number of ways to arrange M identical objects into N groups. This task can

be thought of as placing the M objects in a line and interspersing N − 1 boundaries

among them to create the N groups; this is sometimes referred to as the ‘stars and bars’

method because, for example, two of the combinations with M = 5 and N = 3 can be

expressed as ‘? ?|?|? ?’ and ‘|? ? ? ?|?’ (corresponding to the Fock states |212〉 and |041〉,

respectively). In each string there are M + N − 1 objects (stars and bars) leading to

(M+N−1)! arrangements, but since the M stars are identical, as are the N−1 bars, the

total number of arrangements is reduced by factors of M ! and (N − 1)!. Thus in general

for the case of indistinguishable bosons, the M -walker secondary graph corresponding to
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a primary graph on N vertices contains

N (M) .
=

(M +N − 1)!

M !(N − 1)!
=

(
M +N − 1

M

)
(6.4)

vertices. If the number of walkers scales with the size of the graph, say M = kN for

some integer k > 0, then neglecting the −1 term in Equation (6.4) and using Stirling’s

approximation indicates that the size of the secondary graph grows exponentially in the

size of the primary graph:

N (M) ≈ (M +N)!

M !N !
=

[(k + 1)N ]!

(kN)!N !

≈ (k + 1)N(k+1)

kNk
=

[
k

(
k + 1

k

)k+1
]N

, (6.5)

where the parenthetic base raised to the nth power is a monotonically increasing function

of k that is strictly greater than unity. Numerically this base is found to equal 2 near

k ≈ 0.3. Thus by choosing k ' 1/3, the Hilbert space dimension grows more quickly than

required to encode n = M qubits. This fact can be exploited to construct an encoding

of 2N computational states in the states of a graph with O(N) vertices at half-filling, i.e.

k = 1/2, providing an exponential savings in the number of vertices of the previously

discussed schemes that require Ω(2N) vertices.

6.1.2 Walker positions as computational states

Quantum walk-based schemes for quantum computation generally employ a position-

based encoding, as seen in the schemes presented in Chapters 3 and 5. This results in

a spatially delocalized qubit under circumstances where the quantum walk formalism is

directly mapped to the circuit model. With multiple walkers the situation is no different,

as the only degree of freedom available to each walker is its position on the primary graph.
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b = 0, |0〉 →

b = 1, |1〉 →

i = 1 i = 2 i = 3

Figure 6.2: Cartoon example of a three-qubit computational state of the form |Ψ〉 ∼
|0〉 ⊗ |1〉 ⊗ |+〉 encoded by three walkers on six vertices. The physical
Hilbert space for such a system is 56-dimensional; eight of these dimen-
sions encode computational basis states, and are coupled to a total of
24 physical basis states by the Hamiltonians prescribed to implement
universal computation. The six vertices on which primary graphs are
constructed of |vi,b〉 for i ∈ {1, 2, 3} and b ∈ {0, 1}.

However, if there is a one-to-one mapping between walkers and qubits, then each walker

requires access to only two vertices in order to encode the state of its qubit. That is, to

specify an arbitrary n-qubit state under such a one-walker-per-qubit encoding, M = n

walkers require N = 2M vertices. A cartoon example depicting this manner of encoding

can be found in Figure 6.2 for n = 3 qubits.

In the scheme we propose in Reference [84], the primary graph includes a unique

pair of vertices for each walker, of which there is one for each qubit to be simulated,

corresponding directly to the computational states |0〉 and |1〉 of the encoded qubit.

Gates are implemented by making instantaneous changes to the graph supporting the

walkers, including those that explicitly couple to doubly occupied states in which two

walkers interact on a single vertex, despite the fact that such states do not encode qubits.

The graph is fixed except at the instants of change, so continuous dynamical control is

not required. This results in discrete steps of continuous evolution on constant graphs,

just as in the discontinuous single-walker proposal presented in Chapter 5. The main

idea is to design a discrete sequence of graphs, such that at the beginning and end of

evolution under the graphs, the spatial separation of the walkers is maintained with one

walker per pair of vertices, yet during their evolution the walkers have the opportunity
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to interact whenever two walkers occupy a single vertex. This allows states with doubly

occupied vertices to be harnessed as an advantage in constructing logical gates, rather

than having to be strictly avoided as a source of decoherence during gate operations as in

previous proposals [91]. One way to envisage the system is as a two-dimensional optical

lattice at half-filling that is sufficiently deep as to effectively eliminate tunnelling between

sites, except when the potential is modified locally in order to add edges or self-loops to

the primary graph.

Explicitly, the encoding of computational states in walker positions is defined as

follows. Label the 2n vertices of the primary graph as vi,b with i indexing the qubit from

{1, . . . , n}, and b the computational bit values {0, 1} The vacuum state of the graph is

then written

|vac〉 = |01,001,1 · · · 0n,00n,1〉, (6.6)

which can also be expressed using the convenient notation

|vac〉 = |00〉1 · · · |00〉n, (6.7)

wherein the first and second entry of each ket is understood to correspond to the b = 0

and b = 1 states, respectively, for the qubit identified by the subscript. A walker is

created on vertex vi,b by the operator c†i,b.

According to Equations (6.4) and (6.5) with k = 1/2, the dimension of the Hilbert

space H for this system of M = n walkers on N = 2n vertices is

N (M) =

(
3n− 1

n

)
≈

(
3
√

3

2

)n

≈ 2.6n, (6.8)

larger than the 2n required computational basis states. The encoding of the computa-

tional basis is accomplished with a subset HC ⊂ H , such that |HC | = 2n. However,
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the remainder of the space, H⊥
.

= H \HC , cannot be ignored; to generate entangle-

ment between the encoded qubits, edges are added to the primary graph that result in

connections on the secondary graph between vertices that encode computational basis

states and vertices that do not. Since a physical state |Ψ〉 ∈ HC encodes a computa-

tional state but any state |α〉 ∈H with non-zero support in H⊥ does not, the resulting

evolution appears non-unitary from the computational point of view. However, the sec-

ondary graphs are constructed to exhibit periodicity or perfect state transfer such that

at well-defined times during the evolution of the walkers, all probability amplitude on

the graph returns to the computational space HC . That is, a set of walkers encoding a

computational state evolve through states with no such encoding, yet at a later time once

again encode a computational state, related to the first by the action of a computational

unitary operator.

The ability to construct a graph Hamiltonian under this encoding that results in

computational entanglement generation relies on the indistinguishability of the bosons

involved as the operations of interchanging two walkers and of swapping them twice,

returning them to their initial configuration, must be identical. This is crucial for pre-

serving the mapping from the physical system to the computational space that requires

one bosonic walker to be localized to two vertices of the primary graph.

Unless a computational operation is explicitly being performed, it is assumed that

there are no edges in the primary graph, i.e. its edge set is empty, E = ∅. This default

configuration is described by the system Hamiltonian

H0
.

=
g

2

n∑
i=1

1∑
b=0

Ni,b (Ni,b − 1) , (6.9)

containing only the always-on on-site inter-particle interactions. An n-walker physical

137



MULTIPLE WALKERS & BOSE–HUBBARD 6.2. Computing with multiple walkers

state encodes an n-qubit computational state if and only if

1∑
b=0

∣∣∣〈Ψ|c†i,bci,b|Ψ〉∣∣∣2 = 1 (6.10)

for each i from 1 to n. That is, if there is exactly one walker per vertex pair {vi,0, vi,1}.

Physical states satisfying this criterion are mapped onto computational ones in a canon-

ical way:

|0〉i ↔ c†i,0|00〉i = |10〉i, (6.11a)

|1〉i ↔ c†i,1|00〉i = |01〉i. (6.11b)

The initial state of the system is taken to be

|Ψ0〉
.

=
n⊗
i=1

c†i,0|vac〉 ↔ |0〉⊗n, (6.12)

a zero-energy eigenstate of H0 and therefore stationary when no edges are present in the

primary graph.

6.2 Computing with multiple walkers

6.2.1 Single-qubit gates

Consider the ith of n encoded qubits, with computational basis states |0〉i and |1〉i en-

coded according to (6.11) in a physical state |Ψ〉 satisfying the single-particle condition of

Equation (6.10). The single-qubit operations constructed in this section trivially preserve

this condition, as they do not couple |Ψ〉 to states outside of the computational space.

An arbitrary X rotation can be implemented on qubit i by adding an edge of weight

τX,i between the vertices vi,0 and vi,1. While this edge is present, the system Hamiltonian
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is

HX,i = −τX,i
(
c†i,0ci,1 + H.c.

)
+H0. (6.13)

The primary graph in this case contains 2(n− 1) disconnected vertices and one copy of

K2, the connected two-vertex graph, on the vertices encoding qubit i. The action of HX,i

on the basis states (6.11) is simply

HX,i : |10〉j 7→ −δijτX,i|01〉j, (6.14a)

|01〉j 7→ −δijτX,i|10〉j, (6.14b)

where δij is the Kronecker delta. In the computational space this acts as an X operator

on qubit i,

HX,i : |0〉i 7→ −τX,i|1〉i, (6.15a)

|1〉i 7→ −τX,i|0〉i, (6.15b)

and has no effect on the other qubits encoded in |Ψ〉. The unitary operator generated by

evolution under this Hamiltonian for a time t is UX,i(t) = RX,i(−2τX,it), an X rotation of

the ith qubit. Given sufficient control over the value of the edge weight τX,i, an arbitrary

rotation can be performed in a fixed time step. Conversely with even a single non-zero

value of τX,i available, arbitrary angles of rotation can be achieved by enabling the edge

for a suitable duration of t = O(1/τX,i).

A Z rotation is created by the addition of a self-loop to a single vertex. This is

equivalent to the addition of a local potential energy. Again consider qubit i, now with

no edge between its vertices and instead a self-loop of weight µZ,i attached to vertex vi,1.
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The physical Hamiltonian becomes

HZ,i = −µZ,iNi,1 +H0 (6.16)

and corresponds to a primary graph of 2n disconnected vertices, with the attached self-

loop on the second of the two vertices that encode qubit i. The Hamiltonian acts only

on the |1〉i computational basis state, according to

HZ,i : |1〉j 7→ −δijµZ,i|1〉j, (6.17)

so the resulting unitary is UZ,i(t) = eiµZ,it/2RZ,i(µZ,it) — a Z rotation of qubit i, up to an

unimportant overall phase. As with the X rotation, arbitrary angles of rotation can be

achieved with control over either the self-loop weight µZ,i, the time t, or a combination

of the two.

To summarize, given an angle θ ∈ [0, 2π) the unitary RX(θ) can be applied to qubit

i by evolving under HX,i for a time

tX,i(θ)
.

=
4π − θ
2τX,i

, (6.18a)

and eiθ/2RZ(θ) by evolving under HZ,i for a time

tZ,i(θ)
.

=
θ

µZ,i
. (6.18b)

Given sufficient freedom in the ability to set the tunnelling rates and on-site potentials,

it is possible to enact either of these single-qubit gates on each qubit simultaneously,

with different values of θ on each one, and have them finish at the same time. That is,

given a set of angles θi and a choice of gates Ui ∈ {RX , RZ , I}, the values of τX,i and
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· · · · · · · · ·

i j

Figure 6.3: An n-walker graph on 2n vertices, on which appropriately initialized
bosonic walkers will undergo X and Z rotations on the encoded qubits i
and j, respectively.

µZ,i can be chosen for each qubit such that in a fixed time t, the operations Ui(θi) are

simultaneously applied across all qubits i ∈ {1, . . . , n}. Figure 6.3 contains an example

multi-walker primary graph that applies an X rotation to qubit i and a Z rotation to

qubit j. The combination of these operations allows for the execution of arbitrary single-

qubit unitaries in three steps by decomposing the corresponding rotations of the Bloch

sphere using Euler angles.

Note also that while these single-qubit operators are sufficient to implement a Hadamard

operation

H
.

=
1√
2

(
1 1
1 −1

)
(6.19)

on qubit i in three steps, as

Hi = RX,i(π/2)RZ,i(π/2)RX,i(π/2), (6.20)

it is possible to obtain a Hadamard in a single step with the Hamiltonian

HH,i = −µH,iNi,0 − τH,i
(
c†i,0ci,1 + H.c.

)
+H0. (6.21)

This simple approach of effectively turning on the Hamiltonians for X and Z rotations

simultaneously results in the application of a Hadamard gate on qubit i, up to an overall
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phase, at time

tH,i =
π

2
√

2τH,i
(6.22)

if the applied-potential–to–hopping ratio is tuned to be µH,i/τH,i = 2. Not only does this

one-step process require fewer dynamical controls, but for equal hopping and interactions

terms (i.e. taking JH,i = JX,i and µZ,i = µH,i) results in a run-time that is an order of

magnitude shorter. This example is unlikely to be the only such shortcut to additional

gates available by judicious choices of further Hamiltonians.

6.2.2 Generating entanglement

Computational entanglement between adjacent qubits can be generated through a walker

interaction that leads to the simulation of a cphase(ϕ) gate, for ϕ taken from a specific

set of values to be discussed. Since the gate acts on two qubits, four vertices of the

primary graph must be considered, two for each of qubits i and j that are to be acted

upon. An initial input for the gate is assumed to satisfy the condition of Equation (6.10)

and therefore has exactly two walkers present on these four vertices. The physical Hilbert

space in question, corresponding to two indistinguishable bosonic walkers on four sites, is

10 dimensional. Four basis states correspond to the computational basis, and these will

be coupled to an additional four physical states by the graph implementing the cphase

gate. The remaining two physical basis states can be ignored so long as the initial state

is a computational one. It is notationally convenient at this point to drop the subscripts

and write the Fock states on the four vertices in question as a single ket when there

is no ambiguity from doing so, taking for example |0110〉 = |01〉i|10〉j. The two-qubit
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|vi,1〉 |vj,1〉

|vi,0〉 |vj,0〉

(a)

|1010〉
|1001〉 |0110〉

|0101〉
HC

|2000〉
|0020〉

|1100〉 |0011〉
|0200〉

|0002〉

H

(b)

Figure 6.4: Primary and two-walker secondary graphs to generate entanglement. (a)
The primary subgraph on which two walkers encoding qubits i and i+ 1
undergo a cphase operation has four vertices and a single edge. (b)
The corresponding secondary graph has 10 vertices to represent the 10-
dimensional Fock space of two bosons on four sites. Four of these encode
the two-qubit computational basis and are coupled to an additional four.
Self-loops arise due to the on-site interaction experienced by doubly oc-
cupied states.

computational space is encoded in the Fock number states

c†i,0c
†
j,0|0000〉 = |1010〉 ↔ |00〉, (6.23a)

c†i,0c
†
j,1|0000〉 = |1001〉 ↔ |01〉, (6.23b)

c†i,1c
†
j,0|0000〉 = |0110〉 ↔ |10〉, (6.23c)

c†i,1c
†
j,1|0000〉 = |0101〉 ↔ |11〉. (6.23d)

The six physical basis states |1100〉, |0011〉, |2000〉, |0200〉, |0020〉, and |0002〉 have no

computational interpretation, as they each represent a state in which two walkers occupy

the vertices assigned to encode a single qubit.

To implement the cphase gate, a single edge is placed between the two vertices encod-

ing the |1〉 states of qubits i and j, resulting in the primary graph shown in Figure 6.4(a).
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The Hamiltonian for the multi-walker system becomes

Hcp,ij = −τcp
(
c†i,1cj,1 + H.c.

)
+H0. (6.24)

The action of this Hamiltonian on the physical basis states that encode computational

ones is

Hcp : |1010〉 7→ 0, (6.25a)

|1001〉 7→ −τcp|1100〉, (6.25b)

|0110〉 7→ −τcp|0011〉, (6.25c)

|0101〉 7→ −
√

2τcp(|0200〉+ |0002〉), (6.25d)

where the ‘i’ and ‘j’ subscripts have been dropped for the present discussion, which is

limited to these two qubits. The action of Hcp on the remaining six physical basis states

is

|1100〉 7→ −τcp|1001〉, (6.25e)

|0011〉 7→ −τcp|0110〉, (6.25f)

|0200〉 7→ −
√

2τcp|0101〉+ g|0200〉, (6.25g)

|0002〉 7→ −
√

2τcp|0101〉+ g|0002〉, (6.25h)

|2000〉 7→ g|2000〉, (6.25i)

|0020〉 7→ g|0020〉, (6.25j)

leading to the secondary graph shown in Figure 6.4(b). Let Ucp(t)
.

= exp(−iHcpt) be the

time-evolution operator generated by Hcp. For any time t, the |00〉 computational state

evolves as Ucp(t)|1010〉 = |1010〉. This lack of any coupling to other basis states can be
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seen in the secondary graph, shown in Figure 6.4(b), wherein the vertex corresponding

to |1010〉 has degree zero. The state encoding |01〉 couples outside of the computational

basis to |1100〉, manifesting as a weighted copy of K2 in the secondary graph. At time t,

Ucp(t)|1001〉 = cos(τcpt)|1001〉+ i sin(τcpt)|1100〉 (6.26)

[cf. Equation (2.31)]. For this graph to simulate a computational operation, there can

be no probability to find the walkers in a state that violates Equation (6.10), which

translates to the secondary graph as a requirement that at the end of its evolution under

Hcp a single walker initially confined to the vertices of HC once again has no support on

vertices outside this space. To accomplish this in light of Equation (6.26), the evolution

time must be tcp,k
.

= kπ/τcp, 0 < k ∈ Z. This also satisfies the requirement that Ucp

map |10〉 to the computational basis. Specifically, for |ψ〉 ∈ {|01〉, |10〉} the resulting

computational operation is Ucp(tcp,k)|ψ〉 = (−1)k|ψ〉.

The evolution of |0101〉, the remaining physical basis state that encodes a compu-

tational one, is more complicated but treated in an identical manner. Constraints are

placed on the parameters of the unitary evolution operator such that at time tcp,k the

overlap of the states |0101〉 and Ucp(tcp,k)|0101〉 has unit magnitude, which is achieved

by guaranteeing that the overlaps of |0200〉 and |0002〉 with Ucp(tcp,k)|0101〉 vanish si-

multaneously. In fact, due to the symmetry of the subgraph induced by |0101〉, |0200〉,

and |0002〉, these two overlaps are identical at all times:

〈0200|Ucp(t)|0101〉 = 〈0002|Ucp(t)|0101〉 = i

√
8τ 2

cp

16τ 2
cp + g2

e−igt/2 sin

(
t

2

√
16τ 2

cp + g2

)
.

(6.27)

For a non-zero edge weight τcp and finite particle interaction strength g, this quantity
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vanishes at t = tcp,k = kπ/τcp if and only if

kπ

2τcp

√
16τ 2

cp + g2 !
= lπ, (6.28)

for some integer l > 0. Equation (6.28) is satisfied whenever the ratio of the on-site

interaction strength g to the hopping rate τcp is

g

τcp

!
= 2

√
l2

k2
− 4 (6.29)

where it must be the case that l ≥ 2k (with equality only when there are no inter-walker

interactions, g = 0).

Given integers k and l satisfying these conditions, the evolution of the computational

state |11〉 is determined by

〈0101|Ucp|0101〉 = exp
[
−iπ

(
l +
√
l2 − 4k2

)]
. (6.30)

Thus the computational unitary Ucp can be written as

Ucp = diag
[
1, (−1)k, (−1)k, e−iπ(l+

√
l2−4k2)

]
. (6.31)

Whenever the factor l+
√
l2 − 4k2 is not an integer, the result is an entangling gate equal

to

Ucp =

 cphase(ϕk,l), k even;

(Z ⊗ Z)cphase(ϕk,l), k odd;
(6.32)

where

ϕk,l
.

= −π
(
l +
√
l2 − 4k2

)
. (6.33)

Note that an entangling gate would also arise if both k and the factor l+
√
l2 − 4k2 were
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ϕ32

ϕ17ϕ16

ϕ9

ϕ8
ϕ6

ϕ4, ϕ5

0π

Figure 6.5: Distribution of phase angles ϕl satisfying Equation (6.34). Except for the
two trivial phases ϕ4 and ϕ5, no ϕl is a rational multiple of π. For large
l the phase angle goes as −8π/l (mod 2π), returning to zero as l → ∞,
which corresponds to the limit of zero hopping.

odd integers, however it can be shown that this is impossible. To minimize the time

required while simulating a standard cphase gate, let tcp
.

= 2π/τcp. In this case the

available controlled-phase angles are

ϕl
.

= −π
(
l +
√
l2 − 16

)
, (6.34)

which can be seen as points on the unit circle in Figure 6.5. The angles ϕ4 and ϕ5 are

congruent to zero, modulo 2π, and thus implement only local unitaries. As l tends to

infinity, corresponding to the limit of zero hopping, the resulting phases tend to zero,

but for all l > 5 the result is an entangling gate. Of particular interest are the phases

{ϕ9, . . . , ϕ16} that fall between π/2 and π; according to Theorem 1.3 they can be used

to simulate an arbitrary two-qubit gates with at most six applications of Ucp. Any one

of these gates in combination with the arbitrary single-qubit operations of Section 6.2.1

provides an instruction set for universal two-qubit computation under the Bose–Hubbard

model.
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6.2.3 Adding a swap gate

The set V of 2n vertices on which the primary graphs discussed so far are defined has

no intrinsic spatial distribution, and as such the edge used to generate entanglement

between qubits i and j can simply be considered to be added regardless of the values of i

and j. However, given a specific arrangement of the vertices, such as might be provided

by an optical lattice, it may be possible to only entangle neighbouring pairs of qubits. In

this case, a swap gate is required for universal computation in addition to the gate set

already described.

A variation of the X rotation performed by HX,i allows for a straightforward imple-

mentation of swap by the simultaneous addition of edges between the vertices encoding

|b〉i and |b〉i+1, for each b ∈ {0, 1}. The system Hamiltonian to swap qubit i with its

neighbour i+ 1 is

HS,i = −τS
(
c†i,0ci+1,0 + c†i,1ci+1,1 + H.c.

)
+H0. (6.35)

This acts non-trivially on the four two-walker basis states satisfying (6.10), coupling the

computational space to all six of the remaining physical basis states. As with the analysis

of the cphase gate, conditions can be placed on the available parameters to guarantee

that the action of the operation restricted to the computational space is unitary at the

end of the evolution. The action of HS on |1001〉 and |0110〉 requires that the swap time

be set to

tS,k =
(2k + 1)π

2τS
, 0 ≤ k ∈ Z. (6.36a)

Under this restriction, the action of HS on |1010〉 and |0101〉 further requires that

g

τS
= 4

√
l2

(2k + 1)2
− 1, 2k + 1 < l ∈ Z. (6.36b)
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When these conditions are satisfied, the action of US(t)
.

= exp(−iHSt) at time t = tS,k

block diagonalizes such that its effect on the computational space is that of

US(tS,k) =



e−iαπ 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 e−iαπ


(6.37)

with

α
.

= l +
√
l2 − (2k + 1)2. (6.38)

In general this provides a second entangling gate, unless α is an integer. In that case, if

α is even then (6.37) is equivalent to (Z ⊗ Z)swap, and if α is odd then the resulting

gate is −swap.

The problem of finding integral values for k and l that are consistent with Equa-

tions (6.36) while resulting in an integral value of α reduces to finding Pythagorean

triples, of which there are infinitely many. One such combination, which results in the

minimal time for the operation, is k = 1 and l = 5. This pair leads to the parameters

tS = 3π/(2τS) and g/τS = 16/3, and implements a two-qubit swap gate, up to an overall

phase.

6.2.4 Multiple discontinuous walkers

Implementing a sequence of computational gates under this Bose–Hubbard-based model

requires that a set of potentials be toggled on and off in a prescribed order, affecting

the evolution of a set of quantum walkers in the process. This is in the same spirit as

the single-walker discontinuous walk scheme proposed in Reference [77] and the previous

chapter. However, it only requires linear growth of the number of vertices in the primary
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(a)

i j i j i j

|0〉 :

|1〉 :

RX ⊗ I cphase swap
(b)

|00〉
|01〉
|10〉
|11〉

Figure 6.6: Sequence of multi-walker primary graphs viewed as a discontinuous walk.
(a) Three primary graphs on two qubits that can be enabled in turn.
(b) The corresponding secondary graphs in each case, with vertices that
encode computational states identified with rails in analogy to the single-
walker discontinuous scheme.

graph supporting the walkers, as a function of the number of qubits to be simulated.

Figure 6.6 demonstrates how a time sequence of two-walker primary graphs on four

vertices corresponds to a single discontinuous walker on a larger secondary graph, drawing

a connection to the rail model used by all of the single-walker schemes for universal

computation. In this case the number of rails simulated by the secondary graphs is equal

to the number of vertices on the primary one since 2n = 2n for n = 2. Figure 6.7 shows

what a single step of a discontinuous walk on three qubits looks like, on six vertices

in the primary multi-walker case and on eight rails passing through the vertices circled

in lighter grey in a 56-dimensional space for a single walker on the resulting secondary

graph.
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(a)

|0〉 :

|1〉 :

i3i2i1

RX ⊗ swap

(b)

Figure 6.7: Comparison of the primary graph and three-walker secondary graph for
a computation on three qubits. (a) On the primary graph, three edges
among six vertices are sufficient to implement the unitary RX⊗swap. (b)
The resulting secondary graph has 56 vertices, 20 of which are connected
to the eight encoding computational basis states and shown here.

6.3 Measurements and error correction

In contrast to single-walker computational schemes, the Bose–Hubbard-based multi-

walker model presented here allows for the measurement of p qubits with localized

measurement operators. To extend the single-walker measurement operators of Equa-

tion (5.24) to the many-walker case, define

P
(k)
i,b

.
= (c†i,b)

k|0i,b〉〈0i,b|(ci,b)k = |ki,b〉〈ki,b|, (6.39)

the projector onto the state with exactly k walkers on vertex |vi,b〉. The qubit encoded

on vertices |vi,0〉 and |vi,1〉 can then be measured with the operators

Mi,0
.

= P
(1)
i,0 ⊗ P

(0)
i,1 ⊗ Iı̄, (6.40a)

Mi,1
.

= P
(0)
i,0 ⊗ P

(1)
i,1 ⊗ Iı̄, (6.40b)

Mi,err
.

= I −Mi,0 −Mi,1, (6.40c)
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where Iı̄ is the identity operator on every vertex not labelled by i. If the physical state

|Ψ〉 of the system encodes a computational state as it is assumed to, then there is exactly

one walker on the vertices encoding qubit i. That is,

|〈Ψ|Mi,0|Ψ〉|2 + |〈Ψ|Mi,1|Ψ〉|2 = 1, (6.41)

so a projective measurement places qubit i in either the |0〉 or |1〉 state with certainty.

The remainder of the qubits are unaffected. The possible role of Mi,err is discussed at the

end of the section.

With the ability to perform single-qubit measurements on the multi-walker system in

a straightforward manner comes the ability to implement quantum error-correcting codes

using ancillary qubits to perform syndrome measurements, as discussed in Section 1.5. A

straightforward adaptation of the qubit-encoding scheme provides a natural implemen-

tation of such codes, discussed here for the seven-qubit Steane code in particular, when

the vertices of the primary graph are arrayed in a three-dimensional lattice.

Consider extending the 2 × n grid employed thus far into the third dimension, and

creating a 4 × 7 × n array of vertices as depicted in Figure 6.8. Each pair of vertices

encoding a single qubit in the original version of the scheme, as in Region A of Figure 6.8,

has an additional six pairs extending from it along the third dimension of the lattice.

The resulting total of seven pairs at a given position i within the lattice, Region B, allows

for the creation of a single logical qubit. Six further ancillary qubits, Region C, can be

entangled with the physical qubits of the logical one in order to implement syndrome

measurements. Making the vertices that correspond to the |1〉 states in the two regions

adjacent allows entanglement to be generated between them by the cphase gate with the

straightforward addition of edges between the logical region and the ancillary one. With

respect to the circuit in Figure 1.4 for the seven-qubit Steane code, Region A corresponds
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|1〉

|0〉

|0〉

|1〉

|1〉

|0〉

A

B

C

Figure 6.8: Addition of the seven-qubit Steane quantum error-correcting code to the
Bose–Hubbard scheme for quantum computation. The scheme described
in Section 6.2 takes place on the horizontal rows of light grey vertices,
two of which have been highlighted in Region A. Seven walkers on the 14
vertices in Region B (including those also in A) provide seven physical
qubits with which to encode a single logical qubit. Region C provides six
further ancillary qubits that can be entangled with those of the logical
qubit in order to perform syndrome measurements as a sequence of single-
qubit measurements. Note that the ordering of the |0〉 and |1〉 rows
has been reversed in C with respect to B ; this allows a straightforward
method of generating entanglement between the two regions by way of
the cphase gate that results when an edge is placed between the |1〉
vertices of neighbouring qubits.
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to the rail containing the initial input state |ψ〉. Imagine folding the circuit in half

along that rail, so that the six additional encoding qubits lie on top of (but displaced

from) the six ancillary qubits used for syndrome measurements. This configuration is

the motivation for the relative placements of the remainder of the encoding qubits in

Region B and the ancillary ones in Region C.

Logical operations on these additional qubits in this new configuration can of course

be performed in the same manner as on the original qubits described in Section 6.2.

Those gates are dependent on certain couplings between pairs of vertices, but are not

inherently reliant on a grid- or lattice-like structure in the placement of those vertices;

such a setting merely provides a useful visualization method, and yields an obvious tie to

possible extant physical systems, which is discussed in Section 6.4. They can therefore

all be applied between pairs of qubits in this new arrangement as well. From the point

of view of quantum walks on graphs, wherein edges can be placed between arbitrary

pairs of vertices, this arrangement is purely for visual convenience, and a circuit akin to

Figure 1.4 for the seven-qubit code can be implemented directly.

More physically motivated scenarios in which the vertices correspond to spatial loca-

tions are discussed in the following section. In such situations, if interactions can only

be engineered between neighbouring sites of the lattice then one of two additions is re-

quired to allow the coupling of qubits in Region C to the appropriate subsets of those

in Region B. One option could be to shift the portion of the lattice containing Region C

laterally, aligning its sites with different locations in Region B at different times. If this

is not feasible in a given setup, then the swap gate discussed in Section 6.2.3 can be

employed instead.

Having seen that the multi-walker Bose–Hubbard-based approach to universal compu-

tation provides the advantage of being able to implement computational error correction,

previously unaddressed within quantum walk-based quantum computation, it is also im-
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portant to note that the dynamical nature of the underlying graph introduces a second

potential source of error. If a gate is timed incorrectly, it is possible for the system to end

up in a physical state that does not encode a computational one; in addition to the stan-

dard quantum errors of being flipped and dephased, a qubit can be lost altogether. When

this possibility is allowed for, the third measurement operator Mi,err becomes important.

When the single-qubit measurement is made, it becomes possible to obtain a result other

than |0〉 or |1〉, and doing so indicates that an error has occurred. This provides a simple

method for detecting the loss of a qubit, but not a mechanism for recovering from it.

The possibility of losing the walker exists in the original proposal for universal quantum

computation by a single quantum walker [62], and a similar timing issue is present in

the discontinuous-walk scheme of Chapter 5 and Reference [77], as well as any potential

physical scheme for the simulation of a discrete-time quantum walk with a continuously

evolving physical system [73]. In photonic implementations of discrete-time quantum

walks, timing of operations manifests instead in the spatial separation between optical

elements [75]. These are not fundamental limitations on quantum walk-based computing,

but must be considered in any serious attempt to engineer such systems.

6.4 Considerations for a physical implementation

One feature of a physical system that is to implement this proposal in a straightforward

manner is the ability to provide a 2 × n lattice — or three-dimensional lattice, if that

method of quantum error correction is chosen — such that the tunnelling amplitude be-

tween neighbouring sites is close to zero when no gate is being enacted. This corresponds

to the qubits’ having a long coherence time. In practice this can be accomplished in

either the 2D or 3D case by creating a three-dimensional lattice with isolated wells, and

ignoring any vertices outside of the primary graph to be implemented.
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The additional requirements of state preparation, manipulation, and read-out are

common to any quantum computer, and are further discussed here in the context of this

proposal. State preparation is accomplished by the initialization of the |0〉⊗n state, by

loading one boson onto the first of each pair of sites in the primary graph. To manipulate

the encoded qubits, it must be possible to selectively increase the tunnelling amplitude

between given adjacent sites in order to enact X, cphase, and swap gates, and to change

on-site potentials to enact Z gates. Finally to read out the result of a computation it

must be possible to measure the positions of the bosonic walkers within the lattice, as

discussed in Section 6.3.

The experimental scheme proposed in Reference [91] includes many of the features

required, though in sharp contrast to the current proposal it makes use of adiabatic

processes for gate executions. A combination of this setup with the sudden potential-

landscape changes discussed in Reference [92] is more appropriate to the Bose–Hubbard

scheme, and there have been significant experimental advances in the intervening years

that offer the promise of a proof-of-principle implementation. There is an obvious connec-

tion between this scheme and optical-lattice experiments, and several experiments satisfy

the above requirements. One option may be to use a liquid-crystal display (LCD) as a

spatial light modulator [93]. Such devices generate arrays of microtraps holographically

based on the pattern of opacity and transparency present on the easily programmed LCD

screen. The traps have been used to store single neutral atoms per site, address individ-

ual sites, and measure the locations of trapped atoms within the lattice, thus providing a

means to create the primary graph as well as implement preparation, manipulation, and

read-out.

Another possibility is to combine a set of recently demonstrated experimental capa-

bilities. Wide lattice spacings on the order of 5 µm have been achieved [94], providing a

long coherence time to the sites and effectively approximating the infinitely deep lattice
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of the primary graph when no edges are present. A quantum gas microscope, employing

a high-numerical-aperture lens, has been used to image individual sites in a traditional

optical lattice [95]. Repurposing such a system to focus a laser to a similar resolution

would provide a method of manipulating qubits by addressing single sites in the case of

a Z gate, or modifying the potential between sites in the case of X and cphase gates.

Most recently, arbitrary configurations of atom positions within a lattice have been im-

plemented [96], which in particular would allow for the straightforward preparation of the

initial |0〉⊗n state as a single straight line, one atom wide. In each of these experiments,

measurement of the positions of the trapped atoms is also performed, allowing the final

result of the computation to be read out in each case.
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Chapter 7

Graph-theoretic approaches to particles on lattices

As has been made clear in the previous chapters, the link between the behaviour of

quantum walkers and the graphs on which they walk is significant; no study of the

former can help but make reference to the latter. It is not surprising then that certain

results from the realm of graph theory have been employed in the analysis of quantum

walks. One such concept in particular, which forms the primary topic of this chapter, is

the equitable partitioning of graphs, which has been used in the search for graphs that

admit perfect state transfer [44, 97–99] as discussed in the next section. Until the present

work, equitable partitioning has been limited primarily to the case of simple graphs, with

some recent extension to the case of signed graphs, in which edge weights can be ±1 [100].

Signed graphs arise in the context of multiple fermionic walkers on a graph; in the case

of bosonic walkers more general edge weights arise, as for example in Figure 6.1(c). With

this in mind, the purpose of the current chapter is to describe the expanded formalism I

have developed for the equitable partitioning of graphs with arbitrary real self-loop and

edge weights, positive or negative. These results appear in Section 7.2, following a review

of partitions on simple graphs in Section 7.1.

A partition on a graph is a division of its vertices into disjoint subsets, referred to as

‘cells’. Examples include the grouping of the vertices of a hypercube according to their

distance from a given vertex, or into two sets that demonstrate the graph is bipartite [cf.

Figures 2.3(a) and (b), respectively], as well as the grouping of vertices in the glued-trees

graphs of Figure 3.1 by their distance from the input vertex. An equitable partition is

one that groups vertices according to some symmetry of the graph, such that the number

of edges joining a vertex in one cell to another is the same for all vertices in the first.
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(a) (b) (c)

Figure 7.1: Example partitions on the Petersen graph. The partitions in (a) and (b)
are equitable, while (c) is inequitable despite the apparent symmetry of
the partition. This can be seen because, for example, the upper vertex of
the upper cell is connected to the cells to its left and right, but the lower
vertex of the upper cell is connected instead to the lowest two cells.

(This must also hold in the case where the first and second cells are in fact the same.)

Figure 7.1 shows three partitions on a graph, only two of which are equitable. Given a

graph and an equitable partitioning of its vertices, one can create a second ‘collapsed’

graph in which there is one vertex for each cell in the partition, and the edge weights

between these collapsed vertices depend on the number of edges between their parent

cells. The collapsed graph shares certain properties with the original, in particular with

respect to their eigenvalue spectra and aspects of quantum walks upon them, as made

explicit below.

In the context of multiple quantum walkers on a graph, equitable partitioning of

the corresponding secondary graph is a useful tool with which to analyse the system.

For example, the secondary graph resulting from multiple distinguishable walkers on a

given primary graph can be collapsed to the secondary graph for the same number of

indistinguishable walkers on the same primary graph. The procedure corresponds to

the symmetrization of the many-body wave function in the standard transition from

distinguishable- to indistinguishable-particle systems. Furthermore, it is shown below
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that the largest eigenvalue of the adjacency matrix for bosonic walkers is preserved un-

der collapse. That is, the largest eigenvalue of the collapsed graph is equal to that of

the original. Since the system Hamiltonian is given by the negative of the adjacency

matrix, the largest eigenvalue of the graph corresponds to the ground-state energy of the

many-boson system. This same result appears to also hold for fermionic systems in my

experience, but whether a general proof exists in this case remains an open question.

The properties of periodicity and perfect state transfer on a collapsed graph also yield

information about evolution of a walker on the original. If there is perfect state transfer

on the collapsed graph between two vertices corresponding to cells that each contain a

single vertex, such as the two lowest cells in Figure 7.1(a), then there is perfect state

transfer between those two vertices on the larger uncollapsed graph as well. When there

is PST between two vertices of the collapsed graph that do not correspond to individual

vertices of the original graph, one can still construct a superposition over the vertices of

one cell that will evolve into a superposition with support only in the other.

7.1 Equitable partitioning of graphs

A partition Π = {Ci}Mi=1 of a simple graph G = (V,E) is a set of M disjoint subsets Ci

of V , called the cells of the partition, such that the union of the Ci is V . Each vertex

v ∈ V is an element of exactly one cell, which can be indexed by ṽ; that is, ṽ is defined

to be the unique i such that v ∈ Ci. A cell containing exactly one vertex, Ci such that

|Ci| = 1, is referred to as a singleton cell. A partition of a simple graph is equitable if

the number of neighbours in a cell Ci of a vertex v ∈ Cj is a constant bij, independent

of the choice of v from Cj [32]. Equitable partitions of simple graphs have been studied

extensively in the context of perfect quantum state transfer, in part because it is possible

to use an equitable partition to ‘collapse’ the original N -vertex graph G to a smaller
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M -vertex graph G/Π, in which each vertex represents all of the equivalent vertices of the

original graph in one cell of the partition, such that certain key features, in particular

unitary evolution between singleton cells, are preserved.

An example of an analysis performed with such a collapse is the so-called column

method for reducing the glued trees of Figure 3.1 to a weighted line by replacing all

vertices a fixed distance from one root by a single vertex [35, 56]. The same idea has

also been applied to the 2k-vertex hypercube in order to reduce it to a (k + 1)-vertex

line [41], though the formalism of equitable partitioning was not employed in either case.

The relative ease with which the collapse of the hypercube can be performed without

knowledge of equitable partitions makes it an excellent concrete example with which to

introduce the formalism. Consider for example the cube shown in Figure 7.2 along with

its collapse to a weighted line. To perform the collapse, one vertex is singled out and the

eight vertices are partitioned into the four cells shown, such that vertices within a cell

are all the same distance from the chosen one. This automatically creates two singleton

cells, one for each of the chosen vertex and its antipode.

The partition matrix P corresponding to a given partition is the matrix that maps

each N -dimensional basis vector of the vertex basis to an M -dimensional basis vector in

the cell basis,

P
.

=
M∑
i=1

∑
v∈Ci

|v(N)〉〈i(M)|, (7.1)

where the parenthetic superscripts indicate the dimensions of the vectors. Of more use

in the context of perfect state transfer and the evolution of quantum walks on graphs is

the normalized partition matrix Q, constructed similarly according to the definition

Q
.

=
M∑
i=1

1√
|Ci|

∑
v∈Ci

|v(N)〉〈i(M)|, (7.2)

Two useful facts about the normalized partition matrix are that QTQ = IM , and that
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√
3

2

√
3

|1(8)〉

|2(8)〉
|3(8)〉

|4(8)〉

|5(8)〉
|6(8)〉

|7(8)〉

|8(8)〉

|1(4)〉

|2(4)〉

|3(4)〉

|4(4)〉

2

√
3

Figure 7.2: Collapsing the 3-cube to a path under equitable partitioning. With the
upper-most vertex chosen to be put in a singleton cell, the remaining
vertices are grouped with those the same distance from it. Each cell is
replaced by a single vertex, and the edge weight between cells Ci and Cj
is set to

√
dijdji, where dij is the number of neighbours in cell Cj of a

vertex in Ci. The superscripts denote the dimensions of the vectors of
the vertex basis. With a weighted equitable partition, the line can be
collapsed further, by folding it in half.

[QQT , A] = 0 [45]. In general QQT 6= IN , unless every cell of Π is a singleton so that

M = N and Q = IN .

For the specific case in Figure 7.2, the normalized partition matrix is

Q =



1 0 0 0

0
1√
3

0 0

0
1√
3

0 0

0
1√
3

0 0

0 0
1√
3

0

0 0
1√
3

0

0 0
1√
3

0

0 0 0 1



, (7.3)

and it is straightforward to show that the adjacency matrices Acube and Aline of the graphs
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in Figure 7.2 are related by

Aline = QTAcubeQ. (7.4)

Furthermore, it can be shown that the evolution between endpoints of the line is equiv-

alent to that between antipodal vertices of the cube,

〈4(4)|eiAlinet|1(4)〉 = 〈8(8)|eiAcubet|1(8)〉. (7.5)

The equivalence between evolution on a graph G and on the quotient graphG/Π collapsed

from G with respect to the equitable partition Π is a general feature of this procedure,

and one of the primary motivations for the investigation of equitable partitioning. In

particular, it is known [98] that if u and v are in singleton cells of Π then

〈ũ|e−iQTAQt|ṽ〉 = 〈u|e−iAt|v〉. (7.6)

Here the dimensional superscripts have been dropped as there is no ambiguity from doing

so.

In the hypercube-to-line example the collapsed graph is exponentially smaller than

the original graph, yet the evolution between two identified vertices of interest is iden-

tical. Analysis of one system can provide exact solutions to certain questions about

an exponentially larger system. In this case the n-hypercube is the secondary graph

corresponding to n non-interacting distinguishable walkers on P2. This can be seen by

making the identification that the binary labelling of the vertices from 0 to 2n−1 as in

Figure 2.3 can also be interpreted as describing whether each particle is on the left or

right vertex; for example the vertex |101〉 of the secondary graph corresponds to the state

in which the first and third walkers are on the right-hand vertex, and the second walker

is on the left. If instead the walkers are indistinguishable and bosonic then instead of
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N = 2n basis states there are n + 1 states, corresponding to zero walkers on the right,

one walker on the right, and so on up to n walkers on the right. These states and the

allowed transitions among them encode the line on n+ 1 vertices, with weights given by

the Bose enhancement factors associated with a walker’s being annihilated on one site

and created on the other. In general, collapses of unweighted graphs result in weighted

ones, as does the creation of secondary graphs for systems of multiple indistinguishable

walkers, whether or not the primary graph is weighted. To further collapse the result of

an equitable partitioning of an unweighted graph, or to collapse a multi-walker secondary

graph, a new definition of an equitable partition is required that takes into account non-

unit edge weights. Equipped with such a tool, certain properties of large graphs may be

determined from the analysis of smaller—perhaps exponentially smaller—graphs.

7.2 Equitable partitions of weighted graphs

The primary goal of the current section is to extend the established framework of graph

collapse and analysis by equitable partitioning to the case of weighted graphs by provid-

ing a generalization of the criterion for being equitable, and proving that certain theorems

continue to hold in the broader context. Additionally a theorem is presented that guar-

antees that the largest eigenvalues of the collapsed and uncollapsed graphs are identical;

since the Hamiltonian of a system evolving on the graph is given by the negative of the

adjacency matrix, this means that the ground-state energies of the two systems are the

same.

Let G = (V,E,w) be a connected, weighted, undirected graph on N vertices with cor-

responding adjacency matrix A(G), and let Π = {Ci}Mi=1 a partition of V . The definition

of an equitable partition for an unweighted graph makes use of the degree of each vertex;

a similar concept can be found for the case of a weighted graph. Define the weight of a
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vertex v in a weighted graph to be

ω(v)
.

=

√√√√ N∑
u=1

A2
uv, (7.7)

which in the unweighted case reduces to
√
dv, the square root of the degree of v. The

normalized weight of a vertex with respect to its containing cell is given by

Ω(v)
.

=
ω(v)√∑
u∈Cṽ

ω2(u)

.
=

ω(v)

ω(Cṽ)
, (7.8)

where the weight of a cell has been defined as the norm of the M -vector of the weights

of all vertices in the cell. The normalized partition matrix Q is then defined as

Q
.

=
N∑
v=1

Ω(v)|v〉〈ṽ|. (7.9)

Theorem 7.1 provides the main result that extends the notion of equitable partitioning

to weighted graphs. Its proof makes use of the following lemma.

Lemma 7.1. Let Q be the normalized partition matrix describing a partition Π = {Ci}Mi=1

of a weighted undirected connected graph G on N vertices. Then QTQ = IM , the M ×M

identity.

Proof. By the definition of Q, Equation (7.9),

QTQ =
N∑
v=1

N∑
w=1

Ω(v)Ω(w)|ṽ〉〈v |w〉〈w̃| =
N∑
v=1

Ω2(v)|ṽ〉〈ṽ|. (7.10)

This is a sum of N different M×M matrices with N ≥M , so some of the matrices

appear multiple times with different coefficients. Specifically, if two vertices u and

v belong to the same cell then ũ = ṽ, so it is natural to sum only over the cells,
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instead of over all vertices. Doing so and inserting Equation (7.8), the definition

of Ω, yields

QTQ =
M∑
i=1

∑
v∈Ci

ω2(v)

ω2(Cṽ)
|ṽ〉〈ṽ| =

M∑
i=1

1

ω2(Ci)

(∑
v∈Ci

ω2(v)

)
|i〉〈i|, (7.11)

But the parenthetic term is simply the square of the weight of cell Ci by definition,

leaving

QTQ =
M∑
i=1

|i〉〈i| = IM , (7.12)

which completes the proof.

Lemma 8.1 of Reference [99] provides three statements related to A, Q, and Π, that

are mutually equivalent, as well as equivalent to the statement that Π is equitable. The

same set of four statements can be shown to be equivalent when A describes a weighted

graph, and the equitableness of a partition on a weighted graph is defined as follows.

Definition 7.1. A partition Π of a weighted undirected connected graph G is equitable

if, given two cells Ci, Cj ∈ Π and a vertex u ∈ Ci, the quantity

bij(u)
.

=
∑
v∈Cj

Auv
ω(v)

ω(u)
(7.13)

is a constant bij, independent of the choice of u.

The above definition is justified by the following theorem, in which a set of vectors is

said to be A-invariant if a matrix A maps each of the vectors to a linear combination of

one or more of them.

Theorem 7.1. Suppose Π = {Ci}Mi=1 is a partition into M disjoint cells of the vertices of

a connected undirected weighted graph G, and Q is its normalized partition matrix. Let

A be the adjacency matrix of G. Then the following are equivalent:
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1. Π is equitable.

2. The column space of Q is A-invariant.

3. A and QQT commute.

4. There is an M ×M matrix B such that AQ = QB.

Proof. The proof consists in showing that each statement implies its successor, cyclically.

(1 =⇒ 2) To show that 1 implies 2, suppose that Π is equitable and consider

column i of Q, denoted

|φi〉
.

=
∑
v∈Ci

Ω(v)|v〉. (7.14)

The action of A on this column vector is

A|φi〉 =
∑
v∈Ci

Ω(v)A|v〉 =
∑
v∈Ci

Ω(v)
N∑
u=1

Auv|u〉

=
1

ω(Ci)

N∑
u=1

∑
v∈Ci

ω(v)Auv|u〉, (7.15)

where the final equality follows from the definition of Ω(v) Equation 7.8, and the

fact that the denominator is constant over the cell Ci. Since Π is equitable by

assumption, there exist constants bũi such that

∑
v∈Ci

ω(v)Auv = bũiω(u), (7.16)

so the string of equalities continues as

A|φi〉 =
1

ω(Ci)

N∑
u=1

bũiω(u)|u〉 =
M∑
j=1

bji
ω(Ci)

∑
u∈Cj

ω(u)|u〉. (7.17)

Finally, defining

aij
.

= bji
ω(Cj)

ω(Ci)
(7.18)
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leads to

A|φi〉 =
M∑
j=1

aij
∑
u∈Cj

Ω(u)|u〉 =
M∑
j=1

aij|φj〉. (7.19)

That is, A takes each column of Q to a linear combination of the columns of Q;

the column space of Q is A-invariant.

(2 =⇒ 3) Now assume that the column space of Q is A-invariant. With the

definition (7.14) of the ith column of Q, the partition matrix can be rewritten as

Q =
M∑
i=1

|φi〉〈i|, (7.20)

where |i〉 is M -dimensional and therefore

QQT =
M∑
i=1

|φi〉〈i|
M∑
j=1

|j〉〈φj| =
M∑
i=1

|φi〉〈φi|. (7.21)

The column space of Q is A-invariant by assumption so for each i ∈ {1, . . . ,M},

A|φi〉 =
M∑
j=1

aij|φj〉 =⇒ 〈φi|A =
M∑
j=1

aij〈φj|, (7.22)

since A is real and symmetric, because G is assumed to be undirected. This is a

non-trivial statement even though the |φi〉 form an orthonormal set, since there

are only M of them yet they are N -dimensional, and therefore do not form a basis

for RN . Now the commutator of A and QQT can be written as

AQQT −QQTA =
M∑
i=1

M∑
j=1

[aij|φj〉〈φi| − aij|φi〉〈φj|]

=
M∑
i=1

M∑
j=1

(aij − aji) |φi〉〈φj|, (7.23)
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but since the elements of A and the |φi〉 are real, and A is symmetric,

aij = 〈φj|A|φi〉 = 〈φi|A|φj〉 = aji. (7.24)

Therefore the commutator vanishes, as required.

(3 =⇒ 4) To prove that 3 implies 4, assume now that [A,QQT ] = 0 and

consider the matrix B̃ = QTAQ, from which one sees

QB̃ = QQTAQ = AQQTQ. (7.25)

But Lemma 7.1 shows that QTQ is the identity, leaving QB̃ = AQ. Therefore, B̃

is in fact the m×m matrix B required by the statement.

(4 =⇒ 1) Finally, to see that 4 implies 1, which will complete the proof,

suppose there exists an m×m matrix B such that QB = AQ. Then by definition,

N∑
v=1

Ω(v)|v〉〈ṽ|B =
N∑
v=1

Ω(v)A|v〉〈ṽ|. (7.26)

Multiplying each side by 〈u| on the left and |j〉 on the right leads to

Ω(u)Bũj =
M∑
v=1

Ω(v)Auvδṽj =
∑
v∈Cj

Ω(v)Auv. (7.27)

From the definition of Ω one obtains

ω(u)

ω(Cũ)
Bũj =

1

ω(Cj)

∑
v∈Cj

ω(v)Auv, (7.28)
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which with i = ũ in turn implies that

∑
v∈Cj

Auv
ω(v)

ω(u)
= Bij

ω(Cj)

ω(Ci)
.

= bij, (7.29)

from which the conclusion immediately follows since the final right-hand side is

independent of the choice of u from Ci, and therefore Q encodes an equitable

partition, Π.

Statement 3 of Theorem 7.1, that [A,QQT ] = 0, leads to the following useful result.

Corollary 7.1. Suppose Π is an equitable partition of a connected, weighted, undirected

graph G. Let A be the adjacency matrix of G, and Q the normalized partition matrix of

Π. Then QQT has two distinct eigenvalues, 0 and 1.

Proof. Since Π is equitable, Theorem 7.1 shows that A and QQT commute. Both are

real and symmetric, and therefore diagonalizable, thus they are simultaneously

diagonalizable and share an eigenspace. Let the eigenvalues of A be λi, with

corresponding eigenvectors |λi,j〉 where, for each i, j runs from 1 to the multiplicity

of λi. Let qi,j be the eigenvalues of QQT , so that

QQT |λi,j〉 = qi,j|λi,j〉. (7.30)

Left-multiplying this expression by QT yields QT |λi,j〉 = qi,jQ
T |λi,j〉, from which

it can be concluded that either qi,j = 1 or QT |λi,j〉 = 0. Clearly if the latter is the

case, then it is also true that QQT |λi,j〉 = 0 which must still equal qi,j|λi,j〉. But

the |λi,j〉 are non-zero vectors, so in this case qi,j must vanish. Therefore either

qi,j = 1 or qi,j = 0.
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7.2.1 Graph collapse

Given a weighted, connected, undirected graph G and an equitable partition Π of its

vertices into M cells, with adjacency and normalized partition matrices A and Q respec-

tively, Theorem 7.1 guarantees that there exists an M -dimensional matrix B such that

AQ = QB. Lemma 7.1 can then be used to show that

B = QTAQ. (7.31)

B is also a real, symmetric matrix, since

〈i|B|j〉 = 〈φi|A|φj〉 = 〈φi|AT |φj〉 = 〈φj|A|φi〉 = 〈j|B|i〉. (7.32)

Therefore, B can be interpreted as the adjacency matrix of a graph on M vertices; this

graph is called the quotient graph or collapsed graph of G with respect to Π and is denoted

G/Π.

Consider now the time evolution operator for a quantum walker on the collapsed

graph,

UB
.

= eiQTAQt =
∞∑
k=0

(it)k

k!

(
QTAQ

)k
. (7.33)

The k = 2 term includes the matrix product

(
QTAQ

)2
= QTAQQTAQ = QT QQTAAQ = QTA2Q, (7.34)

where the second step follows from [A,QQT ] = 0 and the third from QTQ = I. This

procedure of commuting QQT to the left past any occurrences of A, and then replacing

the left-most QTQ with the identity is valid for all k ≥ 2, and in general for integral
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k ≥ 0 each matrix product in the sum of Equation (7.33) can be replaced by

(
QTAQ

)k
= QTAkQ. (7.35)

This leads to

UB = QT

(
∞∑
k=0

(it)k

k!
Ak

)
Q = QT eiAtQ = QTUAQ, (7.36)

which is particularly useful in the case of singleton cells. Suppose vertices u and v of G

are singletons in the partition Π. Then the maps from these vertices to their containing

cells are invertible: QT |u〉 = |ũ〉 and Q|ũ〉 = |u〉. Therefore, the evolution between these

vertices on the collapsed graph is identical to that between the associated vertices on the

original graph,

〈ũ|UB|ṽ〉 = 〈ũ|QTUAQ|ṽ〉 = 〈u|UA|v〉. (7.37)

A similar result appears for example in Reference [98] (and references therein) for the

case of unweighted graphs. Equation (7.37) as shown above holds for any undirected

graph with real edge and self-loop weights under a partition that satisfies the condition

for being equitable in the weighted case, Definition 7.1.

This result has further application to computing with quantum walks specifically, and

perfect state transfer between subsets more generally. While the time evolutions between

singleton cells on G and G/Π are identical because QQT |v〉 = |v〉 if |Cṽ| = 1, QQT is

not equal to the identity and therefore an arbitrary vertex cannot be mapped from the

original graph to the collapsed one and back uniquely. This should not be surprising,

since QT lowers the dimension of the vertex vectors. Nevertheless, it is the case that

QQT is block diagonal for a suitable permutation of the vertex labelling, with each block

having support on exactly one cell of the partition. Specifically, Equation (7.20) implies
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that

QQT =
M∑
i=1

|φi〉〈φi|, (7.38)

and by definition 〈v |φi〉 6= 0 if and only if v ∈ Ci. What this means is that the evolution

of a quantum walker between vertices of G/Π yields information about the evolution of a

walk on G. Defining the superposition |Ci〉
.

= Q|i〉 of vertices in cell i and the ‘expanded

vector’ |ψA〉
.

= Q|ψB〉 of a state |ψB〉 on G/Π, one obtains

〈Ci|UA|ψA〉 = 〈i|UB|ψB〉. (7.39)

For example, consider again the collapse of the cube to the weighted line as in Fig-

ure 7.2. There is perfect state transfer between the ends of the line in time π/2,

∣∣〈4(4)|eiAlineπ/2|1(4)〉
∣∣ = 1, (7.40)

which translates into PST between the antipodes of the cubes. There is also PST between

the other two vertices of the line in the same time, as

∣∣〈3(4)|eiAlineπ/2|2(4)〉
∣∣ = 1, (7.41)

however these vertices were each collapsed from a cell containing three vertices of the

cube so Equation (7.41) does not imply the existence of perfect state transfer between any

two vertices on the cube. Nevertheless, it does show that an appropriate superposition

over one of the cells transfers perfectly to a superposition of the other cell, according to

Equation (7.39). With |ψB〉 = α|1(4)〉+ β|2(4)〉, let

|ψA〉 = Q|ψB〉 = α|1(8)〉+
β√
3

(
|2(8)〉+ |3(8)〉+ |4(8)〉

)
= α|C1〉+ β|C2〉. (7.42)
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Equations (7.40) and (7.41) imply that the state |ψB〉 on the line evolves in time π/2 to

the state β|3(4)〉+α|4(4)〉. The state |ψB〉 similarly evolves from a particular superposition

of two cells into a superposition of the other two cells,

eiAcubeπ/2|ψA〉 =
β√
3

(
|5(8)〉+ |6(8)〉+ |7(8)〉

)
+ α|8(8)〉 = β|C3〉+ α|C4〉. (7.43)

This result is particularly useful in the search for multi-walker graphs that effect

computational unitaries when only a subset of their vertices encode computational ba-

sis states, whether using a PST-based scheme such as the discontinuous-walk model of

Chapter 5, or a scheme such as the Bose–Hubbard-based one of Chapter 6 that relies

on subset periodicity. Two approaches can be used, applicable to different situations.

If, as in Chapter 6, or the case of multiple walkers on P2 which leads to the hypercube

as a secondary graph, a physical system dictates the graphs, then a reduction in the

dimensionality of the system through graph collapse can aid in both analytical and nu-

merical analyses. On the other hand, if a particular graph is found to have desirable

properties but would be difficult to implement physically, a collapsed version may retain

these properties while yielding a smaller, perhaps more easily created graph.

For example, suppose one were to identify that the two bottom vertices of Fig-

ure 7.3(a) were of interest, but the remainder of the graph was only relevant inasmuch

as it contributed to the behaviour of a walker on those two vertices. (This is the same

equitable partitioning seen previously in Figure 7.1(a)). The graph is non-planar, and

so does not lend itself well to simulation in a two-dimensional lattice, for example. The

sequence of collapses in Figure 7.3 results first in a planar graph with half the number

of vertices as the original, and on which the two vertices are still present independently.

The second collapse yields a three-vertex graph on which a single vertex corresponds to

the pair of interest. This allows the presence or absence of periodicity and perfect state
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Figure 7.3: Two sequential graph collapses. The equitable partition on the simple
graph (a) collapses the graph to (b), introducing weights and a self-loop.
The resulting weighted graph itself admits an equitable partition, allowing
a further collapse to the graph (c).

transfer on a ten-vertex graph to be analysed in either a five- or three-dimensional space,

and shows that the behaviour on the vertices of interest in a non-planar graph can be

recreated on a planar graph with the addition of weights and self-loops.

7.2.2 Eigenvalues of collapsed graphs

A remarkable property of the collapsed graph is that it shares all of its eigenvalues

with the uncollapsed one. The following lemma makes this statement concrete, and is

subsequently used to prove that for a certain large subset of graphs—in particular, all

graphs corresponding to bosonic walkers—the Hamiltonians furnished by the collapsed

and uncollapsed graphs have equal ground-state energies.

Lemma 7.2. If B = QTAQ is the adjacency matrix of a graph G/Π collapsed under

an equitable partition Π from a weighted, undirected, connected graph G, then every

eigenvalue of B is also an eigenvalue of A.

Proof. Let β be an eigenvalue of B, with corresponding eigenvector |β〉. Since Π is
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equitable, AQ = QB by Theorem 7.1. Therefore

AQ|β〉 = QB|β〉 = βQ|β〉, (7.44)

and β is seen to be an eigenvalue of A, as required.

The proof of Lemma 7.2 additionally shows that the eigenvectors |β〉 of B are related

to a subset of the eigenvectors |α〉 of A by |β〉 = QT |α〉 and |α〉 = Q|β〉. The determi-

nation of which eigenvectors belong to this subset in general remains an open question,

though Theorem 7.3 below shows that the eigenvector corresponding to the maximal

eigenvalue is preserved under collapse whenever every entry of A is non-negative in the

vertex basis. Furthermore, not only does every eigenvector of B yield an eigenvector of A

under the action of Q, but every eigenvector of A that does not vanish under the action

of QT yields an eigenvector of B, as shown by the following lemma.

Lemma 7.3. Let G be a weighted, undirected, connected graph with adjacency matrix

A, and Π an equitable partition with normalized partition matrix Q that generates the

quotient graph G/Π with adjacency matrix B = QTAQ. Suppose |λi,j〉 is an eigenvector

of A as defined in the proof of Corollary 7.1. Then either QT |λi,j〉 = 0 or QT |λi,j〉 is an

eigenvector of B.

Proof. Corollary 7.1 shows that the eigenvalues of QQT associated with the eigenvectors

|λi,j〉 are qi,j ∈ {0, 1}. Suppose first that QQT |λi,j〉 = 0. Then since QTQ = I,

left-multiplying this by QT yields QT |λi,j〉 = 0. On the other hand, in the case

QQT |λi,j〉 = |λi,j〉, one obtains

A
(
QQT |λi,j〉

)
= A|λi,j〉 = λi|λi,j〉. (7.45)
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Left-multiplying the initial and final expressions by QT yields

(QTAQ)QT |λi,j〉 = B
(
QT |λi,j〉

)
= λi

(
QT |λi,j〉

)
, (7.46)

showing that QT |λi,j〉 is an eigenvector of B, with eigenvalue |λi〉.

Some further definitions and results from the fields of linear algebra and graph theory

that are useful during the proof of the upcoming Theorem 7.3 are stated here without

proof. A treatment can be found, for example, in Reference [101].

Definition 7.2. An N × N matrix T is irreducible if for each i, j ∈ {1, . . . , N} there

exists a positive integer k such that (T k)ij > 0. A graph on N vertices is irreducible if

its adjacency matrix A(G) is irreducible.

The following lemma relates the irreducibility of a matrix to connectedness of a cor-

responding unweighted graph.

Lemma 7.4. An N × N matrix T with elements Tij is irreducible if and only if the

unweighted directed graph ΓT , defined on the vertex set {1, . . . , N} with an edge from i

to j whenever Tij > 0, is strongly connected.

A graph is strongly connected if there is a (directed) path from each vertex to every

other vertex. Therefore an undirected graph is strongly connected if and only if it is

connected.

Another useful result is the Perron-Frobenius theorem.

Theorem 7.2 (Perron-Frobenius). Let T be a non-negative irreducible square matrix.

Then there exists a real number λ1 > 0 with the following properties:

1. There exists a real vector |λ1〉 with each entry strictly positive, and such

that T |λ1〉 = λ1|λ1〉.
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2. The algebraic and geometric multiplicities of λ1 are both equal to 1. That

is, its associated eigenspace is one-dimensional.

3. For each eigenvalue λi of T , |λi| ≤ λ1.

This completes the prerequisites for the proof of the following theorem.

Theorem 7.3. Let G be a connected undirected graph with non-negative weights and

adjacency matrix A, and let Π be an equitable partition of its vertices with corresponding

normalized partition matrix Q. Then the largest eigenvalue of A is unique, and equal to

the unique largest eigenvalue of the collapsed graph with adjacency matrix B = QTAQ.

Proof. Let the eigenvalues of A be λi, with corresponding eigenvectors |λi,j〉, where for

each i, j runs from 1 to the algebraic multiplicity of λi. According to Lemma 7.2,

each eigenvector of B is given by QT |λi,j〉 for some i and j. The eigenvalues of B

are therefore those λi for which there exists at least one j such that QT |λi,j〉 6= 0.

Consider, then,

QT |λi,j〉 =
N∑
v=1

Ω(v)|ṽ〉〈v |λi,j〉 =
M∑
k=1

(∑
v∈Ck

Ω(v) 〈v |λi,j〉

)
|k〉, (7.47)

which shows that QT |λi,j〉 is non-zero if there exists at least one k for which the

parenthetic coefficient does not vanish.

Since G is assumed to be connected and undirected, it is strongly connected; it

contains no negative edge weights, satisfying the requirements of Lemma 7.4 and

the Perron-Frobenius theorem. Therefore there is a unique largest eigenvalue λ1

of A, with a single corresponding eigenvector |λ1,1〉. The elements 〈v |λi,j〉 of this

vector are strictly positive, and by definition Ω(v) > 0 for any vertex with at least

one neighbour. Since G is connected, it contains no isolated vertices. As such, for

every k the coefficient in Equation (7.47) is a sum of one or more strictly positive
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numbers and therefore cannot vanish. Thus QT |λ1,1〉 6= 0. So by Lemma 7.3,

QT |λ1,1〉 is an eigenvector of B, with eigenvalue λ1. Furthermore, it can be seen

from the proof of Lemma 7.3 that λ1 is the unique largest eigenvalue of B as well

as of A.

7.2.3 Summary of main results

The results of the current section all apply to an arbitrary connected, weighted, undi-

rected graph G = (V,E,w), on |V | = N vertices with adjacency matrix A, and to a

partition Π of V into M cells, equitable with respect to G and described by the normal-

ized partition matrix Q. With respect to these quantities, some of the most useful results

described above include the following.

First and foremost, Definition 7.1 provides a generalized criterion for the definition

of an equitable partition on a weighted graph. Lemma 7.1 shows that QTQ is the M -

dimensional identity matrix. Theorem 7.1 states not only that A commutes with QQT

when Π is equitable, but given an adjacency matrix and normalized partition matrix

one can determine if the partition is equitable by determining whether these matrices

commute. That is, [A,QQT ] = 0 if and only if Π is equitable. An M × M matrix

B = QTAQ can be defined that can itself be interpreted as the adjacency matrix of

a weighted, undirected graph on M vertices; this graph is G/Π, the quotient graph of

G with respect to Π. The probability for a walker to be found in a cell on G evolves

identically to the probability to find a walker on the single vertex of G/Π collapsed from

that cell. Finally, Lemma 7.2 shows that every eigenvalue of B is an eigenvalue of A,

and in particular Theorem 7.3 guarantees that when A contains no negative entries, its

largest eigenvalue is preserved under collapse, i.e. is equal to the largest eigenvalue of B.

In particular Theorem 7.3 applies to any system of bosonic walkers on a primary graph

with no negative edge weights, i.e. with τuv ≥ 0 in the Bose–Hubbard Hamiltonian for
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all vertices u 6= v. If the on-site interaction strength g is negative then a constant energy

offset can be added to the system, rendering the adjacency matrix irreducible without

altering the walkers’ dynamics. Note also that Theorem 7.3 does not provide an if-and-

only-if result: for adjacency matrices with negative entries, such as for fermionic walkers,

the theorem does not apply and the largest eigenvalue may or may not be preserved.

That said, no counterexample has yet been identified in which the largest eigenvalue is

lost.

7.3 Applications of graph collapse

The full potential of equitable partitioning as it applies to quantum walks is still an active

area of ongoing research. To conclude this chapter, a few promising results are presented.

7.3.1 Interacting bosons in periodic potentials

As discussed in Chapter 6, multi-walker quantum walks on graphs are described well

by the Bose–Hubbard Hamiltonian, which also plays a large role in condensed-matter

physics as a description of many-particle systems confined to lattices [102, 103]. In

one dimension such systems can be solved exactly with the Bethe ansatz [104], though

in higher dimensions the ground states are in general known only approximately. The

fermionic case is of particular interest due to its suspected application to the theory of

high-Tc superconductivity [105]. While it can be solved analytically by other means, a

system of bosons confined to a one-dimensional ring provides an excellent introduction

to the potential applications of weighted graph collapse.

Figure 7.4 shows the secondary graphs corresponding to a system of three interacting

indistinguishable bosons hopping on one-dimensional rings of three, four, and five sites.

In these cases the number of vertices in the resulting quotient graph is equal to the

number of sites on the ring, though this is not a general feature; the collapsed graphs for
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Figure 7.4: Graph collapses for systems of three interacting indistinguishable bosons
hopping on one-dimensional rings of (a) three, (b) four, and (c) five sites;
g is the on-site interaction strength. All three initial graphs contain
multiple values of edge and self-loop weights that have been suppressed
for clarity, as does the quotient graph in (c). The partitioning of the
original graph for five sites has also been suppressed, though it follows a
similar pattern to the other two.
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three bosons on rings of six and seven sites have seven and eight vertices, respectively,

reduced from 56 and 84 vertices in the uncollapsed secondary graphs. In each case the

ground-state energy of the original physical system is given by the negative of the largest

eigenvalue of the collapsed graph.

Several variations to this system exist. The bosons could be non-interacting, which is

the simplest case to consider as it corresponds to setting g = 0. In the other extreme the

particles could be hardcore bosons, in the limit g →∞. When the on-site interaction is so

energetically costly, states with multiply occupied sites decouple from the rest, effectively

deleting every vertex with a self-loop from the secondary graphs. This does not, however,

mean that every vertex with a self-loop can be deleted from the collapsed graphs—

Figure 7.4(b) would disappear! Self-loops in collapsed graphs arise whenever the vertices

within a given cell are connected to each other, as well as when they are ‘connected to

themselves’ by a self-loop. Finally whether g is zero, infinite, or finite, the particles could

also be distinguishable. The same procedure of identifying graph symmetries that yield

equitable partitions and then collapsing will allow the determination of the ground-state

energy of the system.

7.3.2 Simple graphs via expansion

In general the collapse of simple graphs leads to weighted graphs. One might then

wonder whether a given weighted graph can conversely be expanded to a simple graph

that exhibits the same periodicity and perfect state transfer properties.1 As of yet there

is no general formalism for such an expansion of a graph G by the construction of a larger

graph G′ such that G = G′/Π for some equitable partition Π, but certain heuristics exist

that allow such a procedure to be accomplished manually in many cases. For example,

consider the collapse shown in Figure 7.5. The graph on k + 2 vertices collapses to a

1Note that this informal choice of the term ‘expansion’ as the reverse of the collapse process is
unrelated to the formalsim of expander graphs.
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Figure 7.5: Example heuristic for graph expansion. For non-negative weights ai on
each of the k two-segment paths from the left-hand vertex to the right-
hand one, the designated partition is equitable and results in a collapse
to the two-segment weighted line. Therefore an equally weighted two-
segment line can expand to an appropriately weighted set of similar paths
between its ends.

line on three vertices. Conversely, given a two-segment line with equal non-negative edge

weights b, one can expand it to a graph of the form in Figure 7.5 by choosing k weights

ai such that
k∑
i=1

a2
i

!
= b2. (7.48)

Note in particular that the expanded graph is planar, and the value of the ai can

be chosen such that the graph has constant weight. Since periodicity and perfect state

transfer depend on the adjacency matrix of a graph, multiplied by a scalar time value,

the behaviour of a walk on a graph with constant weight is equivalent to that on an

unweighted graph in a rescaled time. One application of this is that a graph can be

constructed based on a hypercube, with the same distance between two antipodes and

such that they exhibit the same periodicity, but with the new graph both planar and

simple. The result of this procedure is shown for the four-dimensional hypercube in

Figure 7.6.

It is also interesting to note that the quotient graph of a graph with both positive and

negative weights can be disconnected, even when the original graph is not. This means
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2

√
6

√
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Figure 7.6: Conversion of the four-dimensional hypercube to a planar graph with
equivalent evolution on two antipodes, by way of collapse to and expan-
sion from an intermediate weighted line. The simple planar graph on the
right exhibits PST from the top vertex to the bottom in time t = π/

√
2,

while the same evolution on the hypercube occurs in time t = π/2. To
make the evolutions identical, one can give a weight of

√
2 to every edge

in the simple graph.

√
3 −

√
3

Figure 7.7: Connecting two graphs with a negative-weight expansion. The two copies
of K2 with weights of equal magnitude but opposite sign can be expanded
to a connected signed cube. Here dashed edges have negative weights.

that conversely, under certain circumstances edges can be ‘expanded’ where there were

none, by specifying some weights to be negative. For example, two copies of K2 that are

not connected to each other can be expanded to a single connected cube, if the initial

graphs have oppositely signed edge weights as shown in Figure 7.7.
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Chapter 8

Conclusion

Quantum walks provide a powerful tool for the design of quantum algorithms in the

field of quantum computation. They have particular application to problems that can

be expressed in terms of graphs, such as the evaluation of decision trees, and the graph

isomorphism problem. More recently quantum walks have been shown to be universal

for quantum computation, which has been a central theme in this thesis. Under the

single-walker continuous-time approach to universal computation, it has been shown

that the number of computational unitary operations that can be implemented in a

single scattering event grows exponentially with the size of the scattering graph. The

catalogue of resulting single-qubit operations has already found application in a new

proposal for computing with multiple walkers [69]. The exponential growth with graph

size in the number of single-qubit gates that can be performed hints at the possibility of

finding multi-qubit gates from a single scattering event.

The discontinuous quantum walk has been proposed as a bridge between the discrete-

and continuous-time models. By combining aspects of perfect state transfer with a

piecewise-constant Hamiltonian, this hybrid scheme allows a continuous-time quantum

walk to deterministically complete a computation as a discrete-time walker can, but with-

out requiring local control over site-dependent coins of multiple dimensions, or indeed

any coin degree of freedom at all. The exponential size of the graph makes this scheme

unscalable for direct implementation, as is the case with both prior discrete-time and

continuous-time schemes. That said, the graph Hamiltonian is easily recast in terms of

quantum spin networks, providing a link to possible experimental proofs of concept.

To eliminate the inefficient vertex resource requirements of these schemes, a model
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CONCLUSION

based on multiple walkers interacting under the Bose–Hubbard model has been presented.

It makes use of one discontinuous quantum walker for each qubit to be simulated, on a

primary graph with only 2n vertices. The scheme allows for the execution of arbitrary

single-qubit gates through appropriate tunings of local parameters, and can simulate an

entangling cphase gate at a countably infinite set of phase values. This proves the in-

tuitive conjecture that an increase in the number of walkers should yield a decrease in

the number of vertices required for universal quantum computation. In fact the resulting

decrease is exponential, making this the first scheme for universal quantum computation

based on quantum walks that is in principle scalable. The Bose–Hubbard-based scheme

also provides the first quantum walk scheme that allows for the implementation of quan-

tum error correction. The model also has distinctly closer ties to extant experimental

techniques, with a straightforward interpretation as bosonic neutral atoms in an optical

lattice.

Equitable partitioning is a useful tool for the analysis of multi-walker graphs, as well

as of periodicity and perfect state transfer whether there are many walkers present or

only one. Previously limited to graphs with edge weights of ±1, the formalism has been

extended herein to arbitrary undirected graphs with real edge weights and self-loops.

This allows for sequences of repeated collapse, as quotient graphs of simple graphs are

in general weighted. It has also been shown that for a large class of graphs the largest

eigenvalue, in this case equal to the spectral radius, peserved under collapse. Thus the

ground-state energy of many systems can be determined from much smaller graphs than

those present in the given system. In particular all bosonic walks on graphs with non-

negative edge weights fall into this class. It is conjectured that this result will hold for

undirected fermionic graphs as well, but this remains an open question.
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Appendix A

Representative widget information

The set of widget graphs generating the distinct single-qubit unitaries identified in Chap-

ter 4 is contained here in its entirety. The following fields appear in Table A.1:

ID: Unique identifier, assigned in the order the entries appear

N : Number of vertices in the graph

k: Momentum at which this entry results in a unitary

`: Effective length of the graph

Attach.: Zero-based vertex numbers to which tails {0in, 1in, 0out, 1out} attach,

respectively

(θ, φ): Polar and azimuthal angle of the Bloch-sphere axis about which the

unitary rotates

α: Angle of the above rotation

Adjacency matrix: N ×N adjacency matrix of the widget graph, written as a list

Equivalent: List of the number of ways to implement the same unitary on

{N, . . . , 9} vertices

Since the graphs were searched in order of the number of vertices, no unitary in this list

can be implemented at the same momentum and effective length on fewer vertices.
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ID N k/π ` Attach. (θ, φ) α Adjacency matrix Equivalent
1 2 4/5 0 {0, 1, 0, 1} (0, 0) 0 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
2 2 4/5 0 {0, 1, 1, 0} (1.5708, 0) 3.14159 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
3 2 3/4 0 {0, 1, 0, 1} (0, 0) 0 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
4 2 3/4 0 {0, 1, 1, 0} (1.5708, 0) 3.14159 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
5 2 2/3 0 {0, 1, 0, 1} (0, 0) 0 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
6 2 2/3 0 {0, 1, 1, 0} (1.5708, 0) 3.14159 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
7 2 3/5 0 {0, 1, 0, 1} (0, 0) 0 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
8 2 3/5 0 {0, 1, 1, 0} (1.5708, 0) 3.14159 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
9 2 1/2 0 {0, 1, 0, 1} (0, 0) 0 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}

10 2 1/2 0 {0, 1, 1, 0} (1.5708, 0) 3.14159 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
11 2 2/5 0 {0, 1, 0, 1} (0, 0) 0 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
12 2 2/5 0 {0, 1, 1, 0} (1.5708, 0) 3.14159 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
13 2 1/3 0 {0, 1, 0, 1} (0, 0) 0 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
14 2 1/3 0 {0, 1, 1, 0} (1.5708, 0) 3.14159 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
15 2 1/4 0 {0, 1, 0, 1} (0, 0) 0 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
16 2 1/4 0 {0, 1, 1, 0} (1.5708, 0) 3.14159 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
17 2 1/5 0 {0, 1, 0, 1} (0, 0) 0 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
18 2 1/5 0 {0, 1, 1, 0} (1.5708, 0) 3.14159 00 00 {4, 12, 28, 60, 136, 348, 1184, 6196}
19 4 4/5 1 {0, 3, 2, 1} (0, 0) 0 0010 0001 1000 0100 {8, 8, 32, 48, 144, 360}
20 4 4/5 1 {0, 3, 1, 2} (1.5708, 0) -3.14159 0010 0001 1000 0100 {8, 8, 32, 48, 144, 360}
21 4 3/4 1 {0, 3, 2, 1} (0, 0) 0 0010 0001 1000 0100 {8, 8, 36, 72, 256, 864}
22 4 3/4 1 {0, 3, 1, 2} (1.5708, 0) -3.14159 0010 0001 1000 0100 {8, 8, 36, 72, 256, 864}
23 4 2/3 1 {0, 3, 2, 1} (0, 0) 0 0010 0001 1000 0100 {8, 8, 32, 56, 232, 1240}
24 4 2/3 1 {0, 3, 1, 2} (1.5708, 0) 3.14159 0010 0001 1000 0100 {8, 8, 32, 56, 232, 1240}
25 4 3/5 1 {0, 3, 2, 1} (0, 0) 0 0010 0001 1000 0100 {8, 8, 32, 48, 144, 360}
26 4 3/5 1 {0, 3, 1, 2} (1.5708, 0) -3.14159 0010 0001 1000 0100 {8, 8, 32, 48, 144, 360}
27 4 1/2 1 {0, 1, 0, 1} (0, 0) 0 0001 0001 0001 1110 {36, 76, 444, 2016, 16844, 182896}
28 4 1/2 1 {0, 1, 1, 0} (1.5708, 0) -3.14159 0001 0001 0001 1110 {36, 76, 444, 2016, 16844, 182896}
29 4 2/5 1 {0, 3, 2, 1} (0, 0) 0 0010 0001 1000 0100 {8, 8, 32, 48, 144, 360}
30 4 2/5 1 {0, 3, 1, 2} (1.5708, 0) -3.14159 0010 0001 1000 0100 {8, 8, 32, 48, 144, 360}
31 4 1/3 1 {0, 3, 2, 1} (0, 0) 0 0010 0001 1000 0100 {8, 8, 32, 52, 232, 1420}
32 4 1/3 1 {0, 3, 1, 2} (1.5708, 0) 3.14159 0010 0001 1000 0100 {8, 8, 32, 52, 232, 1420}
33 4 1/4 1 {0, 3, 2, 1} (0, 0) 0 0010 0001 1000 0100 {8, 8, 36, 72, 256, 864}
34 4 1/4 1 {0, 3, 1, 2} (1.5708, 0) -3.14159 0010 0001 1000 0100 {8, 8, 36, 72, 256, 864}
35 4 1/5 1 {0, 3, 2, 1} (0, 0) 0 0010 0001 1000 0100 {8, 8, 32, 48, 144, 360}
36 4 1/5 1 {0, 3, 1, 2} (1.5708, 0) 3.14159 0010 0001 1000 0100 {8, 8, 32, 48, 144, 360}
37 5 2/3 2 {1, 2, 1, 2} (0, 0) 0 00011 00001 00001 10000 11100 {12, 44, 288, 2036, 22632}
38 5 2/3 2 {1, 2, 2, 1} (1.5708, 0) -3.14159 00011 00001 00001 10000 11100 {12, 44, 288, 2036, 22632}
39 5 1/2 2 {4, 0, 2, 1} (0, 0) 1.5708 00011 00011 00001 11000 11100 {4, 4, 80, 377, 4502}
40 5 1/2 2 {0, 4, 1, 2} (0, 0) -1.5708 00011 00011 00001 11000 11100 {4, 4, 80, 377, 4502}
41 5 1/2 2 {0, 4, 2, 1} (1.5708, 0.785398) -3.14159 00011 00011 00001 11000 11100 {4, 4, 80, 377, 4502}
42 5 1/2 2 {4, 0, 1, 2} (1.5708, -0.785398) 3.14159 00011 00011 00001 11000 11100 {4, 4, 80, 377, 4502}
43 5 1/2 1 {1, 0, 1, 3} (0, 0) 1.5708 00010 00001 00001 10000 01100 {6, 26, 96, 467, 2840}
44 5 1/2 1 {0, 1, 3, 1} (0, 0) -1.5708 00010 00001 00001 10000 01100 {6, 26, 96, 467, 2840}
45 5 1/2 1 {0, 1, 1, 3} (1.5708, 0.785398) -3.14159 00010 00001 00001 10000 01100 {6, 26, 96, 467, 2840}
46 5 1/2 1 {1, 0, 3, 1} (1.5708, -0.785398) 3.14159 00010 00001 00001 10000 01100 {6, 26, 96, 467, 2840}
47 5 1/2 0.5 {0, 1, 0, 1} (0, 0) 0 00001 00001 00001 00001 11110 {24, 108, 360, 1908, 12160}
48 5 1/2 0.5 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001 00001 00001 00001 11110 {24, 108, 360, 1908, 12160}
49 5 1/3 2 {1, 2, 1, 2} (0, 0) 0 00011 00001 00001 10000 11100 {24, 88, 364, 2076, 18344}
50 5 1/3 2 {1, 2, 2, 1} (1.5708, 0) -3.14159 00011 00001 00001 10000 11100 {24, 88, 364, 2076, 18344}
51 5 1/3 0.5 {1, 2, 1, 2} (0, 0) 0 00011 00001 00001 10001 11110 {4, 28, 116, 536, 3164}
52 5 1/3 0.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 00011 00001 00001 10001 11110 {4, 28, 116, 536, 3164}
53 6 4/5 7.23607 {0, 1, 0, 1} (0, 0) 0 000011 000011 000001 000001 110001 111110 {4, 32, 264, 2496}
54 6 4/5 7.23607 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011 000011 000001 000001 110001 111110 {4, 32, 264, 2496}
55 6 4/5 2 {0, 3, 1, 2} (0, 0) 0 000010 000010 000001 000001 110000 001100 {8, 8, 16, 48}
56 6 4/5 2 {0, 3, 2, 1} (1.5708, 0) 3.14159 000010 000010 000001 000001 110000 001100 {8, 8, 16, 48}
57 6 3/4 4 {2, 3, 2, 3} (0, 0) 0 000011 000010 000001 000001 110000 101100 {28, 76, 356, 1784}
58 6 3/4 4 {4, 0, 3, 0} (0, 0) -3.14159 000110 000101 000011 110000 101000 011000 {18, 22, 54, 122}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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59 6 3/4 4 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011 000010 000001 000001 110000 101100 {28, 76, 356, 1784}
60 6 3/4 4 {0, 4, 3, 0} (1.5708, -1.5708) 3.14159 000110 000101 000011 110000 101000 011000 {18, 22, 54, 122}
61 6 3/4 23.3137 {2, 3, 2, 3} (0, 0) 0 000011 000010 000001 000001 110001 101110 {4, 32, 180, 1064}
62 6 3/4 23.3137 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011 000010 000001 000001 110001 101110 {4, 32, 180, 1064}
63 6 3/4 2 {0, 3, 1, 2} (0, 0) 0 000010 000010 000001 000001 110000 001100 {16, 36, 152, 656}
64 6 3/4 2 {0, 1, 5, 4} (1.5708, 0) -1.5708 000110 000101 000011 110000 101000 011000 {12, 12, 24, 48}
65 6 3/4 2 {0, 1, 4, 5} (1.5708, 0) 1.5708 000110 000101 000011 110000 101000 011000 {12, 12, 24, 48}
66 6 3/4 2 {0, 3, 2, 1} (1.5708, 0) 3.14159 000010 000010 000001 000001 110000 001100 {16, 36, 152, 656}
67 6 3/4 13.6569 {1, 2, 1, 2} (0, 0) 0 000101 000011 000011 100001 011001 111110 {4, 24, 176, 1244}
68 6 3/4 13.6569 {1, 2, 2, 1} (1.5708, 0) -3.14159 000101 000011 000011 100001 011001 111110 {4, 24, 176, 1244}
69 6 3/4 11.6569 {2, 3, 2, 3} (0, 0) 0 000011 000011 000001 000001 110001 111110 {4, 24, 112, 504}
70 6 3/4 11.6569 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011 000011 000001 000001 110001 111110 {4, 24, 112, 504}
71 6 2/3 4 {0, 1, 0, 1} (0, 0) 0 000011 000011 000001 000001 110000 111100 {4, 76, 1190, 27164}
72 6 2/3 4 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011 000011 000001 000001 110000 111100 {4, 76, 1190, 27164}
73 6 2/3 3 {0, 3, 1, 2} (0, 0) 2.0944 001011 000111 100010 010001 111001 110110 {4, 20, 164, 1307}
74 6 2/3 3 {0, 4, 5, 1} (0, 0) 0 001011 000111 100010 010001 111000 110100 {8, 96, 576, 4726}
75 6 2/3 3 {3, 0, 2, 1} (0, 0) -2.0944 001011 000111 100010 010001 111001 110110 {4, 20, 164, 1307}
76 6 2/3 3 {3, 0, 1, 2} (1.5708, 1.0472) -3.14159 001011 000111 100010 010001 111001 110110 {4, 20, 164, 1307}
77 6 2/3 3 {0, 4, 1, 5} (1.5708, 0) -3.14159 001011 000111 100010 010001 111000 110100 {8, 96, 576, 4726}
78 6 2/3 3 {0, 3, 2, 1} (1.5708, -1.0472) 3.14159 001011 000111 100010 010001 111001 110110 {4, 20, 164, 1307}
79 6 2/3 2 {1, 3, 2, 3} (0, 0) 2.0944 000101 000011 000011 100000 011001 111010 {12, 62, 434, 3692}
80 6 2/3 2 {3, 1, 3, 2} (0, 0) -2.0944 000101 000011 000011 100000 011001 111010 {12, 62, 434, 3692}
81 6 2/3 2 {3, 1, 2, 3} (1.5708, 1.0472) -3.14159 000101 000011 000011 100000 011001 111010 {12, 62, 434, 3692}
82 6 2/3 2 {1, 3, 3, 2} (1.5708, -1.0472) 3.14159 000101 000011 000011 100000 011001 111010 {12, 62, 434, 3692}
83 6 2/3 1.5 {1, 2, 1, 2} (0, 0) 0 000101 000010 000010 100001 011001 100110 {16, 56, 420, 3400}
84 6 2/3 1.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 000101 000010 000010 100001 011001 100110 {16, 56, 420, 3400}
85 6 3/5 7.23607 {1, 2, 1, 2} (0, 0) 0 000101 000011 000011 100001 011000 111100 {4, 32, 212, 1480}
86 6 3/5 7.23607 {1, 2, 2, 1} (1.5708, 0) -3.14159 000101 000011 000011 100001 011000 111100 {4, 32, 212, 1480}
87 6 3/5 2 {0, 3, 1, 2} (0, 0) 0 000010 000010 000001 000001 110000 001100 {8, 8, 16, 48}
88 6 3/5 2 {0, 3, 2, 1} (1.5708, 0) 3.14159 000010 000010 000001 000001 110000 001100 {8, 8, 16, 48}
89 6 1/2 3 {0, 4, 3, 1} (0, 0) 0 000101 000011 000001 100001 010001 111110 {80, 300, 5694, 60280}
90 6 1/2 3 {2, 0, 1, 0} (0, 0) -3.14159 000110 000011 000011 100001 111001 011110 {18, 56, 1291, 10819}
91 6 1/2 3 {0, 4, 1, 3} (1.5708, 0) -3.14159 000101 000011 000001 100001 010001 111110 {80, 300, 5694, 60280}
92 6 1/2 3 {0, 2, 1, 0} (1.5708, -1.5708) 3.14159 000110 000011 000011 100001 111001 011110 {18, 56, 1291, 10819}
93 6 1/2 2 {0, 3, 1, 2} (0, 0) 0 000010 000010 000001 000001 110000 001100 {64, 232, 2936, 29828}
94 6 1/2 2 {1, 3, 2, 3} (0, 0) -3.14159 000101 000011 000011 100000 011000 111000 {16, 70, 602, 4918}
95 6 1/2 2 {0, 3, 2, 1} (1.5708, 0) -3.14159 000010 000010 000001 000001 110000 001100 {64, 232, 2936, 29828}
96 6 1/2 2 {3, 1, 2, 3} (1.5708, -1.5708) 3.14159 000101 000011 000011 100000 011000 111000 {16, 70, 602, 4918}
97 6 1/2 1.5 {5, 0, 2, 1} (0, 0) 1.5708 000111 000111 000001 110000 110000 111000 {4, 4, 44, 231}
98 6 1/2 1.5 {0, 5, 1, 2} (0, 0) -1.5708 000111 000111 000001 110000 110000 111000 {4, 4, 44, 231}
99 6 1/2 1.5 {0, 5, 2, 1} (1.5708, 0.785398) -3.14159 000111 000111 000001 110000 110000 111000 {4, 4, 44, 231}

100 6 1/2 1.5 {5, 0, 1, 2} (1.5708, -0.785398) 3.14159 000111 000111 000001 110000 110000 111000 {4, 4, 44, 231}
101 6 1/2 0.333333 {0, 1, 0, 1} (0, 0) 0 000001 000001 000001 000001 000001 111110 {40, 120, 544, 2432}
102 6 1/2 0.333333 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001 000001 000001 000001 000001 111110 {40, 120, 544, 2432}
103 6 2/5 2.76393 {0, 1, 0, 1} (0, 0) 0 000011 000011 000001 000001 110001 111110 {4, 32, 264, 2496}
104 6 2/5 2.76393 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011 000011 000001 000001 110001 111110 {4, 32, 264, 2496}
105 6 2/5 2 {0, 3, 1, 2} (0, 0) 0 000010 000010 000001 000001 110000 001100 {8, 8, 16, 48}
106 6 2/5 2 {0, 3, 2, 1} (1.5708, 0) -3.14159 000010 000010 000001 000001 110000 001100 {8, 8, 16, 48}
107 6 1/3 4 {0, 1, 0, 1} (0, 0) 0 000011 000011 000001 000001 110000 111100 {4, 52, 780, 11988}
108 6 1/3 4 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011 000011 000001 000001 110000 111100 {4, 52, 780, 11988}
109 6 1/3 3 {5, 1, 2, 3} (0, 0) 2.0944 000110 000011 000001 100001 110000 011100 {4, 8, 16, 186}
110 6 1/3 3 {1, 5, 3, 2} (0, 0) -2.0944 000110 000011 000001 100001 110000 011100 {4, 8, 16, 186}
111 6 1/3 3 {1, 5, 2, 3} (1.5708, 1.0472) -3.14159 000110 000011 000001 100001 110000 011100 {4, 8, 16, 186}
112 6 1/3 3 {5, 1, 3, 2} (1.5708, -1.0472) 3.14159 000110 000011 000001 100001 110000 011100 {4, 8, 16, 186}
113 6 1/3 2.5 {0, 1, 0, 1} (0, 0) 0 000111 000111 000011 110000 111001 111010 {4, 60, 508, 4976}
114 6 1/3 2.5 {0, 1, 1, 0} (1.5708, 0) -3.14159 000111 000111 000011 110000 111001 111010 {4, 60, 508, 4976}
115 6 1/4 4 {2, 3, 2, 3} (0, 0) 0 000011 000010 000001 000001 110000 101100 {28, 76, 356, 1784}
116 6 1/4 4 {4, 0, 3, 0} (0, 0) -3.14159 000110 000101 000011 110000 101000 011000 {18, 22, 54, 122}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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117 6 1/4 4 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011 000010 000001 000001 110000 101100 {28, 76, 356, 1784}
118 6 1/4 4 {0, 4, 3, 0} (1.5708, -1.5708) 3.14159 000110 000101 000011 110000 101000 011000 {18, 22, 54, 122}
119 6 1/4 2.34315 {1, 2, 1, 2} (0, 0) 0 000101 000011 000011 100001 011001 111110 {4, 24, 176, 1244}
120 6 1/4 2.34315 {1, 2, 2, 1} (1.5708, 0) -3.14159 000101 000011 000011 100001 011001 111110 {4, 24, 176, 1244}
121 6 1/4 2 {0, 3, 1, 2} (0, 0) 0 000010 000010 000001 000001 110000 001100 {16, 36, 152, 656}
122 6 1/4 2 {0, 1, 4, 5} (1.5708, 3.14159) 1.5708 000110 000101 000011 110000 101000 011000 {12, 12, 24, 48}
123 6 1/4 2 {0, 1, 5, 4} (1.5708, 0) 1.5708 000110 000101 000011 110000 101000 011000 {12, 12, 24, 48}
124 6 1/4 2 {0, 3, 2, 1} (1.5708, 0) -3.14159 000010 000010 000001 000001 110000 001100 {16, 36, 152, 656}
125 6 1/4 0.686292 {2, 3, 2, 3} (0, 0) 0 000011 000010 000001 000001 110001 101110 {4, 32, 180, 1064}
126 6 1/4 0.686292 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011 000010 000001 000001 110001 101110 {4, 32, 180, 1064}
127 6 1/4 0.343146 {2, 3, 2, 3} (0, 0) 0 000011 000011 000001 000001 110001 111110 {4, 24, 112, 504}
128 6 1/4 0.343146 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011 000011 000001 000001 110001 111110 {4, 24, 112, 504}
129 6 1/5 2.76393 {1, 2, 1, 2} (0, 0) 0 000101 000011 000011 100001 011000 111100 {4, 32, 212, 1480}
130 6 1/5 2.76393 {1, 2, 2, 1} (1.5708, 0) -3.14159 000101 000011 000011 100001 011000 111100 {4, 32, 212, 1480}
131 6 1/5 2 {0, 3, 1, 2} (0, 0) 0 000010 000010 000001 000001 110000 001100 {8, 8, 16, 48}
132 6 1/5 2 {0, 3, 2, 1} (1.5708, 0) -3.14159 000010 000010 000001 000001 110000 001100 {8, 8, 16, 48}
133 7 4/5 2.76393 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000001 1100000 1111100 {16, 112, 1196}
134 7 4/5 2.76393 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000001 1100000 1111100 {16, 112, 1196}
135 7 4/5 18.9443 {2, 3, 2, 3} (0, 0) 0 0000111 0000010 0000001 0000001 1000001 1100000 1011100 {4, 40, 424}
136 7 4/5 18.9443 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000010 0000001 0000001 1000001 1100000 1011100 {4, 40, 424}
137 7 4/5 14.4721 {5, 6, 5, 6} (0, 0) 0 0001100 0001011 0000111 1100011 1010011 0111100 0111100 {8, 68, 688}
138 7 4/5 14.4721 {5, 6, 6, 5} (1.5708, 0) 3.14159 0001100 0001011 0000111 1100011 1010011 0111100 0111100 {8, 68, 688}
139 7 4/5 1.05573 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {4, 40, 420}
140 7 4/5 1.05573 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {4, 40, 420}
141 7 3/4 1 {3, 0, 3, 4} (0, 0) 2.35619 0000100 0000011 0000011 0000001 1000000 0110000 0111000 {3, 19, 71}
142 7 3/4 1 {0, 3, 4, 3} (0, 0) -2.35619 0000100 0000011 0000011 0000001 1000000 0110000 0111000 {3, 19, 71}
143 7 3/4 1 {0, 3, 3, 4} (1.5708, 1.1781) -3.14159 0000100 0000011 0000011 0000001 1000000 0110000 0111000 {3, 19, 71}
144 7 3/4 1 {3, 0, 4, 3} (1.5708, -1.1781) 3.14159 0000100 0000011 0000011 0000001 1000000 0110000 0111000 {3, 19, 71}
145 7 2/3 8 {5, 6, 5, 6} (0, 0) 0 0000111 0000111 0000011 0000011 1100000 1111000 1111000 {8, 132, 3550}
146 7 2/3 8 {5, 6, 6, 5} (1.5708, 0) 3.14159 0000111 0000111 0000011 0000011 1100000 1111000 1111000 {8, 132, 3550}
147 7 2/3 6 {1, 2, 1, 2} (0, 0) 0 0001011 0000110 0000110 1000001 0110001 1110000 1001100 {16, 200, 5252}
148 7 2/3 6 {1, 2, 2, 1} (1.5708, 0) -3.14159 0001011 0000110 0000110 1000001 0110001 1110000 1001100 {16, 200, 5252}
149 7 2/3 4 {6, 1, 6, 2} (0, 0) 2.0944 0000111 0000101 0000011 0000001 1100000 1010000 1111000 {4, 239, 4615}
150 7 2/3 4 {0, 5, 2, 5} (0, 0) -3.14159 0001111 0000111 0000011 1000100 1101001 1110001 1110110 {4, 124, 1906}
151 7 2/3 4 {1, 6, 2, 6} (0, 0) -2.0944 0000111 0000101 0000011 0000001 1100000 1010000 1111000 {4, 239, 4615}
152 7 2/3 4 {1, 6, 6, 2} (1.5708, 1.0472) -3.14159 0000111 0000101 0000011 0000001 1100000 1010000 1111000 {4, 239, 4615}
153 7 2/3 4 {5, 0, 2, 5} (1.5708, -1.5708) 3.14159 0001111 0000111 0000011 1000100 1101001 1110001 1110110 {4, 124, 1906}
154 7 2/3 4 {6, 1, 2, 6} (1.5708, -1.0472) 3.14159 0000111 0000101 0000011 0000001 1100000 1010000 1111000 {4, 239, 4615}
155 7 2/3 3.5 {1, 2, 1, 2} (0, 0) 0 0000101 0000011 0000011 0000001 1000001 0110000 1111100 {12, 220, 3418}
156 7 2/3 3.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 0000101 0000011 0000011 0000001 1000001 0110000 1111100 {12, 220, 3418}
157 7 2/3 3 {3, 1, 2, 6} (0, 0) 1.0472 0001011 0000101 0000011 1000000 0100000 1010001 1110010 {12, 108, 906}
158 7 2/3 3 {1, 3, 6, 2} (0, 0) -1.0472 0001011 0000101 0000011 1000000 0100000 1010001 1110010 {12, 108, 906}
159 7 2/3 3 {1, 3, 2, 6} (1.5708, 0.523599) -3.14159 0001011 0000101 0000011 1000000 0100000 1010001 1110010 {12, 108, 906}
160 7 2/3 3 {3, 1, 6, 2} (1.5708, -0.523599) 3.14159 0001011 0000101 0000011 1000000 0100000 1010001 1110010 {12, 108, 906}
161 7 2/3 2.5 {0, 3, 1, 2} (0, 0) 2.0944 0010111 0001111 1000110 0100001 1110011 1110101 1101110 {4, 28, 180}
162 7 2/3 2.5 {0, 6, 5, 1} (0, 0) 0 0010111 0001011 1000101 0100010 1010001 1101000 1110100 {8, 104, 956}
163 7 2/3 2.5 {3, 0, 2, 1} (0, 0) -2.0944 0010111 0001111 1000110 0100001 1110011 1110101 1101110 {4, 28, 180}
164 7 2/3 2.5 {3, 0, 1, 2} (1.5708, 1.0472) -3.14159 0010111 0001111 1000110 0100001 1110011 1110101 1101110 {4, 28, 180}
165 7 2/3 2.5 {0, 6, 1, 5} (1.5708, 0) -3.14159 0010111 0001011 1000101 0100010 1010001 1101000 1110100 {8, 104, 956}
166 7 2/3 2.5 {0, 3, 2, 1} (1.5708, -1.0472) 3.14159 0010111 0001111 1000110 0100001 1110011 1110101 1101110 {4, 28, 180}
167 7 2/3 10 {1, 2, 1, 2} (0, 0) 0 0001101 0000111 0000111 1000010 1110001 0111001 1110110 {4, 56, 1658}
168 7 2/3 10 {1, 2, 2, 1} (1.5708, 0) -3.14159 0001101 0000111 0000111 1000010 1110001 0111001 1110110 {4, 56, 1658}
169 7 2/3 1.75 {5, 3, 4, 6} (1.5708, -2.0944) -1.0472 0001111 0001011 0000111 1100110 1011001 1111001 1110110 {2, 2, 16}
170 7 2/3 1.75 {3, 5, 6, 4} (1.5708, 2.0944) -1.0472 0001111 0001011 0000111 1100110 1011001 1111001 1110110 {2, 2, 16}
171 7 2/3 1.75 {3, 5, 4, 6} (1.10715, 3.14159) 2.63623 0001111 0001011 0000111 1100110 1011001 1111001 1110110 {2, 2, 16}
172 7 2/3 1.75 {5, 3, 6, 4} (1.10715, 0) -2.63623 0001111 0001011 0000111 1100110 1011001 1111001 1110110 {2, 2, 16}
173 7 2/3 1.5 {1, 3, 2, 3} (0, 0) 2.0944 0001001 0000111 0000111 1000000 0110011 0110101 1110110 {8, 46, 268}
174 7 2/3 1.5 {3, 1, 3, 2} (0, 0) -2.0944 0001001 0000111 0000111 1000000 0110011 0110101 1110110 {8, 46, 268}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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175 7 2/3 1.5 {3, 1, 2, 3} (1.5708, 1.0472) -3.14159 0001001 0000111 0000111 1000000 0110011 0110101 1110110 {8, 46, 268}
176 7 2/3 1.5 {1, 3, 3, 2} (1.5708, -1.0472) 3.14159 0001001 0000111 0000111 1000000 0110011 0110101 1110110 {8, 46, 268}
177 7 2/3 1.33333 {1, 2, 1, 2} (0, 0) 0 0001101 0000010 0000010 1000101 1001001 0110001 1001110 {16, 64, 524}
178 7 2/3 1.33333 {1, 2, 2, 1} (1.5708, 0) -3.14159 0001101 0000010 0000010 1000101 1001001 0110001 1001110 {16, 64, 524}
179 7 3/5 5.52786 {0, 1, 0, 1} (0, 0) 0 0001111 0001111 0000101 1100010 1110001 1101000 1110100 {4, 28, 168}
180 7 3/5 5.52786 {0, 1, 1, 0} (1.5708, 0) -3.14159 0001111 0001111 0000101 1100010 1110001 1101000 1110100 {4, 28, 168}
181 7 3/5 5.23607 {0, 1, 0, 1} (0, 0) 0 0000101 0000101 0000011 0000011 1100011 0011101 1111110 {12, 44, 244}
182 7 3/5 5.23607 {0, 1, 1, 0} (1.5708, 0) -3.14159 0000101 0000101 0000011 0000011 1100011 0011101 1111110 {12, 44, 244}
183 7 3/5 49.5967 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000000 1100001 1111010 {4, 32, 172}
184 7 3/5 49.5967 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000000 1100001 1111010 {4, 32, 172}
185 7 3/5 4.73607 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000001 1100001 1111110 {4, 24, 108}
186 7 3/5 4.73607 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000001 1100001 1111110 {4, 24, 108}
187 7 3/5 26.1803 {0, 1, 0, 1} (0, 0) 0 0000101 0000101 0000011 0000011 1100001 0011000 1111100 {4, 24, 148}
188 7 3/5 26.1803 {0, 1, 1, 0} (1.5708, 0) -3.14159 0000101 0000101 0000011 0000011 1100001 0011000 1111100 {4, 24, 148}
189 7 3/5 2.76393 {2, 3, 2, 3} (0, 0) 0 0000110 0000011 0000001 0000001 1000000 1100000 0111000 {32, 80, 336}
190 7 3/5 2.76393 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000110 0000011 0000001 0000001 1000000 1100000 0111000 {32, 80, 336}
191 7 3/5 1.80902 {2, 3, 2, 3} (0, 0) 0 0000111 0000010 0000001 0000001 1000000 1100001 1011010 {4, 24, 108}
192 7 3/5 1.80902 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000010 0000001 0000001 1000000 1100001 1011010 {4, 24, 108}
193 7 3/5 1.44721 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000001 1100000 1111100 {4, 32, 172}
194 7 3/5 1.44721 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000001 1100000 1111100 {4, 32, 172}
195 7 3/5 0.690983 {2, 3, 2, 3} (0, 0) 0 0000110 0000011 0000001 0000001 1000001 1100000 0111100 {4, 24, 108}
196 7 3/5 0.690983 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000110 0000011 0000001 0000001 1000001 1100000 0111100 {4, 24, 108}
197 7 1/2 5 {0, 5, 2, 1} (0, 0) 1.5708 0001110 0000111 0000011 1000011 1100001 1111000 0111100 {24, 60, 15439}
198 7 1/2 5 {5, 0, 1, 2} (0, 0) -1.5708 0001110 0000111 0000011 1000011 1100001 1111000 0111100 {24, 60, 15439}
199 7 1/2 5 {5, 0, 2, 1} (1.5708, 0.785398) -3.14159 0001110 0000111 0000011 1000011 1100001 1111000 0111100 {24, 60, 15439}
200 7 1/2 5 {0, 5, 1, 2} (1.5708, -0.785398) 3.14159 0001110 0000111 0000011 1000011 1100001 1111000 0111100 {24, 60, 15439}
201 7 1/2 4 {5, 0, 2, 1} (0, 0) 1.5708 0000111 0000110 0000011 0000001 1100001 1110000 1011100 {32, 112, 14451}
202 7 1/2 4 {0, 5, 1, 2} (0, 0) -1.5708 0000111 0000110 0000011 0000001 1100001 1110000 1011100 {32, 112, 14451}
203 7 1/2 4 {0, 5, 2, 1} (1.5708, 0.785398) -3.14159 0000111 0000110 0000011 0000001 1100001 1110000 1011100 {32, 112, 14451}
204 7 1/2 4 {5, 0, 1, 2} (1.5708, -0.785398) 3.14159 0000111 0000110 0000011 0000001 1100001 1110000 1011100 {32, 112, 14451}
205 7 1/2 3 {3, 1, 2, 4} (0, 0) 1.5708 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {188, 967, 22009}
206 7 1/2 3 {1, 3, 4, 2} (0, 0) -1.5708 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {188, 967, 22009}
207 7 1/2 3 {1, 3, 2, 4} (1.5708, 0.785398) -3.14159 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {188, 967, 22009}
208 7 1/2 3 {3, 1, 4, 2} (1.5708, -0.785398) 3.14159 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {188, 967, 22009}
209 7 1/2 2.5 {0, 1, 0, 1} (0, 0) 0 0000111 0000111 0000011 0000011 1100001 1111000 1111100 {56, 344, 7160}
210 7 1/2 2.5 {0, 5, 1, 5} (0, 0) -3.14159 0000101 0000101 0000011 0000011 1100011 0011100 1111100 {14, 44, 1445}
211 7 1/2 2.5 {0, 1, 1, 0} (1.5708, 0) -3.14159 0000111 0000111 0000011 0000011 1100001 1111000 1111100 {56, 344, 7160}
212 7 1/2 2.5 {5, 0, 1, 5} (1.5708, -1.5708) 3.14159 0000101 0000101 0000011 0000011 1100011 0011100 1111100 {14, 44, 1445}
213 7 1/2 1.66667 {0, 3, 1, 2} (0, 0) 0 0000101 0000101 0000011 0000011 1100000 0011000 1111000 {24, 112, 3032}
214 7 1/2 1.66667 {2, 0, 1, 0} (0, 0) -3.14159 0001010 0000111 0000111 1000001 0110000 1110001 0111010 {14, 44, 746}
215 7 1/2 1.66667 {0, 3, 2, 1} (1.5708, 0) -3.14159 0000101 0000101 0000011 0000011 1100000 0011000 1111000 {24, 112, 3032}
216 7 1/2 1.66667 {0, 2, 1, 0} (1.5708, -1.5708) 3.14159 0001010 0000111 0000111 1000001 0110000 1110001 0111010 {14, 44, 746}
217 7 1/2 1.5 {1, 2, 1, 2} (0, 0) 0 0000011 0000010 0000010 0000001 0000001 1110000 1001100 {56, 324, 3252}
218 7 1/2 1.5 {5, 0, 4, 0} (0, 0) -3.14159 0000111 0000110 0000110 0000001 1110001 1110001 1001110 {12, 40, 350}
219 7 1/2 1.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 0000011 0000010 0000010 0000001 0000001 1110000 1001100 {56, 324, 3252}
220 7 1/2 1.5 {0, 5, 4, 0} (1.5708, -1.5708) 3.14159 0000111 0000110 0000110 0000001 1110001 1110001 1001110 {12, 40, 350}
221 7 1/2 1.33333 {0, 6, 4, 5} (0, 0) 1.5708 0000111 0000011 0000011 0000011 1000000 1111000 1111000 {4, 4, 44}
222 7 1/2 1.33333 {6, 0, 5, 4} (0, 0) -1.5708 0000111 0000011 0000011 0000011 1000000 1111000 1111000 {4, 4, 44}
223 7 1/2 1.33333 {6, 0, 4, 5} (1.5708, 0.785398) -3.14159 0000111 0000011 0000011 0000011 1000000 1111000 1111000 {4, 4, 44}
224 7 1/2 1.33333 {0, 6, 5, 4} (1.5708, -0.785398) 3.14159 0000111 0000011 0000011 0000011 1000000 1111000 1111000 {4, 4, 44}
225 7 1/2 0.75 {1, 2, 1, 2} (0, 0) 0 0000111 0000011 0000011 0000011 1000001 1111000 1111100 {88, 588, 8748}
226 7 1/2 0.75 {1, 2, 2, 1} (1.5708, 0) -3.14159 0000111 0000011 0000011 0000011 1000001 1111000 1111100 {88, 588, 8748}
227 7 1/2 0.666667 {2, 3, 2, 3} (0, 0) 0 0000011 0000010 0000001 0000001 0000001 1100000 1011100 {112, 592, 6124}
228 7 1/2 0.666667 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000011 0000010 0000001 0000001 0000001 1100000 1011100 {112, 592, 6124}
229 7 1/2 0.25 {0, 1, 0, 1} (0, 0) 0 0000001 0000001 0000001 0000001 0000001 0000001 1111110 {60, 180, 720}
230 7 1/2 0.25 {0, 1, 1, 0} (1.5708, 0) -3.14159 0000001 0000001 0000001 0000001 0000001 0000001 1111110 {60, 180, 720}
231 7 2/5 7.23607 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000001 1100000 1111100 {16, 112, 1196}
232 7 2/5 7.23607 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000001 1100000 1111100 {16, 112, 1196}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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233 7 2/5 5.52786 {5, 6, 5, 6} (0, 0) 0 0001100 0001011 0000111 1100011 1010011 0111100 0111100 {8, 68, 688}
234 7 2/5 5.52786 {5, 6, 6, 5} (1.5708, 0) -3.14159 0001100 0001011 0000111 1100011 1010011 0111100 0111100 {8, 68, 688}
235 7 2/5 18.9443 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {4, 40, 420}
236 7 2/5 18.9443 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {4, 40, 420}
237 7 2/5 1.05573 {2, 3, 2, 3} (0, 0) 0 0000111 0000010 0000001 0000001 1000001 1100000 1011100 {4, 40, 424}
238 7 2/5 1.05573 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000010 0000001 0000001 1000001 1100000 1011100 {4, 40, 424}
239 7 1/3 8 {5, 6, 5, 6} (0, 0) 0 0000111 0000111 0000011 0000011 1100000 1111000 1111000 {8, 158, 2980}
240 7 1/3 8 {5, 6, 6, 5} (1.5708, 0) 3.14159 0000111 0000111 0000011 0000011 1100000 1111000 1111000 {8, 158, 2980}
241 7 1/3 7 {0, 4, 3, 1} (0, 0) 0 0001001 0000101 0000011 1000001 0100001 0010000 1111100 {16, 88, 496}
242 7 1/3 7 {0, 4, 1, 3} (1.5708, 0) -3.14159 0001001 0000101 0000011 1000001 0100001 0010000 1111100 {16, 88, 496}
243 7 1/3 4 {1, 6, 2, 6} (0, 0) 2.0944 0000111 0000101 0000011 0000001 1100000 1010000 1111000 {6, 126, 1662}
244 7 1/3 4 {3, 0, 2, 6} (0, 0) 1.0472 0000110 0000100 0000011 0000011 1100001 1011000 0011100 {4, 20, 70}
245 7 1/3 4 {6, 1, 6, 2} (0, 0) -2.0944 0000111 0000101 0000011 0000001 1100000 1010000 1111000 {6, 126, 1662}
246 7 1/3 4 {0, 3, 6, 2} (0, 0) -1.0472 0000110 0000100 0000011 0000011 1100001 1011000 0011100 {4, 20, 70}
247 7 1/3 4 {6, 1, 2, 6} (1.5708, 1.0472) -3.14159 0000111 0000101 0000011 0000001 1100000 1010000 1111000 {6, 126, 1662}
248 7 1/3 4 {0, 3, 2, 6} (1.5708, 0.523599) -3.14159 0000110 0000100 0000011 0000011 1100001 1011000 0011100 {4, 20, 70}
249 7 1/3 4 {1, 6, 6, 2} (1.5708, -1.0472) 3.14159 0000111 0000101 0000011 0000001 1100000 1010000 1111000 {6, 126, 1662}
250 7 1/3 4 {3, 0, 6, 2} (1.5708, -0.523599) 3.14159 0000110 0000100 0000011 0000011 1100001 1011000 0011100 {4, 20, 70}
251 7 1/3 3 {1, 6, 4, 3} (0, 0) 0 0000110 0000100 0000011 0000001 1100001 1010000 0011100 {32, 220, 1424}
252 7 1/3 3 {1, 6, 3, 4} (1.5708, 0) 3.14159 0000110 0000100 0000011 0000001 1100001 1010000 0011100 {32, 220, 1424}
253 7 1/3 2.5 {0, 6, 3, 5} (0, 0) 2.0944 0001011 0000111 0000001 1000011 0100011 1101100 1111100 {12, 48, 272}
254 7 1/3 2.5 {6, 0, 6, 3} (0, 0) 1.0472 0001011 0000111 0000001 1000011 0100011 1101100 1111100 {12, 92, 616}
255 7 1/3 2.5 {6, 0, 5, 3} (0, 0) -2.0944 0001011 0000111 0000001 1000011 0100011 1101100 1111100 {12, 48, 272}
256 7 1/3 2.5 {0, 6, 3, 6} (0, 0) -1.0472 0001011 0000111 0000001 1000011 0100011 1101100 1111100 {12, 92, 616}
257 7 1/3 2.5 {6, 0, 3, 5} (1.5708, 1.0472) -3.14159 0001011 0000111 0000001 1000011 0100011 1101100 1111100 {12, 48, 272}
258 7 1/3 2.5 {0, 6, 6, 3} (1.5708, 0.523599) -3.14159 0001011 0000111 0000001 1000011 0100011 1101100 1111100 {12, 92, 616}
259 7 1/3 2.5 {0, 6, 5, 3} (1.5708, -1.0472) 3.14159 0001011 0000111 0000001 1000011 0100011 1101100 1111100 {12, 48, 272}
260 7 1/3 2.5 {6, 0, 3, 6} (1.5708, -0.523599) 3.14159 0001011 0000111 0000001 1000011 0100011 1101100 1111100 {12, 92, 616}
261 7 1/3 2 {3, 1, 3, 2} (0, 0) 2.0944 0000101 0000010 0000010 0000001 1000000 0110000 1001000 {8, 44, 161}
262 7 1/3 2 {1, 3, 2, 3} (0, 0) -2.0944 0000101 0000010 0000010 0000001 1000000 0110000 1001000 {8, 44, 161}
263 7 1/3 2 {1, 3, 3, 2} (1.5708, 1.0472) -3.14159 0000101 0000010 0000010 0000001 1000000 0110000 1001000 {8, 44, 161}
264 7 1/3 2 {3, 1, 2, 3} (1.5708, -1.0472) 3.14159 0000101 0000010 0000010 0000001 1000000 0110000 1001000 {8, 44, 161}
265 7 1/3 1.75 {1, 2, 1, 2} (0, 0) 0 0000110 0000011 0000011 0000001 1000001 1110000 0111100 {8, 88, 916}
266 7 1/3 1.75 {4, 0, 3, 5} (1.5708, -2.0944) -1.0472 0001101 0000111 0000111 1000011 1110000 0111000 1111000 {2, 4, 12}
267 7 1/3 1.75 {0, 4, 5, 3} (1.5708, 2.0944) -1.0472 0001101 0000111 0000111 1000011 1110000 0111000 1111000 {2, 4, 12}
268 7 1/3 1.75 {0, 4, 3, 5} (1.10715, 3.14159) 2.63623 0001101 0000111 0000111 1000011 1110000 0111000 1111000 {2, 4, 12}
269 7 1/3 1.75 {4, 0, 5, 3} (1.10715, 0) -2.63623 0001101 0000111 0000111 1000011 1110000 0111000 1111000 {2, 4, 12}
270 7 1/3 1.75 {1, 2, 2, 1} (1.5708, 0) -3.14159 0000110 0000011 0000011 0000001 1000001 1110000 0111100 {8, 88, 916}
271 7 1/3 1.6 {1, 2, 1, 2} (0, 0) 0 0001101 0000111 0000111 1000010 1110001 0111000 1110100 {4, 36, 232}
272 7 1/3 1.6 {1, 2, 2, 1} (1.5708, 0) -3.14159 0001101 0000111 0000111 1000010 1110001 0111000 1110100 {4, 36, 232}
273 7 1/3 1.5 {1, 5, 4, 2} (0, 0) 0 0001001 0000101 0000011 1000001 0100000 0010000 1111000 {8, 52, 520}
274 7 1/3 1.5 {1, 5, 2, 4} (1.5708, 0) 3.14159 0001001 0000101 0000011 1000001 0100000 0010000 1111000 {8, 52, 520}
275 7 1/3 0.4 {2, 3, 2, 3} (0, 0) 0 0000101 0000011 0000001 0000001 1000001 0100000 1111100 {4, 32, 156}
276 7 1/3 0.4 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000101 0000011 0000001 0000001 1000001 0100000 1111100 {4, 32, 156}
277 7 1/3 0.25 {2, 3, 2, 3} (0, 0) 0 0000101 0000011 0000001 0000001 1000001 0100001 1111110 {4, 24, 100}
278 7 1/3 0.25 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000101 0000011 0000001 0000001 1000001 0100001 1111110 {4, 24, 100}
279 7 1/4 1 {3, 0, 3, 4} (0, 0) 0.785398 0000100 0000011 0000011 0000001 1000000 0110000 0111000 {3, 19, 71}
280 7 1/4 1 {0, 3, 4, 3} (0, 0) -0.785398 0000100 0000011 0000011 0000001 1000000 0110000 0111000 {3, 19, 71}
281 7 1/4 1 {0, 3, 3, 4} (1.5708, 0.392699) -3.14159 0000100 0000011 0000011 0000001 1000000 0110000 0111000 {3, 19, 71}
282 7 1/4 1 {3, 0, 4, 3} (1.5708, -0.392699) 3.14159 0000100 0000011 0000011 0000001 1000000 0110000 0111000 {3, 19, 71}
283 7 1/5 7.23607 {2, 3, 2, 3} (0, 0) 0 0000110 0000011 0000001 0000001 1000000 1100000 0111000 {32, 80, 336}
284 7 1/5 7.23607 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000110 0000011 0000001 0000001 1000000 1100000 0111000 {32, 80, 336}
285 7 1/5 3.81966 {0, 1, 0, 1} (0, 0) 0 0000101 0000101 0000011 0000011 1100001 0011000 1111100 {4, 24, 148}
286 7 1/5 3.81966 {0, 1, 1, 0} (1.5708, 0) -3.14159 0000101 0000101 0000011 0000011 1100001 0011000 1111100 {4, 24, 148}
287 7 1/5 14.4721 {0, 1, 0, 1} (0, 0) 0 0001111 0001111 0000101 1100010 1110001 1101000 1110100 {4, 28, 168}
288 7 1/5 14.4721 {0, 1, 1, 0} (1.5708, 0) -3.14159 0001111 0001111 0000101 1100010 1110001 1101000 1110100 {4, 28, 168}
289 7 1/5 1.80902 {2, 3, 2, 3} (0, 0) 0 0000110 0000011 0000001 0000001 1000001 1100000 0111100 {4, 24, 108}
290 7 1/5 1.80902 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000110 0000011 0000001 0000001 1000001 1100000 0111100 {4, 24, 108}
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291 7 1/5 1.05573 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {8, 88, 656}
292 7 1/5 1.05573 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000000 1100000 1111000 {8, 88, 656}
293 7 1/5 0.763932 {0, 1, 0, 1} (0, 0) 0 0000101 0000101 0000011 0000011 1100011 0011101 1111110 {12, 44, 244}
294 7 1/5 0.763932 {0, 1, 1, 0} (1.5708, 0) -3.14159 0000101 0000101 0000011 0000011 1100011 0011101 1111110 {12, 44, 244}
295 7 1/5 0.690983 {2, 3, 2, 3} (0, 0) 0 0000111 0000010 0000001 0000001 1000000 1100001 1011010 {4, 24, 108}
296 7 1/5 0.690983 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000010 0000001 0000001 1000000 1100001 1011010 {4, 24, 108}
297 7 1/5 0.552786 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000001 1100000 1111100 {4, 32, 172}
298 7 1/5 0.552786 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000001 1100000 1111100 {4, 32, 172}
299 7 1/5 0.403252 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000000 1100001 1111010 {4, 32, 172}
300 7 1/5 0.403252 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000000 1100001 1111010 {4, 32, 172}
301 7 1/5 0.263932 {2, 3, 2, 3} (0, 0) 0 0000111 0000011 0000001 0000001 1000001 1100001 1111110 {4, 24, 108}
302 7 1/5 0.263932 {2, 3, 3, 2} (1.5708, 0) -3.14159 0000111 0000011 0000001 0000001 1000001 1100001 1111110 {4, 24, 108}
303 8 4/5 99.1935 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000101 10000011 11110001 11101001 11111110 {4, 44}
304 8 4/5 99.1935 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000101 10000011 11110001 11101001 11111110 {4, 44}
305 8 4/5 8.2918 {1, 2, 1, 2} (0, 0) 0 00001011 00000101 00000101 00000010 10000011 01100000 10011000 11101000 {12, 116}
306 8 4/5 8.2918 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001011 00000101 00000101 00000010 10000011 01100000 10011000 11101000 {12, 116}
307 8 4/5 8.23607 {1, 6, 5, 2} (0, 0) 0 00000111 00000100 00000010 00000001 00000001 11000001 10100001 10011110 {8, 56}
308 8 4/5 8.23607 {1, 6, 2, 5} (1.5708, 0) -3.14159 00000111 00000100 00000010 00000001 00000001 11000001 10100001 10011110 {8, 56}
309 8 4/5 68.541 {0, 1, 0, 1} (0, 0) 0 00001111 00001111 00001011 00000111 11100001 11010001 11110001 11111110 {4, 60}
310 8 4/5 68.541 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001111 00001111 00001011 00000111 11100001 11010001 11110001 11111110 {4, 60}
311 8 4/5 6.54509 {2, 3, 2, 3} (0, 0) 0 00001101 00000110 00000001 00000001 10000011 11000000 01001000 10111000 {8, 64}
312 8 4/5 6.54509 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001101 00000110 00000001 00000001 10000011 11000000 01001000 10111000 {8, 64}
313 8 4/5 56.8328 {5, 6, 5, 6} (0, 0) 0 00011111 00011111 00000110 11001111 11010111 11111001 11111001 11011110 {4, 48}
314 8 4/5 56.8328 {5, 6, 6, 5} (1.5708, 0) 3.14159 00011111 00011111 00000110 11001111 11010111 11111001 11111001 11011110 {4, 48}
315 8 4/5 5.52786 {2, 3, 2, 3} (0, 0) 0 00000100 00000100 00000011 00000011 00000001 11000001 00110000 00111100 {24, 432}
316 8 4/5 5.52786 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000100 00000100 00000011 00000011 00000001 11000001 00110000 00111100 {24, 432}
317 8 4/5 5.42705 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000010 00000001 11000011 11110101 11101110 {8, 88}
318 8 4/5 5.42705 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000010 00000001 11000011 11110101 11101110 {8, 88}
319 8 4/5 37.8885 {2, 3, 2, 3} (0, 0) 0 00000111 00000100 00000011 00000011 00000001 11000010 10110100 10111000 {12, 232}
320 8 4/5 37.8885 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000100 00000011 00000011 00000001 11000010 10110100 10111000 {12, 232}
321 8 4/5 3.81966 {0, 1, 0, 1} (0, 0) 0 00001111 00001111 00000100 00000010 11000001 11100001 11010001 11001110 {8, 84}
322 8 4/5 3.81966 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001111 00001111 00000100 00000010 11000001 11100001 11010001 11001110 {8, 84}
323 8 4/5 3.76393 {0, 5, 4, 1} (0, 0) 0 00001011 00000111 00000001 00000001 10000011 01000011 11001101 11111110 {8, 80}
324 8 4/5 3.76393 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001011 00000111 00000001 00000001 10000011 01000011 11001101 11111110 {8, 80}
325 8 4/5 3.16718 {5, 6, 5, 6} (0, 0) 0 00001111 00000111 00000111 00000111 10000111 11111001 11111001 11111110 {4, 16}
326 8 4/5 3.16718 {5, 6, 6, 5} (1.5708, 0) 3.14159 00001111 00000111 00000111 00000111 10000111 11111001 11111001 11111110 {4, 16}
327 8 4/5 3 {2, 5, 4, 3} (0, 0) 0 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 8}
328 8 4/5 3 {2, 5, 3, 4} (1.5708, 0) -3.14159 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 8}
329 8 4/5 26.1803 {5, 6, 5, 6} (0, 0) 0 00011111 00001111 00000110 10001111 11010111 11111001 11111001 11011110 {4, 108}
330 8 4/5 26.1803 {5, 6, 6, 5} (1.5708, 0) 3.14159 00011111 00001111 00000110 10001111 11010111 11111001 11111001 11011110 {4, 108}
331 8 4/5 21.7082 {6, 7, 6, 7} (0, 0) 0 00000111 00000111 00000111 00000011 00000011 11100011 11111100 11111100 {4, 40}
332 8 4/5 21.7082 {6, 7, 7, 6} (1.5708, 0) -3.14159 00000111 00000111 00000111 00000011 00000011 11100011 11111100 11111100 {4, 40}
333 8 4/5 2.89443 {2, 3, 2, 3} (0, 0) 0 00000111 00000111 00000011 00000011 00000001 11000010 11110100 11111000 {4, 36}
334 8 4/5 2.89443 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000001 11000010 11110100 11111000 {4, 36}
335 8 4/5 2.5 {2, 3, 2, 3} (0, 0) 0 00001100 00000101 00000010 00000010 10000001 11000000 00110001 01001010 {8, 64}
336 8 4/5 2.5 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001100 00000101 00000010 00000010 10000001 11000000 00110001 01001010 {8, 64}
337 8 4/5 148.79 {2, 3, 2, 3} (0, 0) 0 00001011 00000111 00000101 00000101 10000011 01110010 11001101 11111010 {4, 32}
338 8 4/5 148.79 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001011 00000111 00000101 00000101 10000011 01110010 11001101 11111010 {4, 32}
339 8 4/5 10 {1, 2, 1, 2} (0, 0) 0 00000110 00000101 00000101 00000011 00000011 11100001 10011001 01111110 {24, 320}
340 8 4/5 10 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000110 00000101 00000101 00000011 00000011 11100001 10011001 01111110 {24, 320}
341 8 4/5 1.65836 {2, 3, 2, 3} (0, 0) 0 00001011 00000111 00000101 00000101 10000011 01110000 11001000 11111000 {4, 32}
342 8 4/5 1.65836 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001011 00000111 00000101 00000101 10000011 01110000 11001000 11111000 {4, 32}
343 8 4/5 0.954915 {2, 3, 2, 3} (0, 0) 0 00001101 00000111 00000001 00000001 10000010 11000000 01001000 11110000 {8, 64}
344 8 4/5 0.954915 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001101 00000111 00000001 00000001 10000010 11000000 01001000 11110000 {8, 64}
345 8 3/4 91.2548 {1, 2, 1, 2} (0, 0) 0 00011111 00001111 00001111 10000111 11100000 11110001 11110001 11110110 {4, 28}
346 8 3/4 91.2548 {1, 2, 2, 1} (1.5708, 0) -3.14159 00011111 00001111 00001111 10000111 11100000 11110001 11110001 11110110 {4, 28}
347 8 3/4 9 {0, 4, 3, 1} (0, 0) 0 00010011 00001011 00000101 10000011 01000011 00100001 11011001 11111110 {8, 32}
348 8 3/4 9 {0, 4, 1, 3} (1.5708, 0) -3.14159 00010011 00001011 00000101 10000011 01000011 00100001 11011001 11111110 {8, 32}
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349 8 3/4 8.68629 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000101 00000011 00000010 11100001 11011000 11110100 {4, 40}
350 8 3/4 8.68629 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000101 00000011 00000010 11100001 11011000 11110100 {4, 40}
351 8 3/4 8.34315 {0, 1, 0, 1} (0, 0) 0 00001111 00001111 00001101 00000011 11100000 11100000 11010001 11110010 {4, 28}
352 8 3/4 8.34315 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001111 00001111 00001101 00000011 11100000 11100000 11010001 11110010 {4, 28}
353 8 3/4 8 {0, 1, 0, 1} (0, 0) 0 00000011 00000011 00000010 00000001 00000001 00000001 11100000 11011100 {24, 332}
354 8 3/4 8 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000011 00000011 00000010 00000001 00000001 00000001 11100000 11011100 {24, 332}
355 8 3/4 7.82843 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000011 10000001 01000001 00110001 11111110 {12, 72}
356 8 3/4 7.82843 {0, 1, 3, 2} (1.5708, -3.14159) 1.5708 00001101 00001011 00000101 00000011 11000000 10100001 01010001 11110110 {4, 8}
357 8 3/4 7.82843 {0, 1, 2, 3} (1.5708, 3.14159) -1.5708 00001101 00001011 00000101 00000011 11000000 10100001 01010001 11110110 {4, 8}
358 8 3/4 7.82843 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000011 10000001 01000001 00110001 11111110 {12, 72}
359 8 3/4 7.02944 {5, 6, 5, 6} (0, 0) 0 00101111 00010111 10001111 01000111 10100111 11111001 11111001 11111110 {4, 20}
360 8 3/4 7.02944 {5, 6, 6, 5} (1.5708, 0) 3.14159 00101111 00010111 10001111 01000111 10100111 11111001 11111001 11111110 {4, 20}
361 8 3/4 69.9411 {1, 2, 1, 2} (0, 0) 0 00000111 00000011 00000011 00000010 00000001 10000001 11110000 11101100 {4, 56}
362 8 3/4 69.9411 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000111 00000011 00000011 00000010 00000001 10000001 11110000 11101100 {4, 56}
363 8 3/4 6.82843 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000101 10000011 11110000 11101001 11111010 {12, 108}
364 8 3/4 6.82843 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000101 10000011 11110000 11101001 11111010 {12, 108}
365 8 3/4 6 {1, 2, 1, 2} (0, 0) 0 00000111 00000011 00000011 00000001 00000001 10000010 11100100 11111000 {20, 196}
366 8 3/4 6 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000111 00000011 00000011 00000001 00000001 10000010 11100100 11111000 {20, 196}
367 8 3/4 58.2843 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000001 10000001 11100000 11100000 11111000 {8, 52}
368 8 3/4 58.2843 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000001 10000001 11100000 11100000 11111000 {8, 52}
369 8 3/4 50.6274 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000101 00000010 00000001 11100001 11010000 11101100 {4, 40}
370 8 3/4 50.6274 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000101 00000010 00000001 11100001 11010000 11101100 {4, 40}
371 8 3/4 5 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000010 10000000 01000000 00110000 11100000 {44, 136}
372 8 3/4 5 {0, 5, 4, 3} (0, 0) -3.14159 00001101 00000110 00000011 00000001 10000000 11000000 01100000 10110000 {8, 20}
373 8 3/4 5 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000010 10000000 01000000 00110000 11100000 {44, 136}
374 8 3/4 5 {5, 0, 4, 3} (1.5708, -1.5708) 3.14159 00001101 00000110 00000011 00000001 10000000 11000000 01100000 10110000 {8, 20}
375 8 3/4 48.6274 {5, 6, 5, 6} (0, 0) 0 00001111 00000110 00000110 00000001 10000001 11100001 11100001 10011110 {4, 28}
376 8 3/4 48.6274 {5, 6, 6, 5} (1.5708, 0) -3.14159 00001111 00000110 00000110 00000001 10000001 11100001 11100001 10011110 {4, 28}
377 8 3/4 46.6274 {2, 3, 2, 3} (0, 0) 0 00001011 00000101 00000011 00000011 10000001 01000000 10110000 11111000 {16, 164}
378 8 3/4 46.6274 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001011 00000101 00000011 00000011 10000001 01000000 10110000 11111000 {16, 164}
379 8 3/4 4.74755 {0, 2, 3, 1} (1.5708, 0) 1.23096 00001010 00001001 00000110 00000101 11000011 00110011 10101101 01011110 {4, 8}
380 8 3/4 4.74755 {0, 2, 1, 3} (1.5708, 0) -1.91063 00001010 00001001 00000110 00000101 11000011 00110011 10101101 01011110 {4, 8}
381 8 3/4 4.68629 {1, 2, 1, 2} (0, 0) 0 00001001 00000111 00000111 00000011 10000000 01100010 01110100 11110000 {4, 52}
382 8 3/4 4.68629 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001001 00000111 00000111 00000011 10000000 01100010 01110100 11110000 {4, 52}
383 8 3/4 4.34315 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000001 00000001 11000010 11100100 11111000 {4, 36}
384 8 3/4 4.34315 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000001 00000001 11000010 11100100 11111000 {4, 36}
385 8 3/4 4.17157 {6, 7, 6, 7} (0, 0) 0 00010111 00001111 00001111 10000011 01100000 11100000 11110000 11110000 {4, 32}
386 8 3/4 4.17157 {6, 7, 7, 6} (1.5708, 0) 3.14159 00010111 00001111 00001111 10000011 01100000 11100000 11110000 11110000 {4, 32}
387 8 3/4 4 {1, 7, 2, 7} (0, 0) 1.5708 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {8, 38}
388 8 3/4 4 {7, 1, 7, 2} (0, 0) -1.5708 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {8, 38}
389 8 3/4 4 {7, 1, 2, 7} (1.5708, 0.785398) -3.14159 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {8, 38}
390 8 3/4 4 {1, 7, 7, 2} (1.5708, -0.785398) 3.14159 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {8, 38}
391 8 3/4 34.9706 {1, 2, 1, 2} (0, 0) 0 00000111 00000011 00000011 00000001 00000001 10000001 11100000 11111100 {4, 40}
392 8 3/4 34.9706 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000111 00000011 00000011 00000001 00000001 10000001 11100000 11111100 {4, 40}
393 8 3/4 3.34315 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000010 10000001 01000001 00110000 11101100 {16, 72}
394 8 3/4 3.34315 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000010 10000001 01000001 00110000 11101100 {16, 72}
395 8 3/4 3 {1, 2, 1, 2} (0, 0) 0 00000101 00000011 00000011 00000001 00000001 10000000 01100000 11111000 {20, 84}
396 8 3/4 3 {0, 1, 4, 3} (1.5708, -3.14159) 1.5708 00000110 00000101 00000011 00000010 00000001 11000000 10110000 01101000 {4, 8}
397 8 3/4 3 {0, 1, 3, 4} (1.5708, 3.14159) -1.5708 00000110 00000101 00000011 00000010 00000001 11000000 10110000 01101000 {4, 8}
398 8 3/4 3 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000101 00000011 00000011 00000001 00000001 10000000 01100000 11111000 {20, 84}
399 8 3/4 29.6569 {6, 7, 6, 7} (0, 0) 0 00010111 00001011 00000111 10000111 01000011 10110011 11111100 11111100 {4, 20}
400 8 3/4 29.6569 {6, 7, 7, 6} (1.5708, 0) 3.14159 00010111 00001011 00000111 10000111 01000011 10110011 11111100 11111100 {4, 20}
401 8 3/4 29.1421 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000011 10000011 11100000 11111000 11111000 {4, 28}
402 8 3/4 29.1421 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000011 10000011 11100000 11111000 11111000 {4, 28}
403 8 3/4 27.3137 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000001 10000010 11100001 11101000 11110100 {12, 152}
404 8 3/4 27.3137 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000001 10000010 11100001 11101000 11110100 {12, 152}
405 8 3/4 25.3137 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000101 00000011 00000011 11100000 11011001 11111010 {8, 76}
406 8 3/4 25.3137 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000101 00000011 00000011 11100000 11011001 11111010 {8, 76}
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407 8 3/4 24.3137 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000010 10000000 01000000 00110001 11100010 {8, 48}
408 8 3/4 24.3137 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000010 10000000 01000000 00110001 11100010 {8, 48}
409 8 3/4 2.5 {1, 2, 1, 2} (0, 0) 0 00001011 00000111 00000111 00000011 10000000 01100000 11110000 11110000 {4, 24}
410 8 3/4 2.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001011 00000111 00000111 00000011 10000000 01100000 11110000 11110000 {4, 24}
411 8 3/4 2.17157 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000010 00000010 10000001 01000001 00110001 11001110 {8, 32}
412 8 3/4 2.17157 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000010 00000010 10000001 01000001 00110001 11001110 {8, 32}
413 8 3/4 2 {1, 5, 2, 5} (0, 0) 1.5708 00000101 00000010 00000010 00000001 00000001 10000000 01100000 10011000 {4, 24}
414 8 3/4 2 {5, 1, 5, 2} (0, 0) -1.5708 00000101 00000010 00000010 00000001 00000001 10000000 01100000 10011000 {4, 24}
415 8 3/4 2 {5, 1, 2, 5} (1.5708, 0.785398) -3.14159 00000101 00000010 00000010 00000001 00000001 10000000 01100000 10011000 {4, 24}
416 8 3/4 2 {1, 5, 5, 2} (1.5708, -0.785398) 3.14159 00000101 00000010 00000010 00000001 00000001 10000000 01100000 10011000 {4, 24}
417 8 3/4 159.196 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000001 10000011 11100000 11101001 11111010 {4, 32}
418 8 3/4 159.196 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000001 10000011 11100000 11101001 11111010 {4, 32}
419 8 3/4 15.6569 {1, 2, 1, 2} (0, 0) 0 00011111 00001111 00001111 10000010 11100001 11100001 11110000 11101100 {4, 32}
420 8 3/4 15.6569 {1, 2, 2, 1} (1.5708, 0) -3.14159 00011111 00001111 00001111 10000010 11100001 11100001 11110000 11101100 {4, 32}
421 8 3/4 14.6569 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000010 10000001 01000001 00110001 11101110 {32, 148}
422 8 3/4 14.6569 {6, 1, 3, 4} (0, 0) -3.14159 00001011 00000110 00000101 00000010 10000001 01100001 11010001 10101110 {8, 32}
423 8 3/4 14.6569 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000010 10000001 01000001 00110001 11101110 {32, 148}
424 8 3/4 14.6569 {1, 6, 3, 4} (1.5708, -1.5708) 3.14159 00001011 00000110 00000101 00000010 10000001 01100001 11010001 10101110 {8, 32}
425 8 3/4 12.6569 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000011 00000001 11000000 11110001 11111010 {12, 76}
426 8 3/4 12.6569 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000001 11000000 11110001 11111010 {12, 76}
427 8 3/4 12 {1, 2, 1, 2} (0, 0) 0 00000101 00000011 00000011 00000010 00000001 10000000 01110000 11101000 {8, 92}
428 8 3/4 12 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000101 00000011 00000011 00000010 00000001 10000000 01110000 11101000 {8, 92}
429 8 3/4 10 {1, 2, 1, 2} (0, 0) 0 00001001 00000111 00000111 00000001 10000000 01100000 01100000 11110000 {12, 56}
430 8 3/4 10 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001001 00000111 00000111 00000001 10000000 01100000 01100000 11110000 {12, 56}
431 8 3/4 1.8 {0, 1, 7, 6} (1.5708, 3.14159) 0.927295 00001110 00001101 00001011 00000111 11100000 11010000 10110000 01110000 {24, 24}
432 8 3/4 1.8 {0, 1, 6, 7} (1.5708, -3.14159) -2.2143 00001110 00001101 00001011 00000111 11100000 11010000 10110000 01110000 {24, 24}
433 8 3/4 1.58579 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000011 10000001 01000001 00110000 11111100 {8, 32}
434 8 3/4 1.58579 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000011 10000001 01000001 00110000 11111100 {8, 32}
435 8 3/4 1.5 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000011 00000011 11000000 11111000 11111000 {4, 24}
436 8 3/4 1.5 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000011 11000000 11111000 11111000 {4, 24}
437 8 2/3 9.5 {1, 2, 1, 2} (0, 0) 0 00010011 00001101 00001101 10000011 01100111 01101010 10011100 11111000 {8, 112}
438 8 2/3 9.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 00010011 00001101 00001101 10000011 01100111 01101010 10011100 11111000 {8, 112}
439 8 2/3 9 {0, 6, 3, 1} (0, 0) 0 00011011 00010111 00001100 11000101 10100010 01110000 11001001 11010010 {8, 192}
440 8 2/3 9 {0, 6, 1, 3} (1.5708, 0) -3.14159 00011011 00010111 00001100 11000101 10100010 01110000 11001001 11010010 {8, 192}
441 8 2/3 8 {7, 5, 7, 6} (0, 0) 1.0472 00001101 00001011 00000101 00000011 11000000 10100000 01010000 11110000 {18, 336}
442 8 2/3 8 {5, 7, 6, 7} (0, 0) -1.0472 00001101 00001011 00000101 00000011 11000000 10100000 01010000 11110000 {18, 336}
443 8 2/3 8 {5, 7, 7, 6} (1.5708, 0.523599) -3.14159 00001101 00001011 00000101 00000011 11000000 10100000 01010000 11110000 {18, 336}
444 8 2/3 8 {7, 5, 6, 7} (1.5708, -0.523599) 3.14159 00001101 00001011 00000101 00000011 11000000 10100000 01010000 11110000 {18, 336}
445 8 2/3 7.5 {6, 7, 6, 7} (0, 0) 0 00001011 00000111 00000111 00000011 10000011 01100000 11111000 11111000 {16, 408}
446 8 2/3 7.5 {6, 7, 7, 6} (1.5708, 0) 3.14159 00001011 00000111 00000111 00000011 10000011 01100000 11111000 11111000 {16, 408}
447 8 2/3 7 {0, 4, 1, 2} (0, 0) 0 00001010 00000110 00000101 00000011 10000001 01100000 11010001 00111010 {16, 532}
448 8 2/3 7 {0, 4, 2, 1} (1.5708, 0) -3.14159 00001010 00000110 00000101 00000011 10000001 01100000 11010001 00111010 {16, 532}
449 8 2/3 6 {3, 2, 3, 5} (0, 0) 2.0944 00010110 00001011 00000101 10000001 01000010 10100001 11001000 01110100 {40, 782}
450 8 2/3 6 {4, 7, 4, 6} (0, 0) 1.0472 00011010 00010101 00001111 11000111 10100010 01110001 10111001 01110110 {5, 555}
451 8 2/3 6 {2, 3, 5, 3} (0, 0) -2.0944 00010110 00001011 00000101 10000001 01000010 10100001 11001000 01110100 {40, 782}
452 8 2/3 6 {7, 4, 6, 4} (0, 0) -1.0472 00011010 00010101 00001111 11000111 10100010 01110001 10111001 01110110 {5, 555}
453 8 2/3 6 {2, 3, 3, 5} (1.5708, 1.0472) -3.14159 00010110 00001011 00000101 10000001 01000010 10100001 11001000 01110100 {40, 782}
454 8 2/3 6 {7, 4, 4, 6} (1.5708, 0.523599) -3.14159 00011010 00010101 00001111 11000111 10100010 01110001 10111001 01110110 {5, 555}
455 8 2/3 6 {3, 2, 5, 3} (1.5708, -1.0472) 3.14159 00010110 00001011 00000101 10000001 01000010 10100001 11001000 01110100 {40, 782}
456 8 2/3 6 {4, 7, 6, 4} (1.5708, -0.523599) 3.14159 00011010 00010101 00001111 11000111 10100010 01110001 10111001 01110110 {5, 555}
457 8 2/3 5.5 {1, 2, 1, 2} (0, 0) 0 00010111 00001010 00001010 10000101 01100101 10011001 11100000 10011100 {16, 428}
458 8 2/3 5.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 00010111 00001010 00001010 10000101 01100101 10011001 11100000 10011100 {16, 428}
459 8 2/3 5 {7, 0, 1, 5} (0, 0) 1.0472 00001101 00001011 00000101 00000011 11000000 10100001 01010000 11110100 {16, 876}
460 8 2/3 5 {1, 6, 5, 2} (0, 0) 0 00000110 00000100 00000010 00000001 00000001 11000001 10100001 00011110 {104, 2404}
461 8 2/3 5 {0, 7, 5, 1} (0, 0) -1.0472 00001101 00001011 00000101 00000011 11000000 10100001 01010000 11110100 {16, 876}
462 8 2/3 5 {0, 7, 1, 5} (1.5708, 0.523599) -3.14159 00001101 00001011 00000101 00000011 11000000 10100001 01010000 11110100 {16, 876}
463 8 2/3 5 {1, 6, 2, 5} (1.5708, 0) 3.14159 00000110 00000100 00000010 00000001 00000001 11000001 10100001 00011110 {104, 2404}
464 8 2/3 5 {7, 0, 5, 1} (1.5708, -0.523599) 3.14159 00001101 00001011 00000101 00000011 11000000 10100001 01010000 11110100 {16, 876}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)

195



R
E

P
R

E
S
E

N
T

A
T

IV
E

W
ID

G
E

T
IN

F
O

R
M

A
T

IO
N

ID N k/π ` Attach. (θ, φ) α Adjacency matrix Equivalent
465 8 2/3 4 {0, 4, 1, 3} (0, 0) 1.0472 00000111 00000011 00000010 00000001 00000001 10000000 11100000 11011000 {69, 1857}
466 8 2/3 4 {4, 0, 3, 1} (0, 0) -1.0472 00000111 00000011 00000010 00000001 00000001 10000000 11100000 11011000 {69, 1857}
467 8 2/3 4 {4, 0, 1, 3} (1.5708, 0.523599) -3.14159 00000111 00000011 00000010 00000001 00000001 10000000 11100000 11011000 {69, 1857}
468 8 2/3 4 {0, 4, 3, 1} (1.5708, -0.523599) 3.14159 00000111 00000011 00000010 00000001 00000001 10000000 11100000 11011000 {69, 1857}
469 8 2/3 3.75 {1, 2, 1, 2} (0, 0) 0 00010111 00001011 00001011 10000100 01100101 10011000 11100001 11101010 {8, 244}
470 8 2/3 3.75 {1, 2, 2, 1} (1.5708, 0) -3.14159 00010111 00001011 00001011 10000100 01100101 10011000 11100001 11101010 {8, 244}
471 8 2/3 3.5 {7, 1, 7, 2} (0, 0) 2.0944 00001111 00000101 00000011 00000001 10000111 11001000 10101000 11111000 {6, 569}
472 8 2/3 3.5 {1, 5, 2, 5} (0, 0) -3.14159 00010111 00001111 00000101 10000111 01000010 11110001 11011001 11110110 {11, 279}
473 8 2/3 3.5 {1, 7, 2, 7} (0, 0) -2.0944 00001111 00000101 00000011 00000001 10000111 11001000 10101000 11111000 {6, 569}
474 8 2/3 3.5 {1, 7, 7, 2} (1.5708, 1.0472) -3.14159 00001111 00000101 00000011 00000001 10000111 11001000 10101000 11111000 {6, 569}
475 8 2/3 3.5 {5, 1, 2, 5} (1.5708, -1.5708) 3.14159 00010111 00001111 00000101 10000111 01000010 11110001 11011001 11110110 {11, 279}
476 8 2/3 3.5 {7, 1, 2, 7} (1.5708, -1.0472) 3.14159 00001111 00000101 00000011 00000001 10000111 11001000 10101000 11111000 {6, 569}
477 8 2/3 3.33333 {1, 2, 1, 2} (0, 0) 0 00001101 00000011 00000011 00000001 10000101 10001001 01100000 11111100 {12, 236}
478 8 2/3 3.33333 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001101 00000011 00000011 00000001 10000101 10001001 01100000 11111100 {12, 236}
479 8 2/3 2.5 {1, 5, 6, 4} (0, 0) 3.14159 00101111 00010111 10001111 01000101 10100011 11110011 11101101 11111110 {8, 88}
480 8 2/3 2.5 {5, 1, 2, 7} (0, 0) 1.0472 00010111 00001001 00000010 10000111 01000000 10010001 10110001 11010110 {16, 84}
481 8 2/3 2.5 {1, 5, 7, 2} (0, 0) -1.0472 00010111 00001001 00000010 10000111 01000000 10010001 10110001 11010110 {16, 84}
482 8 2/3 2.5 {0, 4, 2, 5} (0.588003, 3.14159) 2.24593 00001011 00001001 00000111 00000110 11000010 00110001 10111001 11100110 {2, 4}
483 8 2/3 2.5 {1, 5, 0, 2} (0.857072, -1.5708) -1.44547 00011111 00001111 00000111 10000011 11000001 11100011 11110100 11111100 {1, 2}
484 8 2/3 2.5 {4, 0, 5, 2} (0.588003, 0) -2.24593 00001011 00001001 00000111 00000110 11000010 00110001 10111001 11100110 {2, 4}
485 8 2/3 2.5 {5, 1, 2, 0} (0.857072, -1.5708) 1.44547 00011111 00001111 00000111 10000011 11000001 11100011 11110100 11111100 {1, 2}
486 8 2/3 2.5 {2, 0, 5, 1} (0.857072, 1.5708) 1.44547 00011111 00001111 00000111 10000011 11000001 11100011 11110100 11111100 {1, 2}
487 8 2/3 2.5 {3, 4, 5, 6} (0.588003, 3.14159) -2.24593 00001111 00001111 00001110 00000011 11100101 11101000 11110001 11011010 {2, 2}
488 8 2/3 2.5 {0, 2, 1, 5} (0.857072, 1.5708) -1.44547 00011111 00001111 00000111 10000011 11000001 11100011 11110100 11111100 {1, 2}
489 8 2/3 2.5 {4, 3, 6, 5} (0.588003, 0) 2.24593 00001111 00001111 00001110 00000011 11100101 11101000 11110001 11011010 {2, 2}
490 8 2/3 2.5 {4, 3, 5, 6} (1.5708, 2.0944) 2.0944 00001111 00001111 00001110 00000011 11100101 11101000 11110001 11011010 {2, 2}
491 8 2/3 2.5 {0, 2, 5, 1} (1.0472, -2.61799) 3.14159 00011111 00001111 00000111 10000011 11000001 11100011 11110100 11111100 {1, 2}
492 8 2/3 2.5 {3, 4, 6, 5} (1.5708, -2.0944) 2.0944 00001111 00001111 00001110 00000011 11100101 11101000 11110001 11011010 {2, 2}
493 8 2/3 2.5 {2, 0, 1, 5} (1.0472, -0.523599) -3.14159 00011111 00001111 00000111 10000011 11000001 11100011 11110100 11111100 {1, 2}
494 8 2/3 2.5 {5, 1, 0, 2} (1.0472, 2.61799) 3.14159 00011111 00001111 00000111 10000011 11000001 11100011 11110100 11111100 {1, 2}
495 8 2/3 2.5 {4, 0, 2, 5} (1.5708, -2.0944) -2.0944 00001011 00001001 00000111 00000110 11000010 00110001 10111001 11100110 {2, 4}
496 8 2/3 2.5 {1, 5, 2, 0} (1.0472, 0.523599) -3.14159 00011111 00001111 00000111 10000011 11000001 11100011 11110100 11111100 {1, 2}
497 8 2/3 2.5 {0, 4, 5, 2} (1.5708, 2.0944) -2.0944 00001011 00001001 00000111 00000110 11000010 00110001 10111001 11100110 {2, 4}
498 8 2/3 2.5 {1, 5, 4, 6} (1.5708, 1.5708) -3.14159 00101111 00010111 10001111 01000101 10100011 11110011 11101101 11111110 {8, 88}
499 8 2/3 2.5 {1, 5, 2, 7} (1.5708, 0.523599) -3.14159 00010111 00001001 00000010 10000111 01000000 10010001 10110001 11010110 {16, 84}
500 8 2/3 2.5 {5, 1, 7, 2} (1.5708, -0.523599) 3.14159 00010111 00001001 00000010 10000111 01000000 10010001 10110001 11010110 {16, 84}
501 8 2/3 2.33333 {0, 3, 1, 2} (0, 0) 2.0944 00101111 00011111 10001110 01000001 11100111 11101011 11101101 11011110 {4, 28}
502 8 2/3 2.33333 {1, 7, 6, 3} (0, 0) 0 00101011 00010110 10001011 01000101 10100011 01010000 11101001 10111010 {8, 104}
503 8 2/3 2.33333 {3, 0, 2, 1} (0, 0) -2.0944 00101111 00011111 10001110 01000001 11100111 11101011 11101101 11011110 {4, 28}
504 8 2/3 2.33333 {3, 0, 1, 2} (1.5708, 1.0472) -3.14159 00101111 00011111 10001110 01000001 11100111 11101011 11101101 11011110 {4, 28}
505 8 2/3 2.33333 {1, 7, 3, 6} (1.5708, 0) 3.14159 00101011 00010110 10001011 01000101 10100011 01010000 11101001 10111010 {8, 104}
506 8 2/3 2.33333 {0, 3, 2, 1} (1.5708, -1.0472) 3.14159 00101111 00011111 10001110 01000001 11100111 11101011 11101101 11011110 {4, 28}
507 8 2/3 2.25 {0, 3, 2, 1} (0, 0) 0 00010101 00001100 00001010 10000011 01100111 11001011 00111101 10011110 {8, 48}
508 8 2/3 2.25 {0, 3, 1, 2} (1.5708, 0) 3.14159 00010101 00001100 00001010 10000011 01100111 11001011 00111101 10011110 {8, 48}
509 8 2/3 2 {5, 4, 1, 6} (0.588003, -2.0944) -2.24593 00001111 00001011 00000111 00000001 11000001 10100000 11100001 11111010 {1, 2}
510 8 2/3 2 {5, 0, 6, 4} (0.857072, -1.5708) -1.44547 00001111 00000111 00000110 00000011 10000001 11100001 11110001 11011110 {1, 3}
511 8 2/3 2 {0, 5, 4, 6} (0.857072, -1.5708) 1.44547 00001111 00000111 00000110 00000011 10000001 11100001 11110001 11011110 {1, 3}
512 8 2/3 2 {4, 5, 6, 1} (0.588003, -1.0472) 2.24593 00001111 00001011 00000111 00000001 11000001 10100000 11100001 11111010 {1, 2}
513 8 2/3 2 {4, 6, 0, 5} (0.857072, 1.5708) 1.44547 00001111 00000111 00000110 00000011 10000001 11100001 11110001 11011110 {1, 3}
514 8 2/3 2 {1, 2, 4, 3} (0.588003, 3.14159) -2.24593 00010110 00001010 00000110 10000001 01000001 10100001 11100001 00011110 {4, 6}
515 8 2/3 2 {5, 4, 6, 0} (0.857072, -2.61799) -1.44547 00001111 00000111 00000011 00000001 10000110 11001001 11101001 11110110 {1, 4}
516 8 2/3 2 {0, 3, 1, 2} (1.5708, -2.0944) -1.0472 00001011 00001010 00000111 00000101 11000000 00110000 11100000 10110000 {4, 14}
517 8 2/3 2 {1, 6, 5, 4} (0.588003, 2.0944) -2.24593 00001111 00001011 00000111 00000001 11000001 10100000 11100001 11111010 {1, 2}
518 8 2/3 2 {6, 1, 4, 5} (0.588003, 1.0472) 2.24593 00001111 00001011 00000111 00000001 11000001 10100000 11100001 11111010 {1, 2}
519 8 2/3 2 {6, 0, 5, 4} (0.857072, 2.61799) -1.44547 00001111 00000111 00000011 00000001 10000110 11001001 11101001 11110110 {1, 4}
520 8 2/3 2 {0, 6, 4, 5} (0.857072, 0.523599) 1.44547 00001111 00000111 00000011 00000001 10000110 11001001 11101001 11110110 {1, 4}
521 8 2/3 2 {6, 4, 5, 0} (0.857072, 1.5708) -1.44547 00001111 00000111 00000110 00000011 10000001 11100001 11110001 11011110 {1, 3}
522 8 2/3 2 {3, 0, 2, 1} (1.5708, 2.0944) -1.0472 00001011 00001010 00000111 00000101 11000000 00110000 11100000 10110000 {4, 14}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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523 8 2/3 2 {4, 5, 0, 6}(0.857072, -0.523599) 1.44547 00001111 00000111 00000011 00000001 10000110 11001001 11101001 11110110 {1, 4}
524 8 2/3 2 {2, 1, 3, 4} (0.588003, 0) 2.24593 00010110 00001010 00000110 10000001 01000001 10100001 11100001 00011110 {4, 6}
525 8 2/3 2 {3, 0, 1, 2} (1.10715, 3.14159) 2.63623 00001011 00001010 00000111 00000101 11000000 00110000 11100000 10110000 {4, 14}
526 8 2/3 2 {4, 5, 6, 0} (1.28976, 2.61799) 2.24593 00001111 00000111 00000011 00000001 10000110 11001001 11101001 11110110 {1, 4}
527 8 2/3 2 {2, 1, 4, 3} (1.5708, 2.0944) 2.0944 00010110 00001010 00000110 10000001 01000001 10100001 11100001 00011110 {4, 6}
528 8 2/3 2 {6, 4, 0, 5} (1.0472, -2.61799) 3.14159 00001111 00000111 00000110 00000011 10000001 11100001 11110001 11011110 {1, 3}
529 8 2/3 2 {6, 0, 4, 5} (1.28976, -2.61799) 2.24593 00001111 00000111 00000011 00000001 10000110 11001001 11101001 11110110 {1, 4}
530 8 2/3 2 {0, 6, 5, 4} (1.28976, -0.523599) -2.24593 00001111 00000111 00000011 00000001 10000110 11001001 11101001 11110110 {1, 4}
531 8 2/3 2 {1, 6, 4, 5} (1.10715, -2.0944) 2.63623 00001111 00001011 00000111 00000001 11000001 10100000 11100001 11111010 {1, 2}
532 8 2/3 2 {6, 1, 5, 4} (1.10715, -1.0472) -2.63623 00001111 00001011 00000111 00000001 11000001 10100000 11100001 11111010 {1, 2}
533 8 2/3 2 {1, 2, 3, 4} (1.5708, -2.0944) 2.0944 00010110 00001010 00000110 10000001 01000001 10100001 11100001 00011110 {4, 6}
534 8 2/3 2 {5, 4, 0, 6} (1.28976, 0.523599) -2.24593 00001111 00000111 00000011 00000001 10000110 11001001 11101001 11110110 {1, 4}
535 8 2/3 2 {0, 3, 2, 1} (1.10715, 0) -2.63623 00001011 00001010 00000111 00000101 11000000 00110000 11100000 10110000 {4, 14}
536 8 2/3 2 {4, 6, 5, 0} (1.0472, -0.523599) -3.14159 00001111 00000111 00000110 00000011 10000001 11100001 11110001 11011110 {1, 3}
537 8 2/3 2 {0, 5, 6, 4} (1.0472, 2.61799) 3.14159 00001111 00000111 00000110 00000011 10000001 11100001 11110001 11011110 {1, 3}
538 8 2/3 2 {4, 5, 1, 6} (1.10715, 2.0944) 2.63623 00001111 00001011 00000111 00000001 11000001 10100000 11100001 11111010 {1, 2}
539 8 2/3 2 {5, 4, 6, 1} (1.10715, 1.0472) -2.63623 00001111 00001011 00000111 00000001 11000001 10100000 11100001 11111010 {1, 2}
540 8 2/3 2 {5, 0, 4, 6} (1.0472, 0.523599) -3.14159 00001111 00000111 00000110 00000011 10000001 11100001 11110001 11011110 {1, 3}
541 8 2/3 16 {1, 2, 1, 2} (0, 0) 0 00001011 00000101 00000101 00000011 10000001 01100010 10010100 11111000 {12, 492}
542 8 2/3 16 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001011 00000101 00000101 00000011 10000001 01100010 10010100 11111000 {12, 492}
543 8 2/3 12 {1, 2, 1, 2} (0, 0) 0 00001010 00000111 00000111 00000001 10000001 01100001 11100000 01111100 {16, 1100}
544 8 2/3 12 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001010 00000111 00000111 00000001 10000001 01100001 11100000 01111100 {16, 1100}
545 8 2/3 10 {1, 5, 2, 5} (0, 0) -3.14159 00011101 00001111 00000111 10000011 11000001 11100001 01110000 11111100 {4, 118}
546 8 2/3 10 {5, 1, 2, 5} (1.5708, -1.5708) 3.14159 00011101 00001111 00000111 10000011 11000001 11100001 01110000 11111100 {4, 118}
547 8 2/3 1.75 {1, 2, 1, 2} (0, 0) 0 00001111 00000101 00000101 00000011 10000010 11100011 10011101 11110110 {48, 776}
548 8 2/3 1.75 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000101 00000101 00000011 10000010 11100011 10011101 11110110 {48, 776}
549 8 2/3 1.625 {6, 4, 5, 7} (1.5708, -2.0944) -1.0472 00010111 00001111 00001011 10000111 01100110 11011001 11111001 11110110 {4, 4}
550 8 2/3 1.625 {4, 6, 7, 5} (1.5708, 2.0944) -1.0472 00010111 00001111 00001011 10000111 01100110 11011001 11111001 11110110 {4, 4}
551 8 2/3 1.625 {4, 6, 5, 7} (1.10715, 3.14159) 2.63623 00010111 00001111 00001011 10000111 01100110 11011001 11111001 11110110 {4, 4}
552 8 2/3 1.625 {6, 4, 7, 5} (1.10715, 0) -2.63623 00010111 00001111 00001011 10000111 01100110 11011001 11111001 11110110 {4, 4}
553 8 2/3 1.57143 {0, 1, 5, 4} (1.5708, -3.14159) 1.42745 00011010 00010110 00001111 11000011 10100001 01100001 11110000 00111100 {4, 4}
554 8 2/3 1.57143 {0, 1, 4, 5} (1.5708, 3.14159) -1.71414 00011010 00010110 00001111 11000011 10100001 01100001 11110000 00111100 {4, 4}
555 8 2/3 1.33333 {1, 3, 2, 3} (0, 0) 2.0944 00010001 00001111 00001111 10000000 01100111 01101011 01101101 11101110 {8, 38}
556 8 2/3 1.33333 {3, 1, 3, 2} (0, 0) -2.0944 00010001 00001111 00001111 10000000 01100111 01101011 01101101 11101110 {8, 38}
557 8 2/3 1.33333 {3, 1, 2, 3} (1.5708, 1.0472) -3.14159 00010001 00001111 00001111 10000000 01100111 01101011 01101101 11101110 {8, 38}
558 8 2/3 1.33333 {1, 3, 3, 2} (1.5708, -1.0472) 3.14159 00010001 00001111 00001111 10000000 01100111 01101011 01101101 11101110 {8, 38}
559 8 2/3 1.25 {1, 2, 1, 2} (0, 0) 0 00011011 00000100 00000100 10001011 10010011 01100001 10011001 10011110 {16, 88}
560 8 2/3 1.25 {1, 2, 2, 1} (1.5708, 0) -3.14159 00011011 00000100 00000100 10001011 10010011 01100001 10011001 10011110 {16, 88}
561 8 2/3 1 {3, 2, 3, 6} (0, 0) 2.0944 00001001 00000101 00000010 00000001 10000000 01000000 00100000 11010000 {6, 54}
562 8 2/3 1 {2, 3, 6, 3} (0, 0) -2.0944 00001001 00000101 00000010 00000001 10000000 01000000 00100000 11010000 {6, 54}
563 8 2/3 1 {2, 3, 3, 6} (1.5708, 1.0472) -3.14159 00001001 00000101 00000010 00000001 10000000 01000000 00100000 11010000 {6, 54}
564 8 2/3 1 {3, 2, 6, 3} (1.5708, -1.0472) 3.14159 00001001 00000101 00000010 00000001 10000000 01000000 00100000 11010000 {6, 54}
565 8 2/3 0.857143 {2, 3, 2, 3} (0, 0) 0 00001011 00000101 00000001 00000001 10000010 01000000 10001000 11110000 {8, 120}
566 8 2/3 0.857143 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001011 00000101 00000001 00000001 10000010 01000000 10001000 11110000 {8, 120}
567 8 2/3 0.833333 {1, 2, 1, 2} (0, 0) 0 00010111 00001000 00001000 10000111 01100111 10011011 10011101 10011110 {8, 48}
568 8 2/3 0.833333 {1, 2, 2, 1} (1.5708, 0) -3.14159 00010111 00001000 00001000 10000111 01100111 10011011 10011101 10011110 {8, 48}
569 8 3/5 99.1935 {2, 3, 2, 3} (0, 0) 0 00000111 00000111 00000011 00000011 00000001 11000010 11110100 11111000 {4, 12}
570 8 3/5 99.1935 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000001 11000010 11110100 11111000 {4, 12}
571 8 3/5 8.23607 {2, 6, 5, 3} (0, 0) 0 00001001 00000110 00000100 00000010 10000001 01100001 01010001 10001110 {8, 88}
572 8 3/5 8.23607 {2, 6, 3, 5} (1.5708, 0) -3.14159 00001001 00000110 00000100 00000010 10000001 01100001 01010001 10001110 {8, 88}
573 8 3/5 75.7771 {0, 1, 0, 1} (0, 0) 0 00001011 00001011 00000110 00000100 11000000 00110001 11100001 11000110 {4, 56}
574 8 3/5 75.7771 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001011 00001011 00000110 00000100 11000000 00110001 11100001 11000110 {4, 56}
575 8 3/5 5.78885 {2, 3, 2, 3} (0, 0) 0 00001110 00001000 00000111 00000111 11000011 10110001 10111000 00111100 {4, 36}
576 8 3/5 5.78885 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001110 00001000 00000111 00000111 11000011 10110001 10111000 00111100 {4, 36}
577 8 3/5 37.8885 {2, 3, 2, 3} (0, 0) 0 00000111 00000100 00000011 00000011 00000001 11000010 10110100 10111000 {4, 56}
578 8 3/5 37.8885 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000100 00000011 00000011 00000001 11000010 10110100 10111000 {4, 56}
579 8 3/5 3.61803 {2, 3, 2, 3} (0, 0) 0 00000111 00000100 00000011 00000011 00000001 11000001 10110000 10111100 {8, 104}
580 8 3/5 3.61803 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000100 00000011 00000011 00000001 11000001 10110000 10111100 {8, 104}
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581 8 3/5 3.21603 {2, 3, 2, 3} (0, 0) 0 00001111 00001010 00000111 00000111 11000001 10110000 11110001 10111010 {4, 44}
582 8 3/5 3.21603 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001111 00001010 00000111 00000111 11000001 10110000 11110001 10111010 {4, 44}
583 8 3/5 3 {2, 5, 4, 3} (0, 0) 0 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 16}
584 8 3/5 3 {2, 5, 3, 4} (1.5708, 0) -3.14159 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 16}
585 8 3/5 15.1554 {2, 3, 2, 3} (0, 0) 0 00001111 00001011 00000111 00000111 11000110 10111001 11111000 11110100 {4, 28}
586 8 3/5 15.1554 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001111 00001011 00000111 00000111 11000110 10111001 11111000 11110100 {4, 28}
587 8 3/5 14.4721 {2, 3, 2, 3} (0, 0) 0 00000100 00000100 00000011 00000011 00000001 11000001 00110000 00111100 {4, 36}
588 8 3/5 14.4721 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000100 00000100 00000011 00000011 00000001 11000001 00110000 00111100 {4, 36}
589 8 3/5 11 {0, 4, 3, 1} (0, 0) 0 00010011 00001011 00000101 10000011 01000011 00100001 11011000 11111100 {8, 48}
590 8 3/5 11 {0, 4, 1, 3} (1.5708, 0) -3.14159 00010011 00001011 00000101 10000011 01000011 00100001 11011000 11111100 {8, 48}
591 8 3/5 1.60802 {2, 3, 2, 3} (0, 0) 0 00000111 00000111 00000011 00000011 00000001 11000001 11110000 11111100 {4, 32}
592 8 3/5 1.60802 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000001 11000001 11110000 11111100 {4, 32}
593 8 1/2 7 {2, 3, 2, 3} (0, 0) 0 00001111 00000111 00000011 00000011 10000001 11000010 11110100 11111000 {332, 3072}
594 8 1/2 7 {0, 2, 1, 2} (0, 0) -3.14159 00001101 00001001 00000111 00000011 11000011 10100001 00111000 11111100 {50, 368}
595 8 1/2 7 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001111 00000111 00000011 00000011 10000001 11000010 11110100 11111000 {332, 3072}
596 8 1/2 7 {2, 0, 1, 2} (1.5708, -1.5708) 3.14159 00001101 00001001 00000111 00000011 11000011 10100001 00111000 11111100 {50, 368}
597 8 1/2 6 {2, 3, 2, 3} (0, 0) 0 00000110 00000101 00000011 00000011 00000001 11000000 10110000 01111000 {260, 3332}
598 8 1/2 6 {7, 1, 5, 1} (0, 0) -3.14159 00001101 00001010 00000111 00000010 11000001 10100000 01110000 10101000 {60, 603}
599 8 1/2 6 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000110 00000101 00000011 00000011 00000001 11000000 10110000 01111000 {260, 3332}
600 8 1/2 6 {1, 7, 5, 1} (1.5708, -1.5708) 3.14159 00001101 00001010 00000111 00000010 11000001 10100000 01110000 10101000 {60, 603}
601 8 1/2 5 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000010 10000001 01000001 00110000 11101100 {846, 8156}
602 8 1/2 5 {3, 0, 2, 5} (0, 0) -3.14159 00001110 00000111 00000001 00000001 10000011 11000001 11001000 01111100 {284, 2001}
603 8 1/2 5 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000010 10000001 01000001 00110000 11101100 {846, 8156}
604 8 1/2 5 {0, 3, 2, 5} (1.5708, -1.5708) 3.14159 00001110 00000111 00000001 00000001 10000011 11000001 11001000 01111100 {284, 2001}
605 8 1/2 4.5 {1, 5, 6, 4} (0, 0) 1.5708 00001011 00001001 00000111 00000111 11000110 00111001 10111000 11110100 {16, 44}
606 8 1/2 4.5 {5, 1, 4, 6} (0, 0) -1.5708 00001011 00001001 00000111 00000111 11000110 00111001 10111000 11110100 {16, 44}
607 8 1/2 4.5 {5, 1, 6, 4} (1.5708, 0.785398) -3.14159 00001011 00001001 00000111 00000111 11000110 00111001 10111000 11110100 {16, 44}
608 8 1/2 4.5 {1, 5, 4, 6} (1.5708, -0.785398) 3.14159 00001011 00001001 00000111 00000111 11000110 00111001 10111000 11110100 {16, 44}
609 8 1/2 4 {0, 3, 1, 2} (0, 0) 0 00000101 00000100 00000011 00000010 00000001 11000001 00110001 10101110 {1710, 14142}
610 8 1/2 4 {0, 3, 4, 2} (0, 0) -3.14159 00000111 00000110 00000100 00000010 00000001 11100001 11010001 10001110 {453, 3423}
611 8 1/2 4 {0, 3, 2, 1} (1.5708, 0) -3.14159 00000101 00000100 00000011 00000010 00000001 11000001 00110001 10101110 {1710, 14142}
612 8 1/2 4 {3, 0, 4, 2} (1.5708, -1.5708) 3.14159 00000111 00000110 00000100 00000010 00000001 11100001 11010001 10001110 {453, 3423}
613 8 1/2 3.5 {0, 6, 4, 5} (0, 0) 1.5708 00001110 00000111 00000111 00000001 10000001 11100001 11100000 01111100 {16, 88}
614 8 1/2 3.5 {6, 0, 5, 4} (0, 0) -1.5708 00001110 00000111 00000111 00000001 10000001 11100001 11100000 01111100 {16, 88}
615 8 1/2 3.5 {6, 0, 4, 5} (1.5708, 0.785398) -3.14159 00001110 00000111 00000111 00000001 10000001 11100001 11100000 01111100 {16, 88}
616 8 1/2 3.5 {0, 6, 5, 4} (1.5708, -0.785398) 3.14159 00001110 00000111 00000111 00000001 10000001 11100001 11100000 01111100 {16, 88}
617 8 1/2 2.8 {1, 4, 2, 3} (1.5708, 0) -0.927295 00011011 00001111 00000110 10000001 11000011 01100011 11101101 11011110 {8, 8}
618 8 1/2 2.8 {1, 4, 3, 2} (1.5708, 3.14159) -2.2143 00011011 00001111 00000110 10000001 11000011 01100011 11101101 11011110 {8, 8}
619 8 1/2 2.6 {1, 3, 4, 2} (1.5708, 0) -0.927295 00011111 00010110 00001101 11000010 10100001 11100011 11010101 10101110 {4, 8}
620 8 1/2 2.6 {1, 3, 2, 4} (1.5708, -3.14159) -2.2143 00011111 00010110 00001101 11000010 10100001 11100011 11010101 10101110 {4, 8}
621 8 1/2 2.5 {6, 0, 2, 1} (0, 0) 1.5708 00000110 00000110 00000010 00000001 00000001 11000001 11100000 00011100 {154, 939}
622 8 1/2 2.5 {0, 6, 1, 2} (0, 0) -1.5708 00000110 00000110 00000010 00000001 00000001 11000001 11100000 00011100 {154, 939}
623 8 1/2 2.5 {0, 6, 2, 1} (1.5708, 0.785398) -3.14159 00000110 00000110 00000010 00000001 00000001 11000001 11100000 00011100 {154, 939}
624 8 1/2 2.5 {6, 0, 1, 2} (1.5708, -0.785398) 3.14159 00000110 00000110 00000010 00000001 00000001 11000001 11100000 00011100 {154, 939}
625 8 1/2 2.33333 {0, 2, 4, 1} (0, 0) 1.5708 00001001 00000111 00000110 00000001 10000001 01100001 01100000 11011100 {28, 234}
626 8 1/2 2.33333 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000011 00000011 11000001 11111000 11111100 {48, 532}
627 8 1/2 2.33333 {0, 6, 1, 6} (0, 0) -3.14159 00000101 00000101 00000011 00000011 00000011 11000011 00111100 11111100 {16, 48}
628 8 1/2 2.33333 {2, 0, 1, 4} (0, 0) -1.5708 00001001 00000111 00000110 00000001 10000001 01100001 01100000 11011100 {28, 234}
629 8 1/2 2.33333 {2, 0, 4, 1} (1.5708, 0.785398) -3.14159 00001001 00000111 00000110 00000001 10000001 01100001 01100000 11011100 {28, 234}
630 8 1/2 2.33333 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000011 11000001 11111000 11111100 {48, 532}
631 8 1/2 2.33333 {6, 0, 1, 6} (1.5708, -1.5708) 3.14159 00000101 00000101 00000011 00000011 00000011 11000011 00111100 11111100 {16, 48}
632 8 1/2 2.33333 {0, 2, 1, 4} (1.5708, -0.785398) 3.14159 00001001 00000111 00000110 00000001 10000001 01100001 01100000 11011100 {28, 234}
633 8 1/2 2 {3, 6, 5, 4} (0.463648, 3.14159) 3.14159 00101111 00011011 10001110 01000111 11100101 10111000 11110001 11011010 {2, 4}
634 8 1/2 2 {6, 1, 5, 2} (1.5708, -1.5708) -0.927295 00010111 00001111 00001001 10000110 01100011 11010001 11011001 11101110 {2, 4}
635 8 1/2 2 {1, 2, 4, 5} (1.5708, 0) -0.927295 00010011 00001011 00000111 10000011 01000001 00100001 11110001 11111110 {16, 16}
636 8 1/2 2 {1, 6, 2, 5} (1.5708, 1.5708) -0.927295 00010111 00001111 00001001 10000110 01100011 11010001 11011001 11101110 {2, 4}
637 8 1/2 2 {6, 3, 4, 5} (0.463648, 0) 3.14159 00101111 00011011 10001110 01000111 11100101 10111000 11110001 11011010 {2, 4}
638 8 1/2 2 {1, 5, 2, 4} (1.5708, -3.14159) -0.927295 00010011 00001111 00001101 10000010 01100011 01100001 11011001 11101110 {4, 4}
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639 8 1/2 2 {1, 6, 5, 2} (1.10715, 3.14159) 3.14159 00010111 00001111 00001001 10000110 01100011 11010001 11011001 11101110 {2, 4}
640 8 1/2 2 {6, 3, 5, 4} (1.5708, -1.5708) -2.2143 00101111 00011011 10001110 01000111 11100101 10111000 11110001 11011010 {2, 4}
641 8 1/2 2 {1, 5, 4, 2} (1.5708, 0) -2.2143 00010011 00001111 00001101 10000010 01100011 01100001 11011001 11101110 {4, 4}
642 8 1/2 2 {3, 6, 4, 5} (1.5708, 1.5708) -2.2143 00101111 00011011 10001110 01000111 11100101 10111000 11110001 11011010 {2, 4}
643 8 1/2 2 {6, 1, 2, 5} (1.10715, 0) 3.14159 00010111 00001111 00001001 10000110 01100011 11010001 11011001 11101110 {2, 4}
644 8 1/2 2 {1, 2, 5, 4} (1.5708, -3.14159) -2.2143 00010011 00001011 00000111 10000011 01000001 00100001 11110001 11111110 {16, 16}
645 8 1/2 11 {1, 2, 1, 2} (0, 0) 0 00001110 00000101 00000101 00000011 10000011 11100010 10011101 01111010 {48, 668}
646 8 1/2 11 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001110 00000101 00000101 00000011 10000011 11100010 10011101 01111010 {48, 668}
647 8 1/2 10 {2, 3, 2, 3} (0, 0) 0 00001111 00001101 00000011 00000011 11000010 11000001 10111000 11110100 {64, 840}
648 8 1/2 10 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001111 00001101 00000011 00000011 11000010 11000001 10111000 11110100 {64, 840}
649 8 1/2 1.85714 {0, 1, 0, 1} (0, 0) 0 00001011 00001011 00000111 00000111 11000110 00111001 11111000 11110100 {16, 176}
650 8 1/2 1.85714 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001011 00001011 00000111 00000111 11000110 00111001 11111000 11110100 {16, 176}
651 8 1/2 1.8 {1, 2, 4, 3} (1.5708, 0) -0.927295 00011111 00010110 00001110 11000001 10100001 11100011 11100101 10011110 {4, 8}
652 8 1/2 1.8 {1, 2, 3, 4} (1.5708, -3.14159) -2.2143 00011111 00010110 00001110 11000001 10100001 11100011 11100101 10011110 {4, 8}
653 8 1/2 1.75 {1, 4, 2, 3} (0, 0) 0 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {168, 2836}
654 8 1/2 1.75 {3, 1, 2, 1} (0, 0) -3.14159 00001110 00000101 00000011 00000011 10000101 11001000 10110000 01111000 {56, 630}
655 8 1/2 1.75 {1, 4, 3, 2} (1.5708, 0) -3.14159 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {168, 2836}
656 8 1/2 1.75 {1, 3, 2, 1} (1.5708, -1.5708) 3.14159 00001110 00000101 00000011 00000011 10000101 11001000 10110000 01111000 {56, 630}
657 8 1/2 1.66667 {1, 3, 5, 2} (0, 0) 1.5708 00001101 00000100 00000011 00000011 10000000 11000000 00110000 10110000 {54, 237}
658 8 1/2 1.66667 {3, 1, 2, 5} (0, 0) -1.5708 00001101 00000100 00000011 00000011 10000000 11000000 00110000 10110000 {54, 237}
659 8 1/2 1.66667 {3, 1, 5, 2} (1.5708, 0.785398) -3.14159 00001101 00000100 00000011 00000011 10000000 11000000 00110000 10110000 {54, 237}
660 8 1/2 1.66667 {1, 3, 2, 5} (1.5708, -0.785398) 3.14159 00001101 00000100 00000011 00000011 10000000 11000000 00110000 10110000 {54, 237}
661 8 1/2 1.6 {0, 3, 1, 2} (0, 0) 0 00001011 00001011 00000111 00000111 11000000 00110000 11110000 11110000 {40, 168}
662 8 1/2 1.6 {2, 4, 3, 4} (0, 0) -3.14159 00001001 00001001 00000111 00000111 11000010 00110000 00111001 11110010 {16, 47}
663 8 1/2 1.6 {0, 3, 2, 1} (1.5708, 0) -3.14159 00001011 00001011 00000111 00000111 11000000 00110000 11110000 11110000 {40, 168}
664 8 1/2 1.6 {4, 2, 3, 4} (1.5708, -1.5708) 3.14159 00001001 00001001 00000111 00000111 11000010 00110000 00111001 11110010 {16, 47}
665 8 1/2 1.4 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000110 00000001 00000001 11100001 11100000 11011100 {8, 88}
666 8 1/2 1.4 {6, 0, 5, 0} (0, 0) -3.14159 00001111 00001001 00000110 00000110 11000000 10110001 10110001 11000110 {10, 34}
667 8 1/2 1.4 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000110 00000001 00000001 11100001 11100000 11011100 {8, 88}
668 8 1/2 1.4 {0, 6, 5, 0} (1.5708, -1.5708) 3.14159 00001111 00001001 00000110 00000110 11000000 10110001 10110001 11000110 {10, 34}
669 8 1/2 1.33333 {1, 2, 1, 2} (0, 0) 0 00000011 00000010 00000010 00000001 00000001 00000001 11100000 10011100 {48, 324}
670 8 1/2 1.33333 {7, 0, 6, 0} (0, 0) -3.14159 00000111 00000100 00000011 00000011 00000011 11000000 10111000 10111000 {8, 32}
671 8 1/2 1.33333 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000011 00000010 00000010 00000001 00000001 00000001 11100000 10011100 {48, 324}
672 8 1/2 1.33333 {0, 7, 6, 0} (1.5708, -1.5708) 3.14159 00000111 00000100 00000011 00000011 00000011 11000000 10111000 10111000 {8, 32}
673 8 1/2 1.25 {0, 7, 5, 6} (0, 0) 1.5708 00000111 00000011 00000011 00000011 00000011 10000000 11111000 11111000 {4, 4}
674 8 1/2 1.25 {7, 0, 6, 5} (0, 0) -1.5708 00000111 00000011 00000011 00000011 00000011 10000000 11111000 11111000 {4, 4}
675 8 1/2 1.25 {7, 0, 5, 6} (1.5708, 0.785398) -3.14159 00000111 00000011 00000011 00000011 00000011 10000000 11111000 11111000 {4, 4}
676 8 1/2 1.25 {0, 7, 6, 5} (1.5708, -0.785398) 3.14159 00000111 00000011 00000011 00000011 00000011 10000000 11111000 11111000 {4, 4}
677 8 1/2 1.16667 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000100 00000011 00000011 11100001 11011000 11011100 {8, 40}
678 8 1/2 1.16667 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000100 00000011 00000011 11100001 11011000 11011100 {8, 40}
679 8 1/2 0.857143 {3, 4, 3, 4} (0, 0) 0 00000111 00000111 00000110 00000001 00000001 11100001 11100000 11011100 {8, 1148}
680 8 1/2 0.857143 {3, 4, 4, 3} (1.5708, 0) -3.14159 00000111 00000111 00000110 00000001 00000001 11100001 11100000 11011100 {8, 1148}
681 8 1/2 0.714286 {2, 3, 2, 3} (0, 0) 0 00000111 00000111 00000011 00000011 00000011 11000001 11111000 11111100 {168, 1124}
682 8 1/2 0.714286 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000011 11000001 11111000 11111100 {168, 1124}
683 8 1/2 0.625 {2, 3, 2, 3} (0, 0) 0 00000111 00000100 00000011 00000011 00000011 11000001 10111000 10111100 {88, 632}
684 8 1/2 0.625 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000100 00000011 00000011 00000011 11000001 10111000 10111100 {88, 632}
685 8 1/2 0.6 {3, 4, 3, 4} (0, 0) 0 00000011 00000010 00000010 00000001 00000001 00000001 11100000 10011100 {168, 780}
686 8 1/2 0.6 {3, 4, 4, 3} (1.5708, 0) -3.14159 00000011 00000010 00000010 00000001 00000001 00000001 11100000 10011100 {168, 780}
687 8 1/2 0.428571 {1, 2, 1, 2} (0, 0) 0 00000111 00000011 00000011 00000011 00000011 10000001 11111000 11111100 {48, 384}
688 8 1/2 0.428571 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000111 00000011 00000011 00000011 00000011 10000001 11111000 11111100 {48, 384}
689 8 1/2 0.4 {2, 3, 2, 3} (0, 0) 0 00000011 00000010 00000001 00000001 00000001 00000001 11000000 10111100 {96, 480}
690 8 1/2 0.4 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000011 00000010 00000001 00000001 00000001 00000001 11000000 10111100 {96, 480}
691 8 1/2 0.2 {0, 1, 0, 1} (0, 0) 0 00000001 00000001 00000001 00000001 00000001 00000001 00000001 11111110 {84, 252}
692 8 1/2 0.2 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000001 00000001 00000001 00000001 00000001 00000001 00000001 11111110 {84, 252}
693 8 2/5 8.2918 {6, 7, 6, 7} (0, 0) 0 00000111 00000111 00000111 00000011 00000011 11100011 11111100 11111100 {4, 40}
694 8 2/5 8.2918 {6, 7, 7, 6} (1.5708, 0) -3.14159 00000111 00000111 00000111 00000011 00000011 11100011 11111100 11111100 {4, 40}
695 8 2/5 8.23607 {0, 5, 4, 1} (0, 0) 0 00001011 00000111 00000001 00000001 10000011 01000011 11001101 11111110 {8, 80}
696 8 2/5 8.23607 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001011 00000111 00000001 00000001 10000011 01000011 11001101 11111110 {8, 80}
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697 8 2/5 6.54509 {2, 3, 2, 3} (0, 0) 0 00001101 00000111 00000001 00000001 10000010 11000000 01001000 11110000 {8, 64}
698 8 2/5 6.54509 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001101 00000111 00000001 00000001 10000010 11000000 01001000 11110000 {8, 64}
699 8 2/5 56.8328 {5, 6, 5, 6} (0, 0) 0 00001111 00000111 00000111 00000111 10000111 11111001 11111001 11111110 {4, 16}
700 8 2/5 56.8328 {5, 6, 6, 5} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000111 10000111 11111001 11111001 11111110 {4, 16}
701 8 2/5 4.34164 {2, 3, 2, 3} (0, 0) 0 00001011 00000111 00000101 00000101 10000011 01110000 11001000 11111000 {4, 32}
702 8 2/5 4.34164 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001011 00000111 00000101 00000101 10000011 01110000 11001000 11111000 {4, 32}
703 8 2/5 3.81966 {5, 6, 5, 6} (0, 0) 0 00011111 00001111 00000110 10001111 11010111 11111001 11111001 11011110 {4, 108}
704 8 2/5 3.81966 {5, 6, 6, 5} (1.5708, 0) -3.14159 00011111 00001111 00000110 10001111 11010111 11111001 11111001 11011110 {4, 108}
705 8 2/5 3.76393 {1, 6, 5, 2} (0, 0) 0 00000111 00000100 00000010 00000001 00000001 11000001 10100001 10011110 {8, 56}
706 8 2/5 3.76393 {1, 6, 2, 5} (1.5708, 0) -3.14159 00000111 00000100 00000010 00000001 00000001 11000001 10100001 10011110 {8, 56}
707 8 2/5 3.16718 {5, 6, 5, 6} (0, 0) 0 00011111 00011111 00000110 11001111 11010111 11111001 11111001 11011110 {4, 48}
708 8 2/5 3.16718 {5, 6, 6, 5} (1.5708, 0) -3.14159 00011111 00011111 00000110 11001111 11010111 11111001 11111001 11011110 {4, 48}
709 8 2/5 3 {2, 5, 4, 3} (0, 0) 0 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 8}
710 8 2/5 3 {2, 5, 3, 4} (1.5708, 0) 3.14159 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 8}
711 8 2/5 26.1803 {0, 1, 0, 1} (0, 0) 0 00001111 00001111 00000100 00000010 11000001 11100001 11010001 11001110 {8, 84}
712 8 2/5 26.1803 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001111 00001111 00000100 00000010 11000001 11100001 11010001 11001110 {8, 84}
713 8 2/5 21.7082 {1, 2, 1, 2} (0, 0) 0 00001011 00000101 00000101 00000010 10000011 01100000 10011000 11101000 {12, 116}
714 8 2/5 21.7082 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001011 00000101 00000101 00000010 10000011 01100000 10011000 11101000 {12, 116}
715 8 2/5 2.5 {2, 3, 2, 3} (0, 0) 0 00001100 00000101 00000010 00000010 10000001 11000000 00110001 01001010 {8, 64}
716 8 2/5 2.5 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001100 00000101 00000010 00000010 10000001 11000000 00110001 01001010 {8, 64}
717 8 2/5 2.11146 {2, 3, 2, 3} (0, 0) 0 00000111 00000100 00000011 00000011 00000001 11000010 10110100 10111000 {12, 232}
718 8 2/5 2.11146 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000100 00000011 00000011 00000001 11000010 10110100 10111000 {12, 232}
719 8 2/5 2.07295 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000010 00000001 11000011 11110101 11101110 {8, 88}
720 8 2/5 2.07295 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000010 00000001 11000011 11110101 11101110 {8, 88}
721 8 2/5 14.4721 {2, 3, 2, 3} (0, 0) 0 00000100 00000100 00000011 00000011 00000001 11000001 00110000 00111100 {24, 432}
722 8 2/5 14.4721 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000100 00000100 00000011 00000011 00000001 11000001 00110000 00111100 {24, 432}
723 8 2/5 10 {1, 2, 1, 2} (0, 0) 0 00000110 00000101 00000101 00000011 00000011 11100001 10011001 01111110 {24, 320}
724 8 2/5 10 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000110 00000101 00000101 00000011 00000011 11100001 10011001 01111110 {24, 320}
725 8 2/5 1.45898 {0, 1, 0, 1} (0, 0) 0 00001111 00001111 00001011 00000111 11100001 11010001 11110001 11111110 {4, 60}
726 8 2/5 1.45898 {0, 1, 1, 0} (1.5708, 0) 3.14159 00001111 00001111 00001011 00000111 11100001 11010001 11110001 11111110 {4, 60}
727 8 2/5 1.20976 {2, 3, 2, 3} (0, 0) 0 00001011 00000111 00000101 00000101 10000011 01110010 11001101 11111010 {4, 32}
728 8 2/5 1.20976 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001011 00000111 00000101 00000101 10000011 01110010 11001101 11111010 {4, 32}
729 8 2/5 1.10557 {2, 3, 2, 3} (0, 0) 0 00000111 00000111 00000011 00000011 00000001 11000010 11110100 11111000 {4, 36}
730 8 2/5 1.10557 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000001 11000010 11110100 11111000 {4, 36}
731 8 2/5 0.954915 {2, 3, 2, 3} (0, 0) 0 00001101 00000110 00000001 00000001 10000011 11000000 01001000 10111000 {8, 64}
732 8 2/5 0.954915 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001101 00000110 00000001 00000001 10000011 11000000 01001000 10111000 {8, 64}
733 8 2/5 0.806504 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000101 10000011 11110001 11101001 11111110 {4, 44}
734 8 2/5 0.806504 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000101 10000011 11110001 11101001 11111110 {4, 44}
735 8 1/3 8.5 {0, 4, 3, 1} (0, 0) 0 00010111 00001111 00000011 10000111 01000111 11011000 11111001 11111010 {8, 266}
736 8 1/3 8.5 {0, 4, 1, 3} (1.5708, 0) 3.14159 00010111 00001111 00000011 10000111 01000111 11011000 11111001 11111010 {8, 266}
737 8 1/3 8 {4, 7, 6, 7} (0, 0) 2.0944 00001111 00000111 00000011 00000011 10000001 11000000 11110000 11111000 {8, 237}
738 8 1/3 8 {5, 7, 6, 7} (0, 0) 1.0472 00001101 00001011 00000101 00000011 11000000 10100000 01010000 11110000 {6, 137}
739 8 1/3 8 {7, 4, 7, 6} (0, 0) -2.0944 00001111 00000111 00000011 00000011 10000001 11000000 11110000 11111000 {8, 237}
740 8 1/3 8 {7, 5, 7, 6} (0, 0) -1.0472 00001101 00001011 00000101 00000011 11000000 10100000 01010000 11110000 {6, 137}
741 8 1/3 8 {7, 4, 6, 7} (1.5708, 1.0472) -3.14159 00001111 00000111 00000011 00000011 10000001 11000000 11110000 11111000 {8, 237}
742 8 1/3 8 {7, 5, 6, 7} (1.5708, 0.523599) -3.14159 00001101 00001011 00000101 00000011 11000000 10100000 01010000 11110000 {6, 137}
743 8 1/3 8 {4, 7, 7, 6} (1.5708, -1.0472) 3.14159 00001111 00000111 00000011 00000011 10000001 11000000 11110000 11111000 {8, 237}
744 8 1/3 8 {5, 7, 7, 6} (1.5708, -0.523599) 3.14159 00001101 00001011 00000101 00000011 11000000 10100000 01010000 11110000 {6, 137}
745 8 1/3 7 {0, 7, 4, 6} (0, 0) 2.0944 00001011 00000110 00000001 00000001 10000011 01000001 11001001 10111110 {4, 56}
746 8 1/3 7 {7, 0, 6, 4} (0, 0) -2.0944 00001011 00000110 00000001 00000001 10000011 01000001 11001001 10111110 {4, 56}
747 8 1/3 7 {7, 0, 4, 6} (1.5708, 1.0472) -3.14159 00001011 00000110 00000001 00000001 10000011 01000001 11001001 10111110 {4, 56}
748 8 1/3 7 {0, 7, 6, 4} (1.5708, -1.0472) 3.14159 00001011 00000110 00000001 00000001 10000011 01000001 11001001 10111110 {4, 56}
749 8 1/3 6.5 {2, 3, 2, 3} (0, 0) 0 00001100 00001011 00000111 00000111 11000011 10110000 01111001 01111010 {8, 148}
750 8 1/3 6.5 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001100 00001011 00000111 00000111 11000011 10110000 01111001 01111010 {8, 148}
751 8 1/3 6 {0, 1, 0, 1} (0, 0) 0 00000011 00000011 00000010 00000001 00000001 00000001 11100001 11011110 {24, 1324}
752 8 1/3 6 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000011 00000011 00000010 00000001 00000001 00000001 11100001 11011110 {24, 1324}
753 8 1/3 5 {0, 6, 5, 2} (0, 0) 3.14159 00001010 00000110 00000010 00000001 10000001 01000001 11100001 00011110 {32, 256}
754 8 1/3 5 {0, 2, 7, 1} (0, 0) 2.0944 00001101 00001001 00000110 00000011 11000010 10100001 00111000 11010100 {4, 232}
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755 8 1/3 5 {0, 6, 3, 5} (0, 0) 1.0472 00001100 00001010 00000101 00000011 11000001 10100000 01010000 00111000 {16, 224}
756 8 1/3 5 {1, 6, 5, 2} (0, 0) 0 00000110 00000100 00000010 00000001 00000001 11000001 10100001 00011110 {56, 768}
757 8 1/3 5 {2, 0, 1, 7} (0, 0) -2.0944 00001101 00001001 00000110 00000011 11000010 10100001 00111000 11010100 {4, 232}
758 8 1/3 5 {6, 0, 5, 3} (0, 0) -1.0472 00001100 00001010 00000101 00000011 11000001 10100000 01010000 00111000 {16, 224}
759 8 1/3 5 {0, 6, 2, 5} (1.5708, 1.5708) -3.14159 00001010 00000110 00000010 00000001 10000001 01000001 11100001 00011110 {32, 256}
760 8 1/3 5 {2, 0, 7, 1} (1.5708, 1.0472) -3.14159 00001101 00001001 00000110 00000011 11000010 10100001 00111000 11010100 {4, 232}
761 8 1/3 5 {6, 0, 3, 5} (1.5708, 0.523599) -3.14159 00001100 00001010 00000101 00000011 11000001 10100000 01010000 00111000 {16, 224}
762 8 1/3 5 {1, 6, 2, 5} (1.5708, 0) 3.14159 00000110 00000100 00000010 00000001 00000001 11000001 10100001 00011110 {56, 768}
763 8 1/3 5 {0, 2, 1, 7} (1.5708, -1.0472) 3.14159 00001101 00001001 00000110 00000011 11000010 10100001 00111000 11010100 {4, 232}
764 8 1/3 5 {0, 6, 5, 3} (1.5708, -0.523599) 3.14159 00001100 00001010 00000101 00000011 11000001 10100000 01010000 00111000 {16, 224}
765 8 1/3 4.5 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000001 00000001 00000001 11000011 11000101 11111110 {20, 1018}
766 8 1/3 4.5 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000001 00000001 00000001 11000011 11000101 11111110 {20, 1018}
767 8 1/3 4 {0, 5, 2, 5} (0, 0) -3.14159 00001010 00000101 00000011 00000010 10000001 01000000 10110000 01101000 {12, 204}
768 8 1/3 4 {5, 0, 2, 5} (1.5708, -1.5708) 3.14159 00001010 00000101 00000011 00000010 10000001 01000000 10110000 01101000 {12, 204}
769 8 1/3 34 {1, 2, 1, 2} (0, 0) 0 00010110 00001011 00001011 10000101 01100101 10011001 11100000 01111100 {4, 108}
770 8 1/3 34 {1, 2, 2, 1} (1.5708, 0) -3.14159 00010110 00001011 00001011 10000101 01100101 10011001 11100000 01111100 {4, 108}
771 8 1/3 3.77778 {1, 2, 1, 2} (0, 0) 0 00010111 00001011 00001011 10000110 01100101 10011001 11110000 11101100 {4, 96}
772 8 1/3 3.77778 {1, 2, 2, 1} (1.5708, 0) -3.14159 00010111 00001011 00001011 10000110 01100101 10011001 11110000 11101100 {4, 96}
773 8 1/3 3.5 {1, 7, 6, 3} (0, 0) 3.14159 00001111 00000101 00000011 00000001 10000111 11001000 10101000 11111000 {16, 136}
774 8 1/3 3.5 {2, 6, 5, 3} (0, 0) 0 00001111 00000110 00000100 00000010 10000001 11100001 11010001 10001110 {40, 344}
775 8 1/3 3.5 {1, 7, 3, 6} (1.5708, 1.5708) -3.14159 00001111 00000101 00000011 00000001 10000111 11001000 10101000 11111000 {16, 136}
776 8 1/3 3.5 {2, 6, 3, 5} (1.5708, 0) 3.14159 00001111 00000110 00000100 00000010 10000001 11100001 11010001 10001110 {40, 344}
777 8 1/3 3 {0, 5, 6, 3} (0, 0) 1.0472 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 52}
778 8 1/3 3 {5, 0, 3, 6} (0, 0) -1.0472 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 52}
779 8 1/3 3 {5, 0, 6, 3} (1.5708, 0.523599) -3.14159 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 52}
780 8 1/3 3 {0, 5, 3, 6} (1.5708, -0.523599) 3.14159 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 52}
781 8 1/3 22 {2, 3, 2, 3} (0, 0) 0 00001110 00000101 00000011 00000011 10000101 11001001 10110000 01111100 {4, 124}
782 8 1/3 22 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001110 00000101 00000011 00000011 10000101 11001001 10110000 01111100 {4, 124}
783 8 1/3 2.75 {1, 3, 4, 2} (1.5708, -2.0944) -1.0472 00011100 00010111 00001111 11001011 10110011 11100001 01111000 01111100 {2, 8}
784 8 1/3 2.75 {3, 1, 2, 4} (1.5708, 2.0944) -1.0472 00011100 00010111 00001111 11001011 10110011 11100001 01111000 01111100 {2, 8}
785 8 1/3 2.75 {3, 1, 4, 2} (1.10715, 3.14159) 2.63623 00011100 00010111 00001111 11001011 10110011 11100001 01111000 01111100 {2, 8}
786 8 1/3 2.75 {1, 3, 2, 4} (1.10715, 0) -2.63623 00011100 00010111 00001111 11001011 10110011 11100001 01111000 01111100 {2, 8}
787 8 1/3 2.5 {7, 2, 6, 2} (0, 0) -3.14159 00010110 00001011 00000100 10000001 01000011 10100001 11001000 01011100 {8, 128}
788 8 1/3 2.5 {4, 0, 6, 5} (0.588003, -2.0944) -2.24593 00001110 00001011 00000111 00000011 11000101 10101000 11110000 01111000 {1, 3}
789 8 1/3 2.5 {0, 4, 5, 6} (0.588003, -1.0472) 2.24593 00001110 00001011 00000111 00000011 11000101 10101000 11110000 01111000 {1, 3}
790 8 1/3 2.5 {5, 4, 0, 6} (0.857072, -2.61799) -1.44547 00011000 00001111 00000111 10000011 11000001 01100000 01110000 01111000 {1, 3}
791 8 1/3 2.5 {6, 5, 4, 0} (0.588003, 2.0944) -2.24593 00001110 00001011 00000111 00000011 11000101 10101000 11110000 01111000 {1, 3}
792 8 1/3 2.5 {5, 6, 0, 4} (0.588003, 1.0472) 2.24593 00001110 00001011 00000111 00000011 11000101 10101000 11110000 01111000 {1, 3}
793 8 1/3 2.5 {0, 6, 5, 4} (0.857072, 2.61799) -1.44547 00011000 00001111 00000111 10000011 11000001 01100000 01110000 01111000 {1, 3}
794 8 1/3 2.5 {6, 0, 4, 5} (0.857072, 0.523599) 1.44547 00011000 00001111 00000111 10000011 11000001 01100000 01110000 01111000 {1, 3}
795 8 1/3 2.5 {4, 5, 6, 0}(0.857072, -0.523599) 1.44547 00011000 00001111 00000111 10000011 11000001 01100000 01110000 01111000 {1, 3}
796 8 1/3 2.5 {4, 5, 0, 6} (1.28976, 2.61799) 2.24593 00011000 00001111 00000111 10000011 11000001 01100000 01110000 01111000 {1, 3}
797 8 1/3 2.5 {0, 6, 4, 5} (1.28976, -2.61799) 2.24593 00011000 00001111 00000111 10000011 11000001 01100000 01110000 01111000 {1, 3}
798 8 1/3 2.5 {6, 0, 5, 4} (1.28976, -0.523599) -2.24593 00011000 00001111 00000111 10000011 11000001 01100000 01110000 01111000 {1, 3}
799 8 1/3 2.5 {6, 5, 0, 4} (1.10715, -2.0944) 2.63623 00001110 00001011 00000111 00000011 11000101 10101000 11110000 01111000 {1, 3}
800 8 1/3 2.5 {5, 6, 4, 0} (1.10715, -1.0472) -2.63623 00001110 00001011 00000111 00000011 11000101 10101000 11110000 01111000 {1, 3}
801 8 1/3 2.5 {5, 4, 6, 0} (1.28976, 0.523599) -2.24593 00011000 00001111 00000111 10000011 11000001 01100000 01110000 01111000 {1, 3}
802 8 1/3 2.5 {0, 4, 6, 5} (1.10715, 2.0944) 2.63623 00001110 00001011 00000111 00000011 11000101 10101000 11110000 01111000 {1, 3}
803 8 1/3 2.5 {4, 0, 5, 6} (1.10715, 1.0472) -2.63623 00001110 00001011 00000111 00000011 11000101 10101000 11110000 01111000 {1, 3}
804 8 1/3 2.5 {2, 7, 6, 2} (1.5708, -1.5708) 3.14159 00010110 00001011 00000100 10000001 01000011 10100001 11001000 01011100 {8, 128}
805 8 1/3 2.4 {0, 1, 0, 1} (0, 0) 0 00001111 00001111 00000111 00000010 11000000 11100001 11110000 11100100 {4, 48}
806 8 1/3 2.4 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001111 00001111 00000111 00000010 11000000 11100001 11110000 11100100 {4, 48}
807 8 1/3 2.33333 {0, 3, 2, 1} (0, 0) 0 00001110 00001101 00001011 00000111 11100010 11010001 10111000 01110100 {16, 48}
808 8 1/3 2.33333 {0, 3, 1, 2} (1.5708, 0) -3.14159 00001110 00001101 00001011 00000111 11100010 11010001 10111000 01110100 {16, 48}
809 8 1/3 2.25 {6, 7, 6, 7} (0, 0) 0 00010111 00001111 00000011 10000111 01000111 11011000 11111000 11111000 {4, 84}
810 8 1/3 2.25 {6, 7, 7, 6} (1.5708, 0) -3.14159 00010111 00001111 00000011 10000111 01000111 11011000 11111000 11111000 {4, 84}
811 8 1/3 2 {1, 2, 4, 3} (0.588003, -3.14159) 2.24593 00010110 00001010 00000110 10000001 01000001 10100001 11100001 00011110 {2, 8}
812 8 1/3 2 {0, 3, 1, 2} (1.5708, 2.0944) 1.0472 00001011 00001010 00000111 00000101 11000000 00110000 11100000 10110000 {4, 4}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)

201



R
E

P
R

E
S
E

N
T

A
T

IV
E

W
ID

G
E

T
IN

F
O

R
M

A
T

IO
N

ID N k/π ` Attach. (θ, φ) α Adjacency matrix Equivalent
813 8 1/3 2 {3, 0, 2, 1} (1.5708, -2.0944) 1.0472 00001011 00001010 00000111 00000101 11000000 00110000 11100000 10110000 {4, 4}
814 8 1/3 2 {2, 1, 3, 4} (0.588003, 0) -2.24593 00010110 00001010 00000110 10000001 01000001 10100001 11100001 00011110 {2, 8}
815 8 1/3 2 {3, 0, 1, 2} (1.10715, -3.14159) -2.63623 00001011 00001010 00000111 00000101 11000000 00110000 11100000 10110000 {4, 4}
816 8 1/3 2 {2, 1, 4, 3} (1.5708, -2.0944) -2.0944 00010110 00001010 00000110 10000001 01000001 10100001 11100001 00011110 {2, 8}
817 8 1/3 2 {1, 2, 3, 4} (1.5708, 2.0944) -2.0944 00010110 00001010 00000110 10000001 01000001 10100001 11100001 00011110 {2, 8}
818 8 1/3 2 {0, 3, 2, 1} (1.10715, 0) 2.63623 00001011 00001010 00000111 00000101 11000000 00110000 11100000 10110000 {4, 4}
819 8 1/3 16 {0, 1, 0, 1} (0, 0) 0 00001011 00001011 00000110 00000101 11000101 00111001 11100000 11011100 {12, 454}
820 8 1/3 16 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001011 00001011 00000110 00000101 11000101 00111001 11100000 11011100 {12, 454}
821 8 1/3 14 {1, 2, 1, 2} (0, 0) 0 00001011 00000101 00000101 00000001 10000010 01100010 10001100 11110000 {12, 292}
822 8 1/3 14 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001011 00000101 00000101 00000001 10000010 01100010 10001100 11110000 {12, 292}
823 8 1/3 13 {0, 5, 4, 1} (0, 0) 0 00001011 00000111 00000001 00000001 10000011 01000011 11001100 11111100 {8, 76}
824 8 1/3 13 {0, 5, 1, 4} (1.5708, 0) 3.14159 00001011 00000111 00000001 00000001 10000011 01000011 11001100 11111100 {8, 76}
825 8 1/3 12 {6, 7, 6, 7} (0, 0) 0 00000111 00000100 00000011 00000011 00000011 11000011 10111100 10111100 {28, 844}
826 8 1/3 12 {6, 7, 7, 6} (1.5708, 0) 3.14159 00000111 00000100 00000011 00000011 00000011 11000011 10111100 10111100 {28, 844}
827 8 1/3 10 {2, 3, 2, 3} (0, 0) 0 00001011 00000101 00000010 00000010 10000001 01000000 10110001 11001010 {28, 936}
828 8 1/3 10 {0, 5, 2, 5} (0, 0) -3.14159 00010101 00001011 00000111 10000010 01000001 10100000 01110000 11101000 {11, 122}
829 8 1/3 10 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001011 00000101 00000010 00000010 10000001 01000000 10110001 11001010 {28, 936}
830 8 1/3 10 {5, 0, 2, 5} (1.5708, -1.5708) 3.14159 00010101 00001011 00000111 10000010 01000001 10100000 01110000 11101000 {11, 122}
831 8 1/3 1.85714 {6, 0, 2, 3} (1.5708, 1.0472) 1.42745 00011000 00001111 00000110 10000011 11000001 01100001 01110000 01011100 {2, 2}
832 8 1/3 1.85714 {0, 6, 3, 2} (1.5708, -1.0472) 1.42745 00011000 00001111 00000110 10000011 11000001 01100001 01110000 01011100 {2, 2}
833 8 1/3 1.85714 {0, 6, 2, 3} (0.927295, 3.14159) 2.47465 00011000 00001111 00000110 10000011 11000001 01100001 01110000 01011100 {2, 2}
834 8 1/3 1.85714 {6, 0, 3, 2} (0.927295, 0) -2.47465 00011000 00001111 00000110 10000011 11000001 01100001 01110000 01011100 {2, 2}
835 8 1/3 1.77778 {2, 3, 2, 3} (0, 0) 0 00001101 00001011 00000111 00000111 11000010 10110001 01111000 11110100 {40, 452}
836 8 1/3 1.77778 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001101 00001011 00000111 00000111 11000010 10110001 01111000 11110100 {40, 452}
837 8 1/3 1.625 {2, 3, 2, 3} (0, 0) 0 00001101 00001010 00000111 00000111 11000010 10110001 01111000 10110100 {8, 148}
838 8 1/3 1.625 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001101 00001010 00000111 00000111 11000010 10110001 01111000 10110100 {8, 148}
839 8 1/3 1.33333 {1, 2, 1, 2} (0, 0) 0 00000111 00000011 00000011 00000001 00000001 10000000 11100000 11111000 {12, 224}
840 8 1/3 1.33333 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000111 00000011 00000011 00000001 00000001 10000000 11100000 11111000 {12, 224}
841 8 1/3 1.125 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000011 00000011 11000011 11111101 11111110 {8, 256}
842 8 1/3 1.125 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000011 11000011 11111101 11111110 {8, 256}
843 8 1/3 1.11111 {2, 3, 2, 3} (0, 0) 0 00001011 00000111 00000001 00000001 10000010 01000001 11001000 11110100 {24, 316}
844 8 1/3 1.11111 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001011 00000111 00000001 00000001 10000010 01000001 11001000 11110100 {24, 316}
845 8 1/3 1 {3, 2, 3, 6} (0, 0) 1.0472 00001001 00000101 00000010 00000001 10000000 01000000 00100000 11010000 {3, 54}
846 8 1/3 1 {2, 3, 6, 3} (0, 0) -1.0472 00001001 00000101 00000010 00000001 10000000 01000000 00100000 11010000 {3, 54}
847 8 1/3 1 {2, 3, 3, 6} (1.5708, 0.523599) -3.14159 00001001 00000101 00000010 00000001 10000000 01000000 00100000 11010000 {3, 54}
848 8 1/3 1 {3, 2, 6, 3} (1.5708, -0.523599) 3.14159 00001001 00000101 00000010 00000001 10000000 01000000 00100000 11010000 {3, 54}
849 8 1/3 0.625 {2, 3, 2, 3} (0, 0) 0 00001010 00000111 00000001 00000001 10000010 01000001 11001000 01110100 {24, 372}
850 8 1/3 0.625 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001010 00000111 00000001 00000001 10000010 01000001 11001000 01110100 {24, 372}
851 8 1/3 0.444444 {1, 2, 1, 2} (0, 0) 0 00000111 00000011 00000011 00000001 00000001 10000011 11100100 11111100 {12, 120}
852 8 1/3 0.444444 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000111 00000011 00000011 00000001 00000001 10000011 11100100 11111100 {12, 120}
853 8 1/3 0.416667 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000011 10000111 11101000 11111001 11111010 {8, 48}
854 8 1/3 0.416667 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000011 10000111 11101000 11111001 11111010 {8, 48}
855 8 1/4 9.82843 {6, 7, 6, 7} (0, 0) 0 00010111 00001111 00001111 10000011 01100000 11100000 11110000 11110000 {4, 32}
856 8 1/4 9.82843 {6, 7, 7, 6} (1.5708, 0) 3.14159 00010111 00001111 00001111 10000011 01100000 11100000 11110000 11110000 {4, 32}
857 8 1/4 9 {0, 4, 3, 1} (0, 0) 0 00010011 00001011 00000101 10000011 01000011 00100001 11011001 11111110 {8, 32}
858 8 1/4 9 {0, 4, 1, 3} (1.5708, 0) -3.14159 00010011 00001011 00000101 10000011 01000011 00100001 11011001 11111110 {8, 32}
859 8 1/4 8 {0, 1, 0, 1} (0, 0) 0 00000011 00000011 00000010 00000001 00000001 00000001 11100000 11011100 {24, 332}
860 8 1/4 8 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000011 00000011 00000010 00000001 00000001 00000001 11100000 11011100 {24, 332}
861 8 1/4 7.82843 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000010 00000010 10000001 01000001 00110001 11001110 {8, 32}
862 8 1/4 7.82843 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000010 00000010 10000001 01000001 00110001 11001110 {8, 32}
863 8 1/4 6 {1, 2, 1, 2} (0, 0) 0 00000111 00000011 00000011 00000001 00000001 10000010 11100100 11111000 {20, 196}
864 8 1/4 6 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000111 00000011 00000011 00000001 00000001 10000010 11100100 11111000 {20, 196}
865 8 1/4 5.37258 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000101 00000010 00000001 11100001 11010000 11101100 {4, 40}
866 8 1/4 5.37258 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000101 00000010 00000001 11100001 11010000 11101100 {4, 40}
867 8 1/4 5 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000010 10000000 01000000 00110000 11100000 {44, 136}
868 8 1/4 5 {0, 5, 4, 3} (0, 0) -3.14159 00001101 00000110 00000011 00000001 10000000 11000000 01100000 10110000 {8, 20}
869 8 1/4 5 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000010 10000000 01000000 00110000 11100000 {44, 136}
870 8 1/4 5 {5, 0, 4, 3} (1.5708, -1.5708) 3.14159 00001101 00000110 00000011 00000001 10000000 11000000 01100000 10110000 {8, 20}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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871 8 1/4 40.9706 {5, 6, 5, 6} (0, 0) 0 00101111 00010111 10001111 01000111 10100111 11111001 11111001 11111110 {4, 20}
872 8 1/4 40.9706 {5, 6, 6, 5} (1.5708, 0) 3.14159 00101111 00010111 10001111 01000111 10100111 11111001 11111001 11111110 {4, 20}
873 8 1/4 4.68629 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000001 10000010 11100001 11101000 11110100 {12, 152}
874 8 1/4 4.68629 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000001 10000010 11100001 11101000 11110100 {12, 152}
875 8 1/4 4.41421 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000011 10000001 01000001 00110000 11111100 {8, 32}
876 8 1/4 4.41421 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000011 10000001 01000001 00110000 11111100 {8, 32}
877 8 1/4 4.34315 {1, 2, 1, 2} (0, 0) 0 00011111 00001111 00001111 10000010 11100001 11100001 11110000 11101100 {4, 32}
878 8 1/4 4.34315 {1, 2, 2, 1} (1.5708, 0) -3.14159 00011111 00001111 00001111 10000010 11100001 11100001 11110000 11101100 {4, 32}
879 8 1/4 4 {7, 1, 7, 2} (0, 0) 1.5708 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {8, 38}
880 8 1/4 4 {1, 7, 2, 7} (0, 0) -1.5708 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {8, 38}
881 8 1/4 4 {1, 7, 7, 2} (1.5708, 0.785398) -3.14159 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {8, 38}
882 8 1/4 4 {7, 1, 2, 7} (1.5708, -0.785398) 3.14159 00000110 00000101 00000101 00000011 00000011 11100000 10011000 01111000 {8, 38}
883 8 1/4 31.3137 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000101 00000011 00000010 11100001 11011000 11110100 {4, 40}
884 8 1/4 31.3137 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000101 00000011 00000010 11100001 11011000 11110100 {4, 40}
885 8 1/4 3.37258 {5, 6, 5, 6} (0, 0) 0 00001111 00000110 00000110 00000001 10000001 11100001 11100001 10011110 {4, 28}
886 8 1/4 3.37258 {5, 6, 6, 5} (1.5708, 0) -3.14159 00001111 00000110 00000110 00000001 10000001 11100001 11100001 10011110 {4, 28}
887 8 1/4 3.34315 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000010 10000001 01000001 00110001 11101110 {32, 148}
888 8 1/4 3.34315 {6, 1, 3, 4} (0, 0) -3.14159 00001011 00000110 00000101 00000010 10000001 01100001 11010001 10101110 {8, 32}
889 8 1/4 3.34315 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000010 10000001 01000001 00110001 11101110 {32, 148}
890 8 1/4 3.34315 {1, 6, 3, 4} (1.5708, -1.5708) 3.14159 00001011 00000110 00000101 00000010 10000001 01100001 11010001 10101110 {8, 32}
891 8 1/4 3 {1, 2, 1, 2} (0, 0) 0 00000101 00000011 00000011 00000001 00000001 10000000 01100000 11111000 {20, 84}
892 8 1/4 3 {0, 1, 3, 4} (1.5708, -3.14159) 1.5708 00000110 00000101 00000011 00000010 00000001 11000000 10110000 01101000 {4, 8}
893 8 1/4 3 {0, 1, 4, 3} (1.5708, 3.14159) -1.5708 00000110 00000101 00000011 00000010 00000001 11000000 10110000 01101000 {4, 8}
894 8 1/4 3 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000101 00000011 00000011 00000001 00000001 10000000 01100000 11111000 {20, 84}
895 8 1/4 27.3137 {1, 2, 1, 2} (0, 0) 0 00001001 00000111 00000111 00000011 10000000 01100010 01110100 11110000 {4, 52}
896 8 1/4 27.3137 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001001 00000111 00000111 00000011 10000000 01100010 01110100 11110000 {4, 52}
897 8 1/4 2.68629 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000101 00000011 00000011 11100000 11011001 11111010 {8, 76}
898 8 1/4 2.68629 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000101 00000011 00000011 11100000 11011001 11111010 {8, 76}
899 8 1/4 2.5 {1, 2, 1, 2} (0, 0) 0 00001011 00000111 00000111 00000011 10000000 01100000 11110000 11110000 {4, 24}
900 8 1/4 2.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001011 00000111 00000111 00000011 10000000 01100000 11110000 11110000 {4, 24}
901 8 1/4 2.17157 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000011 10000001 01000001 00110001 11111110 {12, 72}
902 8 1/4 2.17157 {0, 1, 2, 3} (1.5708, -3.14159) 1.5708 00001101 00001011 00000101 00000011 11000000 10100001 01010001 11110110 {4, 8}
903 8 1/4 2.17157 {0, 1, 3, 2} (1.5708, 3.14159) -1.5708 00001101 00001011 00000101 00000011 11000000 10100001 01010001 11110110 {4, 8}
904 8 1/4 2.17157 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000011 10000001 01000001 00110001 11111110 {12, 72}
905 8 1/4 2.05887 {1, 2, 1, 2} (0, 0) 0 00000111 00000011 00000011 00000010 00000001 10000001 11110000 11101100 {4, 56}
906 8 1/4 2.05887 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000111 00000011 00000011 00000010 00000001 10000001 11110000 11101100 {4, 56}
907 8 1/4 2 {5, 1, 5, 2} (0, 0) 1.5708 00000101 00000010 00000010 00000001 00000001 10000000 01100000 10011000 {4, 24}
908 8 1/4 2 {1, 5, 2, 5} (0, 0) -1.5708 00000101 00000010 00000010 00000001 00000001 10000000 01100000 10011000 {4, 24}
909 8 1/4 2 {1, 5, 5, 2} (1.5708, 0.785398) -3.14159 00000101 00000010 00000010 00000001 00000001 10000000 01100000 10011000 {4, 24}
910 8 1/4 2 {5, 1, 2, 5} (1.5708, -0.785398) 3.14159 00000101 00000010 00000010 00000001 00000001 10000000 01100000 10011000 {4, 24}
911 8 1/4 19.6569 {0, 1, 0, 1} (0, 0) 0 00001111 00001111 00001101 00000011 11100000 11100000 11010001 11110010 {4, 28}
912 8 1/4 19.6569 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001111 00001111 00001101 00000011 11100000 11100000 11010001 11110010 {4, 28}
913 8 1/4 18.3431 {6, 7, 6, 7} (0, 0) 0 00010111 00001011 00000111 10000111 01000011 10110011 11111100 11111100 {4, 20}
914 8 1/4 18.3431 {6, 7, 7, 6} (1.5708, 0) 3.14159 00010111 00001011 00000111 10000111 01000011 10110011 11111100 11111100 {4, 20}
915 8 1/4 15.6569 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000001 00000001 11000010 11100100 11111000 {4, 36}
916 8 1/4 15.6569 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000001 00000001 11000010 11100100 11111000 {4, 36}
917 8 1/4 14.6569 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000010 10000001 01000001 00110000 11101100 {16, 72}
918 8 1/4 14.6569 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000010 10000001 01000001 00110000 11101100 {16, 72}
919 8 1/4 12 {1, 2, 1, 2} (0, 0) 0 00000101 00000011 00000011 00000010 00000001 10000000 01110000 11101000 {8, 92}
920 8 1/4 12 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000101 00000011 00000011 00000010 00000001 10000000 01110000 11101000 {8, 92}
921 8 1/4 10 {1, 2, 1, 2} (0, 0) 0 00001001 00000111 00000111 00000001 10000000 01100000 01100000 11110000 {12, 56}
922 8 1/4 10 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001001 00000111 00000111 00000001 10000000 01100000 01100000 11110000 {12, 56}
923 8 1/4 1.91912 {0, 2, 3, 1} (1.5708, 0) 1.23096 00001010 00001001 00000110 00000101 11000011 00110011 10101101 01011110 {4, 8}
924 8 1/4 1.91912 {0, 2, 1, 3} (1.5708, 0) -1.91063 00001010 00001001 00000110 00000101 11000011 00110011 10101101 01011110 {4, 8}
925 8 1/4 1.8 {0, 1, 7, 6} (1.5708, -3.14159) -0.927295 00001110 00001101 00001011 00000111 11100000 11010000 10110000 01110000 {24, 24}
926 8 1/4 1.8 {0, 1, 6, 7} (1.5708, -3.14159) 2.2143 00001110 00001101 00001011 00000111 11100000 11010000 10110000 01110000 {24, 24}
927 8 1/4 1.71573 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000001 10000001 11100000 11100000 11111000 {8, 52}
928 8 1/4 1.71573 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000001 10000001 11100000 11100000 11111000 {8, 52}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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929 8 1/4 1.68629 {0, 5, 4, 1} (0, 0) 0 00001001 00000101 00000011 00000010 10000000 01000000 00110001 11100010 {8, 48}
930 8 1/4 1.68629 {0, 5, 1, 4} (1.5708, 0) -3.14159 00001001 00000101 00000011 00000010 10000000 01000000 00110001 11100010 {8, 48}
931 8 1/4 1.5 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000011 00000011 11000000 11111000 11111000 {4, 24}
932 8 1/4 1.5 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000011 11000000 11111000 11111000 {4, 24}
933 8 1/4 1.37258 {2, 3, 2, 3} (0, 0) 0 00001011 00000101 00000011 00000011 10000001 01000000 10110000 11111000 {16, 164}
934 8 1/4 1.37258 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001011 00000101 00000011 00000011 10000001 01000000 10110000 11111000 {16, 164}
935 8 1/4 1.34315 {0, 1, 0, 1} (0, 0) 0 00000111 00000111 00000011 00000011 00000001 11000000 11110001 11111010 {12, 76}
936 8 1/4 1.34315 {0, 1, 1, 0} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000001 11000000 11110001 11111010 {12, 76}
937 8 1/4 1.17157 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000101 10000011 11110000 11101001 11111010 {12, 108}
938 8 1/4 1.17157 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000101 10000011 11110000 11101001 11111010 {12, 108}
939 8 1/4 1.02944 {1, 2, 1, 2} (0, 0) 0 00000111 00000011 00000011 00000001 00000001 10000001 11100000 11111100 {4, 40}
940 8 1/4 1.02944 {1, 2, 2, 1} (1.5708, 0) -3.14159 00000111 00000011 00000011 00000001 00000001 10000001 11100000 11111100 {4, 40}
941 8 1/4 0.857864 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000011 10000011 11100000 11111000 11111000 {4, 28}
942 8 1/4 0.857864 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000011 10000011 11100000 11111000 11111000 {4, 28}
943 8 1/4 0.804041 {1, 2, 1, 2} (0, 0) 0 00001111 00000111 00000111 00000001 10000011 11100000 11101001 11111010 {4, 40}
944 8 1/4 0.804041 {1, 2, 2, 1} (1.5708, 0) -3.14159 00001111 00000111 00000111 00000001 10000011 11100000 11101001 11111010 {4, 40}
945 8 1/4 0.745166 {1, 2, 1, 2} (0, 0) 0 00011111 00001111 00001111 10000111 11100000 11110001 11110001 11110110 {4, 28}
946 8 1/4 0.745166 {1, 2, 2, 1} (1.5708, 0) -3.14159 00011111 00001111 00001111 10000111 11100000 11110001 11110001 11110110 {4, 28}
947 8 1/5 5.52786 {2, 3, 2, 3} (0, 0) 0 00000100 00000100 00000011 00000011 00000001 11000001 00110000 00111100 {4, 36}
948 8 1/5 5.52786 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000100 00000100 00000011 00000011 00000001 11000001 00110000 00111100 {4, 36}
949 8 1/5 4.22291 {0, 1, 0, 1} (0, 0) 0 00001011 00001011 00000110 00000100 11000000 00110001 11100001 11000110 {4, 56}
950 8 1/5 4.22291 {0, 1, 1, 0} (1.5708, 0) -3.14159 00001011 00001011 00000110 00000100 11000000 00110001 11100001 11000110 {4, 56}
951 8 1/5 3.76393 {2, 6, 5, 3} (0, 0) 0 00001001 00000110 00000100 00000010 10000001 01100001 01010001 10001110 {8, 88}
952 8 1/5 3.76393 {2, 6, 3, 5} (1.5708, 0) 3.14159 00001001 00000110 00000100 00000010 10000001 01100001 01010001 10001110 {8, 88}
953 8 1/5 3 {2, 5, 4, 3} (0, 0) 0 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 16}
954 8 1/5 3 {2, 5, 3, 4} (1.5708, 0) -3.14159 00001010 00000101 00000010 00000001 10000000 01000000 10100000 01010000 {8, 16}
955 8 1/5 2.21115 {2, 3, 2, 3} (0, 0) 0 00001110 00001000 00000111 00000111 11000011 10110001 10111000 00111100 {4, 36}
956 8 1/5 2.21115 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001110 00001000 00000111 00000111 11000011 10110001 10111000 00111100 {4, 36}
957 8 1/5 2.11146 {2, 3, 2, 3} (0, 0) 0 00000111 00000100 00000011 00000011 00000001 11000010 10110100 10111000 {4, 56}
958 8 1/5 2.11146 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000100 00000011 00000011 00000001 11000010 10110100 10111000 {4, 56}
959 8 1/5 11 {0, 4, 3, 1} (0, 0) 0 00010011 00001011 00000101 10000011 01000011 00100001 11011000 11111100 {8, 48}
960 8 1/5 11 {0, 4, 1, 3} (1.5708, 0) 3.14159 00010011 00001011 00000101 10000011 01000011 00100001 11011000 11111100 {8, 48}
961 8 1/5 1.38197 {2, 3, 2, 3} (0, 0) 0 00000111 00000100 00000011 00000011 00000001 11000001 10110000 10111100 {8, 104}
962 8 1/5 1.38197 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000100 00000011 00000011 00000001 11000001 10110000 10111100 {8, 104}
963 8 1/5 1.22841 {2, 3, 2, 3} (0, 0) 0 00001111 00001010 00000111 00000111 11000001 10110000 11110001 10111010 {4, 44}
964 8 1/5 1.22841 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001111 00001010 00000111 00000111 11000001 10110000 11110001 10111010 {4, 44}
965 8 1/5 0.844582 {2, 3, 2, 3} (0, 0) 0 00001111 00001011 00000111 00000111 11000110 10111001 11111000 11110100 {4, 28}
966 8 1/5 0.844582 {2, 3, 3, 2} (1.5708, 0) -3.14159 00001111 00001011 00000111 00000111 11000110 10111001 11111000 11110100 {4, 28}
967 8 1/5 0.806504 {2, 3, 2, 3} (0, 0) 0 00000111 00000111 00000011 00000011 00000001 11000010 11110100 11111000 {4, 36}
968 8 1/5 0.806504 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000001 11000010 11110100 11111000 {4, 36}
969 8 1/5 0.614207 {2, 3, 2, 3} (0, 0) 0 00000111 00000111 00000011 00000011 00000001 11000001 11110000 11111100 {4, 32}
970 8 1/5 0.614207 {2, 3, 3, 2} (1.5708, 0) -3.14159 00000111 00000111 00000011 00000011 00000001 11000001 11110000 11111100 {4, 32}
971 9 4/5 94.7214 {1, 2, 1, 2} (0, 0) 0 000011011 000000111 000000111 000000100 100001011 100010001 011100000 111010001 111011010 {4}
972 9 4/5 94.7214 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000000111 000000111 000000100 100001011 100010001 011100000 111010001 111011010 {4}
973 9 4/5 90.2492 {1, 2, 1, 2} (0, 0) 0 000010011 000001101 000001101 000000110 100000010 011000111 011101001 100111001 111001110 {8}
974 9 4/5 90.2492 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001101 000001101 000000110 100000010 011000111 011101001 100111001 111001110 {8}
975 9 4/5 9.77139 {1, 2, 5, 4} (1.5708, 0) -0.96804 000100101 000010110 000001110 100000101 010000011 001000011 111100011 011011101 100111110 {4}
976 9 4/5 9.77139 {1, 2, 4, 5} (1.5708, 0) 2.17355 000100101 000010110 000001110 100000101 010000011 001000011 111100011 011011101 100111110 {4}
977 9 4/5 9.73607 {6, 7, 6, 7} (0, 0) 0 000011111 000001111 000000111 000000110 100000111 110000111 111111001 111111001 111011110 {16}
978 9 4/5 9.73607 {6, 7, 7, 6} (1.5708, 0) 3.14159 000011111 000001111 000000111 000000110 100000111 110000111 111111001 111111001 111011110 {16}
979 9 4/5 9.34752 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000110 000000101 110000011 001110001 111101001 111011110 {8}
980 9 4/5 9.34752 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000110 000000101 110000011 001110001 111101001 111011110 {8}
981 9 4/5 83.0132 {1, 2, 1, 2} (0, 0) 0 000101100 000011111 000011111 100000011 011000110 111000001 111010000 011110001 011101010 {8}
982 9 4/5 83.0132 {1, 2, 2, 1} (1.5708, 0) -3.14159 000101100 000011111 000011111 100000011 011000110 111000001 111010000 011110001 011101010 {8}
983 9 4/5 8.1305 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000001100 100000011 011100111 111101001 111011000 111011100 {4}
984 9 4/5 8.1305 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000001100 100000011 011100111 111101001 111011000 111011100 {4}
985 9 4/5 75.7771 {7, 8, 7, 8} (0, 0) 0 000001011 000001011 000000111 000000111 000000100 110000000 001110000 111100000 111100000 {32}
986 9 4/5 75.7771 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001011 000001011 000000111 000000111 000000100 110000000 001110000 111100000 111100000 {32}
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987 9 4/5 7.63932 {1, 2, 1, 2} (0, 0) 0 000010101 000001111 000001111 000000011 100000011 011000001 111000010 011110100 111111000 {20}
988 9 4/5 7.63932 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010101 000001111 000001111 000000011 100000011 011000001 111000010 011110100 111111000 {20}
989 9 4/5 66.732 {1, 2, 1, 2} (0, 0) 0 000011011 000001111 000001111 000001101 100000111 111100001 011110001 111010001 111111110 {4}
990 9 4/5 66.732 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000001111 000001111 000001101 100000111 111100001 011110001 111010001 111111110 {4}
991 9 4/5 6.89443 {2, 3, 2, 3} (0, 0) 0 000010111 000001101 000001011 000001011 100000100 011100011 110010010 101101101 111101010 {4}
992 9 4/5 6.89443 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001101 000001011 000001011 100000100 011100011 110010010 101101101 111101010 {4}
993 9 4/5 6.68328 {2, 3, 2, 3} (0, 0) 0 000001111 000001101 000000011 000000011 000000010 110000101 110001001 101110000 111101100 {16}
994 9 4/5 6.68328 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001111 000001101 000000011 000000011 000000010 110000101 110001001 101110000 111101100 {16}
995 9 4/5 6.58359 {2, 3, 2, 3} (0, 0) 0 000011011 000001110 000000011 000000011 100000101 110000000 010010001 111100000 101110100 {28}
996 9 4/5 6.58359 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000001110 000000011 000000011 100000101 110000000 010010001 111100000 101110100 {28}
997 9 4/5 6.52786 {0, 4, 3, 1} (0, 0) 0 000101111 000011111 000000011 100001111 010001111 110110010 110110001 111111000 111110100 {16}
998 9 4/5 6.52786 {0, 4, 1, 3} (1.5708, 0) -3.14159 000101111 000011111 000000011 100001111 010001111 110110010 110110001 111111000 111110100 {16}
999 9 4/5 6.34164 {1, 2, 1, 2} (0, 0) 0 000010101 000001111 000001111 000001011 100000011 011100110 111001011 011111101 111110110 {4}

1000 9 4/5 6.34164 {1, 2, 2, 1} (1.5708, 0) 3.14159 000010101 000001111 000001111 000001011 100000011 011100110 111001011 011111101 111110110 {4}
1001 9 4/5 52.3607 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000001000 100000011 011100000 111000001 111010001 111010110 {4}
1002 9 4/5 52.3607 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000001000 100000011 011100000 111000001 111010001 111010110 {4}
1003 9 4/5 5.93112 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000110 000000001 110000011 001100001 111101001 111011110 {8}
1004 9 4/5 5.93112 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000110 000000001 110000011 001100001 111101001 111011110 {8}
1005 9 4/5 5.78885 {6, 7, 6, 7} (0, 0) 0 000011111 000010110 000001111 000001111 110000000 101100001 111100001 111100001 101101110 {4}
1006 9 4/5 5.78885 {6, 7, 7, 6} (1.5708, 0) -3.14159 000011111 000010110 000001111 000001111 110000000 101100001 111100001 111100001 101101110 {4}
1007 9 4/5 5.26393 {6, 7, 6, 7} (0, 0) 0 000011111 000001111 000001110 000000111 100001111 111010111 111111001 111111001 110111110 {16}
1008 9 4/5 5.26393 {6, 7, 7, 6} (1.5708, 0) 3.14159 000011111 000001111 000001110 000000111 100001111 111010111 111111001 111111001 110111110 {16}
1009 9 4/5 5.1459 {0, 4, 5, 1} (0, 0) 0 000010010 000001010 000000110 000000011 100000001 010000001 001000001 111100001 000111110 {32}
1010 9 4/5 5.1459 {0, 4, 1, 5} (1.5708, 0) -3.14159 000010010 000001010 000000110 000000011 100000001 010000001 001000001 111100001 000111110 {32}
1011 9 4/5 47.8885 {2, 3, 2, 3} (0, 0) 0 000011101 000001100 000000111 000000111 100000011 110000010 111100001 001111001 101110110 {12}
1012 9 4/5 47.8885 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011101 000001100 000000111 000000111 100000011 110000010 111100001 001111001 101110110 {12}
1013 9 4/5 45.1246 {2, 3, 2, 3} (0, 0) 0 000011001 000001010 000000101 000000101 100000011 110000000 001100010 010010100 101110000 {24}
1014 9 4/5 45.1246 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011001 000001010 000000101 000000101 100000011 110000000 001100010 010010100 101110000 {24}
1015 9 4/5 43.4164 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001101 000001011 110001001 001110010 111000010 110101100 111110000 {8}
1016 9 4/5 43.4164 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001101 000001011 110001001 001110010 111000010 110101100 111110000 {8}
1017 9 4/5 40.6525 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000001100 100000001 011100011 011100001 111001001 111011110 {4}
1018 9 4/5 40.6525 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000001100 100000001 011100011 011100001 111001001 111011110 {4}
1019 9 4/5 4.87539 {2, 3, 2, 3} (0, 0) 0 000011001 000001011 000000101 000000101 100000010 110000000 001100010 010010100 111100000 {24}
1020 9 4/5 4.87539 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011001 000001011 000000101 000000101 100000010 110000000 001100010 010010100 111100000 {24}
1021 9 4/5 4.83688 {6, 7, 6, 7} (0, 0) 0 000111111 000010111 000001111 100011111 110101111 101110111 111111001 111111001 111111110 {4}
1022 9 4/5 4.83688 {6, 7, 7, 6} (1.5708, 0) -3.14159 000111111 000010111 000001111 100011111 110101111 101110111 111111001 111111001 111111110 {4}
1023 9 4/5 4.82405 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000000110 000000101 000000011 110000111 111101011 111011101 110111110 {8}
1024 9 4/5 4.82405 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000000110 000000101 000000011 110000111 111101011 111011101 110111110 {8}
1025 9 4/5 4.58018 {0, 2, 5, 6} (1.5708, 3.14159) -1.40974 000111101 000101111 000011111 110010101 101100011 111000011 111100001 011011001 111111110 {4}
1026 9 4/5 4.58018 {0, 2, 6, 5} (1.5708, -3.14159) 1.73185 000111101 000101111 000011111 110010101 101100011 111000011 111100001 011011001 111111110 {4}
1027 9 4/5 4.22291 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000000011 100000000 011000000 011000000 111100000 111100000 {12}
1028 9 4/5 4.22291 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000000011 100000000 011000000 011000000 111100000 111100000 {12}
1029 9 4/5 4 {1, 2, 1, 2} (0, 0) 0 000010010 000001111 000001111 000001100 100000010 011100101 011101001 111010001 011001110 {4}
1030 9 4/5 4 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010010 000001111 000001111 000001100 100000010 011100101 011101001 111010001 011001110 {4}
1031 9 4/5 36.1803 {1, 2, 1, 2} (0, 0) 0 000011011 000000111 000000111 000000001 100001001 100010001 011000010 111000100 111111000 {8}
1032 9 4/5 36.1803 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000000111 000000111 000000001 100001001 100010001 011000010 111000100 111111000 {8}
1033 9 4/5 358.885 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000001001 100000111 011100001 111010011 111010101 111111110 {4}
1034 9 4/5 358.885 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000001001 100000111 011100001 111010011 111010101 111111110 {4}
1035 9 4/5 34.4721 {2, 3, 2, 3} (0, 0) 0 000011111 000001100 000000111 000000111 100001001 110010011 111100011 101101101 101111110 {4}
1036 9 4/5 34.4721 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000001100 000000111 000000111 100001001 110010011 111100011 101101101 101111110 {4}
1037 9 4/5 33.4164 {2, 3, 2, 3} (0, 0) 0 000001101 000001100 000000011 000000011 000000010 110000101 110001001 001110000 101101100 {48}
1038 9 4/5 33.4164 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001100 000000011 000000011 000000010 110000101 110001001 001110000 101101100 {48}
1039 9 4/5 31.7082 {1, 2, 1, 2} (0, 0) 0 000010110 000001111 000001111 000000001 100000011 011000101 111001011 111010101 011111110 {4}
1040 9 4/5 31.7082 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010110 000001111 000001111 000000001 100000011 011000101 111001011 111010101 011111110 {4}
1041 9 4/5 309.289 {1, 2, 1, 2} (0, 0) 0 000011101 000001111 000001111 000001010 100000111 111100011 111010000 011111001 111011010 {4}
1042 9 4/5 309.289 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011101 000001111 000001111 000001010 100000111 111100011 111010000 011111001 111011010 {4}
1043 9 4/5 3.71885 {1, 2, 1, 2} (0, 0) 0 000010100 000001111 000001111 000001000 100000010 011100001 111000001 011010001 011001110 {8}
1044 9 4/5 3.71885 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010100 000001111 000001111 000001000 100000010 011100001 111000001 011010001 011001110 {8}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)

205



R
E

P
R

E
S
E

N
T

A
T

IV
E

W
ID

G
E

T
IN

F
O

R
M

A
T

IO
N

ID N k/π ` Attach. (θ, φ) α Adjacency matrix Equivalent
1045 9 4/5 3.525 {2, 3, 2, 3} (0, 0) 0 000011111 000011111 000001111 000001111 110000011 111100100 111101000 111110001 111110010 {4}
1046 9 4/5 3.525 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000011111 000001111 000001111 110000011 111100100 111101000 111110001 111110010 {4}
1047 9 4/5 3.44721 {1, 2, 1, 2} (0, 0) 0 000011011 000001111 000001111 000000011 100000111 111000101 011011001 111110000 111111100 {16}
1048 9 4/5 3.44721 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000001111 000001111 000000011 100000111 111000101 011011001 111110000 111111100 {16}
1049 9 4/5 3.12868 {6, 7, 6, 7} (0, 0) 0 000011111 000001111 000000111 000000111 100000111 110000111 111111001 111111001 111111110 {4}
1050 9 4/5 3.12868 {6, 7, 7, 6} (1.5708, 0) 3.14159 000011111 000001111 000000111 000000111 100000111 110000111 111111001 111111001 111111110 {4}
1051 9 4/5 28.9443 {3, 4, 3, 4} (0, 0) 0 000001011 000001010 000000110 000000101 000000101 110000010 001110001 111001001 100110110 {28}
1052 9 4/5 28.9443 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001011 000001010 000000110 000000101 000000101 110000010 001110001 111001001 100110110 {28}
1053 9 4/5 27.2361 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000110 000000101 110000111 001111001 111101001 111011110 {8}
1054 9 4/5 27.2361 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000110 000000101 110000111 001111001 111101001 111011110 {8}
1055 9 4/5 24.4721 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001111 000001011 110000000 001100011 111000001 111101001 111101110 {8}
1056 9 4/5 24.4721 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001111 000001011 110000000 001100011 111000001 111101001 111101110 {8}
1057 9 4/5 24.3713 {6, 7, 6, 7} (0, 0) 0 000111111 000011111 000000110 100001111 110001111 110110111 111111001 111111001 110111110 {4}
1058 9 4/5 24.3713 {6, 7, 7, 6} (1.5708, 0) 3.14159 000111111 000011111 000000110 100001111 110001111 110110111 111111001 111111001 110111110 {4}
1059 9 4/5 20.9443 {1, 4, 2, 3} (0, 0) 0 000001111 000000101 000000101 000000011 000000011 100000000 111000001 100110001 111110110 {16}
1060 9 4/5 20.9443 {1, 4, 3, 2} (1.5708, 0) 3.14159 000001111 000000101 000000101 000000011 000000011 100000000 111000001 100110001 111110110 {16}
1061 9 4/5 20 {5, 7, 5, 7} (0, 0) 0 000001110 000001011 000001011 000000101 000000101 111000001 100110001 111000001 011111110 {36}
1062 9 4/5 20 {5, 7, 7, 5} (1.5708, 0) 3.14159 000001110 000001011 000001011 000000101 000000101 111000001 100110001 111000001 011111110 {36}
1063 9 4/5 2.71353 {3, 4, 3, 4} (0, 0) 0 000001111 000000101 000000010 000000001 000000001 100000001 110000010 101000100 110111000 {16}
1064 9 4/5 2.71353 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000000101 000000010 000000001 000000001 100000001 110000010 101000100 110111000 {16}
1065 9 4/5 2.48107 {0, 1, 4, 3} (1.5708, 3.14159) -1.40974 000001100 000001010 000000110 000000101 000000011 110000111 101101001 011011001 000111110 {4}
1066 9 4/5 2.48107 {0, 1, 3, 4} (1.5708, -3.14159) 1.73185 000001100 000001010 000000110 000000101 000000011 110000111 101101001 011011001 000111110 {4}
1067 9 4/5 2.21115 {3, 4, 3, 4} (0, 0) 0 000001111 000001011 000000110 000000101 000000101 110000010 101110001 111001001 110110110 {20}
1068 9 4/5 2.21115 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001011 000000110 000000101 000000101 110000010 101110001 111001001 110110110 {20}
1069 9 4/5 2.07295 {2, 3, 2, 3} (0, 0) 0 000001101 000000100 000000010 000000010 000000001 100000000 110000001 001100001 100010110 {32}
1070 9 4/5 2.07295 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000000100 000000010 000000010 000000001 100000000 110000001 001100001 100010110 {32}
1071 9 4/5 2.05573 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100000 111100000 {32}
1072 9 4/5 2.05573 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100000 111100000 {32}
1073 9 4/5 198.387 {6, 7, 6, 7} (0, 0) 0 000011111 000011111 000001111 000001111 110000001 111100001 111100000 111100000 111111000 {8}
1074 9 4/5 198.387 {6, 7, 7, 6} (1.5708, 0) -3.14159 000011111 000011111 000001111 000001111 110000001 111100001 111100000 111100000 111111000 {8}
1075 9 4/5 19.9443 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000010 100000001 010000000 001000000 100100000 111010000 {8}
1076 9 4/5 19.9443 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000010 100000001 010000000 001000000 100100000 111010000 {8}
1077 9 4/5 18.2918 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001101 000001011 110000001 001100010 111000010 110101100 111110000 {16}
1078 9 4/5 18.2918 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001101 000001011 110000001 001100010 111000010 110101100 111110000 {16}
1079 9 4/5 17.2361 {1, 2, 1, 2} (0, 0) 0 000001011 000000101 000000101 000000011 000000011 100000010 011000001 100111001 111110110 {60}
1080 9 4/5 17.2361 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001011 000000101 000000101 000000011 000000011 100000010 011000001 100111001 111110110 {60}
1081 9 4/5 15.5279 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000000011 100000001 011000011 011000001 111101001 111111110 {8}
1082 9 4/5 15.5279 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000000011 100000001 011000011 011000001 111101001 111111110 {8}
1083 9 4/5 15.4721 {3, 8, 7, 4} (0, 0) 0 000001100 000001011 000000111 000000010 000000001 110000011 101000011 011101100 011011100 {16}
1084 9 4/5 15.4721 {3, 8, 4, 7} (1.5708, 0) -3.14159 000001100 000001011 000000111 000000010 000000001 110000011 101000011 011101100 011011100 {16}
1085 9 4/5 15.1554 {1, 2, 1, 2} (0, 0) 0 000011101 000001111 000001111 000001010 100000111 111100011 111010001 011111001 111011110 {12}
1086 9 4/5 15.1554 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011101 000001111 000001111 000001010 100000111 111100011 111010001 011111001 111011110 {12}
1087 9 4/5 14.2082 {3, 4, 3, 4} (0, 0) 0 000001101 000000100 000000011 000000010 000000010 100000000 110000001 001110001 101000110 {16}
1088 9 4/5 14.2082 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001101 000000100 000000011 000000010 000000010 100000000 110000001 001110001 101000110 {16}
1089 9 4/5 137.082 {1, 2, 1, 2} (0, 0) 0 000010101 000001111 000001111 000001010 100000011 011100001 111000010 011110100 111011000 {16}
1090 9 4/5 137.082 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010101 000001111 000001111 000001010 100000011 011100001 111000010 011110100 111011000 {16}
1091 9 4/5 13.8736 {4, 5, 7, 6} (1.5708, 0) -0.96804 000111001 000011111 000011111 100000111 111000101 111000011 011110001 011101001 111111110 {4}
1092 9 4/5 13.8736 {4, 5, 6, 7} (1.5708, 0) 2.17355 000111001 000011111 000011111 100000111 111000101 111000011 011110001 011101001 111111110 {4}
1093 9 4/5 13.8197 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000101 000000101 110000001 001110001 111000001 111111110 {8}
1094 9 4/5 13.8197 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000101 000000101 110000001 001110001 111000001 111111110 {8}
1095 9 4/5 13.7812 {6, 7, 6, 7} (0, 0) 0 000011111 000010111 000001111 000000110 110001111 101010111 111111001 111111001 111011110 {4}
1096 9 4/5 13.7812 {6, 7, 7, 6} (1.5708, 0) -3.14159 000011111 000010111 000001111 000000110 110001111 101010111 111111001 111111001 111011110 {4}
1097 9 4/5 12.7639 {2, 3, 2, 3} (0, 0) 0 000001011 000001010 000000101 000000101 000000001 110000011 001100000 110001001 101111010 {48}
1098 9 4/5 12.7639 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001011 000001010 000000101 000000101 000000001 110000011 001100000 110001001 101111010 {48}
1099 9 4/5 12.6631 {7, 8, 7, 8} (0, 0) 0 000001111 000001111 000001011 000000111 000000011 111000111 110101011 111111100 111111100 {4}
1100 9 4/5 12.6631 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001111 000001111 000001011 000000111 000000011 111000111 110101011 111111100 111111100 {4}
1101 9 4/5 12.1115 {2, 3, 2, 3} (0, 0) 0 000011110 000001011 000000111 000000111 100000100 110000001 101110001 111100000 011101100 {4}
1102 9 4/5 12.1115 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011110 000001011 000000111 000000111 100000100 110000001 101110001 111100000 011101100 {4}
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1103 9 4/5 118.138 {6, 7, 6, 7} (0, 0) 0 000101111 000010111 000001110 100001111 010000001 101100001 111100001 111100001 110111110 {4}
1104 9 4/5 118.138 {6, 7, 7, 6} (1.5708, 0) 3.14159 000101111 000010111 000001110 100001111 010000001 101100001 111100001 111100001 110111110 {4}
1105 9 4/5 11.0557 {7, 8, 7, 8} (0, 0) 0 000001100 000000111 000000111 000000011 000000011 100000000 111000000 011110000 011110000 {36}
1106 9 4/5 11.0557 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001100 000000111 000000111 000000011 000000011 100000000 111000000 011110000 011110000 {36}
1107 9 4/5 106.43 {2, 3, 2, 3} (0, 0) 0 000001011 000001001 000000111 000000111 000000101 110000010 001110011 101101101 111110110 {8}
1108 9 4/5 106.43 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001011 000001001 000000111 000000111 000000101 110000010 001110011 101101101 111110110 {8}
1109 9 4/5 10.4721 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000001101 100000010 011100101 011101000 111010000 111101000 {4}
1110 9 4/5 10.4721 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000001101 100000010 011100101 011101000 111010000 111101000 {4}
1111 9 4/5 1.45898 {2, 3, 2, 3} (0, 0) 0 000011010 000001111 000000011 000000011 100000101 110000000 010010000 111100001 011110010 {16}
1112 9 4/5 1.45898 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011010 000001111 000000011 000000011 100000101 110000000 010010000 111100001 011110010 {16}
1113 9 4/5 1.40325 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000001 001000001 100100000 111101100 {8}
1114 9 4/5 1.40325 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000000 010000001 001000001 100100000 111101100 {8}
1115 9 4/5 1.03648 {3, 4, 3, 4} (0, 0) 0 000001111 000000101 000000010 000000001 000000001 100000000 110000010 101000100 110110000 {16}
1116 9 4/5 1.03648 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000000101 000000010 000000001 000000001 100000000 110000010 101000100 110110000 {16}
1117 9 4/5 0.791796 {3, 4, 3, 4} (0, 0) 0 000001111 000000101 000000011 000000001 000000001 100000000 110000010 101000100 111110000 {16}
1118 9 4/5 0.791796 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000000101 000000011 000000001 000000001 100000000 110000010 101000100 111110000 {16}
1119 9 3/4 9.24264 {2, 3, 2, 3} (0, 0) 0 000010111 000001001 000000011 000000011 100000110 010000001 100010010 101110100 111101000 {8}
1120 9 3/4 9.24264 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001001 000000011 000000011 100000110 010000001 100010010 101110100 111101000 {8}
1121 9 3/4 8.82843 {3, 4, 3, 4} (0, 0) 0 000001111 000001010 000000101 000000011 000000011 110000111 101001001 110111000 101111100 {44}
1122 9 3/4 8.82843 {0, 1, 4, 3} (1.5708, 0) -1.5708 000100101 000010101 000001110 100000011 010000011 001000000 111000000 001110000 110110000 {4}
1123 9 3/4 8.82843 {0, 1, 3, 4} (1.5708, 0) 1.5708 000100101 000010101 000001110 100000011 010000011 001000000 111000000 001110000 110110000 {4}
1124 9 3/4 8.82843 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001010 000000101 000000011 000000011 110000111 101001001 110111000 101111100 {44}
1125 9 3/4 8.61204 {3, 4, 3, 4} (0, 0) 0 000001001 000000111 000000100 000000011 000000011 100000001 011000011 010110101 110111110 {4}
1126 9 3/4 8.61204 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000111 000000100 000000011 000000011 100000001 011000011 010110101 110111110 {4}
1127 9 3/4 8.37534 {1, 2, 1, 2} (0, 0) 0 000001011 000000111 000000111 000000101 000000010 100000001 011100001 111010000 111101100 {4}
1128 9 3/4 8.37534 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001011 000000111 000000111 000000101 000000010 100000001 011100001 111010000 111101100 {4}
1129 9 3/4 7.92226 {3, 4, 3, 4} (0, 0) 0 000001001 000000110 000000101 000000011 000000011 100000000 011000011 010110100 101110100 {4}
1130 9 3/4 7.92226 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000110 000000101 000000011 000000011 100000000 011000011 010110100 101110100 {4}
1131 9 3/4 7.82843 {7, 0, 7, 5} (0, 0) 2.35619 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {8}
1132 9 3/4 7.82843 {0, 8, 5, 7} (0, 0) 0.785398 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {4}
1133 9 3/4 7.82843 {0, 7, 5, 7} (0, 0) -2.35619 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {8}
1134 9 3/4 7.82843 {8, 0, 7, 5} (0, 0) -0.785398 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {4}
1135 9 3/4 7.82843 {0, 7, 7, 5} (1.5708, 1.1781) -3.14159 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {8}
1136 9 3/4 7.82843 {8, 0, 5, 7} (1.5708, 0.392699) -3.14159 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {4}
1137 9 3/4 7.82843 {7, 0, 5, 7} (1.5708, -1.1781) 3.14159 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {8}
1138 9 3/4 7.82843 {0, 8, 7, 5} (1.5708, -0.392699) 3.14159 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {4}
1139 9 3/4 7.77124 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000010 000000001 000000001 110000001 001100001 111011110 {4}
1140 9 3/4 7.77124 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000010 000000001 000000001 110000001 001100001 111011110 {4}
1141 9 3/4 7.70069 {1, 2, 1, 2} (0, 0) 0 000011101 000001111 000001111 000000011 100000001 111000000 111000000 011100001 111110010 {4}
1142 9 3/4 7.70069 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011101 000001111 000001111 000000011 100000001 111000000 111000000 011100001 111110010 {4}
1143 9 3/4 7.32843 {1, 2, 5, 4} (1.5708, 3.14159) -0.785398 000100111 000010010 000001010 100000110 010000001 001000001 100100001 111100001 100011110 {4}
1144 9 3/4 7.32843 {1, 2, 4, 5} (1.5708, -3.14159) 2.35619 000100111 000010010 000001010 100000110 010000001 001000001 100100001 111100001 100011110 {4}
1145 9 3/4 6.34315 {3, 4, 3, 4} (0, 0) 0 000001111 000001010 000000101 000000011 000000011 110000000 101000001 110110001 101110110 {20}
1146 9 3/4 6.34315 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001010 000000101 000000011 000000011 110000000 101000001 110110001 101110110 {20}
1147 9 3/4 6.32843 {2, 3, 2, 3} (0, 0) 0 000001101 000001010 000000111 000000111 000000011 110000111 101101001 011111000 101111100 {12}
1148 9 3/4 6.32843 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001010 000000111 000000111 000000011 110000111 101101001 011111000 101111100 {12}
1149 9 3/4 6.28892 {3, 4, 3, 4} (0, 0) 0 000001001 000000111 000000111 000000011 000000011 100000001 011000011 011110101 111111110 {4}
1150 9 3/4 6.28892 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000111 000000111 000000011 000000011 100000001 011000011 011110101 111111110 {4}
1151 9 3/4 6 {3, 8, 7, 8} (0, 0) 0.785398 000010011 000001111 000001111 000000101 100000000 011000000 011100000 111000000 111100000 {4}
1152 9 3/4 6 {8, 3, 8, 7} (0, 0) -0.785398 000010011 000001111 000001111 000000101 100000000 011000000 011100000 111000000 111100000 {4}
1153 9 3/4 6 {8, 3, 7, 8} (1.5708, 0.392699) -3.14159 000010011 000001111 000001111 000000101 100000000 011000000 011100000 111000000 111100000 {4}
1154 9 3/4 6 {3, 8, 8, 7} (1.5708, -0.392699) 3.14159 000010011 000001111 000001111 000000101 100000000 011000000 011100000 111000000 111100000 {4}
1155 9 3/4 5.95617 {2, 3, 2, 3} (0, 0) 0 000000110 000000101 000000011 000000011 000000001 000000001 110000011 101100100 011111100 {4}
1156 9 3/4 5.95617 {2, 3, 3, 2} (1.5708, 0) -3.14159 000000110 000000101 000000011 000000011 000000001 000000001 110000011 101100100 011111100 {4}
1157 9 3/4 5.88562 {4, 5, 4, 5} (0, 0) 0 000011101 000011101 000011010 000000110 111000011 111000011 110100011 001111100 110011100 {4}
1158 9 3/4 5.88562 {4, 5, 5, 4} (1.5708, 0) 3.14159 000011101 000011101 000011010 000000110 111000011 111000011 110100011 001111100 110011100 {4}
1159 9 3/4 5.82843 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000011 000000001 000000001 110000001 001100001 111111110 {4}
1160 9 3/4 5.82843 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000011 000000001 000000001 110000001 001100001 111111110 {4}
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1161 9 3/4 5.41421 {0, 1, 5, 4} (1.5708, 0) -1.5708 000010101 000001101 000000110 000000110 100000011 010000011 111100000 001111000 110011000 {4}
1162 9 3/4 5.41421 {0, 1, 4, 5} (1.5708, 0) 1.5708 000010101 000001101 000000110 000000110 100000011 010000011 111100000 001111000 110011000 {4}
1163 9 3/4 5.37258 {3, 4, 3, 4} (0, 0) 0 000001101 000001011 000001010 000000110 000000110 111000001 100110001 011110000 110001100 {12}
1164 9 3/4 5.37258 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001101 000001011 000001010 000000110 000000110 111000001 100110001 011110000 110001100 {12}
1165 9 3/4 5.02944 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000011010 000000111 111000011 111000011 110100001 111111001 110111110 {4}
1166 9 3/4 5.02944 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000011010 000000111 111000011 111000011 110100001 111111001 110111110 {4}
1167 9 3/4 4.77191 {0, 1, 0, 1} (0, 0) 0 000001110 000001110 000001001 000000111 000000110 111000001 110110001 110110001 001101110 {4}
1168 9 3/4 4.77191 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001110 000001110 000001001 000000111 000000110 111000001 110110001 110110001 001101110 {4}
1169 9 3/4 4.41421 {1, 2, 1, 2} (0, 0) 0 000011111 000001111 000001111 000000011 100000001 111000111 111001000 111101001 111111010 {8}
1170 9 3/4 4.41421 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011111 000001111 000001111 000000011 100000001 111000111 111001000 111101001 111111010 {8}
1171 9 3/4 4 {7, 1, 7, 6} (0, 0) 2.35619 000001001 000000100 000000100 000000011 000000011 100000000 011000011 000110100 100110100 {8}
1172 9 3/4 4 {2, 8, 7, 8} (0, 0) 0.785398 000001111 000001111 000000101 000000011 000000011 110000000 111000000 110110000 111110000 {8}
1173 9 3/4 4 {1, 7, 6, 7} (0, 0) -2.35619 000001001 000000100 000000100 000000011 000000011 100000000 011000011 000110100 100110100 {8}
1174 9 3/4 4 {8, 2, 8, 7} (0, 0) -0.785398 000001111 000001111 000000101 000000011 000000011 110000000 111000000 110110000 111110000 {8}
1175 9 3/4 4 {1, 7, 7, 6} (1.5708, 1.1781) -3.14159 000001001 000000100 000000100 000000011 000000011 100000000 011000011 000110100 100110100 {8}
1176 9 3/4 4 {8, 2, 7, 8} (1.5708, 0.392699) -3.14159 000001111 000001111 000000101 000000011 000000011 110000000 111000000 110110000 111110000 {8}
1177 9 3/4 4 {7, 1, 6, 7} (1.5708, -1.1781) 3.14159 000001001 000000100 000000100 000000011 000000011 100000000 011000011 000110100 100110100 {8}
1178 9 3/4 4 {2, 8, 8, 7} (1.5708, -0.392699) 3.14159 000001111 000001111 000000101 000000011 000000011 110000000 111000000 110110000 111110000 {8}
1179 9 3/4 36.9706 {3, 4, 3, 4} (0, 0) 0 000001100 000001010 000000101 000000011 000000011 110000011 101000001 010111001 001111110 {24}
1180 9 3/4 36.9706 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001100 000001010 000000101 000000011 000000011 110000011 101000001 010111001 001111110 {24}
1181 9 3/4 31.3137 {2, 3, 2, 3} (0, 0) 0 000001101 000001011 000000110 000000110 000000011 110000101 101101001 011110001 110011110 {12}
1182 9 3/4 31.3137 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001011 000000110 000000110 000000011 110000101 101101001 011110001 110011110 {12}
1183 9 3/4 3.80474 {3, 0, 5, 1} (1.5708, -1.5708) -1.23096 000111101 000101111 000011011 110000111 101000101 111000011 110110011 011101101 111111110 {2}
1184 9 3/4 3.80474 {0, 3, 1, 5} (1.5708, 1.5708) -1.23096 000111101 000101111 000011011 110000111 101000101 111000011 110110011 011101101 111111110 {2}
1185 9 3/4 3.80474 {3, 0, 1, 5} (0.955317, 0) -3.14159 000111101 000101111 000011011 110000111 101000101 111000011 110110011 011101101 111111110 {2}
1186 9 3/4 3.80474 {0, 3, 5, 1} (0.955317, -3.14159) -3.14159 000111101 000101111 000011011 110000111 101000101 111000011 110110011 011101101 111111110 {2}
1187 9 3/4 3.78361 {3, 4, 3, 4} (0, 0) 0 000001011 000000110 000000101 000000011 000000011 100000001 011000000 110110000 101111000 {8}
1188 9 3/4 3.78361 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001011 000000110 000000101 000000011 000000011 100000001 011000000 110110000 101111000 {8}
1189 9 3/4 3.71573 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000000111 000000100 110001011 110010011 111100001 111011001 111011110 {8}
1190 9 3/4 3.71573 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000000111 000000100 110001011 110010011 111100001 111011001 111011110 {8}
1191 9 3/4 3.70711 {2, 3, 2, 3} (0, 0) 0 000001101 000001010 000000111 000000111 000000001 110000000 101100001 011100000 101110100 {8}
1192 9 3/4 3.70711 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001010 000000111 000000111 000000001 110000000 101100001 011100000 101110100 {8}
1193 9 3/4 3.48904 {2, 3, 2, 3} (0, 0) 0 000011101 000010010 000001111 000001111 110000000 101100001 101100001 011100000 101101100 {4}
1194 9 3/4 3.48904 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011101 000010010 000001111 000001111 110000000 101100001 101100001 011100000 101101100 {4}
1195 9 3/4 3.41421 {4, 5, 4, 5} (0, 0) 0 000000101 000000100 000000011 000000010 000000001 000000001 110000001 001100000 101011100 {4}
1196 9 3/4 3.41421 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000100 000000011 000000010 000000001 000000001 110000001 001100000 101011100 {4}
1197 9 3/4 3.17157 {2, 3, 2, 3} (0, 0) 0 000010101 000001001 000000011 000000011 100000101 010000001 100010000 001100000 111111000 {20}
1198 9 3/4 3.17157 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010101 000001001 000000011 000000011 100000101 010000001 100010000 001100000 111111000 {20}
1199 9 3/4 3.09384 {3, 4, 3, 4} (0, 0) 0 000001001 000000111 000000100 000000011 000000011 100000001 011000000 010110001 110111010 {4}
1200 9 3/4 3.09384 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000111 000000100 000000011 000000011 100000001 011000000 010110001 110111010 {4}
1201 9 3/4 3.02944 {3, 4, 3, 4} (0, 0) 0 000001111 000001010 000000101 000000011 000000011 110000100 101001001 110110000 101110100 {16}
1202 9 3/4 3.02944 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001010 000000101 000000011 000000011 110000100 101001001 110110000 101110100 {16}
1203 9 3/4 3 {0, 7, 0, 2} (0, 0) 2.35619 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
1204 9 3/4 3 {7, 0, 2, 1} (0, 0) 0.785398 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
1205 9 3/4 3 {7, 0, 2, 0} (0, 0) -2.35619 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
1206 9 3/4 3 {0, 7, 1, 2} (0, 0) -0.785398 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
1207 9 3/4 3 {7, 0, 0, 2} (1.5708, 1.1781) -3.14159 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
1208 9 3/4 3 {0, 7, 2, 1} (1.5708, 0.392699) -3.14159 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
1209 9 3/4 3 {0, 7, 2, 0} (1.5708, -1.1781) 3.14159 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
1210 9 3/4 3 {7, 0, 1, 2} (1.5708, -0.392699) 3.14159 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
1211 9 3/4 29.3137 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000000111 000000101 110000011 110000011 111100001 111011001 111111110 {4}
1212 9 3/4 29.3137 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000000111 000000101 110000011 110000011 111100001 111011001 111111110 {4}
1213 9 3/4 21.6569 {2, 3, 2, 3} (0, 0) 0 000011011 000001001 000000111 000000111 100000010 110000001 001100011 101110100 111101100 {56}
1214 9 3/4 21.6569 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000001001 000000111 000000111 100000010 110000001 001100011 101110100 111101100 {56}
1215 9 3/4 20 {2, 3, 2, 3} (0, 0) 0 000011000 000010111 000001111 000001111 110000011 101100010 011100001 011111000 011110100 {8}
1216 9 3/4 20 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011000 000010111 000001111 000001111 110000011 101100010 011100001 011111000 011110100 {8}
1217 9 3/4 2.97808 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000010 000000001 000000001 110000001 001100000 111011100 {4}
1218 9 3/4 2.97808 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000010 000000001 000000001 110000001 001100000 111011100 {4}
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1219 9 3/4 2.92099 {1, 2, 1, 2} (0, 0) 0 000001011 000000111 000000111 000000010 000000010 100000001 011000001 111110000 111001100 {4}
1220 9 3/4 2.92099 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001011 000000111 000000111 000000010 000000010 100000001 011000001 111110000 111001100 {4}
1221 9 3/4 2.7388 {2, 3, 2, 3} (0, 0) 0 000001101 000001010 000000111 000000111 000000011 110000000 101100001 011110000 101110100 {4}
1222 9 3/4 2.7388 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001010 000000111 000000111 000000011 110000000 101100001 011110000 101110100 {4}
1223 9 3/4 2.68629 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001001 000000111 000000111 111000011 110110010 110111101 111111010 {8}
1224 9 3/4 2.68629 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001001 000000111 000000111 111000011 110110010 110111101 111111010 {8}
1225 9 3/4 2.66667 {2, 3, 2, 3} (0, 0) 0 000000110 000000101 000000011 000000011 000000001 000000001 110000000 101100000 011111000 {4}
1226 9 3/4 2.66667 {2, 3, 3, 2} (1.5708, 0) -3.14159 000000110 000000101 000000011 000000011 000000001 000000001 110000000 101100000 011111000 {4}
1227 9 3/4 2.47944 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000000110 100000001 011000001 111100000 111100000 111011000 {4}
1228 9 3/4 2.47944 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000000110 100000001 011000001 111100000 111100000 111011000 {4}
1229 9 3/4 2.4 {2, 3, 2, 3} (0, 0) 0 000001100 000001011 000000111 000000111 000000011 110000000 101100000 011110000 011110000 {4}
1230 9 3/4 2.4 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001100 000001011 000000111 000000111 000000011 110000000 101100000 011110000 011110000 {4}
1231 9 3/4 2 {0, 4, 5, 3} (0, 0) 2.35619 000001001 000000101 000000101 000000010 000000010 100000000 011000000 000110000 111000000 {8}
1232 9 3/4 2 {4, 0, 3, 5} (0, 0) -2.35619 000001001 000000101 000000101 000000010 000000010 100000000 011000000 000110000 111000000 {8}
1233 9 3/4 2 {4, 0, 5, 3} (1.5708, 1.1781) -3.14159 000001001 000000101 000000101 000000010 000000010 100000000 011000000 000110000 111000000 {8}
1234 9 3/4 2 {0, 4, 3, 5} (1.5708, -1.1781) 3.14159 000001001 000000101 000000101 000000010 000000010 100000000 011000000 000110000 111000000 {8}
1235 9 3/4 18.4853 {3, 4, 3, 4} (0, 0) 0 000001111 000001010 000000101 000000011 000000011 110000011 101000001 110111001 101111110 {24}
1236 9 3/4 18.4853 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001010 000000101 000000011 000000011 110000011 101000001 110111001 101111110 {24}
1237 9 3/4 18.3431 {6, 7, 6, 7} (0, 0) 0 000101111 000010111 000010110 100001111 011001111 100110111 111111001 111111001 110111110 {4}
1238 9 3/4 18.3431 {6, 7, 7, 6} (1.5708, 0) 3.14159 000101111 000010111 000010110 100001111 011001111 100110111 111111001 111111001 110111110 {4}
1239 9 3/4 17.6569 {3, 4, 3, 4} (0, 0) 0 000001010 000001001 000000110 000000101 000000101 110000011 001110010 101001101 010111010 {24}
1240 9 3/4 17.6569 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001010 000001001 000000110 000000101 000000101 110000011 001110010 101001101 010111010 {24}
1241 9 3/4 17.4853 {3, 4, 3, 4} (0, 0) 0 000001011 000000110 000000101 000000011 000000011 100000001 011000011 110110100 101111100 {4}
1242 9 3/4 17.4853 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001011 000000110 000000101 000000011 000000011 100000001 011000011 110110100 101111100 {4}
1243 9 3/4 16 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000001011 000000101 110000110 111000000 110110000 111010001 111100010 {16}
1244 9 3/4 16 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000001011 000000101 110000110 111000000 110110000 111010001 111100010 {16}
1245 9 3/4 15.9629 {2, 3, 2, 3} (0, 0) 0 000001101 000001010 000000111 000000111 000000001 110000111 101101001 011101000 101111100 {4}
1246 9 3/4 15.9629 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001010 000000111 000000111 000000001 110000111 101101001 011101000 101111100 {4}
1247 9 3/4 126.225 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000001111 000000110 110000001 111000111 111101011 111101101 111011110 {12}
1248 9 3/4 126.225 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000001111 000000110 110000001 111000111 111101011 111101101 111011110 {12}
1249 9 3/4 12.5778 {0, 1, 0, 1} (0, 0) 0 000011101 000011101 000011011 000000110 111000011 111000011 110100010 001111101 111011010 {4}
1250 9 3/4 12.5778 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011101 000011101 000011011 000000110 111000011 111000011 110100010 001111101 111011010 {4}
1251 9 3/4 12.3235 {1, 2, 1, 2} (0, 0) 0 000001101 000000111 000000111 000000011 000000011 100000001 111000000 011110001 111111010 {4}
1252 9 3/4 12.3235 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001101 000000111 000000111 000000011 000000011 100000001 111000000 011110001 111111010 {4}
1253 9 3/4 116.569 {2, 3, 2, 3} (0, 0) 0 000011110 000010001 000001111 000001111 110000011 101100010 101100001 101111000 011110100 {8}
1254 9 3/4 116.569 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011110 000010001 000001111 000001111 110000011 101100010 101100001 101111000 011110100 {8}
1255 9 3/4 102.912 {1, 2, 1, 2} (0, 0) 0 000011011 000001111 000001111 000000011 100000101 111000010 011010000 111101001 111110010 {8}
1256 9 3/4 102.912 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000001111 000001111 000000011 100000101 111000010 011010000 111101001 111110010 {8}
1257 9 3/4 10.3431 {2, 3, 2, 3} (0, 0) 0 000010111 000001101 000001011 000001011 100000110 011100111 110011001 101111000 111101100 {36}
1258 9 3/4 10.3431 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001101 000001011 000001011 100000110 011100111 110011001 101111000 111101100 {36}
1259 9 3/4 1.91912 {0, 7, 1, 6} (1.5708, -1.5708) -1.23096 000110111 000101111 000011010 110000110 101000111 011000001 110110001 111110000 110011100 {2}
1260 9 3/4 1.91912 {7, 0, 6, 1} (1.5708, 1.5708) -1.23096 000110111 000101111 000011010 110000110 101000111 011000001 110110001 111110000 110011100 {2}
1261 9 3/4 1.91912 {0, 7, 6, 1} (0.955317, 0) -3.14159 000110111 000101111 000011010 110000110 101000111 011000001 110110001 111110000 110011100 {2}
1262 9 3/4 1.91912 {7, 0, 1, 6} (0.955317, -3.14159) -3.14159 000110111 000101111 000011010 110000110 101000111 011000001 110110001 111110000 110011100 {2}
1263 9 3/4 1.89736 {1, 2, 1, 2} (0, 0) 0 000011011 000001111 000001111 000000011 100000111 111000110 011011001 111111000 111110100 {4}
1264 9 3/4 1.89736 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000001111 000001111 000000011 100000111 111000110 011011001 111111000 111110100 {4}
1265 9 3/4 1.84198 {4, 5, 4, 5} (0, 0) 0 000000101 000000100 000000010 000000010 000000001 000000001 110000001 001100001 100011110 {4}
1266 9 3/4 1.84198 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000100 000000010 000000010 000000001 000000001 110000001 001100001 100011110 {4}
1267 9 3/4 1.74452 {1, 2, 1, 2} (0, 0) 0 000001001 000000101 000000101 000000010 000000010 100000001 011000011 000110101 111001110 {4}
1268 9 3/4 1.74452 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001001 000000101 000000101 000000010 000000010 100000001 011000011 000110101 111001110 {4}
1269 9 3/4 1.70711 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000010 000000010 000000001 000000001 110000001 001100001 110011110 {4}
1270 9 3/4 1.70711 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000010 000000010 000000001 000000001 110000001 001100001 110011110 {4}
1271 9 3/4 1.37258 {2, 3, 2, 3} (0, 0) 0 000010110 000001111 000000001 000000001 100000101 010000010 110010000 110001000 011110000 {8}
1272 9 3/4 1.37258 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010110 000001111 000000001 000000001 100000101 010000010 110010000 110001000 011110000 {8}
1273 9 3/4 1.33333 {4, 5, 4, 5} (0, 0) 0 000000100 000000100 000000011 000000010 000000001 000000001 110000001 001100000 001011100 {4}
1274 9 3/4 1.33333 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000100 000000100 000000011 000000010 000000001 000000001 110000001 001100000 001011100 {4}
1275 9 3/4 0.958871 {4, 5, 4, 5} (0, 0) 0 000000101 000000100 000000011 000000011 000000001 000000001 110000001 001100000 101111100 {4}
1276 9 3/4 0.958871 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000100 000000011 000000011 000000001 000000001 110000001 001100000 101111100 {4}
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1277 9 3/4 0.931773 {3, 4, 3, 4} (0, 0) 0 000001001 000000111 000000111 000000011 000000011 100000001 011000000 011110001 111111010 {4}
1278 9 3/4 0.931773 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000111 000000111 000000011 000000011 100000001 011000000 011110001 111111010 {4}
1279 9 3/4 0.920991 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000011 000000001 000000001 110000001 001100000 111111100 {4}
1280 9 3/4 0.920991 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000011 000000001 000000001 110000001 001100000 111111100 {4}
1281 9 3/4 0.8 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000010 000000001 000000001 110000000 001100000 111011000 {4}
1282 9 3/4 0.8 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000010 000000001 000000001 110000000 001100000 111011000 {4}
1283 9 3/4 0.686292 {2, 3, 2, 3} (0, 0) 0 000010111 000001110 000000001 000000001 100000100 010000011 110010001 110001000 101101100 {4}
1284 9 3/4 0.686292 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001110 000000001 000000001 100000100 010000011 110010001 110001000 101101100 {4}
1285 9 3/4 0.666667 {4, 5, 4, 5} (0, 0) 0 000000100 000000100 000000011 000000011 000000001 000000001 110000001 001100000 001111100 {4}
1286 9 3/4 0.666667 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000100 000000100 000000011 000000011 000000001 000000001 110000001 001100000 001111100 {4}
1287 9 3/4 0.5 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000011 000000001 000000001 110000000 001100000 111111000 {4}
1288 9 3/4 0.5 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000011 000000001 000000001 110000000 001100000 111111000 {4}
1289 9 2/3 9.5 {5, 0, 3, 0} (0, 0) -3.14159 000101101 000010111 000001101 100000011 010000111 101000011 111010001 010111000 111111100 {4}
1290 9 2/3 9.5 {0, 5, 3, 0} (1.5708, -1.5708) 3.14159 000101101 000010111 000001101 100000011 010000111 101000011 111010001 010111000 111111100 {4}
1291 9 2/3 9.33333 {1, 2, 1, 2} (0, 0) 0 000110011 000001101 000001101 100010011 100100011 011000111 011001010 100111100 111111000 {8}
1292 9 2/3 9.33333 {1, 2, 2, 1} (1.5708, 0) -3.14159 000110011 000001101 000001101 100010011 100100011 011000111 011001010 100111100 111111000 {8}
1293 9 2/3 9 {0, 4, 1, 3} (0, 0) 2.0944 000100110 000010111 000001001 100000101 010000011 001000000 110100011 110010100 011110100 {16}
1294 9 2/3 9 {7, 3, 5, 8} (0, 0) 1.0472 000001101 000001011 000000111 000000001 000000001 110000010 101000000 011001000 111110000 {24}
1295 9 2/3 9 {4, 0, 3, 1} (0, 0) -2.0944 000100110 000010111 000001001 100000101 010000011 001000000 110100011 110010100 011110100 {16}
1296 9 2/3 9 {3, 7, 8, 5} (0, 0) -1.0472 000001101 000001011 000000111 000000001 000000001 110000010 101000000 011001000 111110000 {24}
1297 9 2/3 9 {4, 0, 1, 3} (1.5708, 1.0472) -3.14159 000100110 000010111 000001001 100000101 010000011 001000000 110100011 110010100 011110100 {16}
1298 9 2/3 9 {3, 7, 5, 8} (1.5708, 0.523599) -3.14159 000001101 000001011 000000111 000000001 000000001 110000010 101000000 011001000 111110000 {24}
1299 9 2/3 9 {0, 4, 3, 1} (1.5708, -1.0472) 3.14159 000100110 000010111 000001001 100000101 010000011 001000000 110100011 110010100 011110100 {16}
1300 9 2/3 9 {7, 3, 8, 5} (1.5708, -0.523599) 3.14159 000001101 000001011 000000111 000000001 000000001 110000010 101000000 011001000 111110000 {24}
1301 9 2/3 8.5 {4, 8, 7, 5} (0, 0) 0 000100111 000011100 000011011 100000111 011001010 011010001 110100000 101110001 101101010 {8}
1302 9 2/3 8.5 {4, 8, 5, 7} (1.5708, 0) -3.14159 000100111 000011100 000011011 100000111 011001010 011010001 110100000 101110001 101101010 {8}
1303 9 2/3 8 {3, 1, 3, 5} (0, 0) 2.0944 000001110 000001011 000000101 000000011 000000001 110000011 101000001 110101000 011111100 {182}
1304 9 2/3 8 {0, 7, 8, 7} (0, 0) -3.14159 000010111 000001111 000001011 000000111 100000011 011000000 110100001 111110000 111110100 {73}
1305 9 2/3 8 {1, 3, 5, 3} (0, 0) -2.0944 000001110 000001011 000000101 000000011 000000001 110000011 101000001 110101000 011111100 {182}
1306 9 2/3 8 {1, 3, 3, 5} (1.5708, 1.0472) -3.14159 000001110 000001011 000000101 000000011 000000001 110000011 101000001 110101000 011111100 {182}
1307 9 2/3 8 {7, 0, 8, 7} (1.5708, -1.5708) 3.14159 000010111 000001111 000001011 000000111 100000011 011000000 110100001 111110000 111110100 {73}
1308 9 2/3 8 {3, 1, 5, 3} (1.5708, -1.0472) 3.14159 000001110 000001011 000000101 000000011 000000001 110000011 101000001 110101000 011111100 {182}
1309 9 2/3 7.5 {8, 6, 8, 7} (0, 0) 1.0472 000010011 000001101 000001011 000000101 100000011 011000000 010100000 101010000 111110000 {56}
1310 9 2/3 7.5 {6, 8, 7, 8} (0, 0) -1.0472 000010011 000001101 000001011 000000101 100000011 011000000 010100000 101010000 111110000 {56}
1311 9 2/3 7.5 {6, 8, 8, 7} (1.5708, 0.523599) -3.14159 000010011 000001101 000001011 000000101 100000011 011000000 010100000 101010000 111110000 {56}
1312 9 2/3 7.5 {8, 6, 7, 8} (1.5708, -0.523599) 3.14159 000010011 000001101 000001011 000000101 100000011 011000000 010100000 101010000 111110000 {56}
1313 9 2/3 7.33333 {7, 8, 7, 8} (0, 0) 0 000011011 000000111 000000111 000000011 100001011 100010011 011000000 111111000 111111000 {24}
1314 9 2/3 7.33333 {7, 8, 8, 7} (1.5708, 0) 3.14159 000011011 000000111 000000111 000000011 100001011 100010011 011000000 111111000 111111000 {24}
1315 9 2/3 7 {1, 5, 8, 4} (0, 0) 2.0944 000010111 000001111 000001101 000000001 100000011 011000000 111000011 110010100 111110100 {4}
1316 9 2/3 7 {7, 1, 4, 3} (0, 0) 1.0472 000001110 000001011 000000101 000000011 000000010 110000000 101000001 110110000 011100100 {56}
1317 9 2/3 7 {6, 0, 4, 7} (0, 0) -3.14159 000001111 000001011 000000110 000000010 000000001 110000001 101000001 111100000 110011100 {52}
1318 9 2/3 7 {5, 1, 4, 8} (0, 0) -2.0944 000010111 000001111 000001101 000000001 100000011 011000000 111000011 110010100 111110100 {4}
1319 9 2/3 7 {1, 7, 3, 4} (0, 0) -1.0472 000001110 000001011 000000101 000000011 000000010 110000000 101000001 110110000 011100100 {56}
1320 9 2/3 7 {5, 1, 8, 4} (1.5708, 1.0472) -3.14159 000010111 000001111 000001101 000000001 100000011 011000000 111000011 110010100 111110100 {4}
1321 9 2/3 7 {1, 7, 4, 3} (1.5708, 0.523599) -3.14159 000001110 000001011 000000101 000000011 000000010 110000000 101000001 110110000 011100100 {56}
1322 9 2/3 7 {0, 6, 4, 7} (1.5708, -1.5708) 3.14159 000001111 000001011 000000110 000000010 000000001 110000001 101000001 111100000 110011100 {52}
1323 9 2/3 7 {1, 5, 4, 8} (1.5708, -1.0472) 3.14159 000010111 000001111 000001101 000000001 100000011 011000000 111000011 110010100 111110100 {4}
1324 9 2/3 7 {7, 1, 3, 4} (1.5708, -0.523599) 3.14159 000001110 000001011 000000101 000000011 000000010 110000000 101000001 110110000 011100100 {56}
1325 9 2/3 6.5 {0, 4, 1, 2} (0, 0) 0 000010110 000001110 000001001 000000111 100000001 011000000 110100011 110100101 001110110 {32}
1326 9 2/3 6.5 {0, 4, 2, 1} (1.5708, 0) -3.14159 000010110 000001110 000001001 000000111 100000001 011000000 110100011 110100101 001110110 {32}
1327 9 2/3 6.25 {0, 1, 7, 6} (1.5708, 3.14159) 1.0472 000011101 000011011 000001111 000000111 110000111 111000001 101110000 011110000 111111000 {4}
1328 9 2/3 6.25 {0, 1, 6, 7} (1.5708, 3.14159) -2.0944 000011101 000011011 000001111 000000111 110000111 111000001 101110000 011110000 111111000 {4}
1329 9 2/3 6 {0, 2, 1, 2} (0, 0) -3.14159 000001010 000000110 000000101 000000010 000000001 100000001 011000000 110100000 001011000 {408}
1330 9 2/3 6 {2, 0, 1, 2} (1.5708, -1.5708) 3.14159 000001010 000000110 000000101 000000010 000000001 100000001 011000000 110100000 001011000 {408}
1331 9 2/3 5.75 {2, 3, 2, 3} (0, 0) 0 000001101 000001010 000000111 000000111 000000001 110000001 101100001 011100000 101111100 {24}
1332 9 2/3 5.75 {2, 3, 3, 2} (1.5708, 0) 3.14159 000001101 000001010 000000111 000000111 000000001 110000001 101100001 011100000 101111100 {24}
1333 9 2/3 5.5 {3, 2, 3, 5} (0, 0) 2.0944 000101111 000010111 000001001 100000001 010000110 101000001 110010010 110010100 111101000 {49}
1334 9 2/3 5.5 {5, 1, 5, 6} (0, 0) 1.0472 001010111 000101101 100010111 010001011 101000101 010100010 111010001 101101000 111110100 {3}
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1335 9 2/3 5.5 {2, 3, 5, 3} (0, 0) -2.0944 000101111 000010111 000001001 100000001 010000110 101000001 110010010 110010100 111101000 {49}
1336 9 2/3 5.5 {1, 5, 6, 5} (0, 0) -1.0472 001010111 000101101 100010111 010001011 101000101 010100010 111010001 101101000 111110100 {3}
1337 9 2/3 5.5 {2, 3, 3, 5} (1.5708, 1.0472) -3.14159 000101111 000010111 000001001 100000001 010000110 101000001 110010010 110010100 111101000 {49}
1338 9 2/3 5.5 {1, 5, 5, 6} (1.5708, 0.523599) -3.14159 001010111 000101101 100010111 010001011 101000101 010100010 111010001 101101000 111110100 {3}
1339 9 2/3 5.5 {3, 2, 5, 3} (1.5708, -1.0472) 3.14159 000101111 000010111 000001001 100000001 010000110 101000001 110010010 110010100 111101000 {49}
1340 9 2/3 5.5 {5, 1, 6, 5} (1.5708, -0.523599) 3.14159 001010111 000101101 100010111 010001011 101000101 010100010 111010001 101101000 111110100 {3}
1341 9 2/3 5.33333 {1, 2, 1, 2} (0, 0) 0 000110011 000001111 000001111 100010011 100100011 011000000 011000000 111110000 111110000 {24}
1342 9 2/3 5.33333 {1, 2, 2, 1} (1.5708, 0) -3.14159 000110011 000001111 000001111 100010011 100100011 011000000 011000000 111110000 111110000 {24}
1343 9 2/3 5 {8, 2, 3, 5} (0, 0) 2.0944 000001101 000000111 000000011 000000001 000000001 100000000 110000000 011000000 111110000{1164}
1344 9 2/3 5 {4, 0, 2, 7} (0, 0) -3.14159 000001111 000001011 000000111 000000010 000000001 110000001 101000000 111100000 111011000 {113}
1345 9 2/3 5 {2, 8, 5, 3} (0, 0) -2.0944 000001101 000000111 000000011 000000001 000000001 100000000 110000000 011000000 111110000{1164}
1346 9 2/3 5 {2, 8, 3, 5} (1.5708, 1.0472) -3.14159 000001101 000000111 000000011 000000001 000000001 100000000 110000000 011000000 111110000{1164}
1347 9 2/3 5 {0, 4, 2, 7} (1.5708, -1.5708) 3.14159 000001111 000001011 000000111 000000010 000000001 110000001 101000000 111100000 111011000 {113}
1348 9 2/3 5 {8, 2, 5, 3} (1.5708, -1.0472) 3.14159 000001101 000000111 000000011 000000001 000000001 100000000 110000000 011000000 111110000{1164}
1349 9 2/3 42 {1, 2, 1, 2} (0, 0) 0 000111001 000011111 000011111 100000110 111000101 111000011 011110011 011101100 111011100 {4}
1350 9 2/3 42 {1, 2, 2, 1} (1.5708, 0) -3.14159 000111001 000011111 000011111 100000110 111000101 111000011 011110011 011101100 111011100 {4}
1351 9 2/3 40 {2, 3, 2, 3} (0, 0) 0 000011001 000010101 000001111 000001111 110000110 101100011 011110011 001111100 111101100 {8}
1352 9 2/3 40 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011001 000010101 000001111 000001111 110000110 101100011 011110011 001111100 111101100 {8}
1353 9 2/3 4.75 {0, 1, 7, 6} (1.5708, 3.14159) 1.0472 000011100 000011010 000001111 000000111 110000111 111000001 101110001 011110001 001111110 {4}
1354 9 2/3 4.75 {0, 1, 6, 7} (1.5708, 3.14159) -2.0944 000011100 000011010 000001111 000000111 110000111 111000001 101110001 011110001 001111110 {4}
1355 9 2/3 4.5 {0, 7, 5, 3} (0, 0) 3.14159 000010010 000001010 000000101 000000010 100000001 010000001 001000001 110100001 001011110 {152}
1356 9 2/3 4.5 {1, 6, 8, 5} (0, 0) 2.0944 001011111 000101111 100011111 010000010 101000011 111000111 111001001 111111001 111011110 {8}
1357 9 2/3 4.5 {8, 1, 2, 6} (0, 0) 1.0472 000010011 000001101 000001011 000000101 100000011 011000000 010100001 101010000 111110100 {68}
1358 9 2/3 4.5 {2, 7, 6, 3} (0, 0) 0 000001001 000000110 000000100 000000010 000000001 100000001 011000001 010100001 100011110 {412}
1359 9 2/3 4.5 {6, 1, 5, 8} (0, 0) -2.0944 001011111 000101111 100011111 010000010 101000011 111000111 111001001 111111001 111011110 {8}
1360 9 2/3 4.5 {1, 8, 6, 2} (0, 0) -1.0472 000010011 000001101 000001011 000000101 100000011 011000000 010100001 101010000 111110100 {68}
1361 9 2/3 4.5 {3, 6, 4, 0} (0.588003, -2.0944) -2.24593 000011100 000001111 000000111 000000011 100001011 110010000 111000001 011110000 011110100 {1}
1362 9 2/3 4.5 {6, 3, 0, 4} (0.588003, -1.0472) 2.24593 000011100 000001111 000000111 000000011 100001011 110010000 111000001 011110000 011110100 {1}
1363 9 2/3 4.5 {4, 0, 3, 6} (0.588003, 2.0944) -2.24593 000011100 000001111 000000111 000000011 100001011 110010000 111000001 011110000 011110100 {1}
1364 9 2/3 4.5 {0, 4, 6, 3} (0.588003, 1.0472) 2.24593 000011100 000001111 000000111 000000011 100001011 110010000 111000001 011110000 011110100 {1}
1365 9 2/3 4.5 {4, 0, 6, 3} (1.10715, -2.0944) 2.63623 000011100 000001111 000000111 000000011 100001011 110010000 111000001 011110000 011110100 {1}
1366 9 2/3 4.5 {0, 4, 3, 6} (1.10715, -1.0472) -2.63623 000011100 000001111 000000111 000000011 100001011 110010000 111000001 011110000 011110100 {1}
1367 9 2/3 4.5 {6, 3, 4, 0} (1.10715, 2.0944) 2.63623 000011100 000001111 000000111 000000011 100001011 110010000 111000001 011110000 011110100 {1}
1368 9 2/3 4.5 {3, 6, 0, 4} (1.10715, 1.0472) -2.63623 000011100 000001111 000000111 000000011 100001011 110010000 111000001 011110000 011110100 {1}
1369 9 2/3 4.5 {0, 7, 3, 5} (1.5708, 1.5708) -3.14159 000010010 000001010 000000101 000000010 100000001 010000001 001000001 110100001 001011110 {152}
1370 9 2/3 4.5 {6, 1, 8, 5} (1.5708, 1.0472) -3.14159 001011111 000101111 100011111 010000010 101000011 111000111 111001001 111111001 111011110 {8}
1371 9 2/3 4.5 {1, 8, 2, 6} (1.5708, 0.523599) -3.14159 000010011 000001101 000001011 000000101 100000011 011000000 010100001 101010000 111110100 {68}
1372 9 2/3 4.5 {2, 7, 3, 6} (1.5708, 0) 3.14159 000001001 000000110 000000100 000000010 000000001 100000001 011000001 010100001 100011110 {412}
1373 9 2/3 4.5 {1, 6, 5, 8} (1.5708, -1.0472) 3.14159 001011111 000101111 100011111 010000010 101000011 111000111 111001001 111111001 111011110 {8}
1374 9 2/3 4.5 {8, 1, 6, 2} (1.5708, -0.523599) 3.14159 000010011 000001101 000001011 000000101 100000011 011000000 010100001 101010000 111110100 {68}
1375 9 2/3 4.25 {0, 7, 5, 3} (0, 0) 0 000101101 000011011 000010100 100000111 011001010 110010011 101100000 010111001 110101010 {16}
1376 9 2/3 4.25 {0, 1, 3, 4} (1.5708, 3.14159) 1.0472 000101111 000011111 000001001 100000111 010000111 111000111 110111000 110111000 111111000 {4}
1377 9 2/3 4.25 {0, 1, 4, 3} (1.5708, 3.14159) -2.0944 000101111 000011111 000001001 100000111 010000111 111000111 110111000 110111000 111111000 {4}
1378 9 2/3 4.25 {0, 7, 3, 5} (1.5708, 0) -3.14159 000101101 000011011 000010100 100000111 011001010 110010011 101100000 010111001 110101010 {16}
1379 9 2/3 34 {1, 2, 1, 2} (0, 0) 0 000011010 000001111 000001111 000000011 100000101 111000001 011010000 111100001 011111010 {20}
1380 9 2/3 34 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011010 000001111 000001111 000000011 100000101 111000001 011010000 111100001 011111010 {20}
1381 9 2/3 32 {7, 8, 7, 8} (0, 0) 0 000010111 000001011 000001011 000000111 100000011 011000100 100101000 111110000 111110000 {16}
1382 9 2/3 32 {7, 8, 8, 7} (1.5708, 0) 3.14159 000010111 000001011 000001011 000000111 100000011 011000100 100101000 111110000 111110000 {16}
1383 9 2/3 3.83333 {1, 2, 1, 2} (0, 0) 0 000010110 000001111 000001111 000000011 100000011 011000001 111000000 111110001 011111010 {20}
1384 9 2/3 3.83333 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010110 000001111 000001111 000000011 100000011 011000001 111000000 111110001 011111010 {20}
1385 9 2/3 3.77778 {1, 2, 1, 2} (0, 0) 0 000011010 000001111 000001111 000000011 100000101 111000101 011011000 111100000 011111000 {4}
1386 9 2/3 3.77778 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011010 000001111 000001111 000000011 100000101 111000101 011011000 111100000 011111000 {4}
1387 9 2/3 3.75 {1, 4, 8, 4} (0, 0) -3.14159 000100110 000010100 000001011 100000100 010000011 001000001 110100001 101010000 001011100 {9}
1388 9 2/3 3.75 {0, 1, 6, 5} (1.5708, 3.14159) 1.0472 000011010 000010110 000001111 000001111 110001111 101110001 011110001 111110001 001111110 {4}
1389 9 2/3 3.75 {0, 1, 5, 6} (1.5708, 3.14159) -2.0944 000011010 000010110 000001111 000001111 110001111 101110001 011110001 111110001 001111110 {4}
1390 9 2/3 3.75 {4, 1, 8, 4} (1.5708, -1.5708) 3.14159 000100110 000010100 000001011 100000100 010000011 001000001 110100001 101010000 001011100 {9}
1391 9 2/3 3.71429 {1, 2, 1, 2} (0, 0) 0 000101111 000010011 000010011 100001111 011001101 100110111 100111000 111101001 111111010 {8}
1392 9 2/3 3.71429 {1, 2, 2, 1} (1.5708, 0) -3.14159 000101111 000010011 000010011 100001111 011001101 100110111 100111000 111101001 111111010 {8}
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1393 9 2/3 3.5 {0, 4, 2, 3} (0, 0) 1.0472 000001011 000000101 000000011 000000010 000000010 100000000 010000001 101110000 111000100 {153}
1394 9 2/3 3.5 {4, 0, 3, 2} (0, 0) -1.0472 000001011 000000101 000000011 000000010 000000010 100000000 010000001 101110000 111000100 {153}
1395 9 2/3 3.5 {0, 1, 8, 6} (0.588003, -2.0944) -2.24593 000011000 000001110 000000111 000000101 100000011 110000011 011100001 011011000 001111100 {1}
1396 9 2/3 3.5 {1, 0, 6, 8} (0.588003, -1.0472) 2.24593 000011000 000001110 000000111 000000101 100000011 110000011 011100001 011011000 001111100 {1}
1397 9 2/3 3.5 {8, 6, 0, 1} (0.588003, 2.0944) -2.24593 000011000 000001110 000000111 000000101 100000011 110000011 011100001 011011000 001111100 {1}
1398 9 2/3 3.5 {6, 8, 1, 0} (0.588003, 1.0472) 2.24593 000011000 000001110 000000111 000000101 100000011 110000011 011100001 011011000 001111100 {1}
1399 9 2/3 3.5 {8, 6, 1, 0} (1.10715, -2.0944) 2.63623 000011000 000001110 000000111 000000101 100000011 110000011 011100001 011011000 001111100 {1}
1400 9 2/3 3.5 {6, 8, 0, 1} (1.10715, -1.0472) -2.63623 000011000 000001110 000000111 000000101 100000011 110000011 011100001 011011000 001111100 {1}
1401 9 2/3 3.5 {1, 0, 8, 6} (1.10715, 2.0944) 2.63623 000011000 000001110 000000111 000000101 100000011 110000011 011100001 011011000 001111100 {1}
1402 9 2/3 3.5 {0, 1, 6, 8} (1.10715, 1.0472) -2.63623 000011000 000001110 000000111 000000101 100000011 110000011 011100001 011011000 001111100 {1}
1403 9 2/3 3.5 {4, 0, 2, 3} (1.5708, 0.523599) -3.14159 000001011 000000101 000000011 000000010 000000010 100000000 010000001 101110000 111000100 {153}
1404 9 2/3 3.5 {0, 4, 3, 2} (1.5708, -0.523599) 3.14159 000001011 000000101 000000011 000000010 000000010 100000000 010000001 101110000 111000100 {153}
1405 9 2/3 3.42857 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000000101 100000011 011000000 011100000 111010000 111110000 {24}
1406 9 2/3 3.42857 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000000101 100000011 011000000 011100000 111010000 111110000 {24}
1407 9 2/3 3.33333 {8, 1, 8, 2} (0, 0) 2.0944 000011111 000000101 000000011 000000001 100001111 100010111 110011000 101011000 111111000 {6}
1408 9 2/3 3.33333 {1, 6, 2, 6} (0, 0) -3.14159 000101111 000010111 000000101 100001111 010000010 100100111 111101001 110111001 111101110 {11}
1409 9 2/3 3.33333 {1, 8, 2, 8} (0, 0) -2.0944 000011111 000000101 000000011 000000001 100001111 100010111 110011000 101011000 111111000 {6}
1410 9 2/3 3.33333 {1, 8, 8, 2} (1.5708, 1.0472) -3.14159 000011111 000000101 000000011 000000001 100001111 100010111 110011000 101011000 111111000 {6}
1411 9 2/3 3.33333 {6, 1, 2, 6} (1.5708, -1.5708) 3.14159 000101111 000010111 000000101 100001111 010000010 100100111 111101001 110111001 111101110 {11}
1412 9 2/3 3.33333 {8, 1, 2, 8} (1.5708, -1.0472) 3.14159 000011111 000000101 000000011 000000001 100001111 100010111 110011000 101011000 111111000 {6}
1413 9 2/3 3.25 {1, 2, 1, 2} (0, 0) 0 000011011 000000101 000000101 000000001 100001011 100010011 011000000 100011001 111111010 {36}
1414 9 2/3 3.25 {0, 5, 4, 1} (1.5708, 2.0944) 1.0472 000010111 000001111 000000111 000000001 100000100 010000011 111010001 111001000 111101100 {2}
1415 9 2/3 3.25 {6, 2, 4, 7} (0.523599, -2.61799) 3.14159 000011010 000010101 000001011 000000111 110000011 101000011 010100011 101111100 011111100 {2}
1416 9 2/3 3.25 {3, 8, 4, 1} (0.857072, -1.5708) -1.44547 000011110 000001111 000001000 000000111 100000111 111000001 110110001 110110001 010111110 {1}
1417 9 2/3 3.25 {0, 1, 5, 4} (1.5708, 3.14159) 1.0472 000110110 000101110 000011101 110000101 101000011 011000011 111100011 110011101 001111110 {4}
1418 9 2/3 3.25 {5, 0, 1, 4} (1.5708, -2.0944) 1.0472 000010111 000001111 000000111 000000001 100000100 010000011 111010001 111001000 111101100 {2}
1419 9 2/3 3.25 {8, 3, 1, 4} (0.857072, -1.5708) 1.44547 000011110 000001111 000001000 000000111 100000111 111000001 110110001 110110001 010111110 {1}
1420 9 2/3 3.25 {2, 6, 7, 4}(0.523599, -0.523599) 3.14159 000011010 000010101 000001011 000000111 110000011 101000011 010100011 101111100 011111100 {2}
1421 9 2/3 3.25 {4, 7, 6, 2} (0.523599, 2.61799) 3.14159 000011010 000010101 000001011 000000111 110000011 101000011 010100011 101111100 011111100 {2}
1422 9 2/3 3.25 {1, 4, 8, 3} (0.857072, 1.5708) 1.44547 000011110 000001111 000001000 000000111 100000111 111000001 110110001 110110001 010111110 {1}
1423 9 2/3 3.25 {0, 1, 5, 8} (0.857072, -2.61799) -1.44547 000011111 000010011 000001111 000000011 110000110 101000000 101010001 111110001 111100110 {1}
1424 9 2/3 3.25 {0, 6, 7, 1} (1.5708, -2.0944) -1.0472 000101111 000011011 000001011 100000111 010000101 111000010 100110011 111101100 111110100 {4}
1425 9 2/3 3.25 {5, 8, 0, 1} (0.857072, 2.61799) -1.44547 000011111 000010011 000001111 000000011 110000110 101000000 101010001 111110001 111100110 {1}
1426 9 2/3 3.25 {8, 5, 1, 0} (0.857072, 0.523599) 1.44547 000011111 000010011 000001111 000000011 110000110 101000000 101010001 111110001 111100110 {1}
1427 9 2/3 3.25 {4, 1, 3, 8} (0.857072, 1.5708) -1.44547 000011110 000001111 000001000 000000111 100000111 111000001 110110001 110110001 010111110 {1}
1428 9 2/3 3.25 {7, 4, 2, 6} (0.523599, 0.523599) 3.14159 000011010 000010101 000001011 000000111 110000011 101000011 010100011 101111100 011111100 {2}
1429 9 2/3 3.25 {6, 0, 1, 7} (1.5708, 2.0944) -1.0472 000101111 000011011 000001011 100000111 010000101 111000010 100110011 111101100 111110100 {4}
1430 9 2/3 3.25 {1, 0, 8, 5}(0.857072, -0.523599) 1.44547 000011111 000010011 000001111 000000011 110000110 101000000 101010001 111110001 111100110 {1}
1431 9 2/3 3.25 {6, 0, 7, 1} (1.10715, 3.14159) 2.63623 000101111 000011011 000001011 100000111 010000101 111000010 100110011 111101100 111110100 {4}
1432 9 2/3 3.25 {1, 0, 5, 8} (1.28976, 2.61799) 2.24593 000011111 000010011 000001111 000000011 110000110 101000000 101010001 111110001 111100110 {1}
1433 9 2/3 3.25 {4, 1, 8, 3} (1.0472, -2.61799) 3.14159 000011110 000001111 000001000 000000111 100000111 111000001 110110001 110110001 010111110 {1}
1434 9 2/3 3.25 {7, 4, 6, 2} (1.28976, -1.5708) -2.24593 000011010 000010101 000001011 000000111 110000011 101000011 010100011 101111100 011111100 {2}
1435 9 2/3 3.25 {5, 8, 1, 0} (1.28976, -2.61799) 2.24593 000011111 000010011 000001111 000000011 110000110 101000000 101010001 111110001 111100110 {1}
1436 9 2/3 3.25 {8, 5, 0, 1} (1.28976, -0.523599) -2.24593 000011111 000010011 000001111 000000011 110000110 101000000 101010001 111110001 111100110 {1}
1437 9 2/3 3.25 {0, 1, 8, 5} (1.28976, 0.523599) -2.24593 000011111 000010011 000001111 000000011 110000110 101000000 101010001 111110001 111100110 {1}
1438 9 2/3 3.25 {0, 6, 1, 7} (1.10715, 0) -2.63623 000101111 000011011 000001011 100000111 010000101 111000010 100110011 111101100 111110100 {4}
1439 9 2/3 3.25 {4, 7, 2, 6} (1.28976, -1.5708) 2.24593 000011010 000010101 000001011 000000111 110000011 101000011 010100011 101111100 011111100 {2}
1440 9 2/3 3.25 {1, 4, 3, 8} (1.0472, -0.523599) -3.14159 000011110 000001111 000001000 000000111 100000111 111000001 110110001 110110001 010111110 {1}
1441 9 2/3 3.25 {8, 3, 4, 1} (1.0472, 2.61799) 3.14159 000011110 000001111 000001000 000000111 100000111 111000001 110110001 110110001 010111110 {1}
1442 9 2/3 3.25 {2, 6, 4, 7} (1.28976, 1.5708) 2.24593 000011010 000010101 000001011 000000111 110000011 101000011 010100011 101111100 011111100 {2}
1443 9 2/3 3.25 {5, 0, 4, 1} (1.10715, -3.14159) -2.63623 000010111 000001111 000000111 000000001 100000100 010000011 111010001 111001000 111101100 {2}
1444 9 2/3 3.25 {0, 1, 4, 5} (1.5708, 3.14159) -2.0944 000110110 000101110 000011101 110000101 101000011 011000011 111100011 110011101 001111110 {4}
1445 9 2/3 3.25 {6, 2, 7, 4} (1.28976, 1.5708) -2.24593 000011010 000010101 000001011 000000111 110000011 101000011 010100011 101111100 011111100 {2}
1446 9 2/3 3.25 {3, 8, 1, 4} (1.0472, 0.523599) -3.14159 000011110 000001111 000001000 000000111 100000111 111000001 110110001 110110001 010111110 {1}
1447 9 2/3 3.25 {0, 5, 1, 4} (1.10715, 0) 2.63623 000010111 000001111 000000111 000000001 100000100 010000011 111010001 111001000 111101100 {2}
1448 9 2/3 3.25 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000000101 000000101 000000001 100001011 100010011 011000000 100011001 111111010 {36}
1449 9 2/3 3 {6, 0, 5, 0} (0, 0) -3.14159 000010111 000001110 000000011 000000001 100000100 010000001 110010001 111000000 101101100 {44}
1450 9 2/3 3 {5, 0, 1, 4} (1.5708, 1.0472) 1.0472 000010011 000001011 000000111 000000111 100000010 010000001 001100000 111110000 111101000 {2}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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1451 9 2/3 3 {0, 5, 4, 1} (1.5708, -1.0472) 1.0472 000010011 000001011 000000111 000000111 100000010 010000001 001100000 111110000 111101000 {2}
1452 9 2/3 3 {0, 5, 1, 4} (1.10715, 3.14159) 2.63623 000010011 000001011 000000111 000000111 100000010 010000001 001100000 111110000 111101000 {2}
1453 9 2/3 3 {5, 0, 4, 1} (1.10715, 0) -2.63623 000010011 000001011 000000111 000000111 100000010 010000001 001100000 111110000 111101000 {2}
1454 9 2/3 3 {0, 6, 5, 0} (1.5708, -1.5708) 3.14159 000010111 000001110 000000011 000000001 100000100 010000001 110010001 111000000 101101100 {44}
1455 9 2/3 28 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000101 000000010 110000100 001101000 111010000 111100000 {48}
1456 9 2/3 28 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000101 000000010 110000100 001101000 111010000 111100000 {48}
1457 9 2/3 26 {7, 8, 7, 8} (0, 0) 0 000010100 000001111 000001111 000000011 100000011 011000011 111000000 011111000 011111000 {32}
1458 9 2/3 26 {7, 8, 8, 7} (1.5708, 0) -3.14159 000010100 000001111 000001111 000000011 100000011 011000011 111000000 011111000 011111000 {32}
1459 9 2/3 24 {2, 3, 2, 3} (0, 0) 0 000011111 000001100 000000111 000000111 100000001 110000011 111100000 101101000 101111000 {80}
1460 9 2/3 24 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000001100 000000111 000000111 100000001 110000011 111100000 101101000 101111000 {80}
1461 9 2/3 22 {1, 2, 1, 2} (0, 0) 0 000001010 000000101 000000101 000000011 000000011 100000000 011000010 100110100 011110000 {92}
1462 9 2/3 22 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001010 000000101 000000101 000000011 000000011 100000000 011000010 100110100 011110000 {92}
1463 9 2/3 20 {7, 8, 7, 8} (0, 0) 0 000001100 000001011 000000111 000000111 000000011 110000011 101100000 011111000 011111000 {136}
1464 9 2/3 20 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001100 000001011 000000111 000000111 000000011 110000011 101100000 011111000 011111000 {136}
1465 9 2/3 2.85714 {1, 2, 1, 2} (0, 0) 0 000001001 000000111 000000111 000000011 000000010 100000001 011000000 011110000 111101000 {40}
1466 9 2/3 2.85714 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001001 000000111 000000111 000000011 000000010 100000001 011000000 011110000 111101000 {40}
1467 9 2/3 2.83333 {2, 3, 2, 3} (0, 0) 0 000010101 000001001 000000011 000000011 100000101 010000001 100010001 001100000 111111100 {28}
1468 9 2/3 2.83333 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010101 000001001 000000011 000000011 100000101 010000001 100010001 001100000 111111100 {28}
1469 9 2/3 2.75 {0, 6, 5, 4} (0, 0) 3.14159 000101101 000010111 000001010 100000101 010000011 101000010 110100001 011011000 110110100 {32}
1470 9 2/3 2.75 {0, 6, 5, 1} (0, 0) 0 000101101 000010111 000001010 100000101 010000011 101000010 110100001 011011000 110110100 {72}
1471 9 2/3 2.75 {4, 2, 8, 5} (0.857072, 2.61799) 1.44547 000010110 000001111 000001100 000000011 100000011 011000001 111000001 110110001 010111110 {3}
1472 9 2/3 2.75 {0, 5, 4, 1} (1.5708, 2.0944) 1.0472 000010111 000001111 000000101 000000011 100000100 010000011 111010011 110101100 111101100 {2}
1473 9 2/3 2.75 {5, 8, 0, 6} (0.523599, -2.61799) 3.14159 000111111 000011111 000001111 100000011 110000101 111000011 111010000 111101001 111111010 {2}
1474 9 2/3 2.75 {2, 7, 0, 3} (0.588003, -2.0944) -2.24593 000001111 000001100 000001011 000000110 000000011 111000001 110100001 101110001 101011110 {1}
1475 9 2/3 2.75 {8, 5, 4, 2} (0.857072, -2.61799) 1.44547 000010110 000001111 000001100 000000011 100000011 011000001 111000001 110110001 010111110 {3}
1476 9 2/3 2.75 {2, 3, 6, 5} (1.5708, 3.14159) 1.0472 000001111 000001101 000001010 000000110 000000001 111000001 110100001 101100001 110011110 {16}
1477 9 2/3 2.75 {5, 8, 2, 4}(0.857072, -0.523599) -1.44547 000010110 000001111 000001100 000000011 100000011 011000001 111000001 110110001 010111110 {3}
1478 9 2/3 2.75 {4, 5, 7, 6} (0.588003, -2.0944) 2.24593 000010111 000001111 000001111 000001100 100000010 011100001 111100001 111010001 111001110 {6}
1479 9 2/3 2.75 {2, 6, 0, 1} (0.523599, -1.5708) -3.14159 000010100 000001110 000001011 000000001 100000011 011000101 110001011 011010101 001111110 {2}
1480 9 2/3 2.75 {5, 4, 6, 7} (0.588003, -1.0472) -2.24593 000010111 000001111 000001111 000001100 100000010 011100001 111100001 111010001 111001110 {6}
1481 9 2/3 2.75 {5, 0, 1, 4} (1.5708, -2.0944) 1.0472 000010111 000001111 000000101 000000011 100000100 010000011 111010011 110101100 111101100 {2}
1482 9 2/3 2.75 {2, 4, 5, 8} (0.857072, 0.523599) -1.44547 000010110 000001111 000001100 000000011 100000011 011000001 111000001 110110001 010111110 {3}
1483 9 2/3 2.75 {7, 2, 3, 0} (0.588003, -1.0472) 2.24593 000001111 000001100 000001011 000000110 000000011 111000001 110100001 101110001 101011110 {1}
1484 9 2/3 2.75 {8, 5, 6, 0}(0.523599, -0.523599) 3.14159 000111111 000011111 000001111 100000011 110000101 111000011 111010000 111101001 111111010 {2}
1485 9 2/3 2.75 {0, 6, 5, 8} (0.523599, 2.61799) 3.14159 000111111 000011111 000001111 100000011 110000101 111000011 111010000 111101001 111111010 {2}
1486 9 2/3 2.75 {7, 6, 4, 5} (0.588003, 2.0944) 2.24593 000010111 000001111 000001111 000001100 100000010 011100001 111100001 111010001 111001110 {6}
1487 9 2/3 2.75 {2, 6, 7, 8} (0.588003, 3.14159) -2.24593 000001111 000001010 000001000 000000111 000000100 111000001 100110000 110100001 100101010 {2}
1488 9 2/3 2.75 {7, 3, 8, 6} (0.857072, -2.61799) -1.44547 000011111 000011111 000001100 000000111 110000011 111000001 111100011 110110100 110111100 {2}
1489 9 2/3 2.75 {6, 1, 2, 5} (1.5708, 1.0472) 1.0472 000001111 000001001 000000101 000000011 000000011 110000100 101001000 100110000 111110000 {10}
1490 9 2/3 2.75 {0, 3, 2, 7} (0.588003, 2.0944) -2.24593 000001111 000001100 000001011 000000110 000000011 111000001 110100001 101110001 101011110 {1}
1491 9 2/3 2.75 {0, 1, 2, 6} (0.523599, 1.5708) -3.14159 000010100 000001110 000001011 000000001 100000011 011000101 110001011 011010101 001111110 {2}
1492 9 2/3 2.75 {3, 0, 7, 2} (0.588003, 1.0472) 2.24593 000001111 000001100 000001011 000000110 000000011 111000001 110100001 101110001 101011110 {1}
1493 9 2/3 2.75 {8, 6, 7, 3} (0.857072, 2.61799) -1.44547 000011111 000011111 000001100 000000111 110000011 111000001 111100011 110110100 110111100 {2}
1494 9 2/3 2.75 {1, 3, 2, 4} (1.5708, -3.14159) -1.0472 000001111 000001011 000001001 000000111 000000101 111000001 100110001 110100001 111111110 {44}
1495 9 2/3 2.75 {6, 8, 3, 7} (0.857072, 0.523599) 1.44547 000011111 000011111 000001100 000000111 110000011 111000001 111100011 110110100 110111100 {2}
1496 9 2/3 2.75 {6, 7, 5, 4} (0.588003, 1.0472) -2.24593 000010111 000001111 000001111 000001100 100000010 011100001 111100001 111010001 111001110 {6}
1497 9 2/3 2.75 {6, 0, 8, 5} (0.523599, 0.523599) 3.14159 000111111 000011111 000001111 100000011 110000101 111000011 111010000 111101001 111111010 {2}
1498 9 2/3 2.75 {1, 6, 5, 2} (1.5708, -1.0472) 1.0472 000001111 000001001 000000101 000000011 000000011 110000100 101001000 100110000 111110000 {10}
1499 9 2/3 2.75 {3, 7, 6, 8}(0.857072, -0.523599) 1.44547 000011111 000011111 000001100 000000111 110000011 111000001 111100011 110110100 110111100 {2}
1500 9 2/3 2.75 {6, 2, 8, 7} (0.588003, 0) 2.24593 000001111 000001010 000001000 000000111 000000100 111000001 100110000 110100001 100101010 {2}
1501 9 2/3 2.75 {1, 6, 2, 5} (1.10715, 3.14159) 2.63623 000001111 000001001 000000101 000000011 000000011 110000100 101001000 100110000 111110000 {10}
1502 9 2/3 2.75 {3, 7, 8, 6} (1.28976, 2.61799) 2.24593 000011111 000011111 000001100 000000111 110000011 111000001 111100011 110110100 110111100 {2}
1503 9 2/3 2.75 {6, 2, 7, 8} (1.5708, 2.0944) 2.0944 000001111 000001010 000001000 000000111 000000100 111000001 100110000 110100001 100101010 {2}
1504 9 2/3 2.75 {6, 7, 4, 5} (1.10715, -2.0944) -2.63623 000010111 000001111 000001111 000001100 100000010 011100001 111100001 111010001 111001110 {6}
1505 9 2/3 2.75 {6, 0, 5, 8} (1.28976, -1.5708) -2.24593 000111111 000011111 000001111 100000011 110000101 111000011 111010000 111101001 111111010 {2}
1506 9 2/3 2.75 {8, 6, 3, 7} (1.28976, -2.61799) 2.24593 000011111 000011111 000001100 000000111 110000011 111000001 111100011 110110100 110111100 {2}
1507 9 2/3 2.75 {1, 3, 4, 2} (1.5708, -3.14159) 2.0944 000001111 000001011 000001001 000000111 000000101 111000001 100110001 110100001 111111110 {44}
1508 9 2/3 2.75 {6, 8, 7, 3} (1.28976, -0.523599) -2.24593 000011111 000011111 000001100 000000111 110000011 111000001 111100011 110110100 110111100 {2}
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1509 9 2/3 2.75 {0, 3, 7, 2} (1.10715, -2.0944) 2.63623 000001111 000001100 000001011 000000110 000000011 111000001 110100001 101110001 101011110 {1}
1510 9 2/3 2.75 {1, 5, 7, 0} (1.0472, -1.5708) -3.14159 000011111 000001101 000000111 000000011 100000011 110000111 111001001 101111001 111111110 {4}
1511 9 2/3 2.75 {3, 0, 2, 7} (1.10715, -1.0472) -2.63623 000001111 000001100 000001011 000000110 000000011 111000001 110100001 101110001 101011110 {1}
1512 9 2/3 2.75 {2, 6, 8, 7} (1.5708, -2.0944) 2.0944 000001111 000001010 000001000 000000111 000000100 111000001 100110000 110100001 100101010 {2}
1513 9 2/3 2.75 {7, 3, 6, 8} (1.28976, 0.523599) -2.24593 000011111 000011111 000001100 000000111 110000011 111000001 111100011 110110100 110111100 {2}
1514 9 2/3 2.75 {6, 1, 5, 2} (1.10715, 0) -2.63623 000001111 000001001 000000101 000000011 000000011 110000100 101001000 100110000 111110000 {10}
1515 9 2/3 2.75 {0, 6, 8, 5} (1.28976, -1.5708) 2.24593 000111111 000011111 000001111 100000011 110000101 111000011 111010000 111101001 111111010 {2}
1516 9 2/3 2.75 {7, 6, 5, 4} (1.10715, -1.0472) 2.63623 000010111 000001111 000001111 000001100 100000010 011100001 111100001 111010001 111001110 {6}
1517 9 2/3 2.75 {7, 2, 0, 3} (1.10715, 2.0944) 2.63623 000001111 000001100 000001011 000000110 000000011 111000001 110100001 101110001 101011110 {1}
1518 9 2/3 2.75 {8, 5, 0, 6} (1.28976, 1.5708) 2.24593 000111111 000011111 000001111 100000011 110000101 111000011 111010000 111101001 111111010 {2}
1519 9 2/3 2.75 {5, 0, 4, 1} (1.10715, -3.14159) -2.63623 000010111 000001111 000000101 000000011 100000100 010000011 111010011 110101100 111101100 {2}
1520 9 2/3 2.75 {2, 4, 8, 5} (1.28976, -2.61799) -2.24593 000010110 000001111 000001100 000000011 100000011 011000001 111000001 110110001 010111110 {3}
1521 9 2/3 2.75 {4, 5, 6, 7} (1.10715, 2.0944) -2.63623 000010111 000001111 000001111 000001100 100000010 011100001 111100001 111010001 111001110 {6}
1522 9 2/3 2.75 {0, 7, 5, 1} (1.0472, 1.5708) -3.14159 000011111 000001101 000000111 000000011 100000011 110000111 111001001 101111001 111111110 {4}
1523 9 2/3 2.75 {5, 4, 7, 6} (1.10715, 1.0472) 2.63623 000010111 000001111 000001111 000001100 100000010 011100001 111100001 111010001 111001110 {6}
1524 9 2/3 2.75 {8, 5, 2, 4} (1.28976, 2.61799) -2.24593 000010110 000001111 000001100 000000011 100000011 011000001 111000001 110110001 010111110 {3}
1525 9 2/3 2.75 {2, 3, 5, 6} (1.5708, 3.14159) -2.0944 000001111 000001101 000001010 000000110 000000001 111000001 110100001 101100001 110011110 {16}
1526 9 2/3 2.75 {5, 8, 4, 2} (1.28976, 0.523599) 2.24593 000010110 000001111 000001100 000000011 100000011 011000001 111000001 110110001 010111110 {3}
1527 9 2/3 2.75 {5, 8, 6, 0} (1.28976, 1.5708) -2.24593 000111111 000011111 000001111 100000011 110000101 111000011 111010000 111101001 111111010 {2}
1528 9 2/3 2.75 {2, 7, 3, 0} (1.10715, 1.0472) -2.63623 000001111 000001100 000001011 000000110 000000011 111000001 110100001 101110001 101011110 {1}
1529 9 2/3 2.75 {4, 2, 5, 8} (1.28976, -0.523599) 2.24593 000010110 000001111 000001100 000000011 100000011 011000001 111000001 110110001 010111110 {3}
1530 9 2/3 2.75 {0, 5, 1, 4} (1.10715, 0) 2.63623 000010111 000001111 000000101 000000011 100000100 010000011 111010011 110101100 111101100 {2}
1531 9 2/3 2.75 {0, 6, 4, 5} (1.5708, 1.5708) -3.14159 000101101 000010111 000001010 100000101 010000011 101000010 110100001 011011000 110110100 {32}
1532 9 2/3 2.75 {0, 6, 1, 5} (1.5708, 0) 3.14159 000101101 000010111 000001010 100000101 010000011 101000010 110100001 011011000 110110100 {72}
1533 9 2/3 2.66667 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001001 000000101 000000011 111000000 110100000 110010000 111110000 {16}
1534 9 2/3 2.66667 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001001 000000101 000000011 111000000 110100000 110010000 111110000 {16}
1535 9 2/3 2.5 {7, 4, 6, 8} (1.5708, -2.0944) -1.0472 000011011 000010111 000001111 000000111 110001110 101010011 011110001 111111001 111101110 {8}
1536 9 2/3 2.5 {4, 7, 8, 6} (1.5708, 2.0944) -1.0472 000011011 000010111 000001111 000000111 110001110 101010011 011110001 111111001 111101110 {8}
1537 9 2/3 2.5 {4, 7, 6, 8} (1.10715, 3.14159) 2.63623 000011011 000010111 000001111 000000111 110001110 101010011 011110001 111111001 111101110 {8}
1538 9 2/3 2.5 {7, 4, 8, 6} (1.10715, 0) -2.63623 000011011 000010111 000001111 000000111 110001110 101010011 011110001 111111001 111101110 {8}
1539 9 2/3 2.375 {1, 5, 3, 7} (0.588003, 3.14159) 2.24593 000010011 000001101 000001100 000000111 100000011 011000001 011100011 100110100 110111100 {2}
1540 9 2/3 2.375 {5, 0, 6, 3} (0.857072, -1.5708) -1.44547 000101111 000010111 000001101 100000011 010000111 101000011 111010011 110111100 111111100 {3}
1541 9 2/3 2.375 {5, 1, 7, 3} (0.588003, 0) -2.24593 000010011 000001101 000001100 000000111 100000011 011000001 011100011 100110100 110111100 {2}
1542 9 2/3 2.375 {0, 5, 3, 6} (0.857072, -1.5708) 1.44547 000101111 000010111 000001101 100000011 010000111 101000011 111010011 110111100 111111100 {3}
1543 9 2/3 2.375 {3, 6, 0, 5} (0.857072, 1.5708) 1.44547 000101111 000010111 000001101 100000011 010000111 101000011 111010011 110111100 111111100 {3}
1544 9 2/3 2.375 {3, 7, 6, 8} (0.588003, 3.14159) -2.24593 000010111 000001111 000001111 000001001 100000111 011100011 111010010 111011100 111111000 {4}
1545 9 2/3 2.375 {6, 3, 5, 0} (0.857072, 1.5708) -1.44547 000101111 000010111 000001101 100000011 010000111 101000011 111010011 110111100 111111100 {3}
1546 9 2/3 2.375 {7, 3, 8, 6} (0.588003, 0) 2.24593 000010111 000001111 000001111 000001001 100000111 011100011 111010010 111011100 111111000 {4}
1547 9 2/3 2.375 {7, 3, 6, 8} (1.5708, 2.0944) 2.0944 000010111 000001111 000001111 000001001 100000111 011100011 111010010 111011100 111111000 {4}
1548 9 2/3 2.375 {6, 3, 0, 5} (1.0472, -2.61799) 3.14159 000101111 000010111 000001101 100000011 010000111 101000011 111010011 110111100 111111100 {3}
1549 9 2/3 2.375 {3, 7, 8, 6} (1.5708, -2.0944) 2.0944 000010111 000001111 000001111 000001001 100000111 011100011 111010010 111011100 111111000 {4}
1550 9 2/3 2.375 {3, 6, 5, 0} (1.0472, -0.523599) -3.14159 000101111 000010111 000001101 100000011 010000111 101000011 111010011 110111100 111111100 {3}
1551 9 2/3 2.375 {0, 5, 6, 3} (1.0472, 2.61799) 3.14159 000101111 000010111 000001101 100000011 010000111 101000011 111010011 110111100 111111100 {3}
1552 9 2/3 2.375 {5, 1, 3, 7} (1.5708, -2.0944) -2.0944 000010011 000001101 000001100 000000111 100000011 011000001 011100011 100110100 110111100 {2}
1553 9 2/3 2.375 {5, 0, 3, 6} (1.0472, 0.523599) -3.14159 000101111 000010111 000001101 100000011 010000111 101000011 111010011 110111100 111111100 {3}
1554 9 2/3 2.375 {1, 5, 7, 3} (1.5708, 2.0944) -2.0944 000010011 000001101 000001100 000000111 100000011 011000001 011100011 100110100 110111100 {2}
1555 9 2/3 2.33333 {1, 6, 7, 5} (0, 0) 3.14159 001011111 000100111 100011111 010000101 101001111 101010011 111110011 111011101 111111110 {8}
1556 9 2/3 2.33333 {1, 6, 7, 2} (0, 0) 1.0472 000101011 000010111 000000100 100001011 010000101 100100011 011010000 110101001 110111010 {12}
1557 9 2/3 2.33333 {6, 1, 2, 7} (0, 0) -1.0472 000101011 000010111 000000100 100001011 010000101 100100011 011010000 110101001 110111010 {12}
1558 9 2/3 2.33333 {1, 6, 5, 7} (1.5708, 1.5708) -3.14159 001011111 000100111 100011111 010000101 101001111 101010011 111110011 111011101 111111110 {8}
1559 9 2/3 2.33333 {6, 1, 7, 2} (1.5708, 0.523599) -3.14159 000101011 000010111 000000100 100001011 010000101 100100011 011010000 110101001 110111010 {12}
1560 9 2/3 2.33333 {1, 6, 2, 7} (1.5708, -0.523599) 3.14159 000101011 000010111 000000100 100001011 010000101 100100011 011010000 110101001 110111010 {12}
1561 9 2/3 2.25 {1, 5, 8, 3} (0, 0) 3.14159 000101011 000010101 000001111 100000011 010000100 101000011 011010000 101101001 111101010 {16}
1562 9 2/3 2.25 {0, 4, 1, 3} (0, 0) 2.0944 000101111 000011111 000000011 100001010 010000101 110100111 110011011 111101101 111011110 {32}
1563 9 2/3 2.25 {4, 0, 3, 1} (0, 0) -2.0944 000101111 000011111 000000011 100001010 010000101 110100111 110011011 111101101 111011110 {32}
1564 9 2/3 2.25 {7, 1, 0, 5} (0.857072, 2.61799) 1.44547 000110111 000011011 000001111 100000101 110000001 011000010 101100000 111001001 111110010 {1}
1565 9 2/3 2.25 {0, 6, 5, 1} (1.5708, 2.0944) 1.0472 000001011 000000111 000000011 000000010 000000001 100000010 010000001 111101001 111010110 {2}
1566 9 2/3 2.25 {2, 5, 6, 0} (0.523599, -2.61799) -3.14159 000001111 000000111 000000011 000000010 000000001 100000101 110001000 111100001 111011010 {1}
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1567 9 2/3 2.25 {2, 1, 4, 6} (0.588003, -2.0944) -2.24593 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {1}
1568 9 2/3 2.25 {5, 8, 7, 3} (0.857072, -1.5708) -1.44547 000001010 000001010 000000110 000000101 000000100 110000001 001110001 111000001 000101110 {2}
1569 9 2/3 2.25 {0, 5, 7, 1} (0.857072, -2.61799) 1.44547 000110111 000011011 000001111 100000101 110000001 011000010 101100000 111001001 111110010 {1}
1570 9 2/3 2.25 {0, 1, 5, 6} (1.5708, 3.14159) 1.0472 000001011 000000111 000000011 000000010 000000010 100000001 010000001 111110001 111001110 {12}
1571 9 2/3 2.25 {5, 0, 1, 7}(0.857072, -0.523599) -1.44547 000110111 000011011 000001111 100000101 110000001 011000010 101100000 111001001 111110010 {1}
1572 9 2/3 2.25 {6, 8, 1, 0} (0.588003, -2.0944) 2.24593 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {5}
1573 9 2/3 2.25 {0, 3, 5, 6} (0.523599, -1.5708) -3.14159 000001111 000000111 000000101 000000011 000000001 100000010 111000000 110101001 111110010 {2}
1574 9 2/3 2.25 {8, 6, 0, 1} (0.588003, -1.0472) -2.24593 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {5}
1575 9 2/3 2.25 {6, 0, 1, 5} (1.5708, -2.0944) 1.0472 000001011 000000111 000000011 000000010 000000001 100000010 010000001 111101001 111010110 {2}
1576 9 2/3 2.25 {1, 7, 5, 0} (0.857072, 0.523599) -1.44547 000110111 000011011 000001111 100000101 110000001 011000010 101100000 111001001 111110010 {1}
1577 9 2/3 2.25 {8, 5, 3, 7} (0.857072, -1.5708) 1.44547 000001010 000001010 000000110 000000101 000000100 110000001 001110001 111000001 000101110 {2}
1578 9 2/3 2.25 {1, 2, 6, 4} (0.588003, -1.0472) 2.24593 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {1}
1579 9 2/3 2.25 {5, 2, 0, 6}(0.523599, -0.523599) -3.14159 000001111 000000111 000000011 000000010 000000001 100000101 110001000 111100001 111011010 {1}
1580 9 2/3 2.25 {6, 0, 2, 5} (0.523599, 2.61799) -3.14159 000001111 000000111 000000011 000000010 000000001 100000101 110001000 111100001 111011010 {1}
1581 9 2/3 2.25 {1, 0, 6, 8} (0.588003, 2.0944) 2.24593 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {5}
1582 9 2/3 2.25 {3, 7, 8, 5} (0.857072, 1.5708) 1.44547 000001010 000001010 000000110 000000101 000000100 110000001 001110001 111000001 000101110 {2}
1583 9 2/3 2.25 {3, 5, 6, 4} (0.588003, 3.14159) -2.24593 000011000 000001101 000000111 000000011 100000010 110000000 011000000 001110000 011100000 {2}
1584 9 2/3 2.25 {5, 0, 7, 8} (0.857072, -2.61799) -1.44547 000001011 000001010 000000110 000000100 000000100 110000001 001110001 111000001 100001110 {2}
1585 9 2/3 2.25 {5, 0, 6, 1} (1.5708, -2.0944) -1.0472 000011111 000001111 000000101 000000010 100000001 110000011 111000011 110101101 111011110 {6}
1586 9 2/3 2.25 {4, 6, 2, 1} (0.588003, 2.0944) -2.24593 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {1}
1587 9 2/3 2.25 {5, 6, 0, 3} (0.523599, 1.5708) -3.14159 000001111 000000111 000000101 000000011 000000001 100000010 111000000 110101001 111110010 {2}
1588 9 2/3 2.25 {6, 4, 1, 2} (0.588003, 1.0472) 2.24593 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {1}
1589 9 2/3 2.25 {7, 8, 5, 0} (0.857072, 2.61799) -1.44547 000001011 000001010 000000110 000000100 000000100 110000001 001110001 111000001 100001110 {2}
1590 9 2/3 2.25 {0, 6, 1, 5} (1.5708, -3.14159) -1.0472 000011001 000001101 000000110 000000011 100000010 110000001 011000001 001110001 110101110 {32}
1591 9 2/3 2.25 {8, 7, 0, 5} (0.857072, 0.523599) 1.44547 000001011 000001010 000000110 000000100 000000100 110000001 001110001 111000001 100001110 {2}
1592 9 2/3 2.25 {7, 3, 5, 8} (0.857072, 1.5708) -1.44547 000001010 000001010 000000110 000000101 000000100 110000001 001110001 111000001 000101110 {2}
1593 9 2/3 2.25 {0, 1, 8, 6} (0.588003, 1.0472) -2.24593 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {5}
1594 9 2/3 2.25 {0, 6, 5, 2} (0.523599, 0.523599) -3.14159 000001111 000000111 000000011 000000010 000000001 100000101 110001000 111100001 111011010 {1}
1595 9 2/3 2.25 {0, 5, 1, 6} (1.5708, 2.0944) -1.0472 000011111 000001111 000000101 000000010 100000001 110000011 111000011 110101101 111011110 {6}
1596 9 2/3 2.25 {0, 5, 8, 7}(0.857072, -0.523599) 1.44547 000001011 000001010 000000110 000000100 000000100 110000001 001110001 111000001 100001110 {2}
1597 9 2/3 2.25 {5, 3, 4, 6} (0.588003, 0) 2.24593 000011000 000001101 000000111 000000011 100000010 110000000 011000000 001110000 011100000 {2}
1598 9 2/3 2.25 {0, 5, 6, 1} (1.10715, 3.14159) 2.63623 000011111 000001111 000000101 000000010 100000001 110000011 111000011 110101101 111011110 {6}
1599 9 2/3 2.25 {0, 5, 7, 8} (1.28976, 2.61799) 2.24593 000001011 000001010 000000110 000000100 000000100 110000001 001110001 111000001 100001110 {2}
1600 9 2/3 2.25 {5, 3, 6, 4} (1.5708, 2.0944) 2.0944 000011000 000001101 000000111 000000011 100000010 110000000 011000000 001110000 011100000 {2}
1601 9 2/3 2.25 {7, 3, 8, 5} (1.0472, -2.61799) 3.14159 000001010 000001010 000000110 000000101 000000100 110000001 001110001 111000001 000101110 {2}
1602 9 2/3 2.25 {0, 1, 6, 8} (1.10715, -2.0944) -2.63623 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {5}
1603 9 2/3 2.25 {0, 6, 2, 5} (1.28976, -1.5708) -2.24593 000001111 000000111 000000011 000000010 000000001 100000101 110001000 111100001 111011010 {3}
1604 9 2/3 2.25 {7, 8, 0, 5} (1.28976, -2.61799) 2.24593 000001011 000001010 000000110 000000100 000000100 110000001 001110001 111000001 100001110 {2}
1605 9 2/3 2.25 {0, 6, 5, 1} (1.5708, -3.14159) 2.0944 000011001 000001101 000000110 000000011 100000010 110000001 011000001 001110001 110101110 {32}
1606 9 2/3 2.25 {8, 7, 5, 0} (1.28976, -0.523599) -2.24593 000001011 000001010 000000110 000000100 000000100 110000001 001110001 111000001 100001110 {2}
1607 9 2/3 2.25 {4, 6, 1, 2} (1.10715, -2.0944) 2.63623 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {1}
1608 9 2/3 2.25 {5, 6, 3, 0} (1.0472, -1.5708) 3.14159 000001111 000000111 000000101 000000011 000000001 100000010 111000000 110101001 111110010 {4}
1609 9 2/3 2.25 {6, 4, 2, 1} (1.10715, -1.0472) -2.63623 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {1}
1610 9 2/3 2.25 {3, 5, 4, 6} (1.5708, -2.0944) 2.0944 000011000 000001101 000000111 000000011 100000010 110000000 011000000 001110000 011100000 {2}
1611 9 2/3 2.25 {5, 0, 8, 7} (1.28976, 0.523599) -2.24593 000001011 000001010 000000110 000000100 000000100 110000001 001110001 111000001 100001110 {2}
1612 9 2/3 2.25 {5, 0, 1, 6} (1.10715, 0) -2.63623 000011111 000001111 000000101 000000010 100000001 110000011 111000011 110101101 111011110 {6}
1613 9 2/3 2.25 {6, 0, 5, 2} (1.28976, -1.5708) 2.24593 000001111 000000111 000000011 000000010 000000001 100000101 110001000 111100001 111011010 {3}
1614 9 2/3 2.25 {1, 0, 8, 6} (1.10715, -1.0472) 2.63623 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {5}
1615 9 2/3 2.25 {3, 7, 5, 8} (1.0472, -0.523599) -3.14159 000001010 000001010 000000110 000000101 000000100 110000001 001110001 111000001 000101110 {2}
1616 9 2/3 2.25 {8, 5, 7, 3} (1.0472, 2.61799) 3.14159 000001010 000001010 000000110 000000101 000000100 110000001 001110001 111000001 000101110 {2}
1617 9 2/3 2.25 {1, 2, 4, 6} (1.10715, 2.0944) 2.63623 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {1}
1618 9 2/3 2.25 {5, 2, 6, 0} (1.28976, 1.5708) 2.24593 000001111 000000111 000000011 000000010 000000001 100000101 110001000 111100001 111011010 {3}
1619 9 2/3 2.25 {6, 0, 5, 1} (1.10715, -3.14159) -2.63623 000001011 000000111 000000011 000000010 000000001 100000010 010000001 111101001 111010110 {2}
1620 9 2/3 2.25 {1, 7, 0, 5} (1.28976, -2.61799) -2.24593 000110111 000011011 000001111 100000101 110000001 011000010 101100000 111001001 111110010 {1}
1621 9 2/3 2.25 {6, 8, 0, 1} (1.10715, 2.0944) -2.63623 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {5}
1622 9 2/3 2.25 {0, 3, 6, 5} (1.0472, 1.5708) 3.14159 000001111 000000111 000000101 000000011 000000001 100000010 111000000 110101001 111110010 {4}
1623 9 2/3 2.25 {8, 6, 1, 0} (1.10715, 1.0472) 2.63623 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {5}
1624 9 2/3 2.25 {0, 5, 1, 7} (1.28976, 2.61799) -2.24593 000110111 000011011 000001111 100000101 110000001 011000010 101100000 111001001 111110010 {1}
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1625 9 2/3 2.25 {0, 1, 6, 5} (1.5708, 3.14159) -2.0944 000001011 000000111 000000011 000000010 000000010 100000001 010000001 111110001 111001110 {12}
1626 9 2/3 2.25 {5, 0, 7, 1} (1.28976, 0.523599) 2.24593 000110111 000011011 000001111 100000101 110000001 011000010 101100000 111001001 111110010 {1}
1627 9 2/3 2.25 {2, 5, 0, 6} (1.28976, 1.5708) -2.24593 000001111 000000111 000000011 000000010 000000001 100000101 110001000 111100001 111011010 {3}
1628 9 2/3 2.25 {2, 1, 6, 4} (1.10715, 1.0472) -2.63623 000011010 000001100 000000111 000000010 100000011 110000001 011000001 101110001 001011110 {1}
1629 9 2/3 2.25 {5, 8, 3, 7} (1.0472, 0.523599) -3.14159 000001010 000001010 000000110 000000101 000000100 110000001 001110001 111000001 000101110 {2}
1630 9 2/3 2.25 {7, 1, 5, 0} (1.28976, -0.523599) 2.24593 000110111 000011011 000001111 100000101 110000001 011000010 101100000 111001001 111110010 {1}
1631 9 2/3 2.25 {0, 6, 1, 5} (1.10715, 0) 2.63623 000001011 000000111 000000011 000000010 000000001 100000010 010000001 111101001 111010110 {2}
1632 9 2/3 2.25 {1, 5, 3, 8} (1.5708, 1.5708) -3.14159 000101011 000010101 000001111 100000011 010000100 101000011 011010000 101101001 111101010 {16}
1633 9 2/3 2.25 {4, 0, 1, 3} (1.5708, 1.0472) -3.14159 000101111 000011111 000000011 100001010 010000101 110100111 110011011 111101101 111011110 {32}
1634 9 2/3 2.25 {0, 4, 3, 1} (1.5708, -1.0472) 3.14159 000101111 000011111 000000011 100001010 010000101 110100111 110011011 111101101 111011110 {32}
1635 9 2/3 2.14286 {0, 3, 2, 1} (0, 0) 0 000100101 000011100 000011010 100000011 011001111 011010111 110011011 001111101 100111110 {8}
1636 9 2/3 2.14286 {0, 3, 1, 2} (1.5708, 0) 3.14159 000100101 000011100 000011010 100000011 011001111 011010111 110011011 001111101 100111110 {8}
1637 9 2/3 2.125 {6, 0, 7, 3} (0.857072, -1.5708) -1.44547 000101111 000010111 000001011 100001001 010000111 101100110 110011001 111011001 111110110 {1}
1638 9 2/3 2.125 {0, 6, 3, 7} (0.857072, -1.5708) 1.44547 000101111 000010111 000001011 100001001 010000111 101100110 110011001 111011001 111110110 {1}
1639 9 2/3 2.125 {3, 7, 0, 6} (0.857072, 1.5708) 1.44547 000101111 000010111 000001011 100001001 010000111 101100110 110011001 111011001 111110110 {1}
1640 9 2/3 2.125 {3, 6, 4, 7} (0.588003, 3.14159) -2.24593 000011111 000011111 000010110 000001011 111000100 110100111 111011001 111101001 110101110 {2}
1641 9 2/3 2.125 {7, 3, 6, 0} (0.857072, 1.5708) -1.44547 000101111 000010111 000001011 100001001 010000111 101100110 110011001 111011001 111110110 {1}
1642 9 2/3 2.125 {6, 3, 7, 4} (0.588003, 0) 2.24593 000011111 000011111 000010110 000001011 111000100 110100111 111011001 111101001 110101110 {2}
1643 9 2/3 2.125 {6, 3, 4, 7} (1.5708, 2.0944) 2.0944 000011111 000011111 000010110 000001011 111000100 110100111 111011001 111101001 110101110 {2}
1644 9 2/3 2.125 {7, 3, 0, 6} (1.0472, -2.61799) 3.14159 000101111 000010111 000001011 100001001 010000111 101100110 110011001 111011001 111110110 {1}
1645 9 2/3 2.125 {3, 6, 7, 4} (1.5708, -2.0944) 2.0944 000011111 000011111 000010110 000001011 111000100 110100111 111011001 111101001 110101110 {2}
1646 9 2/3 2.125 {3, 7, 6, 0} (1.0472, -0.523599) -3.14159 000101111 000010111 000001011 100001001 010000111 101100110 110011001 111011001 111110110 {1}
1647 9 2/3 2.125 {0, 6, 7, 3} (1.0472, 2.61799) 3.14159 000101111 000010111 000001011 100001001 010000111 101100110 110011001 111011001 111110110 {1}
1648 9 2/3 2.125 {6, 0, 3, 7} (1.0472, 0.523599) -3.14159 000101111 000010111 000001011 100001001 010000111 101100110 110011001 111011001 111110110 {1}
1649 9 2/3 2 {0, 3, 8, 2} (0, 0) 3.14159 000010101 000001001 000000010 000000010 100000100 010000001 100010000 001100000 110001000 {16}
1650 9 2/3 2 {5, 1, 5, 8} (0, 0) 1.0472 000101011 000010101 000000010 100001011 010000100 100100001 010010000 101100001 110101010 {7}
1651 9 2/3 2 {5, 2, 4, 3} (0, 0) 0.380251 000011011 000011011 000000111 000000111 110000011 110000001 001100011 111110100 111111100 {16}
1652 9 2/3 2 {1, 5, 8, 5} (0, 0) -1.0472 000101011 000010101 000000010 100001011 010000100 100100001 010010000 101100001 110101010 {7}
1653 9 2/3 2 {2, 5, 3, 4} (0, 0) -0.380251 000011011 000011011 000000111 000000111 110000011 110000001 001100011 111110100 111111100 {16}
1654 9 2/3 2 {1, 0, 5, 3} (0.785398, -2.0944) 2.3664 000101011 000010110 000001111 100000010 010000101 101000001 011010000 111100001 101011010 {1}
1655 9 2/3 2 {0, 1, 3, 5} (0.785398, -1.0472) -2.3664 000101011 000010110 000001111 100000010 010000101 101000001 011010000 111100001 101011010 {1}
1656 9 2/3 2 {5, 3, 1, 0} (0.785398, 2.0944) 2.3664 000101011 000010110 000001111 100000010 010000101 101000001 011010000 111100001 101011010 {1}
1657 9 2/3 2 {3, 5, 0, 1} (0.785398, 1.0472) -2.3664 000101011 000010110 000001111 100000010 010000101 101000001 011010000 111100001 101011010 {1}
1658 9 2/3 2 {3, 5, 1, 0} (0.927295, -2.0944) -2.47465 000101011 000010110 000001111 100000010 010000101 101000001 011010000 111100001 101011010 {1}
1659 9 2/3 2 {5, 3, 0, 1} (0.927295, -1.0472) 2.47465 000101011 000010110 000001111 100000010 010000101 101000001 011010000 111100001 101011010 {1}
1660 9 2/3 2 {1, 0, 3, 5} (0.927295, 2.0944) -2.47465 000101011 000010110 000001111 100000010 010000101 101000001 011010000 111100001 101011010 {1}
1661 9 2/3 2 {0, 1, 5, 3} (0.927295, 1.0472) 2.47465 000101011 000010110 000001111 100000010 010000101 101000001 011010000 111100001 101011010 {1}
1662 9 2/3 2 {0, 3, 2, 8} (1.5708, 1.5708) -3.14159 000010101 000001001 000000010 000000010 100000100 010000001 100010000 001100000 110001000 {16}
1663 9 2/3 2 {1, 5, 5, 8} (1.5708, 0.523599) -3.14159 000101011 000010101 000000010 100001011 010000100 100100001 010010000 101100001 110101010 {7}
1664 9 2/3 2 {2, 5, 4, 3} (1.5708, 0.190126) -3.14159 000011011 000011011 000000111 000000111 110000011 110000001 001100011 111110100 111111100 {16}
1665 9 2/3 2 {5, 1, 8, 5} (1.5708, -0.523599) 3.14159 000101011 000010101 000000010 100001011 010000100 100100001 010010000 101100001 110101010 {7}
1666 9 2/3 2 {5, 2, 3, 4} (1.5708, -0.190126) 3.14159 000011011 000011011 000000111 000000111 110000011 110000001 001100011 111110100 111111100 {16}
1667 9 2/3 19 {1, 4, 3, 2} (0, 0) 0 000111101 000011110 000001011 100000011 110000110 111000101 110011001 011110001 101101110 {8}
1668 9 2/3 19 {1, 4, 2, 3} (1.5708, 0) 3.14159 000111101 000011110 000001011 100000011 110000110 111000101 110011001 011110001 101101110 {8}
1669 9 2/3 18 {1, 2, 1, 2} (0, 0) 0 000001101 000000111 000000111 000000001 000000001 100000010 111000000 011001000 111110000 {172}
1670 9 2/3 18 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001101 000000111 000000111 000000001 000000001 100000010 111000000 011001000 111110000 {172}
1671 9 2/3 17 {1, 8, 7, 5} (0, 0) 0 000011110 000001111 000000011 000000011 100000111 110000011 110010001 111111000 011111100 {16}
1672 9 2/3 17 {1, 8, 5, 7} (1.5708, 0) 3.14159 000011110 000001111 000000011 000000011 100000111 110000011 110010001 111111000 011111100 {16}
1673 9 2/3 16 {2, 3, 8, 3} (0, 0) -3.14159 000111100 000011111 000001011 100000111 110001111 111010001 110110010 011110101 011111010 {10}
1674 9 2/3 16 {3, 2, 8, 3} (1.5708, -1.5708) 3.14159 000111100 000011111 000001011 100000111 110001111 111010001 110110010 011110101 011111010 {10}
1675 9 2/3 15.5 {2, 3, 2, 3} (0, 0) 0 000010011 000001011 000000101 000000101 100000011 010000001 001100010 110010100 111111000 {28}
1676 9 2/3 15.5 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010011 000001011 000000101 000000101 100000011 010000001 001100010 110010100 111111000 {28}
1677 9 2/3 14 {1, 2, 1, 2} (0, 0) 0 000011011 000000101 000000101 000000011 100001011 100010001 011000010 100110100 111111000 {256}
1678 9 2/3 14 {2, 3, 7, 3} (0, 0) -3.14159 000111001 000011110 000000111 100001011 110000101 110100001 011010010 011100101 101111010 {3}
1679 9 2/3 14 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000000101 000000101 000000011 100001011 100010001 011000010 100110100 111111000 {256}
1680 9 2/3 14 {3, 2, 7, 3} (1.5708, -1.5708) 3.14159 000111001 000011110 000000111 100001011 110000101 110100001 011010010 011100101 101111010 {3}
1681 9 2/3 12 {2, 1, 2, 7} (0, 0) 2.0944 000010100 000001111 000001101 000000011 100000011 011000011 111000010 010111101 011111010 {22}
1682 9 2/3 12 {1, 0, 1, 4} (0, 0) 1.0472 000011010 000010111 000001101 000000011 110000100 101000011 011010001 110101000 011101100 {8}
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1683 9 2/3 12 {1, 2, 7, 2} (0, 0) -2.0944 000010100 000001111 000001101 000000011 100000011 011000011 111000010 010111101 011111010 {22}
1684 9 2/3 12 {0, 1, 4, 1} (0, 0) -1.0472 000011010 000010111 000001101 000000011 110000100 101000011 011010001 110101000 011101100 {8}
1685 9 2/3 12 {1, 2, 2, 7} (1.5708, 1.0472) -3.14159 000010100 000001111 000001101 000000011 100000011 011000011 111000010 010111101 011111010 {22}
1686 9 2/3 12 {0, 1, 1, 4} (1.5708, 0.523599) -3.14159 000011010 000010111 000001101 000000011 110000100 101000011 011010001 110101000 011101100 {8}
1687 9 2/3 12 {2, 1, 7, 2} (1.5708, -1.0472) 3.14159 000010100 000001111 000001101 000000011 100000011 011000011 111000010 010111101 011111010 {22}
1688 9 2/3 12 {1, 0, 4, 1} (1.5708, -0.523599) 3.14159 000011010 000010111 000001101 000000011 110000100 101000011 011010001 110101000 011101100 {8}
1689 9 2/3 11.5 {2, 3, 2, 3} (0, 0) 0 000010010 000001001 000000111 000000111 100000001 010000001 001100001 101100000 011111100 {68}
1690 9 2/3 11.5 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010010 000001001 000000111 000000111 100000001 010000001 001100001 101100000 011111100 {68}
1691 9 2/3 11 {1, 8, 7, 5} (0, 0) 0 000011010 000001111 000000111 000000011 100000011 110000011 011000001 111111000 011111100 {56}
1692 9 2/3 11 {1, 8, 5, 7} (1.5708, 0) 3.14159 000011010 000001111 000000111 000000011 100000011 110000011 011000001 111111000 011111100 {56}
1693 9 2/3 10 {1, 3, 2, 3} (0, 0) 2.0944 000010101 000001111 000001010 000000111 100000010 011000000 110100001 011110001 110100110 {38}
1694 9 2/3 10 {3, 7, 3, 4} (0, 0) 1.0472 000101011 000010101 000001110 100000100 010000011 101000010 011100001 101011000 110010100 {15}
1695 9 2/3 10 {3, 1, 3, 2} (0, 0) -2.0944 000010101 000001111 000001010 000000111 100000010 011000000 110100001 011110001 110100110 {38}
1696 9 2/3 10 {7, 3, 4, 3} (0, 0) -1.0472 000101011 000010101 000001110 100000100 010000011 101000010 011100001 101011000 110010100 {15}
1697 9 2/3 10 {3, 1, 2, 3} (1.5708, 1.0472) -3.14159 000010101 000001111 000001010 000000111 100000010 011000000 110100001 011110001 110100110 {38}
1698 9 2/3 10 {7, 3, 3, 4} (1.5708, 0.523599) -3.14159 000101011 000010101 000001110 100000100 010000011 101000010 011100001 101011000 110010100 {15}
1699 9 2/3 10 {1, 3, 3, 2} (1.5708, -1.0472) 3.14159 000010101 000001111 000001010 000000111 100000010 011000000 110100001 011110001 110100110 {38}
1700 9 2/3 10 {3, 7, 4, 3} (1.5708, -0.523599) 3.14159 000101011 000010101 000001110 100000100 010000011 101000010 011100001 101011000 110010100 {15}
1701 9 2/3 1.875 {6, 5, 2, 7} (0.588003, -2.0944) -2.24593 000010001 000001111 000001011 000000111 100000001 011000001 010100000 011100001 111111010 {4}
1702 9 2/3 1.875 {6, 0, 7, 4} (0.857072, -1.5708) -1.44547 000010111 000001011 000000111 000000110 100000001 010000011 101100001 111101001 111011110 {4}
1703 9 2/3 1.875 {0, 6, 4, 7} (0.857072, -1.5708) 1.44547 000010111 000001011 000000111 000000110 100000001 010000011 101100001 111101001 111011110 {4}
1704 9 2/3 1.875 {5, 6, 7, 2} (0.588003, -1.0472) 2.24593 000010001 000001111 000001011 000000111 100000001 011000001 010100000 011100001 111111010 {4}
1705 9 2/3 1.875 {4, 7, 0, 6} (0.857072, 1.5708) 1.44547 000010111 000001011 000000111 000000110 100000001 010000011 101100001 111101001 111011110 {4}
1706 9 2/3 1.875 {2, 3, 5, 6} (0.588003, 3.14159) -2.24593 000010111 000001111 000001001 000000011 100000111 011000000 110010000 110110000 111110000 {8}
1707 9 2/3 1.875 {6, 4, 7, 0} (0.857072, -2.61799) -1.44547 000010111 000001001 000000111 000000011 100000110 010000001 101010001 101110001 111101110 {4}
1708 9 2/3 1.875 {8, 5, 7, 6} (1.5708, -2.0944) -1.0472 000010011 000001101 000001100 000000111 100000011 011000000 011100000 100110000 110110000 {4}
1709 9 2/3 1.875 {2, 7, 6, 5} (0.588003, 2.0944) -2.24593 000010001 000001111 000001011 000000111 100000001 011000001 010100000 011100001 111111010 {4}
1710 9 2/3 1.875 {7, 2, 5, 6} (0.588003, 1.0472) 2.24593 000010001 000001111 000001011 000000111 100000001 011000001 010100000 011100001 111111010 {4}
1711 9 2/3 1.875 {7, 0, 6, 4} (0.857072, 2.61799) -1.44547 000010111 000001001 000000111 000000011 100000110 010000001 101010001 101110001 111101110 {4}
1712 9 2/3 1.875 {0, 7, 4, 6} (0.857072, 0.523599) 1.44547 000010111 000001001 000000111 000000011 100000110 010000001 101010001 101110001 111101110 {4}
1713 9 2/3 1.875 {7, 4, 6, 0} (0.857072, 1.5708) -1.44547 000010111 000001011 000000111 000000110 100000001 010000011 101100001 111101001 111011110 {4}
1714 9 2/3 1.875 {5, 8, 6, 7} (1.5708, 2.0944) -1.0472 000010011 000001101 000001100 000000111 100000011 011000000 011100000 100110000 110110000 {4}
1715 9 2/3 1.875 {4, 6, 0, 7}(0.857072, -0.523599) 1.44547 000010111 000001001 000000111 000000011 100000110 010000001 101010001 101110001 111101110 {4}
1716 9 2/3 1.875 {3, 2, 6, 5} (0.588003, 0) 2.24593 000010111 000001111 000001001 000000011 100000111 011000000 110010000 110110000 111110000 {8}
1717 9 2/3 1.875 {5, 8, 7, 6} (1.10715, 3.14159) 2.63623 000010011 000001101 000001100 000000111 100000011 011000000 011100000 100110000 110110000 {4}
1718 9 2/3 1.875 {4, 6, 7, 0} (1.28976, 2.61799) 2.24593 000010111 000001001 000000111 000000011 100000110 010000001 101010001 101110001 111101110 {4}
1719 9 2/3 1.875 {3, 2, 5, 6} (1.5708, 2.0944) 2.0944 000010111 000001111 000001001 000000011 100000111 011000000 110010000 110110000 111110000 {8}
1720 9 2/3 1.875 {7, 4, 0, 6} (1.0472, -2.61799) 3.14159 000010111 000001011 000000111 000000110 100000001 010000011 101100001 111101001 111011110 {4}
1721 9 2/3 1.875 {7, 0, 4, 6} (1.28976, -2.61799) 2.24593 000010111 000001001 000000111 000000011 100000110 010000001 101010001 101110001 111101110 {4}
1722 9 2/3 1.875 {0, 7, 6, 4} (1.28976, -0.523599) -2.24593 000010111 000001001 000000111 000000011 100000110 010000001 101010001 101110001 111101110 {4}
1723 9 2/3 1.875 {2, 7, 5, 6} (1.10715, -2.0944) 2.63623 000010001 000001111 000001011 000000111 100000001 011000001 010100000 011100001 111111010 {4}
1724 9 2/3 1.875 {7, 2, 6, 5} (1.10715, -1.0472) -2.63623 000010001 000001111 000001011 000000111 100000001 011000001 010100000 011100001 111111010 {4}
1725 9 2/3 1.875 {2, 3, 6, 5} (1.5708, -2.0944) 2.0944 000010111 000001111 000001001 000000011 100000111 011000000 110010000 110110000 111110000 {8}
1726 9 2/3 1.875 {6, 4, 0, 7} (1.28976, 0.523599) -2.24593 000010111 000001001 000000111 000000011 100000110 010000001 101010001 101110001 111101110 {4}
1727 9 2/3 1.875 {8, 5, 6, 7} (1.10715, 0) -2.63623 000010011 000001101 000001100 000000111 100000011 011000000 011100000 100110000 110110000 {4}
1728 9 2/3 1.875 {4, 7, 6, 0} (1.0472, -0.523599) -3.14159 000010111 000001011 000000111 000000110 100000001 010000011 101100001 111101001 111011110 {4}
1729 9 2/3 1.875 {0, 6, 7, 4} (1.0472, 2.61799) 3.14159 000010111 000001011 000000111 000000110 100000001 010000011 101100001 111101001 111011110 {4}
1730 9 2/3 1.875 {5, 6, 2, 7} (1.10715, 2.0944) 2.63623 000010001 000001111 000001011 000000111 100000001 011000001 010100000 011100001 111111010 {4}
1731 9 2/3 1.875 {6, 5, 7, 2} (1.10715, 1.0472) -2.63623 000010001 000001111 000001011 000000111 100000001 011000001 010100000 011100001 111111010 {4}
1732 9 2/3 1.875 {6, 0, 4, 7} (1.0472, 0.523599) -3.14159 000010111 000001011 000000111 000000110 100000001 010000011 101100001 111101001 111011110 {4}
1733 9 2/3 1.83333 {0, 3, 1, 2} (0, 0) 2.0944 001011111 000111111 100011100 010000011 111001111 111010111 111011011 110111101 110111110 {4}
1734 9 2/3 1.83333 {1, 2, 1, 2} (0, 0) 0 000001111 000000101 000000101 000000010 000000001 100000010 111000011 100101100 111010100 {32}
1735 9 2/3 1.83333 {3, 0, 2, 1} (0, 0) -2.0944 001011111 000111111 100011100 010000011 111001111 111010111 111011011 110111101 110111110 {4}
1736 9 2/3 1.83333 {3, 0, 1, 2} (1.5708, 1.0472) -3.14159 001011111 000111111 100011100 010000011 111001111 111010111 111011011 110111101 110111110 {4}
1737 9 2/3 1.83333 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001111 000000101 000000101 000000010 000000001 100000010 111000011 100101100 111010100 {32}
1738 9 2/3 1.83333 {0, 3, 2, 1} (1.5708, -1.0472) 3.14159 001011111 000111111 100011100 010000011 111001111 111010111 111011011 110111101 110111110 {4}
1739 9 2/3 1.77778 {3, 4, 3, 4} (0, 0) 0 000001101 000000111 000000101 000000011 000000011 100000010 111000000 010111000 111110000 {60}
1740 9 2/3 1.77778 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001101 000000111 000000101 000000011 000000011 100000010 111000000 010111000 111110000 {60}
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1741 9 2/3 1.75 {1, 4, 2, 4} (0, 0) 2.0944 000010101 000001011 000001011 000000110 100000100 011000011 100110001 011101001 111001110 {86}
1742 9 2/3 1.75 {4, 1, 4, 2} (0, 0) -2.0944 000010101 000001011 000001011 000000110 100000100 011000011 100110001 011101001 111001110 {86}
1743 9 2/3 1.75 {5, 0, 8, 4} (0.857072, -1.5708) -1.44547 000011111 000001101 000001011 000000111 100000110 111000110 110111001 101111001 111100110 {1}
1744 9 2/3 1.75 {0, 5, 4, 8} (0.857072, -1.5708) 1.44547 000011111 000001101 000001011 000000111 100000110 111000110 110111001 101111001 111100110 {1}
1745 9 2/3 1.75 {4, 8, 0, 5} (0.857072, 1.5708) 1.44547 000011111 000001101 000001011 000000111 100000110 111000110 110111001 101111001 111100110 {1}
1746 9 2/3 1.75 {3, 8, 4, 7} (0.588003, 3.14159) -2.24593 000011101 000011011 000010111 000001100 111000011 110100011 101100011 011011100 111011100 {4}
1747 9 2/3 1.75 {8, 4, 5, 0} (0.857072, 1.5708) -1.44547 000011111 000001101 000001011 000000111 100000110 111000110 110111001 101111001 111100110 {1}
1748 9 2/3 1.75 {8, 3, 7, 4} (0.588003, 0) 2.24593 000011101 000011011 000010111 000001100 111000011 110100011 101100011 011011100 111011100 {4}
1749 9 2/3 1.75 {8, 3, 4, 7} (1.5708, 2.0944) 2.0944 000011101 000011011 000010111 000001100 111000011 110100011 101100011 011011100 111011100 {4}
1750 9 2/3 1.75 {8, 4, 0, 5} (1.0472, -2.61799) 3.14159 000011111 000001101 000001011 000000111 100000110 111000110 110111001 101111001 111100110 {1}
1751 9 2/3 1.75 {3, 8, 7, 4} (1.5708, -2.0944) 2.0944 000011101 000011011 000010111 000001100 111000011 110100011 101100011 011011100 111011100 {4}
1752 9 2/3 1.75 {4, 8, 5, 0} (1.0472, -0.523599) -3.14159 000011111 000001101 000001011 000000111 100000110 111000110 110111001 101111001 111100110 {1}
1753 9 2/3 1.75 {0, 5, 8, 4} (1.0472, 2.61799) 3.14159 000011111 000001101 000001011 000000111 100000110 111000110 110111001 101111001 111100110 {1}
1754 9 2/3 1.75 {5, 0, 4, 8} (1.0472, 0.523599) -3.14159 000011111 000001101 000001011 000000111 100000110 111000110 110111001 101111001 111100110 {1}
1755 9 2/3 1.75 {4, 1, 2, 4} (1.5708, 1.0472) -3.14159 000010101 000001011 000001011 000000110 100000100 011000011 100110001 011101001 111001110 {86}
1756 9 2/3 1.75 {1, 4, 4, 2} (1.5708, -1.0472) 3.14159 000010101 000001011 000001011 000000110 100000100 011000011 100110001 011101001 111001110 {86}
1757 9 2/3 1.71429 {1, 2, 1, 2} (0, 0) 0 000010101 000001010 000001010 000000111 100000101 011000011 100110001 011101001 100111110 {116}
1758 9 2/3 1.71429 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010101 000001010 000001010 000000111 100000101 011000011 100110001 011101001 100111110 {116}
1759 9 2/3 1.66667 {2, 3, 2, 3} (0, 0) 0 000010101 000001111 000000111 000000111 100000010 010000000 111100001 011110001 111100110 {20}
1760 9 2/3 1.66667 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010101 000001111 000000111 000000111 100000010 010000000 111100001 011110001 111100110 {20}
1761 9 2/3 1.6 {6, 7, 6, 7} (0, 0) 0 000001111 000001111 000000111 000000111 000000001 110000000 111100000 111100000 111110000 {16}
1762 9 2/3 1.6 {6, 7, 7, 6} (1.5708, 0) 3.14159 000001111 000001111 000000111 000000111 000000001 110000000 111100000 111100000 111110000 {16}
1763 9 2/3 1.58333 {7, 5, 6, 8} (1.5708, -2.0944) -1.0472 000110111 000001111 000001011 100010111 100100111 011000110 110111001 111111001 111110110 {4}
1764 9 2/3 1.58333 {5, 7, 8, 6} (1.5708, 2.0944) -1.0472 000110111 000001111 000001011 100010111 100100111 011000110 110111001 111111001 111110110 {4}
1765 9 2/3 1.58333 {5, 7, 6, 8} (1.10715, 3.14159) 2.63623 000110111 000001111 000001011 100010111 100100111 011000110 110111001 111111001 111110110 {4}
1766 9 2/3 1.58333 {7, 5, 8, 6} (1.10715, 0) -2.63623 000110111 000001111 000001011 100010111 100100111 011000110 110111001 111111001 111110110 {4}
1767 9 2/3 1.5 {7, 5, 6, 8} (1.5708, -2.0944) -1.0472 000101011 000010111 000001111 100001011 010000111 101100110 011011001 111111001 111110110 {4}
1768 9 2/3 1.5 {5, 7, 8, 6} (1.5708, 2.0944) -1.0472 000101011 000010111 000001111 100001011 010000111 101100110 011011001 111111001 111110110 {4}
1769 9 2/3 1.5 {0, 1, 5, 4} (1.5708, -3.14159) 1.42745 000110101 000101101 000011111 110000111 101000010 011000010 111100001 001111000 111100100 {4}
1770 9 2/3 1.5 {0, 1, 4, 5} (1.5708, 3.14159) -1.71414 000110101 000101101 000011111 110000111 101000010 011000010 111100001 001111000 111100100 {4}
1771 9 2/3 1.5 {5, 7, 6, 8} (1.10715, 3.14159) 2.63623 000101011 000010111 000001111 100001011 010000111 101100110 011011001 111111001 111110110 {4}
1772 9 2/3 1.5 {7, 5, 8, 6} (1.10715, 0) -2.63623 000101011 000010111 000001111 100001011 010000111 101100110 011011001 111111001 111110110 {4}
1773 9 2/3 1.42857 {1, 2, 1, 2} (0, 0) 0 000010101 000001010 000001010 000000110 100000101 011000011 100110001 011101001 100011110 {44}
1774 9 2/3 1.42857 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010101 000001010 000001010 000000110 100000101 011000011 100110001 011101001 100011110 {44}
1775 9 2/3 1.375 {3, 4, 3, 4} (0, 0) 0 000001001 000000111 000000111 000000011 000000011 100000001 011000001 011110001 111111110 {140}
1776 9 2/3 1.375 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000111 000000111 000000011 000000011 100000001 011000001 011110001 111111110 {140}
1777 9 2/3 1.27273 {2, 3, 2, 3} (0, 0) 0 000001011 000000101 000000011 000000011 000000001 100000000 010000001 101100000 111110100 {16}
1778 9 2/3 1.27273 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001011 000000101 000000011 000000011 000000001 100000000 010000001 101100000 111110100 {16}
1779 9 2/3 1.25 {1, 3, 2, 3} (0, 0) 2.0944 000100001 000011111 000011111 100000000 011001111 011010111 011011011 011011101 111011110 {8}
1780 9 2/3 1.25 {3, 1, 3, 2} (0, 0) -2.0944 000100001 000011111 000011111 100000000 011001111 011010111 011011011 011011101 111011110 {8}
1781 9 2/3 1.25 {3, 1, 2, 3} (1.5708, 1.0472) -3.14159 000100001 000011111 000011111 100000000 011001111 011010111 011011011 011011101 111011110 {8}
1782 9 2/3 1.25 {1, 3, 3, 2} (1.5708, -1.0472) 3.14159 000100001 000011111 000011111 100000000 011001111 011010111 011011011 011011101 111011110 {8}
1783 9 2/3 1.2 {1, 2, 1, 2} (0, 0) 0 000110111 000001000 000001000 100010111 100100111 011000001 100110011 100110101 100111110 {16}
1784 9 2/3 1.2 {1, 2, 2, 1} (1.5708, 0) -3.14159 000110111 000001000 000001000 100010111 100100111 011000001 100110011 100110101 100111110 {16}
1785 9 2/3 1.11111 {0, 1, 0, 1} (0, 0) 0 000000111 000000111 000000101 000000011 000000011 000000011 111000010 110111101 111111010 {32}
1786 9 2/3 1.11111 {0, 1, 1, 0} (1.5708, 0) -3.14159 000000111 000000111 000000101 000000011 000000011 000000011 111000010 110111101 111111010 {32}
1787 9 2/3 1.1 {2, 3, 2, 3} (0, 0) 0 000001111 000000111 000000011 000000011 000000001 100000100 110001001 111100001 111110110 {8}
1788 9 2/3 1.1 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001111 000000111 000000011 000000011 000000001 100000100 110001001 111100001 111110110 {8}
1789 9 2/3 1.09091 {1, 2, 1, 2} (0, 0) 0 000001010 000000101 000000101 000000001 000000001 100000010 011000010 100001101 011110010 {8}
1790 9 2/3 1.09091 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001010 000000101 000000101 000000001 000000001 100000010 011000010 100001101 011110010 {8}
1791 9 2/3 0.875 {3, 4, 3, 4} (0, 0) 0 000001001 000000110 000000101 000000010 000000010 100000001 011000000 010110001 101001010 {112}
1792 9 2/3 0.875 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000110 000000101 000000010 000000010 100000001 011000000 010110001 101001010 {112}
1793 9 2/3 0.8 {2, 3, 2, 3} (0, 0) 0 000010111 000001001 000000001 000000001 100000110 010000000 100010010 100010100 111100000 {8}
1794 9 2/3 0.8 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001001 000000001 000000001 100000110 010000000 100010010 100010100 111100000 {8}
1795 9 2/3 0.75 {3, 4, 3, 4} (0, 0) 0 000001100 000001010 000000111 000000001 000000001 110000001 101000000 011000000 001111000 {28}
1796 9 2/3 0.75 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001100 000001010 000000111 000000001 000000001 110000001 101000000 011000000 001111000 {28}
1797 9 2/3 0.666667 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000010 000000001 000000001 110000010 001100100 111011000 {28}
1798 9 2/3 0.666667 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000010 000000001 000000001 110000010 001100100 111011000 {28}
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1799 9 2/3 0.375 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000011 000000001 000000001 110000010 001100100 111111000 {4}
1800 9 2/3 0.375 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000011 000000001 000000001 110000010 001100100 111111000 {4}
1801 9 3/5 87.4853 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000001111 000000111 110001011 111010000 111100011 111110101 111110110 {4}
1802 9 3/5 87.4853 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000001111 000000111 110001011 111010000 111100011 111110101 111110110 {4}
1803 9 3/5 8.8541 {0, 5, 6, 1} (0, 0) 0 000011010 000010110 000001111 000000011 110000011 101000001 011000001 111110001 001111110 {8}
1804 9 3/5 8.8541 {0, 5, 1, 6} (1.5708, 0) 3.14159 000011010 000010110 000001111 000000011 110000011 101000001 011000001 111110001 001111110 {8}
1805 9 3/5 8.63932 {0, 4, 3, 1} (0, 0) 0 000101111 000011111 000000011 100001111 010001111 110110100 110111000 111110001 111110010 {8}
1806 9 3/5 8.63932 {0, 4, 1, 3} (1.5708, 0) -3.14159 000101111 000011111 000000011 100001111 010001111 110110100 110111000 111110001 111110010 {8}
1807 9 3/5 8.2918 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000000101 000000010 000000010 110000000 111000001 110110000 111000100 {8}
1808 9 3/5 8.2918 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000000101 000000010 000000010 110000000 111000001 110110000 111000100 {8}
1809 9 3/5 7.54509 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000001 010000001 001000001 100100001 111111110 {8}
1810 9 3/5 7.54509 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000001 010000001 001000001 100100001 111111110 {8}
1811 9 3/5 698.847 {2, 3, 2, 3} (0, 0) 0 000011011 000010100 000001111 000001111 110000011 101100011 011100011 101111101 101111110 {4}
1812 9 3/5 698.847 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000010100 000001111 000001111 110000011 101100011 011100011 101111101 101111110 {4}
1813 9 3/5 69.541 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000001 001000001 100100001 111101110 {8}
1814 9 3/5 69.541 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000000 010000001 001000001 100100001 111101110 {8}
1815 9 3/5 6.98684 {6, 7, 6, 7} (0, 0) 0 000100111 000011111 000011111 100000001 011000110 011000110 111011001 111011001 111100110 {4}
1816 9 3/5 6.98684 {6, 7, 7, 6} (1.5708, 0) 3.14159 000100111 000011111 000011111 100000001 011000110 011000110 111011001 111011001 111100110 {4}
1817 9 3/5 6.52786 {2, 8, 7, 3} (0, 0) 0 000010111 000001011 000000010 000000001 100000111 010000011 100010000 111011000 110111000 {8}
1818 9 3/5 6.52786 {2, 8, 3, 7} (1.5708, 0) -3.14159 000010111 000001011 000000010 000000001 100000111 010000011 100010000 111011000 110111000 {8}
1819 9 3/5 6.43206 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000001111 000001101 110000010 111100011 111100011 111011100 111101100 {4}
1820 9 3/5 6.43206 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000001111 000001101 110000010 111100011 111100011 111011100 111101100 {4}
1821 9 3/5 6.23607 {1, 6, 5, 3} (0, 0) 0 000001011 000001000 000000111 000000100 000000011 110000110 001101001 101011001 101010110 {16}
1822 9 3/5 6.23607 {1, 6, 3, 5} (1.5708, 0) -3.14159 000001011 000001000 000000111 000000100 000000011 110000110 001101001 101011001 101010110 {16}
1823 9 3/5 6 {0, 4, 5, 1} (0, 0) 0 000010010 000001010 000000110 000000101 100000001 010000001 001100000 111000000 000111000 {8}
1824 9 3/5 6 {0, 4, 1, 5} (1.5708, 0) 3.14159 000010010 000001010 000000110 000000101 100000001 010000001 001100000 111000000 000111000 {8}
1825 9 3/5 57.8885 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000000101 000000100 110000011 110000011 111100001 110011000 111011100 {4}
1826 9 3/5 57.8885 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000000101 000000100 110000011 110000011 111100001 110011000 111011100 {4}
1827 9 3/5 56.8328 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001011 000000100 000000011 111000000 110100000 111010001 111010010 {4}
1828 9 3/5 56.8328 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001011 000000100 000000011 111000000 110100000 111010001 111010010 {4}
1829 9 3/5 52.3607 {0, 1, 0, 1} (0, 0) 0 000011011 000011011 000000100 000000100 110000010 110000001 001100011 110010100 110001100 {8}
1830 9 3/5 52.3607 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011011 000011011 000000100 000000100 110000010 110000001 001100011 110010100 110001100 {8}
1831 9 3/5 519.385 {2, 3, 2, 3} (0, 0) 0 000011111 000010011 000001111 000001111 110001111 101110110 101111001 111111001 111110110 {4}
1832 9 3/5 519.385 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000010011 000001111 000001111 110001111 101110110 101111001 111111001 111110110 {4}
1833 9 3/5 519.361 {6, 7, 6, 7} (0, 0) 0 000011111 000011111 000001111 000001111 110000001 111100001 111100000 111100000 111111000 {4}
1834 9 3/5 519.361 {6, 7, 7, 6} (1.5708, 0) 3.14159 000011111 000011111 000001111 000001111 110000001 111100001 111100000 111100000 111111000 {4}
1835 9 3/5 50.5967 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100001 111100010 {8}
1836 9 3/5 50.5967 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100001 111100010 {8}
1837 9 3/5 5.73607 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000001 010000000 001000000 100100001 111110010 {8}
1838 9 3/5 5.73607 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000001 010000000 001000000 100100001 111110010 {8}
1839 9 3/5 48.3607 {2, 6, 7, 3} (0, 0) 0 000011111 000001110 000000101 000000011 100000001 110000111 111001000 110101000 101111000 {8}
1840 9 3/5 48.3607 {2, 6, 3, 7} (1.5708, 0) 3.14159 000011111 000001110 000000101 000000011 100000001 110000111 111001000 110101000 101111000 {8}
1841 9 3/5 45.1246 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000001100 100000001 011100011 011100001 111001001 111011110 {8}
1842 9 3/5 45.1246 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000001100 100000001 011100011 011100001 111001001 111011110 {8}
1843 9 3/5 4.87539 {2, 3, 2, 3} (0, 0) 0 000010100 000001011 000000110 000000110 100000001 010000011 101100001 011101000 010011100 {16}
1844 9 3/5 4.87539 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010100 000001011 000000110 000000110 100000001 010000011 101100001 011101000 010011100 {16}
1845 9 3/5 4.81966 {1, 6, 5, 2} (0, 0) 0 000010010 000001001 000000101 000000011 100000000 010000001 001000001 100100000 011101100 {16}
1846 9 3/5 4.81966 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010010 000001001 000000101 000000011 100000000 010000001 001000001 100100000 011101100 {16}
1847 9 3/5 4.57295 {2, 3, 2, 3} (0, 0) 0 000001010 000001001 000000111 000000111 000000100 110000000 001110000 101100001 011100010 {8}
1848 9 3/5 4.57295 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001010 000001001 000000111 000000111 000000100 110000000 001110000 101100001 011100010 {8}
1849 9 3/5 4.42229 {7, 8, 7, 8} (0, 0) 0 000100111 000011111 000011111 100000000 011001011 011010000 111000011 111010100 111010100 {4}
1850 9 3/5 4.42229 {7, 8, 8, 7} (1.5708, 0) 3.14159 000100111 000011111 000011111 100000000 011001011 011010000 111000011 111010100 111010100 {4}
1851 9 3/5 4.40149 {0, 1, 4, 3} (1.5708, 0) 0.96804 000001100 000001010 000000110 000000101 000000011 110000001 101100000 011010000 000111000 {4}
1852 9 3/5 4.40149 {0, 1, 3, 4} (1.5708, 0) -2.17355 000001100 000001010 000000110 000000101 000000011 110000001 101100000 011010000 000111000 {4}
1853 9 3/5 4.32714 {2, 3, 2, 3} (0, 0) 0 000011011 000010100 000001111 000001111 110000110 101100111 011111001 101111001 101101110 {4}
1854 9 3/5 4.32714 {2, 3, 3, 2} (1.5708, 0) 3.14159 000011011 000010100 000001111 000001111 110000110 101100111 011111001 101111001 101101110 {4}
1855 9 3/5 4.22291 {7, 8, 7, 8} (0, 0) 0 000001011 000001011 000000111 000000111 000000100 110000000 001110000 111100000 111100000 {16}
1856 9 3/5 4.22291 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001011 000001011 000000111 000000111 000000100 110000000 001110000 111100000 111100000 {16}
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1857 9 3/5 4.06484 {0, 1, 0, 1} (0, 0) 0 000111111 000111111 000010111 110001111 111000111 110100010 111110001 111111000 111110100 {4}
1858 9 3/5 4.06484 {0, 1, 1, 0} (1.5708, 0) -3.14159 000111111 000111111 000010111 110001111 111000111 110100010 111110001 111111000 111110100 {4}
1859 9 3/5 4 {1, 2, 1, 2} (0, 0) 0 000010001 000001111 000001111 000000011 100000001 011000101 011001001 011100001 111111110 {12}
1860 9 3/5 4 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010001 000001111 000001111 000000011 100000001 011000101 011001001 011100001 111111110 {12}
1861 9 3/5 37.1803 {0, 5, 4, 1} (0, 0) 0 000010011 000001011 000000101 000000101 100000011 010000011 001100000 110011001 111111010 {8}
1862 9 3/5 37.1803 {0, 5, 1, 4} (1.5708, 0) -3.14159 000010011 000001011 000000101 000000101 100000011 010000011 001100000 110011001 111111010 {8}
1863 9 3/5 36.5836 {6, 7, 6, 7} (0, 0) 0 000101111 000011111 000010001 100001111 011000111 110100110 110111001 110111001 111110110 {4}
1864 9 3/5 36.5836 {6, 7, 7, 6} (1.5708, 0) 3.14159 000101111 000011111 000010001 100001111 011000111 110100110 110111001 110111001 111110110 {4}
1865 9 3/5 358.885 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000000011 100000111 011000111 111011000 111111001 111111010 {4}
1866 9 3/5 358.885 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000000011 100000111 011000111 111011000 111111001 111111010 {4}
1867 9 3/5 33.4164 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000001111 000000110 110000001 111000001 111100011 111100100 111011100 {16}
1868 9 3/5 33.4164 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000001111 000000110 110000001 111000001 111100011 111100100 111011100 {16}
1869 9 3/5 33.0344 {0, 4, 5, 1} (0, 0) 0 000010100 000001100 000000101 000000011 100000011 010000011 111000001 000111000 001111100 {16}
1870 9 3/5 33.0344 {0, 4, 1, 5} (1.5708, 0) 3.14159 000010100 000001100 000000101 000000011 100000011 010000011 111000001 000111000 001111100 {16}
1871 9 3/5 31.3435 {2, 3, 2, 3} (0, 0) 0 000001100 000001001 000000111 000000111 000000010 110000111 101101001 001111000 011101100 {8}
1872 9 3/5 31.3435 {2, 3, 3, 2} (1.5708, 0) 3.14159 000001100 000001001 000000111 000000111 000000010 110000111 101101001 001111000 011101100 {8}
1873 9 3/5 3.92047 {6, 7, 6, 7} (0, 0) 0 001011110 000110111 100011000 010001111 111000111 101100111 110111001 110111001 010111110 {4}
1874 9 3/5 3.92047 {6, 7, 7, 6} (1.5708, 0) -3.14159 001011110 000110111 100011000 010001111 111000111 101100111 110111001 110111001 010111110 {4}
1875 9 3/5 3.76393 {2, 8, 6, 4} (0, 0) 0 000001100 000001010 000000100 000000011 000000001 110000000 101000001 010100000 000110100 {16}
1876 9 3/5 3.76393 {2, 8, 4, 6} (1.5708, 0) -3.14159 000001100 000001010 000000100 000000011 000000001 110000000 101000001 010100000 000110100 {16}
1877 9 3/5 3.5 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000010 100000000 010000001 001000001 100100001 111001110 {8}
1878 9 3/5 3.5 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000010 100000000 010000001 001000001 100100001 111001110 {8}
1879 9 3/5 3.16718 {7, 8, 7, 8} (0, 0) 0 000101011 000010111 000001111 100000000 010000111 101000000 011010000 111010000 111010000 {4}
1880 9 3/5 3.16718 {7, 8, 8, 7} (1.5708, 0) 3.14159 000101011 000010111 000001111 100000000 010000111 101000000 011010000 111010000 111010000 {4}
1881 9 3/5 28.9443 {7, 8, 7, 8} (0, 0) 0 000001100 000000111 000000111 000000011 000000011 100000000 111000000 011110000 011110000 {12}
1882 9 3/5 28.9443 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001100 000000111 000000111 000000011 000000011 100000000 111000000 011110000 011110000 {12}
1883 9 3/5 27.1803 {1, 6, 5, 2} (0, 0) 0 000001101 000001000 000000100 000000011 000000011 110000001 101000001 000110000 100111100 {32}
1884 9 3/5 27.1803 {1, 6, 2, 5} (1.5708, 0) -3.14159 000001101 000001000 000000100 000000011 000000011 110000001 101000001 000110000 100111100 {32}
1885 9 3/5 26.8713 {6, 7, 6, 7} (0, 0) 0 000110111 000101001 000011111 110001111 101000110 011100111 101111001 101111001 111101110 {4}
1886 9 3/5 26.8713 {6, 7, 7, 6} (1.5708, 0) -3.14159 000110111 000101001 000011111 110001111 101000110 011100111 101111001 101111001 111101110 {4}
1887 9 3/5 22.1115 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000011011 000000101 111000011 111000011 110100001 111011000 111111100 {4}
1888 9 3/5 22.1115 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000011011 000000101 111000011 111000011 110100001 111011000 111111100 {4}
1889 9 3/5 20 {1, 2, 1, 2} (0, 0) 0 000010001 000001111 000001111 000000110 100000001 011000001 011100011 011100101 111011110 {4}
1890 9 3/5 20 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010001 000001111 000001111 000000110 100000001 011000001 011100011 011100101 111011110 {4}
1891 9 3/5 2.99303 {2, 3, 2, 3} (0, 0) 0 000001010 000001001 000000111 000000111 000000011 110000111 001101000 101111001 011111010 {8}
1892 9 3/5 2.99303 {2, 3, 3, 2} (1.5708, 0) 3.14159 000001010 000001001 000000111 000000111 000000011 110000111 001101000 101111001 011111010 {8}
1893 9 3/5 2.80902 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000010 100000000 010000000 001000000 100100001 111000010 {8}
1894 9 3/5 2.80902 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000010 100000000 010000000 001000000 100100001 111000010 {8}
1895 9 3/5 2.44721 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000001 010000000 001000000 100100000 111110000 {8}
1896 9 3/5 2.44721 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000001 010000000 001000000 100100000 111110000 {8}
1897 9 3/5 2.22222 {1, 2, 1, 2} (0, 0) 0 000011110 000001111 000001111 000000011 100001110 111010101 111011001 111110001 011101110 {4}
1898 9 3/5 2.22222 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011110 000001111 000001111 000000011 100001110 111010101 111011001 111110001 011101110 {4}
1899 9 3/5 198.387 {2, 3, 2, 3} (0, 0) 0 000011110 000010011 000001111 000001111 110000001 101100011 101100001 111101001 011111110 {8}
1900 9 3/5 198.387 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011110 000010011 000001111 000001111 110000001 101100011 101100001 111101001 011111110 {8}
1901 9 3/5 19.9443 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100000 111100000 {16}
1902 9 3/5 19.9443 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100000 111100000 {16}
1903 9 3/5 18.9443 {2, 3, 2, 3} (0, 0) 0 000011110 000001000 000000111 000000111 100000111 110000001 101110001 101110001 001111110 {4}
1904 9 3/5 18.9443 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011110 000001000 000000111 000000111 100000111 110000001 101110001 101110001 001111110 {4}
1905 9 3/5 148.79 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000000111 000000111 000000011 110000000 111100000 111110001 111110010 {4}
1906 9 3/5 148.79 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000000111 000000111 000000011 110000000 111100000 111110001 111110010 {4}
1907 9 3/5 14.0902 {1, 6, 7, 2} (0, 0) 0 000010111 000001101 000001011 000000110 100000001 011000000 110100000 101100000 111010000 {8}
1908 9 3/5 14.0902 {1, 6, 2, 7} (1.5708, 0) 3.14159 000010111 000001101 000001011 000000110 100000001 011000000 110100000 101100000 111010000 {8}
1909 9 3/5 125.374 {7, 8, 7, 8} (0, 0) 0 000101111 000011111 000011111 100000011 011001100 111010011 111010011 111101100 111101100 {4}
1910 9 3/5 125.374 {7, 8, 8, 7} (1.5708, 0) 3.14159 000101111 000011111 000011111 100000011 011001100 111010011 111010011 111101100 111101100 {4}
1911 9 3/5 118.138 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000000011 100000001 011000011 011000001 111101001 111111110 {8}
1912 9 3/5 118.138 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000000011 100000001 011000011 011000001 111101001 111111110 {8}
1913 9 3/5 11.9721 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000110 000000101 000000011 110000000 001100000 111010001 110110010 {8}
1914 9 3/5 11.9721 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000110 000000101 000000011 110000000 001100000 111010001 110110010 {8}
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1915 9 3/5 11.0557 {1, 2, 1, 2} (0, 0) 0 000011111 000001111 000001111 000000101 100000010 111000011 111100001 111011000 111101100 {8}
1916 9 3/5 11.0557 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011111 000001111 000001111 000000101 100000010 111000011 111100001 111011000 111101100 {8}
1917 9 3/5 10.4721 {2, 3, 2, 3} (0, 0) 0 000011010 000010101 000001111 000001111 110000011 101100010 011100001 101111000 011110100 {20}
1918 9 3/5 10.4721 {2, 3, 3, 2} (1.5708, 0) 3.14159 000011010 000010101 000001111 000001111 110000011 101100010 011100001 101111000 011110100 {20}
1919 9 3/5 1.95492 {1, 6, 5, 2} (0, 0) 0 000010010 000001001 000000101 000000011 100000001 010000001 001000001 100100000 011111100 {8}
1920 9 3/5 1.95492 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010010 000001001 000000101 000000011 100000001 010000001 001000001 100100000 011111100 {8}
1921 9 3/5 1.94857 {1, 2, 1, 2} (0, 0) 0 000011111 000001111 000001111 000000011 100000011 111000110 111001001 111111001 111110110 {12}
1922 9 3/5 1.94857 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011111 000001111 000001111 000000011 100000011 111000110 111001001 111111001 111110110 {12}
1923 9 3/5 1.86223 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000010111 000001010 111000101 110100111 111011001 111101000 111011100 {4}
1924 9 3/5 1.86223 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000010111 000001010 111000101 110100111 111011001 111101000 111011100 {4}
1925 9 3/5 1.7486 {2, 3, 2, 3} (0, 0) 0 000011111 000011111 000001111 000001111 110000011 111100010 111100001 111111000 111110100 {8}
1926 9 3/5 1.7486 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000011111 000001111 000001111 110000011 111100010 111100001 111111000 111110100 {8}
1927 9 3/5 1.69098 {1, 6, 5, 2} (0, 0) 0 000010010 000001001 000000101 000000011 100000001 010000000 001000000 100100000 011110000 {8}
1928 9 3/5 1.69098 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010010 000001001 000000101 000000011 100000001 010000000 001000000 100100000 011110000 {8}
1929 9 3/5 1.65836 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001010 000000111 000000111 111000000 110110001 111110000 110110100 {4}
1930 9 3/5 1.65836 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001010 000000111 000000111 111000000 110110001 111110000 110110100 {4}
1931 9 1/2 9.66667 {0, 1, 0, 1} (0, 0) 0 000010011 000010011 000001111 000001101 110000100 001100010 001110001 111001001 111100110 {8}
1932 9 1/2 9.66667 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010011 000010011 000001111 000001101 110000100 001100010 001110001 111001001 111100110 {8}
1933 9 1/2 9.5 {1, 2, 1, 2} (0, 0) 0 000001110 000001101 000001101 000000011 000000011 111000011 111000010 100111101 011111010 {112}
1934 9 1/2 9.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001110 000001101 000001101 000000011 000000011 111000011 111000010 100111101 011111010 {112}
1935 9 1/2 9 {6, 0, 2, 1} (0, 0) 1.5708 000001110 000001101 000000110 000000011 000000001 110000010 111000001 101101001 010110110 {200}
1936 9 1/2 9 {1, 2, 1, 2} (0, 0) 0 000001110 000000101 000000101 000000011 000000011 100000011 111000010 100111101 011111010 {100}
1937 9 1/2 9 {0, 6, 1, 2} (0, 0) -1.5708 000001110 000001101 000000110 000000011 000000001 110000010 111000001 101101001 010110110 {200}
1938 9 1/2 9 {0, 6, 2, 1} (1.5708, 0.785398) -3.14159 000001110 000001101 000000110 000000011 000000001 110000010 111000001 101101001 010110110 {200}
1939 9 1/2 9 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001110 000000101 000000101 000000011 000000011 100000011 111000010 100111101 011111010 {100}
1940 9 1/2 9 {6, 0, 1, 2} (1.5708, -0.785398) 3.14159 000001110 000001101 000000110 000000011 000000001 110000010 111000001 101101001 010110110 {200}
1941 9 1/2 8 {7, 0, 3, 2} (0, 0) 1.5708 000001110 000001001 000000111 000000011 000000001 110000010 101000001 101101000 011110100 {360}
1942 9 1/2 8 {0, 1, 0, 1} (0, 0) 0 000001001 000001001 000000111 000000110 000000110 110000010 001110001 001111000 111000100 {136}
1943 9 1/2 8 {5, 2, 3, 8} (0, 0) 3.14159 000110111 000011111 000001010 100000011 110000111 011000101 110011000 111110001 110111010 {3}
1944 9 1/2 8 {0, 7, 2, 3} (0, 0) -1.5708 000001110 000001001 000000111 000000011 000000001 110000010 101000001 101101000 011110100 {360}
1945 9 1/2 8 {0, 7, 3, 2} (1.5708, 0.785398) -3.14159 000001110 000001001 000000111 000000011 000000001 110000010 101000001 101101000 011110100 {360}
1946 9 1/2 8 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001001 000001001 000000111 000000110 000000110 110000010 001110001 001111000 111000100 {136}
1947 9 1/2 8 {2, 5, 3, 8} (1.5708, 1.5708) -3.14159 000110111 000011111 000001010 100000011 110000111 011000101 110011000 111110001 110111010 {3}
1948 9 1/2 8 {7, 0, 2, 3} (1.5708, -0.785398) 3.14159 000001110 000001001 000000111 000000011 000000001 110000010 101000001 101101000 011110100 {360}
1949 9 1/2 7 {6, 0, 2, 3} (0, 0) 1.5708 000001100 000001010 000000111 000000101 000000011 110000001 101100011 011010101 001111110{4968}
1950 9 1/2 7 {0, 6, 3, 2} (0, 0) -1.5708 000001100 000001010 000000111 000000101 000000011 110000001 101100011 011010101 001111110{4968}
1951 9 1/2 7 {0, 6, 2, 3} (1.5708, 0.785398) -3.14159 000001100 000001010 000000111 000000101 000000011 110000001 101100011 011010101 001111110{4968}
1952 9 1/2 7 {6, 0, 3, 2} (1.5708, -0.785398) 3.14159 000001100 000001010 000000111 000000101 000000011 110000001 101100011 011010101 001111110{4968}
1953 9 1/2 6.5 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000111 000000011 110000001 001100001 111110000 111111100 {602}
1954 9 1/2 6.5 {3, 6, 4, 6} (0, 0) -3.14159 000010101 000001110 000001110 000000011 100000011 011000001 111000001 011110001 100111110 {65}
1955 9 1/2 6.5 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000111 000000011 110000001 001100001 111110000 111111100 {602}
1956 9 1/2 6.5 {6, 3, 4, 6} (1.5708, -1.5708) 3.14159 000010101 000001110 000001110 000000011 100000011 011000001 111000001 011110001 100111110 {65}
1957 9 1/2 6 {2, 0, 2, 5} (0, 0) 1.5708 000001100 000000110 000000101 000000011 000000001 100000010 111000001 010101001 001110110{6122}
1958 9 1/2 6 {0, 2, 5, 2} (0, 0) -1.5708 000001100 000000110 000000101 000000011 000000001 100000010 111000001 010101001 001110110{6122}
1959 9 1/2 6 {0, 2, 2, 5} (1.5708, 0.785398) -3.14159 000001100 000000110 000000101 000000011 000000001 100000010 111000001 010101001 001110110{6122}
1960 9 1/2 6 {2, 0, 5, 2} (1.5708, -0.785398) 3.14159 000001100 000000110 000000101 000000011 000000001 100000010 111000001 010101001 001110110{6122}
1961 9 1/2 5.66667 {2, 3, 2, 3} (0, 0) 0 000001100 000001011 000000111 000000111 000000011 110000001 101100001 011110000 011111100 {48}
1962 9 1/2 5.66667 {6, 1, 5, 1} (0, 0) -3.14159 000011100 000010011 000001111 000000011 110000101 101000001 101010001 011100000 011111100 {10}
1963 9 1/2 5.66667 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001100 000001011 000000111 000000111 000000011 110000001 101100001 011110000 011111100 {48}
1964 9 1/2 5.66667 {1, 6, 5, 1} (1.5708, -1.5708) 3.14159 000011100 000010011 000001111 000000011 110000101 101000001 101010001 011100000 011111100 {10}
1965 9 1/2 5.5 {1, 2, 1, 2} (0, 0) 0 000000110 000000101 000000101 000000011 000000011 000000001 111000000 100110000 011111000 {464}
1966 9 1/2 5.5 {7, 2, 6, 2} (0, 0) -3.14159 000001110 000001110 000001001 000000111 000000001 111000010 110100001 110101001 001110110 {44}
1967 9 1/2 5.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 000000110 000000101 000000101 000000011 000000011 000000001 111000000 100110000 011111000 {464}
1968 9 1/2 5.5 {2, 7, 6, 2} (1.5708, -1.5708) 3.14159 000001110 000001110 000001001 000000111 000000001 111000010 110100001 110101001 001110110 {44}
1969 9 1/2 4.75 {2, 3, 2, 3} (0, 0) 0 000011111 000001111 000000011 000000011 100000110 110000001 110010001 111110000 111101100 {154}
1970 9 1/2 4.75 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000001111 000000011 000000011 100000110 110000001 110010001 111110000 111101100 {154}
1971 9 1/2 4.66667 {2, 3, 2, 3} (0, 0) 0 000001111 000001101 000000011 000000011 000000010 110000010 110000001 101111000 111100100 {148}
1972 9 1/2 4.66667 {0, 4, 8, 4} (0, 0) -3.14159 000010100 000001111 000001101 000000010 100000011 011000010 111000001 010111001 011010110 {9}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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1973 9 1/2 4.66667 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001111 000001101 000000011 000000011 000000010 110000010 110000001 101111000 111100100 {148}
1974 9 1/2 4.66667 {4, 0, 8, 4} (1.5708, -1.5708) 3.14159 000010100 000001111 000001101 000000010 100000011 011000010 111000001 010111001 011010110 {9}
1975 9 1/2 4.5 {1, 2, 1, 2} (0, 0) 0 000001011 000000101 000000101 000000011 000000011 100000001 011000010 100110101 111111010{1602}
1976 9 1/2 4.5 {1, 5, 2, 5} (0, 0) -3.14159 000001111 000000101 000000101 000000011 000000011 100000001 111000001 100110000 111111100 {392}
1977 9 1/2 4.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001011 000000101 000000101 000000011 000000011 100000001 011000010 100110101 111111010{1602}
1978 9 1/2 4.5 {5, 1, 2, 5} (1.5708, -1.5708) 3.14159 000001111 000000101 000000101 000000011 000000011 100000001 111000001 100110000 111111100 {392}
1979 9 1/2 4.4 {5, 2, 0, 3} (0.61548, 2.35619) 1.77215 000101110 000011101 000010111 100000011 011001111 110010110 111011001 101111001 011110110 {1}
1980 9 1/2 4.4 {0, 3, 5, 2} (0.61548, -2.35619) 1.77215 000101110 000011101 000010111 100000011 011001111 110010110 111011001 101111001 011110110 {1}
1981 9 1/2 4.4 {3, 0, 2, 5} (0.61548, -0.785398) -1.77215 000101110 000011101 000010111 100000011 011001111 110010110 111011001 101111001 011110110 {1}
1982 9 1/2 4.4 {2, 5, 3, 0} (0.61548, 0.785398) -1.77215 000101110 000011101 000010111 100000011 011001111 110010110 111011001 101111001 011110110 {1}
1983 9 1/2 4.4 {2, 5, 0, 3} (1.23096, -2.35619) -2.49809 000101110 000011101 000010111 100000011 011001111 110010110 111011001 101111001 011110110 {1}
1984 9 1/2 4.4 {5, 2, 3, 0} (1.23096, -0.785398) 2.49809 000101110 000011101 000010111 100000011 011001111 110010110 111011001 101111001 011110110 {1}
1985 9 1/2 4.4 {0, 3, 2, 5} (1.23096, 2.35619) -2.49809 000101110 000011101 000010111 100000011 011001111 110010110 111011001 101111001 011110110 {1}
1986 9 1/2 4.4 {3, 0, 5, 2} (1.23096, 0.785398) 2.49809 000101110 000011101 000010111 100000011 011001111 110010110 111011001 101111001 011110110 {1}
1987 9 1/2 4.33333 {1, 6, 7, 5} (0, 0) 1.5708 000001011 000001001 000000111 000000111 000000111 110000110 001111001 101111000 111110100 {16}
1988 9 1/2 4.33333 {0, 5, 4, 1} (0, 0) 0 000010011 000001011 000000111 000000100 100000011 010000011 001100001 111011000 111011100 {16}
1989 9 1/2 4.33333 {7, 2, 5, 3} (0, 0) -3.14159 000001111 000001010 000001001 000000110 000000101 111000001 100110000 110100001 101011010 {4}
1990 9 1/2 4.33333 {6, 1, 5, 7} (0, 0) -1.5708 000001011 000001001 000000111 000000111 000000111 110000110 001111001 101111000 111110100 {16}
1991 9 1/2 4.33333 {6, 1, 7, 5} (1.5708, 0.785398) -3.14159 000001011 000001001 000000111 000000111 000000111 110000110 001111001 101111000 111110100 {16}
1992 9 1/2 4.33333 {0, 5, 1, 4} (1.5708, 0) -3.14159 000010011 000001011 000000111 000000100 100000011 010000011 001100001 111011000 111011100 {16}
1993 9 1/2 4.33333 {2, 7, 5, 3} (1.5708, -1.5708) 3.14159 000001111 000001010 000001001 000000110 000000101 111000001 100110000 110100001 101011010 {4}
1994 9 1/2 4.33333 {1, 6, 5, 7} (1.5708, -0.785398) 3.14159 000001011 000001001 000000111 000000111 000000111 110000110 001111001 101111000 111110100 {16}
1995 9 1/2 4.2 {5, 6, 1, 3} (0.61548, 2.35619) 1.77215 001011111 000110110 100011100 010001111 111000111 101100011 111110001 110111001 100111110 {1}
1996 9 1/2 4.2 {1, 3, 5, 6} (0.61548, -2.35619) 1.77215 001011111 000110110 100011100 010001111 111000111 101100011 111110001 110111001 100111110 {1}
1997 9 1/2 4.2 {3, 1, 6, 5} (0.61548, -0.785398) -1.77215 001011111 000110110 100011100 010001111 111000111 101100011 111110001 110111001 100111110 {1}
1998 9 1/2 4.2 {6, 5, 3, 1} (0.61548, 0.785398) -1.77215 001011111 000110110 100011100 010001111 111000111 101100011 111110001 110111001 100111110 {1}
1999 9 1/2 4.2 {6, 5, 1, 3} (1.23096, -2.35619) -2.49809 001011111 000110110 100011100 010001111 111000111 101100011 111110001 110111001 100111110 {1}
2000 9 1/2 4.2 {5, 6, 3, 1} (1.23096, -0.785398) 2.49809 001011111 000110110 100011100 010001111 111000111 101100011 111110001 110111001 100111110 {1}
2001 9 1/2 4.2 {1, 3, 6, 5} (1.23096, 2.35619) -2.49809 001011111 000110110 100011100 010001111 111000111 101100011 111110001 110111001 100111110 {1}
2002 9 1/2 4.2 {3, 1, 5, 6} (1.23096, 0.785398) 2.49809 001011111 000110110 100011100 010001111 111000111 101100011 111110001 110111001 100111110 {1}
2003 9 1/2 3.8 {2, 3, 2, 3} (0, 0) 0 000011000 000001101 000000110 000000110 100000011 110000011 011100001 001111001 010011110 {32}
2004 9 1/2 3.8 {1, 5, 0, 3} (0.61548, 2.35619) 1.77215 000110011 000011111 000001101 100000111 110000011 011000000 011100011 110110101 111110110 {1}
2005 9 1/2 3.8 {0, 6, 1, 2} (0.61548, -2.35619) -1.77215 000011111 000010101 000001110 000001011 110000011 101100011 111000000 101111001 110111010 {2}
2006 9 1/2 3.8 {0, 3, 1, 5} (0.61548, -2.35619) 1.77215 000110011 000011111 000001101 100000111 110000011 011000000 011100011 110110101 111110110 {1}
2007 9 1/2 3.8 {3, 0, 5, 1} (0.61548, -0.785398) -1.77215 000110011 000011111 000001101 100000111 110000011 011000000 011100011 110110101 111110110 {1}
2008 9 1/2 3.8 {5, 1, 3, 0} (0.61548, 0.785398) -1.77215 000110011 000011111 000001101 100000111 110000011 011000000 011100011 110110101 111110110 {1}
2009 9 1/2 3.8 {6, 0, 2, 1} (0.61548, -0.785398) 1.77215 000011111 000010101 000001110 000001011 110000011 101100011 111000000 101111001 110111010 {2}
2010 9 1/2 3.8 {1, 2, 0, 6} (0.61548, 2.35619) -1.77215 000011111 000010101 000001110 000001011 110000011 101100011 111000000 101111001 110111010 {2}
2011 9 1/2 3.8 {2, 1, 6, 0} (0.61548, 0.785398) 1.77215 000011111 000010101 000001110 000001011 110000011 101100011 111000000 101111001 110111010 {2}
2012 9 1/2 3.8 {6, 0, 1, 2} (1.23096, 2.35619) 2.49809 000011111 000010101 000001110 000001011 110000011 101100011 111000000 101111001 110111010 {2}
2013 9 1/2 3.8 {5, 1, 0, 3} (1.23096, -2.35619) -2.49809 000110011 000011111 000001101 100000111 110000011 011000000 011100011 110110101 111110110 {1}
2014 9 1/2 3.8 {1, 2, 6, 0} (1.23096, -2.35619) 2.49809 000011111 000010101 000001110 000001011 110000011 101100011 111000000 101111001 110111010 {2}
2015 9 1/2 3.8 {2, 1, 0, 6} (1.23096, -0.785398) -2.49809 000011111 000010101 000001110 000001011 110000011 101100011 111000000 101111001 110111010 {2}
2016 9 1/2 3.8 {0, 6, 2, 1} (1.23096, 0.785398) -2.49809 000011111 000010101 000001110 000001011 110000011 101100011 111000000 101111001 110111010 {2}
2017 9 1/2 3.8 {1, 5, 3, 0} (1.23096, -0.785398) 2.49809 000110011 000011111 000001101 100000111 110000011 011000000 011100011 110110101 111110110 {1}
2018 9 1/2 3.8 {0, 3, 5, 1} (1.23096, 2.35619) -2.49809 000110011 000011111 000001101 100000111 110000011 011000000 011100011 110110101 111110110 {1}
2019 9 1/2 3.8 {3, 0, 1, 5} (1.23096, 0.785398) 2.49809 000110011 000011111 000001101 100000111 110000011 011000000 011100011 110110101 111110110 {1}
2020 9 1/2 3.8 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011000 000001101 000000110 000000110 100000011 110000011 011100001 001111001 010011110 {32}
2021 9 1/2 3.75 {8, 3, 6, 5} (0, 0) 1.5708 000011010 000010101 000001111 000000111 110000110 101000001 011110000 101110001 011101010 {80}
2022 9 1/2 3.75 {2, 3, 2, 3} (0, 0) 0 000001100 000001011 000000111 000000111 000000011 110000001 101100000 011110000 011111000 {504}
2023 9 1/2 3.75 {1, 5, 2, 5} (0, 0) -3.14159 000010101 000001111 000001100 000000011 100000011 011000011 111000000 010111000 110111000 {81}
2024 9 1/2 3.75 {3, 8, 5, 6} (0, 0) -1.5708 000011010 000010101 000001111 000000111 110000110 101000001 011110000 101110001 011101010 {80}
2025 9 1/2 3.75 {3, 8, 6, 5} (1.5708, 0.785398) -3.14159 000011010 000010101 000001111 000000111 110000110 101000001 011110000 101110001 011101010 {80}
2026 9 1/2 3.75 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001100 000001011 000000111 000000111 000000011 110000001 101100000 011110000 011111000 {504}
2027 9 1/2 3.75 {5, 1, 2, 5} (1.5708, -1.5708) 3.14159 000010101 000001111 000001100 000000011 100000011 011000011 111000000 010111000 110111000 {81}
2028 9 1/2 3.75 {8, 3, 5, 6} (1.5708, -0.785398) 3.14159 000011010 000010101 000001111 000000111 110000110 101000001 011110000 101110001 011101010 {80}
2029 9 1/2 3.66667 {4, 8, 6, 5} (0, 0) 1.5708 000001110 000000111 000000111 000000111 000000011 100000011 111100001 111111000 011111100 {4}
2030 9 1/2 3.66667 {3, 4, 3, 4} (0, 0) 0 000001101 000001001 000000100 000000011 000000011 110000011 101000010 000111100 110111000 {256}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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2031 9 1/2 3.66667 {3, 5, 4, 5} (0, 0) -3.14159 000001111 000001010 000000101 000000011 000000011 110000001 101000000 110110001 101111010 {84}
2032 9 1/2 3.66667 {8, 4, 5, 6} (0, 0) -1.5708 000001110 000000111 000000111 000000111 000000011 100000011 111100001 111111000 011111100 {4}
2033 9 1/2 3.66667 {8, 4, 6, 5} (1.5708, 0.785398) -3.14159 000001110 000000111 000000111 000000111 000000011 100000011 111100001 111111000 011111100 {4}
2034 9 1/2 3.66667 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001101 000001001 000000100 000000011 000000011 110000011 101000010 000111100 110111000 {256}
2035 9 1/2 3.66667 {5, 3, 4, 5} (1.5708, -1.5708) 3.14159 000001111 000001010 000000101 000000011 000000011 110000001 101000000 110110001 101111010 {84}
2036 9 1/2 3.66667 {4, 8, 5, 6} (1.5708, -0.785398) 3.14159 000001110 000000111 000000111 000000111 000000011 100000011 111100001 111111000 011111100 {4}
2037 9 1/2 3.6 {4, 3, 1, 5} (0.61548, 2.35619) 1.77215 000101101 000011011 000001010 100000111 010000101 111000011 100110001 011101000 110111100 {2}
2038 9 1/2 3.6 {1, 5, 4, 3} (0.61548, -2.35619) 1.77215 000101101 000011011 000001010 100000111 010000101 111000011 100110001 011101000 110111100 {2}
2039 9 1/2 3.6 {5, 1, 3, 4} (0.61548, -0.785398) -1.77215 000101101 000011011 000001010 100000111 010000101 111000011 100110001 011101000 110111100 {2}
2040 9 1/2 3.6 {3, 4, 5, 1} (0.61548, 0.785398) -1.77215 000101101 000011011 000001010 100000111 010000101 111000011 100110001 011101000 110111100 {2}
2041 9 1/2 3.6 {3, 4, 1, 5} (1.23096, -2.35619) -2.49809 000101101 000011011 000001010 100000111 010000101 111000011 100110001 011101000 110111100 {2}
2042 9 1/2 3.6 {4, 3, 5, 1} (1.23096, -0.785398) 2.49809 000101101 000011011 000001010 100000111 010000101 111000011 100110001 011101000 110111100 {2}
2043 9 1/2 3.6 {1, 5, 3, 4} (1.23096, 2.35619) -2.49809 000101101 000011011 000001010 100000111 010000101 111000011 100110001 011101000 110111100 {2}
2044 9 1/2 3.6 {5, 1, 4, 3} (1.23096, 0.785398) 2.49809 000101101 000011011 000001010 100000111 010000101 111000011 100110001 011101000 110111100 {2}
2045 9 1/2 3.5 {2, 4, 5, 3} (0, 0) 0 000000111 000000111 000000101 000000100 000000011 000000010 111100000 110011000 111010000{2912}
2046 9 1/2 3.5 {7, 1, 4, 5} (0, 0) -3.14159 000001111 000000100 000000011 000000011 000000010 100000001 110000001 101110000 101101100 {781}
2047 9 1/2 3.5 {2, 4, 3, 5} (1.5708, 0) -3.14159 000000111 000000111 000000101 000000100 000000011 000000010 111100000 110011000 111010000{2912}
2048 9 1/2 3.5 {1, 7, 4, 5} (1.5708, -1.5708) 3.14159 000001111 000000100 000000011 000000011 000000010 100000001 110000001 101110000 101101100 {781}
2049 9 1/2 3.4 {1, 4, 3, 2} (0, 0) 0 000101010 000010110 000001111 100000111 010000101 101000001 011110000 111100001 001111010 {16}
2050 9 1/2 3.4 {1, 4, 2, 3} (1.5708, 0) -3.14159 000101010 000010110 000001111 100000111 010000101 101000001 011110000 111100001 001111010 {16}
2051 9 1/2 3.33333 {0, 7, 5, 6} (0, 0) 1.5708 000001110 000000111 000000111 000000111 000000001 100000001 111100001 111100000 011111100 {16}
2052 9 1/2 3.33333 {0, 7, 1, 6} (0, 0) 0 000001011 000001010 000000111 000000110 000000001 110000001 001100001 111100001 101011110 {296}
2053 9 1/2 3.33333 {7, 2, 3, 5} (0, 0) -3.14159 000001111 000001110 000000111 000000011 000000001 110000000 111000001 111100000 101110100 {16}
2054 9 1/2 3.33333 {7, 0, 6, 5} (0, 0) -1.5708 000001110 000000111 000000111 000000111 000000001 100000001 111100001 111100000 011111100 {16}
2055 9 1/2 3.33333 {7, 0, 5, 6} (1.5708, 0.785398) -3.14159 000001110 000000111 000000111 000000111 000000001 100000001 111100001 111100000 011111100 {16}
2056 9 1/2 3.33333 {0, 7, 6, 1} (1.5708, 0) -3.14159 000001011 000001010 000000111 000000110 000000001 110000001 001100001 111100001 101011110 {296}
2057 9 1/2 3.33333 {2, 7, 3, 5} (1.5708, -1.5708) 3.14159 000001111 000001110 000000111 000000011 000000001 110000000 111000001 111100000 101110100 {16}
2058 9 1/2 3.33333 {0, 7, 6, 5} (1.5708, -0.785398) 3.14159 000001110 000000111 000000111 000000111 000000001 100000001 111100001 111100000 011111100 {16}
2059 9 1/2 3.2 {2, 3, 2, 3} (0, 0) 0 000010110 000001010 000000111 000000111 100000011 010000001 101100001 111110001 001111110 {76}
2060 9 1/2 3.2 {1, 4, 2, 3} (0.61548, 2.35619) 1.77215 000101011 000011111 000010101 100000110 011001011 110010111 011101001 110111001 111011110 {1}
2061 9 1/2 3.2 {5, 6, 1, 2} (0.61548, -2.35619) -1.77215 000101111 000011011 000000011 100001111 010000110 110100101 100111001 111110001 111101110 {2}
2062 9 1/2 3.2 {2, 3, 1, 4} (0.61548, -2.35619) 1.77215 000101011 000011111 000010101 100000110 011001011 110010111 011101001 110111001 111011110 {1}
2063 9 1/2 3.2 {3, 2, 4, 1} (0.61548, -0.785398) -1.77215 000101011 000011111 000010101 100000110 011001011 110010111 011101001 110111001 111011110 {1}
2064 9 1/2 3.2 {4, 1, 3, 2} (0.61548, 0.785398) -1.77215 000101011 000011111 000010101 100000110 011001011 110010111 011101001 110111001 111011110 {1}
2065 9 1/2 3.2 {6, 5, 2, 1} (0.61548, -0.785398) 1.77215 000101111 000011011 000000011 100001111 010000110 110100101 100111001 111110001 111101110 {2}
2066 9 1/2 3.2 {1, 2, 5, 6} (0.61548, 2.35619) -1.77215 000101111 000011011 000000011 100001111 010000110 110100101 100111001 111110001 111101110 {2}
2067 9 1/2 3.2 {2, 1, 6, 5} (0.61548, 0.785398) 1.77215 000101111 000011011 000000011 100001111 010000110 110100101 100111001 111110001 111101110 {2}
2068 9 1/2 3.2 {6, 5, 1, 2} (1.23096, 2.35619) 2.49809 000101111 000011011 000000011 100001111 010000110 110100101 100111001 111110001 111101110 {2}
2069 9 1/2 3.2 {4, 1, 2, 3} (1.23096, -2.35619) -2.49809 000101011 000011111 000010101 100000110 011001011 110010111 011101001 110111001 111011110 {1}
2070 9 1/2 3.2 {1, 2, 6, 5} (1.23096, -2.35619) 2.49809 000101111 000011011 000000011 100001111 010000110 110100101 100111001 111110001 111101110 {2}
2071 9 1/2 3.2 {2, 1, 5, 6} (1.23096, -0.785398) -2.49809 000101111 000011011 000000011 100001111 010000110 110100101 100111001 111110001 111101110 {2}
2072 9 1/2 3.2 {5, 6, 2, 1} (1.23096, 0.785398) -2.49809 000101111 000011011 000000011 100001111 010000110 110100101 100111001 111110001 111101110 {2}
2073 9 1/2 3.2 {1, 4, 3, 2} (1.23096, -0.785398) 2.49809 000101011 000011111 000010101 100000110 011001011 110010111 011101001 110111001 111011110 {1}
2074 9 1/2 3.2 {2, 3, 4, 1} (1.23096, 2.35619) -2.49809 000101011 000011111 000010101 100000110 011001011 110010111 011101001 110111001 111011110 {1}
2075 9 1/2 3.2 {3, 2, 1, 4} (1.23096, 0.785398) 2.49809 000101011 000011111 000010101 100000110 011001011 110010111 011101001 110111001 111011110 {1}
2076 9 1/2 3.2 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010110 000001010 000000111 000000111 100000011 010000001 101100001 111110001 001111110 {76}
2077 9 1/2 3 {0, 4, 0, 3} (0, 0) 0.643501 001011111 000101111 100010111 010001000 101000100 110100011 111010011 111001101 111001110 {6}
2078 9 1/2 3 {4, 0, 3, 0} (0, 0) -0.643501 001011111 000101111 100010111 010001000 101000100 110100011 111010011 111001101 111001110 {6}
2079 9 1/2 3 {2, 6, 0, 3} (0.61548, 2.35619) 1.77215 000101001 000010111 000001111 100000011 010000110 101000001 011010000 011110001 111101010 {4}
2080 9 1/2 3 {0, 6, 1, 2} (0.61548, -2.35619) -1.77215 000011111 000010111 000001100 000001001 110000011 101100011 111000000 110011001 110111010 {5}
2081 9 1/2 3 {0, 3, 2, 6} (0.61548, -2.35619) 1.77215 000101001 000010111 000001111 100000011 010000110 101000001 011010000 011110001 111101010 {4}
2082 9 1/2 3 {3, 0, 6, 2} (0.61548, -0.785398) -1.77215 000101001 000010111 000001111 100000011 010000110 101000001 011010000 011110001 111101010 {4}
2083 9 1/2 3 {6, 2, 3, 0} (0.61548, 0.785398) -1.77215 000101001 000010111 000001111 100000011 010000110 101000001 011010000 011110001 111101010 {4}
2084 9 1/2 3 {6, 0, 2, 1} (0.61548, -0.785398) 1.77215 000011111 000010111 000001100 000001001 110000011 101100011 111000000 110011001 110111010 {5}
2085 9 1/2 3 {1, 2, 0, 6} (0.61548, 2.35619) -1.77215 000011111 000010111 000001100 000001001 110000011 101100011 111000000 110011001 110111010 {5}
2086 9 1/2 3 {2, 1, 6, 0} (0.61548, 0.785398) 1.77215 000011111 000010111 000001100 000001001 110000011 101100011 111000000 110011001 110111010 {5}
2087 9 1/2 3 {6, 0, 1, 2} (1.23096, 2.35619) 2.49809 000011111 000010111 000001100 000001001 110000011 101100011 111000000 110011001 110111010 {5}
2088 9 1/2 3 {6, 2, 0, 3} (1.23096, -2.35619) -2.49809 000101001 000010111 000001111 100000011 010000110 101000001 011010000 011110001 111101010 {4}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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2089 9 1/2 3 {1, 2, 6, 0} (1.23096, -2.35619) 2.49809 000011111 000010111 000001100 000001001 110000011 101100011 111000000 110011001 110111010 {5}
2090 9 1/2 3 {2, 1, 0, 6} (1.23096, -0.785398) -2.49809 000011111 000010111 000001100 000001001 110000011 101100011 111000000 110011001 110111010 {5}
2091 9 1/2 3 {0, 6, 2, 1} (1.23096, 0.785398) -2.49809 000011111 000010111 000001100 000001001 110000011 101100011 111000000 110011001 110111010 {5}
2092 9 1/2 3 {2, 6, 3, 0} (1.23096, -0.785398) 2.49809 000101001 000010111 000001111 100000011 010000110 101000001 011010000 011110001 111101010 {4}
2093 9 1/2 3 {0, 3, 6, 2} (1.23096, 2.35619) -2.49809 000101001 000010111 000001111 100000011 010000110 101000001 011010000 011110001 111101010 {4}
2094 9 1/2 3 {3, 0, 2, 6} (1.23096, 0.785398) 2.49809 000101001 000010111 000001111 100000011 010000110 101000001 011010000 011110001 111101010 {4}
2095 9 1/2 3 {4, 0, 0, 3} (1.5708, 0.321751) -3.14159 001011111 000101111 100010111 010001000 101000100 110100011 111010011 111001101 111001110 {6}
2096 9 1/2 3 {0, 4, 3, 0} (1.5708, -0.321751) 3.14159 001011111 000101111 100010111 010001000 101000100 110100011 111010011 111001101 111001110 {6}
2097 9 1/2 2.83333 {2, 3, 2, 3} (0, 0) 0 000001101 000001001 000000111 000000111 000000011 110000011 101100001 001111000 111111100 {64}
2098 9 1/2 2.83333 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001001 000000111 000000111 000000011 110000011 101100001 001111000 111111100 {64}
2099 9 1/2 2.8 {2, 3, 2, 3} (0, 0) 0 000001110 000001101 000000011 000000011 000000010 110000001 110000000 101110000 011101000 {220}
2100 9 1/2 2.8 {0, 2, 7, 3} (0.61548, 2.35619) 1.77215 000010111 000010100 000001111 000001011 110000110 001100001 111010000 101110001 101101010 {9}
2101 9 1/2 2.8 {1, 5, 2, 3} (0.61548, -2.35619) -1.77215 000010111 000001111 000001110 000001001 100000001 011100000 111000011 111000101 110110110 {5}
2102 9 1/2 2.8 {7, 3, 0, 2} (0.61548, -2.35619) 1.77215 000010111 000010100 000001111 000001011 110000110 001100001 111010000 101110001 101101010 {9}
2103 9 1/2 2.8 {3, 7, 2, 0} (0.61548, -0.785398) -1.77215 000010111 000010100 000001111 000001011 110000110 001100001 111010000 101110001 101101010 {9}
2104 9 1/2 2.8 {2, 0, 3, 7} (0.61548, 0.785398) -1.77215 000010111 000010100 000001111 000001011 110000110 001100001 111010000 101110001 101101010 {9}
2105 9 1/2 2.8 {5, 1, 3, 2} (0.61548, -0.785398) 1.77215 000010111 000001111 000001110 000001001 100000001 011100000 111000011 111000101 110110110 {5}
2106 9 1/2 2.8 {2, 3, 1, 5} (0.61548, 2.35619) -1.77215 000010111 000001111 000001110 000001001 100000001 011100000 111000011 111000101 110110110 {5}
2107 9 1/2 2.8 {3, 2, 5, 1} (0.61548, 0.785398) 1.77215 000010111 000001111 000001110 000001001 100000001 011100000 111000011 111000101 110110110 {5}
2108 9 1/2 2.8 {5, 1, 2, 3} (1.23096, 2.35619) 2.49809 000010111 000001111 000001110 000001001 100000001 011100000 111000011 111000101 110110110 {5}
2109 9 1/2 2.8 {2, 0, 7, 3} (1.23096, -2.35619) -2.49809 000010111 000010100 000001111 000001011 110000110 001100001 111010000 101110001 101101010 {9}
2110 9 1/2 2.8 {2, 3, 5, 1} (1.23096, -2.35619) 2.49809 000010111 000001111 000001110 000001001 100000001 011100000 111000011 111000101 110110110 {5}
2111 9 1/2 2.8 {3, 2, 1, 5} (1.23096, -0.785398) -2.49809 000010111 000001111 000001110 000001001 100000001 011100000 111000011 111000101 110110110 {5}
2112 9 1/2 2.8 {1, 5, 3, 2} (1.23096, 0.785398) -2.49809 000010111 000001111 000001110 000001001 100000001 011100000 111000011 111000101 110110110 {5}
2113 9 1/2 2.8 {0, 2, 3, 7} (1.23096, -0.785398) 2.49809 000010111 000010100 000001111 000001011 110000110 001100001 111010000 101110001 101101010 {9}
2114 9 1/2 2.8 {7, 3, 2, 0} (1.23096, 2.35619) -2.49809 000010111 000010100 000001111 000001011 110000110 001100001 111010000 101110001 101101010 {9}
2115 9 1/2 2.8 {3, 7, 0, 2} (1.23096, 0.785398) 2.49809 000010111 000010100 000001111 000001011 110000110 001100001 111010000 101110001 101101010 {9}
2116 9 1/2 2.8 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001110 000001101 000000011 000000011 000000010 110000001 110000000 101110000 011101000 {220}
2117 9 1/2 2.75 {0, 6, 4, 5} (0, 0) 1.5708 000010011 000001110 000001101 000000011 100000001 011000011 011000000 110101000 101111000 {104}
2118 9 1/2 2.75 {1, 4, 2, 3} (0, 0) 0 000001110 000000111 000000111 000000011 000000011 100000001 111000001 111110001 011111110{1280}
2119 9 1/2 2.75 {6, 1, 2, 4} (0, 0) -3.14159 000011111 000001111 000000111 000000011 100000001 110000001 111000001 111100000 111111100 {234}
2120 9 1/2 2.75 {6, 0, 5, 4} (0, 0) -1.5708 000010011 000001110 000001101 000000011 100000001 011000011 011000000 110101000 101111000 {104}
2121 9 1/2 2.75 {6, 0, 4, 5} (1.5708, 0.785398) -3.14159 000010011 000001110 000001101 000000011 100000001 011000011 011000000 110101000 101111000 {104}
2122 9 1/2 2.75 {1, 4, 3, 2} (1.5708, 0) -3.14159 000001110 000000111 000000111 000000011 000000011 100000001 111000001 111110001 011111110{1280}
2123 9 1/2 2.75 {1, 6, 2, 4} (1.5708, -1.5708) 3.14159 000011111 000001111 000000111 000000011 100000001 110000001 111000001 111100000 111111100 {234}
2124 9 1/2 2.75 {0, 6, 5, 4} (1.5708, -0.785398) 3.14159 000010011 000001110 000001101 000000011 100000001 011000011 011000000 110101000 101111000 {104}
2125 9 1/2 2.7 {0, 5, 3, 6} (1.5708, 0) -0.927295 000101111 000010011 000010011 100001110 011001111 100110101 100111000 111110001 111011010 {4}
2126 9 1/2 2.7 {0, 5, 6, 3} (1.5708, -3.14159) -2.2143 000101111 000010011 000010011 100001110 011001111 100110101 100111000 111110001 111011010 {4}
2127 9 1/2 2.66667 {7, 0, 2, 1} (0, 0) 1.5708 000000111 000000110 000000011 000000001 000000001 000000001 110000001 111000000 101111100 {8}
2128 9 1/2 2.66667 {1, 4, 2, 3} (0, 0) 0 000001101 000000111 000000111 000000011 000000011 100000000 111000000 011110000 111110000{2140}
2129 9 1/2 2.66667 {3, 5, 4, 5} (0, 0) -3.14159 000001101 000001001 000000100 000000011 000000011 110000010 101000010 000111101 110110010 {575}
2130 9 1/2 2.66667 {0, 7, 1, 2} (0, 0) -1.5708 000000111 000000110 000000011 000000001 000000001 000000001 110000001 111000000 101111100 {8}
2131 9 1/2 2.66667 {0, 7, 2, 1} (1.5708, 0.785398) -3.14159 000000111 000000110 000000011 000000001 000000001 000000001 110000001 111000000 101111100 {8}
2132 9 1/2 2.66667 {1, 4, 3, 2} (1.5708, 0) -3.14159 000001101 000000111 000000111 000000011 000000011 100000000 111000000 011110000 111110000{2140}
2133 9 1/2 2.66667 {5, 3, 4, 5} (1.5708, -1.5708) 3.14159 000001101 000001001 000000100 000000011 000000011 110000010 101000010 000111101 110110010 {575}
2134 9 1/2 2.66667 {7, 0, 1, 2} (1.5708, -0.785398) 3.14159 000000111 000000110 000000011 000000001 000000001 000000001 110000001 111000000 101111100 {8}
2135 9 1/2 2.63636 {0, 1, 0, 1} (0, 0) 0 000010011 000010011 000001111 000001101 110000110 001100010 001110001 111011000 111100100 {8}
2136 9 1/2 2.63636 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010011 000010011 000001111 000001101 110000110 001100010 001110001 111011000 111100100 {8}
2137 9 1/2 2.6 {2, 7, 3, 4} (0.61548, -2.35619) -1.77215 000101001 000010110 000001101 100000010 010000101 101000011 011010011 010101101 101011110 {3}
2138 9 1/2 2.6 {7, 2, 4, 3} (0.61548, -0.785398) 1.77215 000101001 000010110 000001101 100000010 010000101 101000011 011010011 010101101 101011110 {3}
2139 9 1/2 2.6 {3, 4, 2, 7} (0.61548, 2.35619) -1.77215 000101001 000010110 000001101 100000010 010000101 101000011 011010011 010101101 101011110 {3}
2140 9 1/2 2.6 {4, 3, 7, 2} (0.61548, 0.785398) 1.77215 000101001 000010110 000001101 100000010 010000101 101000011 011010011 010101101 101011110 {3}
2141 9 1/2 2.6 {7, 2, 3, 4} (1.23096, 2.35619) 2.49809 000101001 000010110 000001101 100000010 010000101 101000011 011010011 010101101 101011110 {3}
2142 9 1/2 2.6 {3, 4, 7, 2} (1.23096, -2.35619) 2.49809 000101001 000010110 000001101 100000010 010000101 101000011 011010011 010101101 101011110 {3}
2143 9 1/2 2.6 {4, 3, 2, 7} (1.23096, -0.785398) -2.49809 000101001 000010110 000001101 100000010 010000101 101000011 011010011 010101101 101011110 {3}
2144 9 1/2 2.6 {2, 7, 4, 3} (1.23096, 0.785398) -2.49809 000101001 000010110 000001101 100000010 010000101 101000011 011010011 010101101 101011110 {3}
2145 9 1/2 2.5 {0, 3, 5, 4} (1.5708, 0) -0.927295 000100110 000011111 000011111 100000101 011001010 011010001 111100011 111010101 011101110 {4}
2146 9 1/2 2.5 {0, 3, 4, 5} (1.5708, -3.14159) -2.2143 000100110 000011111 000011111 100000101 011001010 011010001 111100011 111010101 011101110 {4}
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2147 9 1/2 2.42857 {2, 3, 2, 3} (0, 0) 0 000001110 000001001 000000111 000000111 000000001 110000010 101100001 101101000 011110100 {48}
2148 9 1/2 2.42857 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001110 000001001 000000111 000000111 000000001 110000010 101100001 101101000 011110100 {48}
2149 9 1/2 2.4 {4, 1, 0, 3} (0.61548, 2.35619) 1.77215 000010011 000001101 000001011 000000101 100000001 011000011 010100001 101001000 111111100 {6}
2150 9 1/2 2.4 {3, 1, 5, 0} (0.61548, -2.35619) -1.77215 000011111 000011011 000001101 000000111 110001111 111010010 101110011 110111101 111110110 {3}
2151 9 1/2 2.4 {0, 3, 4, 1} (0.61548, -2.35619) 1.77215 000010011 000001101 000001011 000000101 100000001 011000011 010100001 101001000 111111100 {6}
2152 9 1/2 2.4 {3, 0, 1, 4} (0.61548, -0.785398) -1.77215 000010011 000001101 000001011 000000101 100000001 011000011 010100001 101001000 111111100 {6}
2153 9 1/2 2.4 {0, 5, 6, 4} (0.463648, -1.5708) 3.14159 000101111 000011111 000011111 100000011 011000101 111000111 111011000 111101001 111111010 {2}
2154 9 1/2 2.4 {1, 4, 3, 0} (0.61548, 0.785398) -1.77215 000010011 000001101 000001011 000000101 100000001 011000011 010100001 101001000 111111100 {6}
2155 9 1/2 2.4 {1, 3, 0, 5} (0.61548, -0.785398) 1.77215 000011111 000011011 000001101 000000111 110001111 111010010 101110011 110111101 111110110 {3}
2156 9 1/2 2.4 {5, 0, 3, 1} (0.61548, 2.35619) -1.77215 000011111 000011011 000001101 000000111 110001111 111010010 101110011 110111101 111110110 {3}
2157 9 1/2 2.4 {4, 6, 5, 0} (0.463648, 1.5708) 3.14159 000101111 000011111 000011111 100000011 011000101 111000111 111011000 111101001 111111010 {2}
2158 9 1/2 2.4 {0, 5, 1, 3} (0.61548, 0.785398) 1.77215 000011111 000011011 000001101 000000111 110001111 111010010 101110011 110111101 111110110 {3}
2159 9 1/2 2.4 {1, 3, 5, 0} (1.23096, 2.35619) 2.49809 000011111 000011011 000001101 000000111 110001111 111010010 101110011 110111101 111110110 {3}
2160 9 1/2 2.4 {1, 4, 0, 3} (1.23096, -2.35619) -2.49809 000010011 000001101 000001011 000000101 100000001 011000011 010100001 101001000 111111100 {6}
2161 9 1/2 2.4 {5, 0, 1, 3} (1.23096, -2.35619) 2.49809 000011111 000011011 000001101 000000111 110001111 111010010 101110011 110111101 111110110 {3}
2162 9 1/2 2.4 {0, 5, 3, 1} (1.23096, -0.785398) -2.49809 000011111 000011011 000001101 000000111 110001111 111010010 101110011 110111101 111110110 {3}
2163 9 1/2 2.4 {4, 6, 0, 5} (1.10715, -1.5708) 3.14159 000101111 000011111 000011111 100000011 011000101 111000111 111011000 111101001 111111010 {2}
2164 9 1/2 2.4 {3, 1, 0, 5} (1.23096, 0.785398) -2.49809 000011111 000011011 000001101 000000111 110001111 111010010 101110011 110111101 111110110 {3}
2165 9 1/2 2.4 {4, 1, 3, 0} (1.23096, -0.785398) 2.49809 000010011 000001101 000001011 000000101 100000001 011000011 010100001 101001000 111111100 {6}
2166 9 1/2 2.4 {0, 3, 1, 4} (1.23096, 2.35619) -2.49809 000010011 000001101 000001011 000000101 100000001 011000011 010100001 101001000 111111100 {6}
2167 9 1/2 2.4 {0, 5, 4, 6} (1.10715, 1.5708) 3.14159 000101111 000011111 000011111 100000011 011000101 111000111 111011000 111101001 111111010 {2}
2168 9 1/2 2.4 {3, 0, 4, 1} (1.23096, 0.785398) 2.49809 000010011 000001101 000001011 000000101 100000001 011000011 010100001 101001000 111111100 {6}
2169 9 1/2 2.25 {0, 1, 0, 1} (0, 0) 0 000000111 000000111 000000011 000000011 000000011 000000011 110000001 111111000 111111100 {128}
2170 9 1/2 2.25 {0, 7, 1, 7} (0, 0) -3.14159 000000101 000000101 000000011 000000011 000000011 000000011 110000011 001111100 111111100 {16}
2171 9 1/2 2.25 {2, 0, 3, 4}(0.955317, -0.785398) -2.0944 000011010 000001001 000000110 000000101 100000011 110000001 001100011 101010101 010111110 {13}
2172 9 1/2 2.25 {0, 2, 4, 3} (0.955317, -2.35619) 2.0944 000011010 000001001 000000110 000000101 100000011 110000001 001100011 101010101 010111110 {11}
2173 9 1/2 2.25 {3, 4, 2, 0} (0.955317, 0.785398) -2.0944 000011010 000001001 000000110 000000101 100000011 110000001 001100011 101010101 010111110 {13}
2174 9 1/2 2.25 {2, 6, 3, 5} (0.785398, 0) -3.14159 000011001 000010110 000001011 000000111 110000011 101000010 010100001 011111000 101110100 {8}
2175 9 1/2 2.25 {6, 2, 3, 5} (1.5708, -1.5708) 1.5708 000011001 000010110 000001011 000000111 110000011 101000010 010100001 011111000 101110100 {8}
2176 9 1/2 2.25 {4, 3, 2, 0}(0.955317, -0.785398) 2.0944 000011010 000001001 000000110 000000101 100000011 110000001 001100011 101010101 010111110 {13}
2177 9 1/2 2.25 {4, 3, 0, 2} (0.955317, 2.35619) 2.0944 000011010 000001001 000000110 000000101 100000011 110000001 001100011 101010101 010111110 {11}
2178 9 1/2 2.25 {2, 6, 5, 3} (1.5708, 1.5708) 1.5708 000011001 000010110 000001011 000000111 110000011 101000010 010100001 011111000 101110100 {8}
2179 9 1/2 2.25 {3, 0, 1, 2} (0.785398, -3.14159) -3.14159 000010111 000010100 000001111 000001010 110000101 001100011 111010001 101101001 101011110 {10}
2180 9 1/2 2.25 {7, 1, 0, 2} (0.955317, -2.35619) -2.0944 000010110 000010011 000001100 000001011 110000101 001100001 101010001 110100001 010111110 {2}
2181 9 1/2 2.25 {2, 0, 4, 3} (0.955317, 0.785398) 2.0944 000011010 000001001 000000110 000000101 100000011 110000001 001100011 101010101 010111110 {13}
2182 9 1/2 2.25 {0, 2, 7, 1} (0.955317, 2.35619) -2.0944 000010110 000010011 000001100 000001011 110000101 001100001 101010001 110100001 010111110 {2}
2183 9 1/2 2.25 {0, 1, 1, 0} (1.5708, 0) -3.14159 000000111 000000111 000000011 000000011 000000011 000000011 110000001 111111000 111111100 {128}
2184 9 1/2 2.25 {7, 0, 1, 7} (1.5708, -1.5708) 3.14159 000000101 000000101 000000011 000000011 000000011 000000011 110000011 001111100 111111100 {16}
2185 9 1/2 2.2 {0, 7, 5, 6} (0, 0) 1.5708 000001001 000000111 000000111 000000110 000000001 100000001 011100001 011100000 111011100 {12}
2186 9 1/2 2.2 {1, 4, 2, 3} (0, 0) 0 000001100 000000110 000000110 000000011 000000011 100000001 111000001 011110000 000111100 {416}
2187 9 1/2 2.2 {2, 4, 3, 4} (0, 0) -3.14159 000010100 000001010 000000111 000000111 100000001 010000001 101100001 011100001 001111110 {146}
2188 9 1/2 2.2 {7, 0, 6, 5} (0, 0) -1.5708 000001001 000000111 000000111 000000110 000000001 100000001 011100001 011100000 111011100 {12}
2189 9 1/2 2.2 {4, 1, 6, 3} (0.463648, 3.14159) 3.14159 000011010 000010011 000001101 000000111 110000110 101000000 001110001 110110001 011100110 {2}
2190 9 1/2 2.2 {1, 3, 5, 2} (0.61548, 2.35619) 1.77215 000010101 000001010 000000111 000000110 100000001 010000001 101100011 011100101 101011110 {3}
2191 9 1/2 2.2 {1, 6, 2, 3} (0.61548, -2.35619) -1.77215 000010011 000001111 000001101 000000110 100000010 011000001 011100000 110110001 111001010 {7}
2192 9 1/2 2.2 {5, 2, 1, 3} (0.61548, -2.35619) 1.77215 000010101 000001010 000000111 000000110 100000001 010000001 101100011 011100101 101011110 {3}
2193 9 1/2 2.2 {2, 5, 3, 1} (0.61548, -0.785398) -1.77215 000010101 000001010 000000111 000000110 100000001 010000001 101100011 011100101 101011110 {3}
2194 9 1/2 2.2 {3, 1, 2, 5} (0.61548, 0.785398) -1.77215 000010101 000001010 000000111 000000110 100000001 010000001 101100011 011100101 101011110 {3}
2195 9 1/2 2.2 {1, 4, 3, 6} (0.463648, 0) 3.14159 000011010 000010011 000001101 000000111 110000110 101000000 001110001 110110001 011100110 {2}
2196 9 1/2 2.2 {6, 1, 3, 2} (0.61548, -0.785398) 1.77215 000010011 000001111 000001101 000000110 100000010 011000001 011100000 110110001 111001010 {7}
2197 9 1/2 2.2 {2, 3, 1, 6} (0.61548, 2.35619) -1.77215 000010011 000001111 000001101 000000110 100000010 011000001 011100000 110110001 111001010 {7}
2198 9 1/2 2.2 {3, 2, 6, 1} (0.61548, 0.785398) 1.77215 000010011 000001111 000001101 000000110 100000010 011000001 011100000 110110001 111001010 {7}
2199 9 1/2 2.2 {6, 1, 2, 3} (1.23096, 2.35619) 2.49809 000010011 000001111 000001101 000000110 100000010 011000001 011100000 110110001 111001010 {7}
2200 9 1/2 2.2 {1, 4, 6, 3} (1.5708, -1.5708) -2.2143 000011010 000010011 000001101 000000111 110000110 101000000 001110001 110110001 011100110 {2}
2201 9 1/2 2.2 {3, 1, 5, 2} (1.23096, -2.35619) -2.49809 000010101 000001010 000000111 000000110 100000001 010000001 101100011 011100101 101011110 {3}
2202 9 1/2 2.2 {2, 3, 6, 1} (1.23096, -2.35619) 2.49809 000010011 000001111 000001101 000000110 100000010 011000001 011100000 110110001 111001010 {7}
2203 9 1/2 2.2 {3, 2, 1, 6} (1.23096, -0.785398) -2.49809 000010011 000001111 000001101 000000110 100000010 011000001 011100000 110110001 111001010 {7}
2204 9 1/2 2.2 {4, 1, 3, 6} (1.5708, 1.5708) -2.2143 000011010 000010011 000001101 000000111 110000110 101000000 001110001 110110001 011100110 {2}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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2205 9 1/2 2.2 {1, 6, 3, 2} (1.23096, 0.785398) -2.49809 000010011 000001111 000001101 000000110 100000010 011000001 011100000 110110001 111001010 {7}
2206 9 1/2 2.2 {1, 3, 2, 5} (1.23096, -0.785398) 2.49809 000010101 000001010 000000111 000000110 100000001 010000001 101100011 011100101 101011110 {3}
2207 9 1/2 2.2 {5, 2, 3, 1} (1.23096, 2.35619) -2.49809 000010101 000001010 000000111 000000110 100000001 010000001 101100011 011100101 101011110 {3}
2208 9 1/2 2.2 {2, 5, 1, 3} (1.23096, 0.785398) 2.49809 000010101 000001010 000000111 000000110 100000001 010000001 101100011 011100101 101011110 {3}
2209 9 1/2 2.2 {7, 0, 5, 6} (1.5708, 0.785398) -3.14159 000001001 000000111 000000111 000000110 000000001 100000001 011100001 011100000 111011100 {12}
2210 9 1/2 2.2 {1, 4, 3, 2} (1.5708, 0) -3.14159 000001100 000000110 000000110 000000011 000000011 100000001 111000001 011110000 000111100 {416}
2211 9 1/2 2.2 {4, 2, 3, 4} (1.5708, -1.5708) 3.14159 000010100 000001010 000000111 000000111 100000001 010000001 101100001 011100001 001111110 {146}
2212 9 1/2 2.2 {0, 7, 6, 5} (1.5708, -0.785398) 3.14159 000001001 000000111 000000111 000000110 000000001 100000001 011100001 011100000 111011100 {12}
2213 9 1/2 2.14286 {0, 3, 1, 2} (0, 0) 0 000001011 000001010 000000111 000000110 000000001 110000001 001100001 111100000 101011100 {32}
2214 9 1/2 2.14286 {0, 3, 2, 1} (1.5708, 0) -3.14159 000001011 000001010 000000111 000000110 000000001 110000001 001100001 111100000 101011100 {32}
2215 9 1/2 2 {8, 4, 7, 1} (0.61548, -2.35619) -1.77215 000100100 000010100 000001011 100000100 010000011 001000011 110100001 001011000 001011100 {1}
2216 9 1/2 2 {4, 8, 1, 7} (0.61548, -0.785398) 1.77215 000100100 000010100 000001011 100000100 010000011 001000011 110100001 001011000 001011100 {1}
2217 9 1/2 2 {7, 1, 8, 4} (0.61548, 2.35619) -1.77215 000100100 000010100 000001011 100000100 010000011 001000011 110100001 001011000 001011100 {1}
2218 9 1/2 2 {1, 7, 4, 8} (0.61548, 0.785398) 1.77215 000100100 000010100 000001011 100000100 010000011 001000011 110100001 001011000 001011100 {1}
2219 9 1/2 2 {4, 8, 7, 1} (1.23096, 2.35619) 2.49809 000100100 000010100 000001011 100000100 010000011 001000011 110100001 001011000 001011100 {1}
2220 9 1/2 2 {7, 1, 4, 8} (1.23096, -2.35619) 2.49809 000100100 000010100 000001011 100000100 010000011 001000011 110100001 001011000 001011100 {1}
2221 9 1/2 2 {1, 7, 8, 4} (1.23096, -0.785398) -2.49809 000100100 000010100 000001011 100000100 010000011 001000011 110100001 001011000 001011100 {1}
2222 9 1/2 2 {8, 4, 1, 7} (1.23096, 0.785398) -2.49809 000100100 000010100 000001011 100000100 010000011 001000011 110100001 001011000 001011100 {1}
2223 9 1/2 19 {2, 3, 2, 3} (0, 0) 0 000010110 000010101 000001011 000001011 110000111 001100101 110011001 101110000 011111100 {8}
2224 9 1/2 19 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010110 000010101 000001011 000001011 110000111 001100101 110011001 101110000 011111100 {8}
2225 9 1/2 18 {2, 3, 2, 3} (0, 0) 0 000011011 000010110 000001101 000001101 110000011 101100011 011100001 110011000 101111100 {24}
2226 9 1/2 18 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000010110 000001101 000001101 110000011 101100011 011100001 110011000 101111100 {24}
2227 9 1/2 15 {0, 6, 3, 2} (0, 0) 1.5708 000011101 000010011 000001111 000000111 110000110 101000011 101110001 011111000 111101100 {12}
2228 9 1/2 15 {2, 3, 2, 3} (0, 0) 0 000010101 000010010 000001111 000001111 110000111 001100001 101110011 011110100 101111100 {32}
2229 9 1/2 15 {6, 0, 2, 3} (0, 0) -1.5708 000011101 000010011 000001111 000000111 110000110 101000011 101110001 011111000 111101100 {12}
2230 9 1/2 15 {6, 0, 3, 2} (1.5708, 0.785398) -3.14159 000011101 000010011 000001111 000000111 110000110 101000011 101110001 011111000 111101100 {12}
2231 9 1/2 15 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010101 000010010 000001111 000001111 110000111 001100001 101110011 011110100 101111100 {32}
2232 9 1/2 15 {0, 6, 2, 3} (1.5708, -0.785398) 3.14159 000011101 000010011 000001111 000000111 110000110 101000011 101110001 011111000 111101100 {12}
2233 9 1/2 14 {3, 8, 7, 6} (0, 0) 1.5708 000011011 000010011 000001101 000000111 110000101 101000011 001110000 110101000 111111000 {16}
2234 9 1/2 14 {8, 3, 6, 7} (0, 0) -1.5708 000011011 000010011 000001101 000000111 110000101 101000011 001110000 110101000 111111000 {16}
2235 9 1/2 14 {8, 3, 7, 6} (1.5708, 0.785398) -3.14159 000011011 000010011 000001101 000000111 110000101 101000011 001110000 110101000 111111000 {16}
2236 9 1/2 14 {3, 8, 6, 7} (1.5708, -0.785398) 3.14159 000011011 000010011 000001101 000000111 110000101 101000011 001110000 110101000 111111000 {16}
2237 9 1/2 13 {3, 6, 8, 4} (0, 0) 1.5708 000010110 000001111 000001101 000000011 100000011 011000010 111000001 110111000 011110100 {20}
2238 9 1/2 13 {6, 3, 4, 8} (0, 0) -1.5708 000010110 000001111 000001101 000000011 100000011 011000010 111000001 110111000 011110100 {20}
2239 9 1/2 13 {6, 3, 8, 4} (1.5708, 0.785398) -3.14159 000010110 000001111 000001101 000000011 100000011 011000010 111000001 110111000 011110100 {20}
2240 9 1/2 13 {3, 6, 4, 8} (1.5708, -0.785398) 3.14159 000010110 000001111 000001101 000000011 100000011 011000010 111000001 110111000 011110100 {20}
2241 9 1/2 11 {1, 7, 1, 3} (0, 0) 1.5708 000011011 000001100 000000111 000000010 100000111 110000001 011010001 101110000 101011100 {248}
2242 9 1/2 11 {7, 1, 3, 1} (0, 0) -1.5708 000011011 000001100 000000111 000000010 100000111 110000001 011010001 101110000 101011100 {248}
2243 9 1/2 11 {7, 1, 1, 3} (1.5708, 0.785398) -3.14159 000011011 000001100 000000111 000000010 100000111 110000001 011010001 101110000 101011100 {248}
2244 9 1/2 11 {1, 7, 3, 1} (1.5708, -0.785398) 3.14159 000011011 000001100 000000111 000000010 100000111 110000001 011010001 101110000 101011100 {248}
2245 9 1/2 10.5 {1, 2, 1, 2} (0, 0) 0 000011101 000001110 000001110 000000011 100000011 111000001 111000001 011110001 100111110 {112}
2246 9 1/2 10.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011101 000001110 000001110 000000011 100000011 111000001 111000001 011110001 100111110 {112}
2247 9 1/2 10 {1, 7, 3, 2} (0, 0) 1.5708 000011001 000001110 000000111 000000011 100000000 110000011 011000001 011101000 101101100 {200}
2248 9 1/2 10 {0, 4, 7, 4} (0, 0) -3.14159 000101111 000011111 000011011 100000110 011000101 111000011 110110001 111101000 111011100 {17}
2249 9 1/2 10 {7, 1, 2, 3} (0, 0) -1.5708 000011001 000001110 000000111 000000011 100000000 110000011 011000001 011101000 101101100 {200}
2250 9 1/2 10 {7, 1, 3, 2} (1.5708, 0.785398) -3.14159 000011001 000001110 000000111 000000011 100000000 110000011 011000001 011101000 101101100 {200}
2251 9 1/2 10 {4, 0, 7, 4} (1.5708, -1.5708) 3.14159 000101111 000011111 000011011 100000110 011000101 111000011 110110001 111101000 111011100 {17}
2252 9 1/2 10 {1, 7, 2, 3} (1.5708, -0.785398) 3.14159 000011001 000001110 000000111 000000011 100000000 110000011 011000001 011101000 101101100 {200}
2253 9 1/2 1.90909 {2, 3, 2, 3} (0, 0) 0 000011101 000001011 000000110 000000110 100001011 110010000 101100001 011110001 110010110 {8}
2254 9 1/2 1.90909 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011101 000001011 000000110 000000110 100001011 110010000 101100001 011110001 110010110 {8}
2255 9 1/2 1.9 {4, 6, 5, 7} (0.463648, 3.14159) 3.14159 000101111 000010111 000010111 100001110 011001101 100110010 111110001 111101001 111010110 {2}
2256 9 1/2 1.9 {7, 2, 6, 3} (1.5708, -1.5708) -0.927295 000010111 000010111 000001111 000001001 110000110 001100011 111010001 111011001 111101110 {4}
2257 9 1/2 1.9 {0, 1, 4, 5} (1.5708, 0) -0.927295 000010011 000001011 000000111 000000111 100000001 010000001 001100011 111100101 111111110 {24}
2258 9 1/2 1.9 {2, 7, 3, 6} (1.5708, 1.5708) -0.927295 000010111 000010111 000001111 000001001 110000110 001100011 111010001 111011001 111101110 {4}
2259 9 1/2 1.9 {6, 4, 7, 5} (0.463648, 0) 3.14159 000101111 000010111 000010111 100001110 011001101 100110010 111110001 111101001 111010110 {2}
2260 9 1/2 1.9 {0, 5, 1, 4} (1.5708, -3.14159) -0.927295 000011011 000011001 000000111 000000111 110000011 110000001 001100010 101110101 111111010 {8}
2261 9 1/2 1.9 {2, 7, 6, 3} (1.10715, 3.14159) 3.14159 000010111 000010111 000001111 000001001 110000110 001100011 111010001 111011001 111101110 {4}
2262 9 1/2 1.9 {6, 4, 5, 7} (1.5708, -1.5708) -2.2143 000101111 000010111 000010111 100001110 011001101 100110010 111110001 111101001 111010110 {2}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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2263 9 1/2 1.9 {0, 5, 4, 1} (1.5708, 0) -2.2143 000011011 000011001 000000111 000000111 110000011 110000001 001100010 101110101 111111010 {8}
2264 9 1/2 1.9 {4, 6, 7, 5} (1.5708, 1.5708) -2.2143 000101111 000010111 000010111 100001110 011001101 100110010 111110001 111101001 111010110 {2}
2265 9 1/2 1.9 {7, 2, 3, 6} (1.10715, 0) 3.14159 000010111 000010111 000001111 000001001 110000110 001100011 111010001 111011001 111101110 {4}
2266 9 1/2 1.9 {0, 1, 5, 4} (1.5708, -3.14159) -2.2143 000010011 000001011 000000111 000000111 100000001 010000001 001100011 111100101 111111110 {24}
2267 9 1/2 1.875 {2, 5, 3, 4} (0, 0) 0 000000110 000000110 000000101 000000101 000000011 000000011 111100001 110011001 001111110 {432}
2268 9 1/2 1.875 {0, 4, 1, 4} (0, 0) -3.14159 000001011 000001011 000000110 000000110 000000101 110000101 001111001 111100001 110011110 {110}
2269 9 1/2 1.875 {2, 5, 4, 3} (1.5708, 0) -3.14159 000000110 000000110 000000101 000000101 000000011 000000011 111100001 110011001 001111110 {432}
2270 9 1/2 1.875 {4, 0, 1, 4} (1.5708, -1.5708) 3.14159 000001011 000001011 000000110 000000110 000000101 110000101 001111001 111100001 110011110 {110}
2271 9 1/2 1.85714 {0, 2, 5, 1} (0, 0) 1.5708 000001011 000000101 000000101 000000011 000000011 100000011 011000011 100111100 111111100 {31}
2272 9 1/2 1.85714 {2, 4, 3, 4} (0, 0) -3.14159 000010111 000010111 000001011 000001011 110001110 001110111 110011001 111111001 111101110 {30}
2273 9 1/2 1.85714 {2, 0, 1, 5} (0, 0) -1.5708 000001011 000000101 000000101 000000011 000000011 100000011 011000011 100111100 111111100 {31}
2274 9 1/2 1.85714 {2, 0, 5, 1} (1.5708, 0.785398) -3.14159 000001011 000000101 000000101 000000011 000000011 100000011 011000011 100111100 111111100 {31}
2275 9 1/2 1.85714 {4, 2, 3, 4} (1.5708, -1.5708) 3.14159 000010111 000010111 000001011 000001011 110001110 001110111 110011001 111111001 111101110 {30}
2276 9 1/2 1.85714 {0, 2, 1, 5} (1.5708, -0.785398) 3.14159 000001011 000000101 000000101 000000011 000000011 100000011 011000011 100111100 111111100 {31}
2277 9 1/2 1.83333 {2, 3, 2, 3} (0, 0) 0 000001111 000001010 000000101 000000101 000000011 110000001 101100001 110010000 101111100 {120}
2278 9 1/2 1.83333 {5, 7, 6, 7} (0, 0) -3.14159 000001111 000001111 000000011 000000011 000000011 110000001 110000001 111110000 111111100 {16}
2279 9 1/2 1.83333 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001111 000001010 000000101 000000101 000000011 110000001 101100001 110010000 101111100 {120}
2280 9 1/2 1.83333 {7, 5, 6, 7} (1.5708, -1.5708) 3.14159 000001111 000001111 000000011 000000011 000000011 110000001 110000001 111110000 111111100 {16}
2281 9 1/2 1.8 {3, 4, 3, 4} (0, 0) 0 000001010 000000111 000000100 000000011 000000011 100000001 011000001 110110001 010111110 {120}
2282 9 1/2 1.8 {2, 4, 3, 4} (0, 0) -3.14159 000011011 000001001 000000111 000000111 100000001 110000000 001100000 101100001 111110010 {20}
2283 9 1/2 1.8 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001010 000000111 000000100 000000011 000000011 100000001 011000001 110110001 010111110 {120}
2284 9 1/2 1.8 {4, 2, 3, 4} (1.5708, -1.5708) 3.14159 000011011 000001001 000000111 000000111 100000001 110000000 001100000 101100001 111110010 {20}
2285 9 1/2 1.75 {8, 2, 4, 3} (0, 0) 1.5708 000001101 000001011 000000111 000000111 000000001 110000000 101100000 011100000 111110000 {190}
2286 9 1/2 1.75 {2, 8, 3, 4} (0, 0) -1.5708 000001101 000001011 000000111 000000111 000000001 110000000 101100000 011100000 111110000 {190}
2287 9 1/2 1.75 {2, 8, 4, 3} (1.5708, 0.785398) -3.14159 000001101 000001011 000000111 000000111 000000001 110000000 101100000 011100000 111110000 {190}
2288 9 1/2 1.75 {8, 2, 3, 4} (1.5708, -0.785398) 3.14159 000001101 000001011 000000111 000000111 000000001 110000000 101100000 011100000 111110000 {190}
2289 9 1/2 1.72727 {2, 3, 2, 3} (0, 0) 0 000011100 000001111 000000011 000000011 100000110 110000001 110010001 011110000 011101100 {80}
2290 9 1/2 1.72727 {3, 0, 2, 0} (0, 0) -3.14159 000011100 000001010 000000111 000000111 100001011 110010001 101100001 011110000 001111100 {14}
2291 9 1/2 1.72727 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011100 000001111 000000011 000000011 100000110 110000001 110010001 011110000 011101100 {80}
2292 9 1/2 1.72727 {0, 3, 2, 0} (1.5708, -1.5708) 3.14159 000011100 000001010 000000111 000000111 100001011 110010001 101100001 011110000 001111100 {14}
2293 9 1/2 1.71429 {1, 4, 2, 3} (0, 0) 0 000001110 000000101 000000101 000000011 000000011 100000000 111000000 100110000 011110000 {504}
2294 9 1/2 1.71429 {2, 0, 1, 0} (0, 0) -3.14159 000010110 000001101 000001101 000000010 100000011 011000010 111000001 100111001 011010110 {148}
2295 9 1/2 1.71429 {1, 4, 3, 2} (1.5708, 0) -3.14159 000001110 000000101 000000101 000000011 000000011 100000000 111000000 100110000 011110000 {504}
2296 9 1/2 1.71429 {0, 2, 1, 0} (1.5708, -1.5708) 3.14159 000010110 000001101 000001101 000000010 100000011 011000010 111000001 100111001 011010110 {148}
2297 9 1/2 1.7 {2, 3, 5, 4} (1.5708, 0) -0.927295 000011111 000011111 000010110 000001110 111000001 110100001 111100011 111100101 110011110 {4}
2298 9 1/2 1.7 {2, 3, 4, 5} (1.5708, -3.14159) -2.2143 000011111 000011111 000010110 000001110 111000001 110100001 111100011 111100101 110011110 {4}
2299 9 1/2 1.66667 {7, 1, 6, 2} (1.5708, -1.5708) -0.927295 000100111 000011111 000011001 100000110 011001011 011010000 110100001 110110001 111010110 {2}
2300 9 1/2 1.66667 {1, 7, 2, 6} (1.5708, 1.5708) -0.927295 000100111 000011111 000011001 100000110 011001011 011010000 110100001 110110001 111010110 {2}
2301 9 1/2 1.66667 {1, 5, 2, 4} (1.5708, -3.14159) -0.927295 000100101 000011111 000011011 100000100 011000111 011000011 110110001 011011000 111011100 {4}
2302 9 1/2 1.66667 {1, 7, 6, 2} (1.10715, 3.14159) 3.14159 000100111 000011111 000011001 100000110 011001011 011010000 110100001 110110001 111010110 {2}
2303 9 1/2 1.66667 {1, 5, 4, 2} (1.5708, 0) -2.2143 000100101 000011111 000011011 100000100 011000111 011000011 110110001 011011000 111011100 {4}
2304 9 1/2 1.66667 {7, 1, 2, 6} (1.10715, 0) 3.14159 000100111 000011111 000011001 100000110 011001011 011010000 110100001 110110001 111010110 {2}
2305 9 1/2 1.625 {3, 4, 3, 4} (0, 0) 0 000001001 000001001 000000111 000000110 000000110 110000010 001110001 001111000 111000100 {424}
2306 9 1/2 1.625 {0, 2, 1, 2} (0, 0) -3.14159 000011010 000011010 000000111 000000110 110000001 110000001 001100001 111100000 001011100 {166}
2307 9 1/2 1.625 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000001001 000000111 000000110 000000110 110000010 001110001 001111000 111000100 {424}
2308 9 1/2 1.625 {2, 0, 1, 2} (1.5708, -1.5708) 3.14159 000011010 000011010 000000111 000000110 110000001 110000001 001100001 111100000 001011100 {166}
2309 9 1/2 1.6 {0, 7, 5, 6} (0, 0) 1.5708 000001110 000000111 000000110 000000001 000000001 100000000 111000001 111000001 010110110 {64}
2310 9 1/2 1.6 {7, 0, 6, 5} (0, 0) -1.5708 000001110 000000111 000000110 000000001 000000001 100000000 111000001 111000001 010110110 {64}
2311 9 1/2 1.6 {7, 0, 5, 6} (1.5708, 0.785398) -3.14159 000001110 000000111 000000110 000000001 000000001 100000000 111000001 111000001 010110110 {64}
2312 9 1/2 1.6 {0, 7, 6, 5} (1.5708, -0.785398) 3.14159 000001110 000000111 000000110 000000001 000000001 100000000 111000001 111000001 010110110 {64}
2313 9 1/2 1.57143 {6, 7, 6, 7} (0, 0) 0 000001111 000001000 000000111 000000111 000000111 110000001 101110000 101110000 101111000 {32}
2314 9 1/2 1.57143 {5, 7, 6, 7} (0, 0) -3.14159 000001111 000001100 000000011 000000011 000000011 110000001 110000001 101110000 101111100 {16}
2315 9 1/2 1.57143 {6, 7, 7, 6} (1.5708, 0) 3.14159 000001111 000001000 000000111 000000111 000000111 110000001 101110000 101110000 101111000 {32}
2316 9 1/2 1.57143 {7, 5, 6, 7} (1.5708, -1.5708) 3.14159 000001111 000001100 000000011 000000011 000000011 110000001 110000001 101110000 101111100 {16}
2317 9 1/2 1.54546 {2, 3, 2, 3} (0, 0) 0 000001100 000001011 000000111 000000111 000000011 110000010 101100001 011111000 011110100 {48}
2318 9 1/2 1.54546 {1, 4, 2, 4} (0, 0) -3.14159 000010110 000001101 000001101 000000011 100000011 011000011 111000000 100111000 011111000 {34}
2319 9 1/2 1.54546 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001100 000001011 000000111 000000111 000000011 110000010 101100001 011111000 011110100 {48}
2320 9 1/2 1.54546 {4, 1, 2, 4} (1.5708, -1.5708) 3.14159 000010110 000001101 000001101 000000011 100000011 011000011 111000000 100111000 011111000 {34}
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2321 9 1/2 1.42857 {2, 3, 2, 3} (0, 0) 0 000001010 000000111 000000110 000000110 000000001 100000001 011100001 111100000 010011100 {108}
2322 9 1/2 1.42857 {8, 1, 7, 1} (0, 0) -3.14159 000010111 000001111 000001100 000000011 100000011 011000011 111000000 110111000 110111000 {18}
2323 9 1/2 1.42857 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001010 000000111 000000110 000000110 000000001 100000001 011100001 111100000 010011100 {108}
2324 9 1/2 1.42857 {1, 8, 7, 1} (1.5708, -1.5708) 3.14159 000010111 000001111 000001100 000000011 100000011 011000011 111000000 110111000 110111000 {18}
2325 9 1/2 1.4 {1, 0, 1, 5} (0, 0) 1.5708 000001001 000000111 000000110 000000001 000000001 100000000 011000001 011000000 110110100 {22}
2326 9 1/2 1.4 {0, 1, 5, 1} (0, 0) -1.5708 000001001 000000111 000000110 000000001 000000001 100000000 011000001 011000000 110110100 {22}
2327 9 1/2 1.4 {0, 1, 1, 5} (1.5708, 0.785398) -3.14159 000001001 000000111 000000110 000000001 000000001 100000000 011000001 011000000 110110100 {22}
2328 9 1/2 1.4 {1, 0, 5, 1} (1.5708, -0.785398) 3.14159 000001001 000000111 000000110 000000001 000000001 100000000 011000001 011000000 110110100 {22}
2329 9 1/2 1.375 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001110 000000001 000000001 111000001 111000000 111000000 110111000 {40}
2330 9 1/2 1.375 {5, 6, 7, 6} (0, 0) -3.14159 000001111 000001010 000001010 000000101 000000101 111000001 100110000 111000001 100111010 {13}
2331 9 1/2 1.375 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001110 000000001 000000001 111000001 111000000 111000000 110111000 {40}
2332 9 1/2 1.375 {6, 5, 7, 6} (1.5708, -1.5708) 3.14159 000001111 000001010 000001010 000000101 000000101 111000001 100110000 111000001 100111010 {13}
2333 9 1/2 1.35714 {0, 1, 0, 1} (0, 0) 0 000011110 000011110 000001111 000001111 110000011 111100001 111100001 111110000 001111100 {8}
2334 9 1/2 1.35714 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011110 000011110 000001111 000001111 110000011 111100001 111100001 111110000 001111100 {8}
2335 9 1/2 1.28571 {1, 2, 1, 2} (0, 0) 0 000000111 000000110 000000110 000000001 000000001 000000001 111000001 111000000 100111100 {8}
2336 9 1/2 1.28571 {8, 0, 7, 0} (0, 0) -3.14159 000001111 000001100 000000011 000000011 000000011 110000011 110000000 101111000 101111000 {8}
2337 9 1/2 1.28571 {1, 2, 2, 1} (1.5708, 0) -3.14159 000000111 000000110 000000110 000000001 000000001 000000001 111000001 111000000 100111100 {8}
2338 9 1/2 1.28571 {0, 8, 7, 0} (1.5708, -1.5708) 3.14159 000001111 000001100 000000011 000000011 000000011 110000011 110000000 101111000 101111000 {8}
2339 9 1/2 1.25 {1, 2, 1, 2} (0, 0) 0 000000011 000000010 000000010 000000001 000000001 000000001 000000001 111000000 100111100 {104}
2340 9 1/2 1.25 {8, 0, 7, 0} (0, 0) -3.14159 000000111 000000100 000000011 000000011 000000011 000000011 110000000 101111000 101111000 {8}
2341 9 1/2 1.25 {1, 2, 2, 1} (1.5708, 0) -3.14159 000000011 000000010 000000010 000000001 000000001 000000001 000000001 111000000 100111100 {104}
2342 9 1/2 1.25 {0, 8, 7, 0} (1.5708, -1.5708) 3.14159 000000111 000000100 000000011 000000011 000000011 000000011 110000000 101111000 101111000 {8}
2343 9 1/2 1.2 {0, 8, 6, 7} (0, 0) 1.5708 000000111 000000011 000000011 000000011 000000011 000000011 100000000 111111000 111111000 {4}
2344 9 1/2 1.2 {3, 4, 3, 4} (0, 0) 0 000001010 000000111 000000110 000000001 000000001 100000001 011000000 111000000 010111000 {632}
2345 9 1/2 1.2 {8, 0, 7, 6} (0, 0) -1.5708 000000111 000000011 000000011 000000011 000000011 000000011 100000000 111111000 111111000 {4}
2346 9 1/2 1.2 {8, 0, 6, 7} (1.5708, 0.785398) -3.14159 000000111 000000011 000000011 000000011 000000011 000000011 100000000 111111000 111111000 {4}
2347 9 1/2 1.2 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001010 000000111 000000110 000000001 000000001 100000001 011000000 111000000 010111000 {632}
2348 9 1/2 1.2 {0, 8, 7, 6} (1.5708, -0.785398) 3.14159 000000111 000000011 000000011 000000011 000000011 000000011 100000000 111111000 111111000 {4}
2349 9 1/2 1.18182 {3, 4, 3, 4} (0, 0) 0 000001111 000001100 000000111 000000011 000000011 110000001 111000010 101110100 101111000 {16}
2350 9 1/2 1.18182 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001100 000000111 000000011 000000011 110000001 111000010 101110100 101111000 {16}
2351 9 1/2 1.1 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001000 000000111 000000111 111000001 110110000 110110000 110111000 {16}
2352 9 1/2 1.1 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001000 000000111 000000111 111000001 110110000 110110000 110111000 {16}
2353 9 1/2 0.916667 {2, 3, 2, 3} (0, 0) 0 000001110 000000101 000000011 000000011 000000011 100000101 110001011 101110100 011111100 {624}
2354 9 1/2 0.916667 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001110 000000101 000000011 000000011 000000011 100000101 110001011 101110100 011111100 {624}
2355 9 1/2 0.909091 {2, 3, 2, 3} (0, 0) 0 000001110 000001101 000000011 000000011 000000011 110000001 110000000 101110000 011111000 {336}
2356 9 1/2 0.909091 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001110 000001101 000000011 000000011 000000011 110000001 110000000 101110000 011111000 {336}
2357 9 1/2 0.9 {0, 1, 0, 1} (0, 0) 0 000000111 000000111 000000100 000000100 000000011 000000011 111100001 110011000 110011100 {8}
2358 9 1/2 0.9 {0, 1, 1, 0} (1.5708, 0) -3.14159 000000111 000000111 000000100 000000100 000000011 000000011 111100001 110011000 110011100 {8}
2359 9 1/2 0.875 {2, 3, 2, 3} (0, 0) 0 000001111 000000100 000000011 000000011 000000011 100000001 110000010 101110100 101111000{2000}
2360 9 1/2 0.875 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001111 000000100 000000011 000000011 000000011 100000001 110000010 101110100 101111000{2000}
2361 9 1/2 0.833333 {0, 1, 0, 1} (0, 0) 0 000000011 000000011 000000010 000000010 000000001 000000001 000000001 111100000 110011100{1280}
2362 9 1/2 0.833333 {0, 1, 1, 0} (1.5708, 0) -3.14159 000000011 000000011 000000010 000000010 000000001 000000001 000000001 111100000 110011100{1280}
2363 9 1/2 0.8 {1, 2, 1, 2} (0, 0) 0 000000111 000000100 000000100 000000011 000000011 000000011 111000001 100111000 100111100{2736}
2364 9 1/2 0.8 {1, 2, 2, 1} (1.5708, 0) -3.14159 000000111 000000100 000000100 000000011 000000011 000000011 111000001 100111000 100111100{2736}
2365 9 1/2 0.727273 {3, 4, 3, 4} (0, 0) 0 000001110 000001001 000000111 000000001 000000001 110000010 101000000 101001000 011110000 {96}
2366 9 1/2 0.727273 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001110 000001001 000000111 000000001 000000001 110000010 101000000 101001000 011110000 {96}
2367 9 1/2 0.7 {0, 1, 0, 1} (0, 0) 0 000000111 000000111 000000111 000000011 000000011 000000011 111000001 111111000 111111100 {192}
2368 9 1/2 0.7 {0, 1, 1, 0} (1.5708, 0) -3.14159 000000111 000000111 000000111 000000011 000000011 000000011 111000001 111111000 111111100 {192}
2369 9 1/2 0.65 {2, 3, 2, 3} (0, 0) 0 000001011 000001011 000000111 000000111 000000111 110000110 001111001 111111000 111110100 {136}
2370 9 1/2 0.65 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000111 000000111 110000110 001111001 111111000 111110100 {136}
2371 9 1/2 0.636364 {2, 3, 2, 3} (0, 0) 0 000001110 000000101 000000011 000000011 000000011 100000011 110000000 101111000 011111000 {160}
2372 9 1/2 0.636364 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001110 000000101 000000011 000000011 000000011 100000011 110000000 101111000 011111000 {160}
2373 9 1/2 0.615385 {2, 3, 2, 3} (0, 0) 0 000001111 000001000 000000111 000000111 000000111 110000001 101110000 101110000 101111000 {80}
2374 9 1/2 0.615385 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001111 000001000 000000111 000000111 000000111 110000001 101110000 101110000 101111000 {80}
2375 9 1/2 0.583333 {3, 4, 3, 4} (0, 0) 0 000000111 000000100 000000100 000000011 000000011 000000011 111000001 100111000 100111100 {88}
2376 9 1/2 0.583333 {3, 4, 4, 3} (1.5708, 0) -3.14159 000000111 000000100 000000100 000000011 000000011 000000011 111000001 100111000 100111100 {88}
2377 9 1/2 0.571429 {1, 2, 1, 2} (0, 0) 0 000000011 000000010 000000010 000000010 000000001 000000001 000000001 111100000 100011100 {160}
2378 9 1/2 0.571429 {1, 2, 2, 1} (1.5708, 0) -3.14159 000000011 000000010 000000010 000000010 000000001 000000001 000000001 111100000 100011100 {160}
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228



R
E

P
R

E
S
E

N
T

A
T

IV
E

W
ID

G
E

T
IN

F
O

R
M

A
T

IO
N

ID N k/π ` Attach. (θ, φ) α Adjacency matrix Equivalent
2379 9 1/2 0.545455 {3, 4, 3, 4} (0, 0) 0 000001010 000000111 000000110 000000001 000000001 100000001 011000001 111000000 010111100 {16}
2380 9 1/2 0.545455 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001010 000000111 000000110 000000001 000000001 100000001 011000001 111000000 010111100 {16}
2381 9 1/2 0.538462 {3, 4, 3, 4} (0, 0) 0 000000111 000000111 000000100 000000011 000000011 000000011 111000001 110111000 110111100 {24}
2382 9 1/2 0.538462 {3, 4, 4, 3} (1.5708, 0) -3.14159 000000111 000000111 000000100 000000011 000000011 000000011 111000001 110111000 110111100 {24}
2383 9 1/2 0.461538 {3, 4, 3, 4} (0, 0) 0 000000111 000000110 000000110 000000001 000000001 000000001 111000001 111000000 100111100 {24}
2384 9 1/2 0.461538 {3, 4, 4, 3} (1.5708, 0) -3.14159 000000111 000000110 000000110 000000001 000000001 000000001 111000001 111000000 100111100 {24}
2385 9 1/2 0.416667 {2, 3, 2, 3} (0, 0) 0 000000111 000000111 000000011 000000011 000000011 000000011 110000001 111111000 111111100 {288}
2386 9 1/2 0.416667 {2, 3, 3, 2} (1.5708, 0) -3.14159 000000111 000000111 000000011 000000011 000000011 000000011 110000001 111111000 111111100 {288}
2387 9 1/2 0.384615 {2, 3, 2, 3} (0, 0) 0 000000111 000000100 000000011 000000011 000000011 000000011 110000001 101111000 101111100 {48}
2388 9 1/2 0.384615 {2, 3, 3, 2} (1.5708, 0) -3.14159 000000111 000000100 000000011 000000011 000000011 000000011 110000001 101111000 101111100 {48}
2389 9 1/2 0.375 {3, 4, 3, 4} (0, 0) 0 000000011 000000010 000000010 000000001 000000001 000000001 000000001 111000000 100111100 {288}
2390 9 1/2 0.375 {3, 4, 4, 3} (1.5708, 0) -3.14159 000000011 000000010 000000010 000000001 000000001 000000001 000000001 111000000 100111100 {288}
2391 9 1/2 0.3 {1, 2, 1, 2} (0, 0) 0 000000111 000000011 000000011 000000011 000000011 000000011 100000001 111111000 111111100 {80}
2392 9 1/2 0.3 {1, 2, 2, 1} (1.5708, 0) -3.14159 000000111 000000011 000000011 000000011 000000011 000000011 100000001 111111000 111111100 {80}
2393 9 1/2 0.285714 {2, 3, 2, 3} (0, 0) 0 000000011 000000010 000000001 000000001 000000001 000000001 000000001 110000000 101111100 {160}
2394 9 1/2 0.285714 {2, 3, 3, 2} (1.5708, 0) -3.14159 000000011 000000010 000000001 000000001 000000001 000000001 000000001 110000000 101111100 {160}
2395 9 1/2 0.166667 {0, 1, 0, 1} (0, 0) 0 000000001 000000001 000000001 000000001 000000001 000000001 000000001 000000001 111111110 {112}
2396 9 1/2 0.166667 {0, 1, 1, 0} (1.5708, 0) -3.14159 000000001 000000001 000000001 000000001 000000001 000000001 000000001 000000001 111111110 {112}
2397 9 2/5 9.75078 {1, 2, 1, 2} (0, 0) 0 000010011 000001101 000001101 000000110 100000010 011000111 011101001 100111001 111001110 {8}
2398 9 2/5 9.75078 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001101 000001101 000000110 100000010 011000111 011101001 100111001 111001110 {8}
2399 9 2/5 9.73607 {6, 7, 6, 7} (0, 0) 0 000011111 000001111 000001110 000000111 100001111 111010111 111111001 111111001 110111110 {16}
2400 9 2/5 9.73607 {6, 7, 7, 6} (1.5708, 0) -3.14159 000011111 000001111 000001110 000000111 100001111 111010111 111111001 111111001 110111110 {16}
2401 9 2/5 9.34752 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000001100 100000001 011100011 011100001 111001001 111011110 {4}
2402 9 2/5 9.34752 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000001100 100000001 011100011 011100001 111001001 111011110 {4}
2403 9 2/5 75.7771 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000000011 100000000 011000000 011000000 111100000 111100000 {12}
2404 9 2/5 75.7771 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000000011 100000000 011000000 011000000 111100000 111100000 {12}
2405 9 2/5 7.63932 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000001000 100000011 011100000 111000001 111010001 111010110 {4}
2406 9 2/5 7.63932 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000001000 100000011 011100000 111000001 111010001 111010110 {4}
2407 9 2/5 68.541 {2, 3, 2, 3} (0, 0) 0 000011010 000001111 000000011 000000011 100000101 110000000 010010000 111100001 011110010 {16}
2408 9 2/5 68.541 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011010 000001111 000000011 000000011 100000101 110000000 010010000 111100001 011110010 {16}
2409 9 2/5 64.0689 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000110 000000001 110000011 001100001 111101001 111011110 {8}
2410 9 2/5 64.0689 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000110 000000001 110000011 001100001 111101001 111011110 {8}
2411 9 2/5 6.98684 {1, 2, 1, 2} (0, 0) 0 000101100 000011111 000011111 100000011 011000110 111000001 111010000 011110001 011101010 {8}
2412 9 2/5 6.98684 {1, 2, 2, 1} (1.5708, 0) -3.14159 000101100 000011111 000011111 100000011 011000110 111000001 111010000 011110001 011101010 {8}
2413 9 2/5 6.58359 {2, 3, 2, 3} (0, 0) 0 000001101 000001100 000000011 000000011 000000010 110000101 110001001 001110000 101101100 {48}
2414 9 2/5 6.58359 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001100 000000011 000000011 000000010 110000101 110001001 001110000 101101100 {48}
2415 9 2/5 6.52786 {3, 8, 7, 4} (0, 0) 0 000001100 000001011 000000111 000000010 000000001 110000011 101000011 011101100 011011100 {16}
2416 9 2/5 6.52786 {3, 8, 4, 7} (1.5708, 0) -3.14159 000001100 000001011 000000111 000000010 000000001 110000011 101000011 011101100 011011100 {16}
2417 9 2/5 52.3607 {1, 2, 1, 2} (0, 0) 0 000010101 000001111 000001111 000000011 100000011 011000001 111000010 011110100 111111000 {20}
2418 9 2/5 52.3607 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010101 000001111 000001111 000000011 100000011 011000001 111000010 011110100 111111000 {20}
2419 9 2/5 50.5967 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000001 001000001 100100000 111101100 {8}
2420 9 2/5 50.5967 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000000 010000001 001000001 100100000 111101100 {8}
2421 9 2/5 5.78885 {3, 4, 3, 4} (0, 0) 0 000001111 000001011 000000110 000000101 000000101 110000010 101110001 111001001 110110110 {20}
2422 9 2/5 5.78885 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001011 000000110 000000101 000000101 110000010 101110001 111001001 110110110 {20}
2423 9 2/5 5.42705 {2, 3, 2, 3} (0, 0) 0 000001101 000000100 000000010 000000010 000000001 100000000 110000001 001100001 100010110 {32}
2424 9 2/5 5.42705 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000000100 000000010 000000010 000000001 100000000 110000001 001100001 100010110 {32}
2425 9 2/5 5.27864 {1, 2, 1, 2} (0, 0) 0 000011011 000000111 000000111 000000100 100001011 100010001 011100000 111010001 111011010 {4}
2426 9 2/5 5.27864 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000000111 000000111 000000100 100001011 100010001 011100000 111010001 111011010 {4}
2427 9 2/5 5.26393 {6, 7, 6, 7} (0, 0) 0 000011111 000001111 000000111 000000110 100000111 110000111 111111001 111111001 111011110 {16}
2428 9 2/5 5.26393 {6, 7, 7, 6} (1.5708, 0) 3.14159 000011111 000001111 000000111 000000110 100000111 110000111 111111001 111111001 111011110 {16}
2429 9 2/5 5.10557 {2, 3, 2, 3} (0, 0) 0 000010111 000001101 000001011 000001011 100000100 011100011 110010010 101101101 111101010 {4}
2430 9 2/5 5.10557 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001101 000001011 000001011 100000100 011100011 110010010 101101101 111101010 {4}
2431 9 2/5 47.8885 {2, 3, 2, 3} (0, 0) 0 000011110 000001011 000000111 000000111 100000100 110000001 101110001 111100000 011101100 {4}
2432 9 2/5 47.8885 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011110 000001011 000000111 000000111 100000100 110000001 101110001 111100000 011101100 {4}
2433 9 2/5 45.1246 {2, 3, 2, 3} (0, 0) 0 000011001 000001011 000000101 000000101 100000010 110000000 001100010 010010100 111100000 {24}
2434 9 2/5 45.1246 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011001 000001011 000000101 000000101 100000010 110000000 001100010 010010100 111100000 {24}
2435 9 2/5 40.6525 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000110 000000101 110000011 001110001 111101001 111011110 {8}
2436 9 2/5 40.6525 {0, 1, 1, 0} (1.5708, 0) 3.14159 000001011 000001011 000000111 000000110 000000101 110000011 001110001 111101001 111011110 {8}
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2437 9 2/5 4.87539 {2, 3, 2, 3} (0, 0) 0 000011001 000001010 000000101 000000101 100000011 110000000 001100010 010010100 101110000 {24}
2438 9 2/5 4.87539 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011001 000001010 000000101 000000101 100000011 110000000 001100010 010010100 101110000 {24}
2439 9 2/5 4.83688 {7, 8, 7, 8} (0, 0) 0 000001111 000001111 000001011 000000111 000000011 111000111 110101011 111111100 111111100 {4}
2440 9 2/5 4.83688 {7, 8, 8, 7} (1.5708, 0) -3.14159 000001111 000001111 000001011 000000111 000000011 111000111 110101011 111111100 111111100 {4}
2441 9 2/5 4.78346 {0, 2, 5, 6} (1.5708, 0) 0.96804 000111101 000101111 000011111 110010101 101100011 111000011 111100001 011011001 111111110 {4}
2442 9 2/5 4.78346 {0, 2, 6, 5} (1.5708, 0) -2.17355 000111101 000101111 000011111 110010101 101100011 111000011 111100001 011011001 111111110 {4}
2443 9 2/5 4.22291 {7, 8, 7, 8} (0, 0) 0 000001011 000001011 000000111 000000111 000000100 110000000 001110000 111100000 111100000 {32}
2444 9 2/5 4.22291 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001011 000001011 000000111 000000111 000000100 110000000 001110000 111100000 111100000 {32}
2445 9 2/5 4 {1, 2, 1, 2} (0, 0) 0 000010010 000001111 000001111 000001100 100000010 011100101 011101001 111010001 011001110 {4}
2446 9 2/5 4 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010010 000001111 000001111 000001100 100000010 011100101 011101001 111010001 011001110 {4}
2447 9 2/5 36.1803 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000101 000000101 110000001 001110001 111000001 111111110 {8}
2448 9 2/5 36.1803 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000101 000000101 110000001 001110001 111000001 111111110 {8}
2449 9 2/5 33.4164 {2, 3, 2, 3} (0, 0) 0 000011011 000001110 000000011 000000011 100000101 110000000 010010001 111100000 101110100 {28}
2450 9 2/5 33.4164 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000001110 000000011 000000011 100000101 110000000 010010001 111100000 101110100 {28}
2451 9 2/5 31.7082 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001101 000001011 110000001 001100010 111000010 110101100 111110000 {16}
2452 9 2/5 31.7082 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001101 000001011 110000001 001100010 111000010 110101100 111110000 {16}
2453 9 2/5 3.71885 {6, 7, 6, 7} (0, 0) 0 000011111 000010111 000001111 000000110 110001111 101010111 111111001 111111001 111011110 {4}
2454 9 2/5 3.71885 {6, 7, 7, 6} (1.5708, 0) -3.14159 000011111 000010111 000001111 000000110 110001111 101010111 111111001 111111001 111011110 {4}
2455 9 2/5 3.70075 {0, 1, 4, 3} (1.5708, 0) 0.96804 000001100 000001010 000000110 000000101 000000011 110000111 101101001 011011001 000111110 {4}
2456 9 2/5 3.70075 {0, 1, 3, 4} (1.5708, 0) -2.17355 000001100 000001010 000000110 000000101 000000011 110000111 101101001 011011001 000111110 {4}
2457 9 2/5 3.65836 {1, 2, 1, 2} (0, 0) 0 000010101 000001111 000001111 000001011 100000011 011100110 111001011 011111101 111110110 {4}
2458 9 2/5 3.65836 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010101 000001111 000001111 000001011 100000011 011100110 111001011 011111101 111110110 {4}
2459 9 2/5 3.57044 {2, 3, 2, 3} (0, 0) 0 000001011 000001001 000000111 000000111 000000101 110000010 001110011 101101101 111110110 {8}
2460 9 2/5 3.57044 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001011 000001001 000000111 000000111 000000101 110000010 001110011 101101101 111110110 {8}
2461 9 2/5 3.12868 {6, 7, 6, 7} (0, 0) 0 000111111 000011111 000000110 100001111 110001111 110110111 111111001 111111001 110111110 {4}
2462 9 2/5 3.12868 {6, 7, 7, 6} (1.5708, 0) -3.14159 000111111 000011111 000000110 100001111 110001111 110110111 111111001 111111001 110111110 {4}
2463 9 2/5 3.05573 {1, 4, 2, 3} (0, 0) 0 000001111 000000101 000000101 000000011 000000011 100000000 111000001 100110001 111110110 {16}
2464 9 2/5 3.05573 {1, 4, 3, 2} (1.5708, 0) -3.14159 000001111 000000101 000000101 000000011 000000011 100000000 111000001 100110001 111110110 {16}
2465 9 2/5 28.9443 {7, 8, 7, 8} (0, 0) 0 000001100 000000111 000000111 000000011 000000011 100000000 111000000 011110000 011110000 {36}
2466 9 2/5 28.9443 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001100 000000111 000000111 000000011 000000011 100000000 111000000 011110000 011110000 {36}
2467 9 2/5 25.5279 {2, 3, 2, 3} (0, 0) 0 000011111 000001100 000000111 000000111 100001001 110010011 111100011 101101101 101111110 {4}
2468 9 2/5 25.5279 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000001100 000000111 000000111 100001001 110010011 111100011 101101101 101111110 {4}
2469 9 2/5 24.4721 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000000011 100000001 011000011 011000001 111101001 111111110 {8}
2470 9 2/5 24.4721 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000000011 100000001 011000011 011000001 111101001 111111110 {8}
2471 9 2/5 24.3713 {6, 7, 6, 7} (0, 0) 0 000011111 000001111 000000111 000000111 100000111 110000111 111111001 111111001 111111110 {4}
2472 9 2/5 24.3713 {6, 7, 7, 6} (1.5708, 0) -3.14159 000011111 000001111 000000111 000000111 100000111 110000111 111111001 111111001 111111110 {4}
2473 9 2/5 22.7639 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000111 000000110 000000101 110000111 001111001 111101001 111011110 {8}
2474 9 2/5 22.7639 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000111 000000110 000000101 110000111 001111001 111101001 111011110 {8}
2475 9 2/5 20 {5, 7, 5, 7} (0, 0) 0 000001110 000001011 000001011 000000101 000000101 111000001 100110001 111000001 011111110 {36}
2476 9 2/5 20 {5, 7, 7, 5} (1.5708, 0) 3.14159 000001110 000001011 000001011 000000101 000000101 111000001 100110001 111000001 011111110 {36}
2477 9 2/5 2.91796 {1, 2, 1, 2} (0, 0) 0 000010101 000001111 000001111 000001010 100000011 011100001 111000010 011110100 111011000 {16}
2478 9 2/5 2.91796 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010101 000001111 000001111 000001010 100000011 011100001 111000010 011110100 111011000 {16}
2479 9 2/5 2.71353 {3, 4, 3, 4} (0, 0) 0 000001111 000000101 000000010 000000001 000000001 100000000 110000010 101000100 110110000 {16}
2480 9 2/5 2.71353 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000000101 000000010 000000001 000000001 100000000 110000010 101000100 110110000 {16}
2481 9 2/5 2.55279 {1, 2, 1, 2} (0, 0) 0 000011011 000001111 000001111 000000011 100000111 111000101 011011001 111110000 111111100 {16}
2482 9 2/5 2.55279 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000001111 000001111 000000011 100000111 111000101 011011001 111110000 111111100 {16}
2483 9 2/5 2.49001 {4, 5, 7, 6} (1.5708, 0) 1.40974 000111001 000011111 000011111 100000111 111000101 111000011 011110001 011101001 111111110 {4}
2484 9 2/5 2.49001 {4, 5, 6, 7} (1.5708, 0) -1.73185 000111001 000011111 000011111 100000111 111000101 111000011 011110001 011101001 111111110 {4}
2485 9 2/5 2.21115 {6, 7, 6, 7} (0, 0) 0 000011111 000010110 000001111 000001111 110000000 101100001 111100001 111100001 101101110 {4}
2486 9 2/5 2.21115 {6, 7, 7, 6} (1.5708, 0) 3.14159 000011111 000010110 000001111 000001111 110000000 101100001 111100001 111100001 101101110 {4}
2487 9 2/5 2.05573 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000010 100000001 010000000 001000000 100100000 111010000 {8}
2488 9 2/5 2.05573 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000010 100000001 010000000 001000000 100100000 111010000 {8}
2489 9 2/5 2.04679 {1, 2, 5, 4} (1.5708, 0) 1.40974 000100101 000010110 000001110 100000101 010000011 001000011 111100011 011011101 100111110 {4}
2490 9 2/5 2.04679 {1, 2, 4, 5} (1.5708, 0) -1.73185 000100101 000010110 000001110 100000101 010000011 001000011 111100011 011011101 100111110 {4}
2491 9 2/5 19.9443 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100000 111100000 {32}
2492 9 2/5 19.9443 {1, 6, 2, 5} (1.5708, 0) -3.14159 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100000 111100000 {32}
2493 9 2/5 18.2918 {1, 2, 1, 2} (0, 0) 0 000010110 000001111 000001111 000000001 100000011 011000101 111001011 111010101 011111110 {4}
2494 9 2/5 18.2918 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010110 000001111 000001111 000000001 100000011 011000101 111001011 111010101 011111110 {4}
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2495 9 2/5 17.2361 {2, 3, 2, 3} (0, 0) 0 000001011 000001010 000000101 000000101 000000001 110000011 001100000 110001001 101111010 {48}
2496 9 2/5 17.2361 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001011 000001010 000000101 000000101 000000001 110000011 001100000 110001001 101111010 {48}
2497 9 2/5 16.5836 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001101 000001011 110001001 001110010 111000010 110101100 111110000 {8}
2498 9 2/5 16.5836 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001101 000001011 110001001 001110010 111000010 110101100 111110000 {8}
2499 9 2/5 15.5279 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001111 000001011 110000000 001100011 111000001 111101001 111101110 {8}
2500 9 2/5 15.5279 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001111 000001011 110000000 001100011 111000001 111101001 111101110 {8}
2501 9 2/5 15.4721 {0, 4, 3, 1} (0, 0) 0 000101111 000011111 000000011 100001111 010001111 110110010 110110001 111111000 111110100 {16}
2502 9 2/5 15.4721 {0, 4, 1, 3} (1.5708, 0) -3.14159 000101111 000011111 000000011 100001111 010001111 110110010 110110001 111111000 111110100 {16}
2503 9 2/5 14.2082 {3, 4, 3, 4} (0, 0) 0 000001111 000000101 000000011 000000001 000000001 100000000 110000010 101000100 111110000 {16}
2504 9 2/5 14.2082 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000000101 000000011 000000001 000000001 100000000 110000010 101000100 111110000 {16}
2505 9 2/5 13.8197 {1, 2, 1, 2} (0, 0) 0 000011011 000000111 000000111 000000001 100001001 100010001 011000010 111000100 111111000 {8}
2506 9 2/5 13.8197 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000000111 000000111 000000001 100001001 100010001 011000010 111000100 111111000 {8}
2507 9 2/5 13.7812 {1, 2, 1, 2} (0, 0) 0 000010100 000001111 000001111 000001000 100000010 011100001 111000001 011010001 011001110 {8}
2508 9 2/5 13.7812 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010100 000001111 000001111 000001000 100000010 011100001 111000001 011010001 011001110 {8}
2509 9 2/5 12.7639 {1, 2, 1, 2} (0, 0) 0 000001011 000000101 000000101 000000011 000000011 100000010 011000001 100111001 111110110 {60}
2510 9 2/5 12.7639 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001011 000000101 000000101 000000011 000000011 100000010 011000001 100111001 111110110 {60}
2511 9 2/5 12.6631 {6, 7, 6, 7} (0, 0) 0 000111111 000010111 000001111 100011111 110101111 101110111 111111001 111111001 111111110 {4}
2512 9 2/5 12.6631 {6, 7, 7, 6} (1.5708, 0) 3.14159 000111111 000010111 000001111 100011111 110101111 101110111 111111001 111111001 111111110 {4}
2513 9 2/5 12.1115 {2, 3, 2, 3} (0, 0) 0 000011101 000001100 000000111 000000111 100000011 110000010 111100001 001111001 101110110 {12}
2514 9 2/5 12.1115 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011101 000001100 000000111 000000111 100000011 110000010 111100001 001111001 101110110 {12}
2515 9 2/5 11.8541 {0, 4, 5, 1} (0, 0) 0 000010010 000001010 000000110 000000011 100000001 010000001 001000001 111100001 000111110 {32}
2516 9 2/5 11.8541 {0, 4, 1, 5} (1.5708, 0) 3.14159 000010010 000001010 000000110 000000011 100000001 010000001 001000001 111100001 000111110 {32}
2517 9 2/5 11.0557 {3, 4, 3, 4} (0, 0) 0 000001011 000001010 000000110 000000101 000000101 110000010 001110001 111001001 100110110 {28}
2518 9 2/5 11.0557 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001011 000001010 000000110 000000101 000000101 110000010 001110001 111001001 100110110 {28}
2519 9 2/5 1.86951 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000001100 100000011 011100111 111101001 111011000 111011100 {4}
2520 9 2/5 1.86951 {1, 2, 2, 1} (1.5708, 0) 3.14159 000010111 000001111 000001111 000001100 100000011 011100111 111101001 111011000 111011100 {4}
2521 9 2/5 1.86223 {6, 7, 6, 7} (0, 0) 0 000101111 000010111 000001110 100001111 010000001 101100001 111100001 111100001 110111110 {4}
2522 9 2/5 1.86223 {6, 7, 7, 6} (1.5708, 0) 3.14159 000101111 000010111 000001110 100001111 010000001 101100001 111100001 111100001 110111110 {4}
2523 9 2/5 1.84262 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000000110 000000101 000000011 110000111 111101011 111011101 110111110 {8}
2524 9 2/5 1.84262 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000000110 000000101 000000011 110000111 111101011 111011101 110111110 {8}
2525 9 2/5 1.61301 {6, 7, 6, 7} (0, 0) 0 000011111 000011111 000001111 000001111 110000001 111100001 111100000 111100000 111111000 {8}
2526 9 2/5 1.61301 {6, 7, 7, 6} (1.5708, 0) -3.14159 000011111 000011111 000001111 000001111 110000001 111100001 111100000 111100000 111111000 {8}
2527 9 2/5 1.52786 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000001101 100000010 011100101 011101000 111010000 111101000 {4}
2528 9 2/5 1.52786 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000001101 100000010 011100101 011101000 111010000 111101000 {4}
2529 9 2/5 1.31672 {2, 3, 2, 3} (0, 0) 0 000001111 000001101 000000011 000000011 000000010 110000101 110001001 101110000 111101100 {16}
2530 9 2/5 1.31672 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001111 000001101 000000011 000000011 000000010 110000101 110001001 101110000 111101100 {16}
2531 9 2/5 1.11456 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000001001 100000111 011100001 111010011 111010101 111111110 {4}
2532 9 2/5 1.11456 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000001001 100000111 011100001 111010011 111010101 111111110 {4}
2533 9 2/5 1.03648 {3, 4, 3, 4} (0, 0) 0 000001111 000000101 000000010 000000001 000000001 100000001 110000010 101000100 110111000 {16}
2534 9 2/5 1.03648 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000000101 000000010 000000001 000000001 100000001 110000010 101000100 110111000 {16}
2535 9 2/5 0.937812 {2, 3, 2, 3} (0, 0) 0 000011111 000011111 000001111 000001111 110000011 111100100 111101000 111110001 111110010 {4}
2536 9 2/5 0.937812 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000011111 000001111 000001111 110000011 111100100 111101000 111110001 111110010 {4}
2537 9 2/5 0.844582 {1, 2, 1, 2} (0, 0) 0 000011101 000001111 000001111 000001010 100000111 111100011 111010001 011111001 111011110 {12}
2538 9 2/5 0.844582 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011101 000001111 000001111 000001010 100000111 111100011 111010001 011111001 111011110 {12}
2539 9 2/5 0.791796 {3, 4, 3, 4} (0, 0) 0 000001101 000000100 000000011 000000010 000000010 100000000 110000001 001110001 101000110 {16}
2540 9 2/5 0.791796 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001101 000000100 000000011 000000010 000000010 100000000 110000001 001110001 101000110 {16}
2541 9 2/5 0.767997 {1, 2, 1, 2} (0, 0) 0 000011011 000001111 000001111 000001101 100000111 111100001 011110001 111010001 111111110 {4}
2542 9 2/5 0.767997 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000001111 000001111 000001101 100000111 111100001 011110001 111010001 111111110 {4}
2543 9 2/5 0.71131 {1, 2, 1, 2} (0, 0) 0 000011101 000001111 000001111 000001010 100000111 111100011 111010000 011111001 111011010 {4}
2544 9 2/5 0.71131 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011101 000001111 000001111 000001010 100000111 111100011 111010000 011111001 111011010 {4}
2545 9 1/3 9 {6, 1, 3, 4} (0, 0) 2.0944 000001011 000001010 000000110 000000100 000000011 110000101 001101001 111010000 100011100 {52}
2546 9 1/3 9 {4, 8, 7, 5} (0, 0) 0 000000111 000000111 000000011 000000011 000000010 000000001 110000000 111110000 111101000 {32}
2547 9 1/3 9 {1, 6, 4, 3} (0, 0) -2.0944 000001011 000001010 000000110 000000100 000000011 110000101 001101001 111010000 100011100 {52}
2548 9 1/3 9 {1, 6, 3, 4} (1.5708, 1.0472) -3.14159 000001011 000001010 000000110 000000100 000000011 110000101 001101001 111010000 100011100 {52}
2549 9 1/3 9 {4, 8, 5, 7} (1.5708, 0) 3.14159 000000111 000000111 000000011 000000011 000000010 000000001 110000000 111110000 111101000 {32}
2550 9 1/3 9 {6, 1, 4, 3} (1.5708, -1.0472) 3.14159 000001011 000001010 000000110 000000100 000000011 110000101 001101001 111010000 100011100 {52}
2551 9 1/3 8 {1, 8, 7, 8} (0, 0) -3.14159 000010100 000001111 000001011 000000001 100000011 011000110 110001001 011011000 011110100 {16}
2552 9 1/3 8 {8, 1, 7, 8} (1.5708, -1.5708) 3.14159 000010100 000001111 000001011 000000001 100000011 011000110 110001001 011011000 011110100 {16}
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2553 9 1/3 7.75 {2, 3, 2, 3} (0, 0) 0 000010110 000001110 000000011 000000011 100000101 010000001 110010001 111100000 001111100 {20}
2554 9 1/3 7.75 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010110 000001110 000000011 000000011 100000101 010000001 110010001 111100000 001111100 {20}
2555 9 1/3 7.5 {0, 8, 3, 7} (0, 0) 2.0944 000100111 000010101 000001011 100000100 010000010 001000011 110100001 101011000 111001100 {4}
2556 9 1/3 7.5 {6, 7, 6, 7} (0, 0) 0 000001111 000000111 000000111 000000111 000000111 100000001 111110001 111110001 111111110 {8}
2557 9 1/3 7.5 {8, 0, 7, 3} (0, 0) -2.0944 000100111 000010101 000001011 100000100 010000010 001000011 110100001 101011000 111001100 {4}
2558 9 1/3 7.5 {8, 0, 3, 7} (1.5708, 1.0472) -3.14159 000100111 000010101 000001011 100000100 010000010 001000011 110100001 101011000 111001100 {4}
2559 9 1/3 7.5 {6, 7, 7, 6} (1.5708, 0) -3.14159 000001111 000000111 000000111 000000111 000000111 100000001 111110001 111110001 111111110 {8}
2560 9 1/3 7.5 {0, 8, 7, 3} (1.5708, -1.0472) 3.14159 000100111 000010101 000001011 100000100 010000010 001000011 110100001 101011000 111001100 {4}
2561 9 1/3 6.5 {4, 0, 1, 0} (0, 0) 2.0944 000011110 000001110 000001011 000000101 100000001 111000011 110100000 111001001 001111010 {10}
2562 9 1/3 6.5 {3, 2, 3, 5} (0, 0) 1.0472 000011011 000010100 000001111 000000111 110000011 101000000 011100000 101110001 101110010 {6}
2563 9 1/3 6.5 {0, 4, 0, 1} (0, 0) -2.0944 000011110 000001110 000001011 000000101 100000001 111000011 110100000 111001001 001111010 {10}
2564 9 1/3 6.5 {2, 3, 5, 3} (0, 0) -1.0472 000011011 000010100 000001111 000000111 110000011 101000000 011100000 101110001 101110010 {6}
2565 9 1/3 6.5 {0, 4, 1, 0} (1.5708, 1.0472) -3.14159 000011110 000001110 000001011 000000101 100000001 111000011 110100000 111001001 001111010 {10}
2566 9 1/3 6.5 {2, 3, 3, 5} (1.5708, 0.523599) -3.14159 000011011 000010100 000001111 000000111 110000011 101000000 011100000 101110001 101110010 {6}
2567 9 1/3 6.5 {4, 0, 0, 1} (1.5708, -1.0472) 3.14159 000011110 000001110 000001011 000000101 100000001 111000011 110100000 111001001 001111010 {10}
2568 9 1/3 6.5 {3, 2, 5, 3} (1.5708, -0.523599) 3.14159 000011011 000010100 000001111 000000111 110000011 101000000 011100000 101110001 101110010 {6}
2569 9 1/3 6.44444 {2, 3, 2, 3} (0, 0) 0 000011101 000001110 000000011 000000011 100000011 110000111 110001000 011111001 101111010 {8}
2570 9 1/3 6.44444 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011101 000001110 000000011 000000011 100000011 110000111 110001000 011111001 101111010 {8}
2571 9 1/3 6.25 {0, 5, 4, 1} (0, 0) 0 000010011 000001011 000000110 000000001 100000011 010000011 001000001 111011000 110111100 {16}
2572 9 1/3 6.25 {0, 5, 1, 4} (1.5708, 0) -3.14159 000010011 000001011 000000110 000000001 100000011 010000011 001000001 111011000 110111100 {16}
2573 9 1/3 6 {2, 0, 2, 1} (0, 0) 2.0944 000000101 000000101 000000011 000000010 000000010 000000001 110000010 001110101 111001010 {173}
2574 9 1/3 6 {5, 0, 1, 2} (0, 0) 1.0472 000001010 000000111 000000101 000000011 000000001 100000001 011000000 110100000 011111000 {58}
2575 9 1/3 6 {5, 1, 3, 1} (0, 0) -3.14159 000001010 000000101 000000100 000000011 000000001 100000001 011000010 100100101 010111010 {53}
2576 9 1/3 6 {0, 2, 1, 2} (0, 0) -2.0944 000000101 000000101 000000011 000000010 000000010 000000001 110000010 001110101 111001010 {173}
2577 9 1/3 6 {0, 5, 2, 1} (0, 0) -1.0472 000001010 000000111 000000101 000000011 000000001 100000001 011000000 110100000 011111000 {58}
2578 9 1/3 6 {0, 2, 2, 1} (1.5708, 1.0472) -3.14159 000000101 000000101 000000011 000000010 000000010 000000001 110000010 001110101 111001010 {173}
2579 9 1/3 6 {0, 5, 1, 2} (1.5708, 0.523599) -3.14159 000001010 000000111 000000101 000000011 000000001 100000001 011000000 110100000 011111000 {58}
2580 9 1/3 6 {1, 5, 3, 1} (1.5708, -1.5708) 3.14159 000001010 000000101 000000100 000000011 000000001 100000001 011000010 100100101 010111010 {53}
2581 9 1/3 6 {2, 0, 1, 2} (1.5708, -1.0472) 3.14159 000000101 000000101 000000011 000000010 000000010 000000001 110000010 001110101 111001010 {173}
2582 9 1/3 6 {5, 0, 2, 1} (1.5708, -0.523599) 3.14159 000001010 000000111 000000101 000000011 000000001 100000001 011000000 110100000 011111000 {58}
2583 9 1/3 58 {1, 2, 1, 2} (0, 0) 0 000010101 000001010 000001010 000000100 100000011 011000111 100101001 011011001 100011110 {8}
2584 9 1/3 58 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010101 000001010 000001010 000000100 100000011 011000111 100101001 011011001 100011110 {8}
2585 9 1/3 52 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001101 000001000 110000010 001100011 111000001 110011001 111001110 {4}
2586 9 1/3 52 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001101 000001000 110000010 001100011 111000001 110011001 111001110 {4}
2587 9 1/3 5.8 {0, 4, 3, 1} (0, 0) 0 000100111 000010111 000001101 100000111 010000111 001000010 111110001 110111000 111110100 {8}
2588 9 1/3 5.8 {0, 4, 1, 3} (1.5708, 0) -3.14159 000100111 000010111 000001101 100000111 010000111 001000010 111110001 110111000 111110100 {8}
2589 9 1/3 5.77778 {2, 3, 2, 3} (0, 0) 0 000011111 000010011 000001111 000001111 110000101 101100110 101111000 111101001 111110010 {4}
2590 9 1/3 5.77778 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000010011 000001111 000001111 110000101 101100110 101111000 111101001 111110010 {4}
2591 9 1/3 5.75 {7, 8, 7, 8} (0, 0) 0 000001111 000001000 000000111 000000011 000000011 110000011 101000000 101111000 101111000 {32}
2592 9 1/3 5.75 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001111 000001000 000000111 000000011 000000011 110000011 101000000 101111000 101111000 {32}
2593 9 1/3 5.5 {3, 4, 3, 4} (0, 0) 0 000001111 000000101 000000101 000000011 000000011 100000000 111000001 100110000 111110100 {52}
2594 9 1/3 5.5 {0, 6, 3, 6} (0, 0) -3.14159 000011011 000001111 000001100 000000011 100000110 111000001 011010001 110110001 110101110 {8}
2595 9 1/3 5.5 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000000101 000000101 000000011 000000011 100000000 111000001 100110000 111110100 {52}
2596 9 1/3 5.5 {6, 0, 3, 6} (1.5708, -1.5708) 3.14159 000011011 000001111 000001100 000000011 100000110 111000001 011010001 110110001 110101110 {8}
2597 9 1/3 5.25 {4, 7, 8, 6} (1.5708, -2.0944) -1.0472 000011111 000010011 000001000 000000111 110001110 101010111 100111001 110111001 110101110 {2}
2598 9 1/3 5.25 {7, 4, 6, 8} (1.5708, 2.0944) -1.0472 000011111 000010011 000001000 000000111 110001110 101010111 100111001 110111001 110101110 {2}
2599 9 1/3 5.25 {7, 4, 8, 6} (1.10715, 3.14159) 2.63623 000011111 000010011 000001000 000000111 110001110 101010111 100111001 110111001 110101110 {2}
2600 9 1/3 5.25 {4, 7, 6, 8} (1.10715, 0) -2.63623 000011111 000010011 000001000 000000111 110001110 101010111 100111001 110111001 110101110 {2}
2601 9 1/3 42 {1, 2, 1, 2} (0, 0) 0 000010011 000001101 000001101 000000100 100000010 011000011 011100010 100011101 111001010 {28}
2602 9 1/3 42 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001101 000001101 000000100 100000010 011000011 011100010 100011101 111001010 {28}
2603 9 1/3 40 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001101 000001011 110000000 001100011 111000000 110101000 111101000 {8}
2604 9 1/3 40 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001101 000001011 110000000 001100011 111000000 110101000 111101000 {8}
2605 9 1/3 4.75 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001101 000001010 110000100 001100011 111010001 110101001 111001110 {4}
2606 9 1/3 4.75 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001101 000001010 110000100 001100011 111010001 110101001 111001110 {4}
2607 9 1/3 4.71429 {0, 1, 6, 3} (1.5708, 0) 1.42745 000110111 000101111 000011001 110001011 101000111 011100011 110010011 110111101 111111110 {4}
2608 9 1/3 4.71429 {0, 1, 3, 6} (1.5708, 0) -1.71414 000110111 000101111 000011001 110001011 101000111 011100011 110010011 110111101 111111110 {4}
2609 9 1/3 4.66667 {1, 2, 1, 2} (0, 0) 0 000010011 000001101 000001101 000000101 100000010 011000010 011100011 100011101 111100110 {16}
2610 9 1/3 4.66667 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001101 000001101 000000101 100000010 011000010 011100011 100011101 111100110 {16}
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2611 9 1/3 4.5 {2, 0, 2, 1} (0, 0) 2.0944 000001110 000001110 000000111 000000001 000000001 110000001 111000011 111000101 001111110 {73}
2612 9 1/3 4.5 {1, 7, 6, 7} (0, 0) 1.0472 000010111 000001010 000000101 000000001 100000111 010000001 101010000 110010001 101111010 {22}
2613 9 1/3 4.5 {2, 8, 4, 8} (0, 0) -3.14159 000010111 000001011 000000101 000000001 100000001 010000011 101000011 110001100 111111100 {83}
2614 9 1/3 4.5 {0, 2, 1, 2} (0, 0) -2.0944 000001110 000001110 000000111 000000001 000000001 110000001 111000011 111000101 001111110 {73}
2615 9 1/3 4.5 {7, 1, 7, 6} (0, 0) -1.0472 000010111 000001010 000000101 000000001 100000111 010000001 101010000 110010001 101111010 {22}
2616 9 1/3 4.5 {0, 2, 2, 1} (1.5708, 1.0472) -3.14159 000001110 000001110 000000111 000000001 000000001 110000001 111000011 111000101 001111110 {73}
2617 9 1/3 4.5 {7, 1, 6, 7} (1.5708, 0.523599) -3.14159 000010111 000001010 000000101 000000001 100000111 010000001 101010000 110010001 101111010 {22}
2618 9 1/3 4.5 {8, 2, 4, 8} (1.5708, -1.5708) 3.14159 000010111 000001011 000000101 000000001 100000001 010000011 101000011 110001100 111111100 {83}
2619 9 1/3 4.5 {2, 0, 1, 2} (1.5708, -1.0472) 3.14159 000001110 000001110 000000111 000000001 000000001 110000001 111000011 111000101 001111110 {73}
2620 9 1/3 4.5 {1, 7, 7, 6} (1.5708, -0.523599) 3.14159 000010111 000001010 000000101 000000001 100000111 010000001 101010000 110010001 101111010 {22}
2621 9 1/3 4.42857 {2, 3, 5, 6} (1.5708, 3.14159) -1.42745 000011101 000001101 000001010 000000110 100000011 111000001 110100001 001110000 110011100 {4}
2622 9 1/3 4.42857 {2, 3, 6, 5} (1.5708, -3.14159) 1.71414 000011101 000001101 000001010 000000110 100000011 111000001 110100001 001110000 110011100 {4}
2623 9 1/3 4.4 {7, 8, 7, 8} (0, 0) 0 000010111 000001100 000000011 000000011 100000111 010000011 110010011 101111100 101111100 {4}
2624 9 1/3 4.4 {7, 8, 8, 7} (1.5708, 0) -3.14159 000010111 000001100 000000011 000000011 100000111 010000011 110010011 101111100 101111100 {4}
2625 9 1/3 4.125 {2, 3, 2, 3} (0, 0) 0 000011111 000001111 000000011 000000011 100000010 110000101 110001001 111110001 111101110 {24}
2626 9 1/3 4.125 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000001111 000000011 000000011 100000010 110000101 110001001 111110001 111101110 {24}
2627 9 1/3 4 {7, 0, 5, 0} (0, 0) 2.47465 000111111 000011111 000000111 100011011 110100111 110100101 111011000 111110001 111111010 {2}
2628 9 1/3 4 {0, 3, 6, 2} (0, 0) 0.666946 000011101 000010011 000001111 000001111 110000111 101100011 101110001 011111000 111111100 {4}
2629 9 1/3 4 {0, 7, 0, 5} (0, 0) -2.47465 000111111 000011111 000000111 100011011 110100111 110100101 111011000 111110001 111111010 {2}
2630 9 1/3 4 {3, 0, 2, 6} (0, 0) -0.666946 000011101 000010011 000001111 000001111 110000111 101100011 101110001 011111000 111111100 {4}
2631 9 1/3 4 {5, 2, 4, 6} (0.857072, -1.5708) -1.44547 000010101 000001111 000001010 000000001 100000011 011000101 110001010 011010100 110111000 {2}
2632 9 1/3 4 {2, 5, 6, 4} (0.857072, -1.5708) 1.44547 000010101 000001111 000001010 000000001 100000011 011000101 110001010 011010100 110111000 {2}
2633 9 1/3 4 {6, 4, 2, 5} (0.857072, 1.5708) 1.44547 000010101 000001111 000001010 000000001 100000011 011000101 110001010 011010100 110111000 {2}
2634 9 1/3 4 {3, 5, 1, 2} (0.857072, -2.61799) -1.44547 000001110 000001001 000000111 000000110 000000001 110000011 101100001 101101001 011011110 {3}
2635 9 1/3 4 {1, 2, 3, 5} (0.857072, 2.61799) -1.44547 000001110 000001001 000000111 000000110 000000001 110000011 101100001 101101001 011011110 {3}
2636 9 1/3 4 {2, 1, 5, 3} (0.857072, 0.523599) 1.44547 000001110 000001001 000000111 000000110 000000001 110000011 101100001 101101001 011011110 {3}
2637 9 1/3 4 {4, 6, 5, 2} (0.857072, 1.5708) -1.44547 000010101 000001111 000001010 000000001 100000011 011000101 110001010 011010100 110111000 {2}
2638 9 1/3 4 {5, 3, 2, 1}(0.857072, -0.523599) 1.44547 000001110 000001001 000000111 000000110 000000001 110000011 101100001 101101001 011011110 {3}
2639 9 1/3 4 {2, 3, 6, 5} (1.5708, 3.14159) -1.42745 000010011 000001110 000001001 000000101 100000010 011000001 010100001 110010000 101101100 {4}
2640 9 1/3 4 {2, 3, 5, 6} (1.5708, -3.14159) 1.71414 000010011 000001110 000001001 000000101 100000010 011000001 010100001 110010000 101101100 {4}
2641 9 1/3 4 {5, 3, 1, 2} (1.28976, 2.61799) 2.24593 000001110 000001001 000000111 000000110 000000001 110000011 101100001 101101001 011011110 {3}
2642 9 1/3 4 {4, 6, 2, 5} (1.0472, -2.61799) 3.14159 000010101 000001111 000001010 000000001 100000011 011000101 110001010 011010100 110111000 {2}
2643 9 1/3 4 {1, 2, 5, 3} (1.28976, -2.61799) 2.24593 000001110 000001001 000000111 000000110 000000001 110000011 101100001 101101001 011011110 {3}
2644 9 1/3 4 {2, 1, 3, 5} (1.28976, -0.523599) -2.24593 000001110 000001001 000000111 000000110 000000001 110000011 101100001 101101001 011011110 {3}
2645 9 1/3 4 {3, 5, 2, 1} (1.28976, 0.523599) -2.24593 000001110 000001001 000000111 000000110 000000001 110000011 101100001 101101001 011011110 {3}
2646 9 1/3 4 {6, 4, 5, 2} (1.0472, -0.523599) -3.14159 000010101 000001111 000001010 000000001 100000011 011000101 110001010 011010100 110111000 {1}
2647 9 1/3 4 {2, 5, 4, 6} (1.0472, 2.61799) 3.14159 000010101 000001111 000001010 000000001 100000011 011000101 110001010 011010100 110111000 {2}
2648 9 1/3 4 {5, 2, 6, 4} (1.0472, 0.523599) -3.14159 000010101 000001111 000001010 000000001 100000011 011000101 110001010 011010100 110111000 {1}
2649 9 1/3 4 {0, 7, 5, 0} (1.5708, 1.23732) -3.14159 000111111 000011111 000000111 100011011 110100111 110100101 111011000 111110001 111111010 {2}
2650 9 1/3 4 {3, 0, 6, 2} (1.5708, 0.333473) -3.14159 000011101 000010011 000001111 000001111 110000111 101100011 101110001 011111000 111111100 {4}
2651 9 1/3 4 {7, 0, 0, 5} (1.5708, -1.23732) 3.14159 000111111 000011111 000000111 100011011 110100111 110100101 111011000 111110001 111111010 {2}
2652 9 1/3 4 {0, 3, 2, 6} (1.5708, -0.333473) 3.14159 000011101 000010011 000001111 000001111 110000111 101100011 101110001 011111000 111111100 {4}
2653 9 1/3 38.5 {4, 5, 4, 5} (0, 0) 0 000100111 000011101 000011010 100000111 011000011 011000011 110100001 101111001 110111110 {4}
2654 9 1/3 38.5 {4, 5, 5, 4} (1.5708, 0) 3.14159 000100111 000011101 000011010 100000111 011000011 011000011 110100001 101111001 110111110 {4}
2655 9 1/3 36 {3, 4, 3, 4} (0, 0) 0 000001111 000001100 000001011 000000111 000000111 111000010 110110001 101111001 101110110 {12}
2656 9 1/3 36 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001100 000001011 000000111 000000111 111000010 110110001 101111001 101110110 {12}
2657 9 1/3 30 {0, 1, 0, 1} (0, 0) 0 000010111 000010111 000001100 000001011 110000000 001100011 111000000 110101000 110101000 {4}
2658 9 1/3 30 {0, 1, 1, 0} (1.5708, 0) -3.14159 000010111 000010111 000001100 000001011 110000000 001100011 111000000 110101000 110101000 {4}
2659 9 1/3 3.83333 {7, 8, 7, 8} (0, 0) 0 000001010 000001001 000000111 000000111 000000011 110000111 001101000 101111001 011111010 {36}
2660 9 1/3 3.83333 {7, 8, 8, 7} (1.5708, 0) -3.14159 000001010 000001001 000000111 000000111 000000011 110000111 001101000 101111001 011111010 {36}
2661 9 1/3 3.75 {0, 1, 0, 1} (0, 0) 0 000000111 000000111 000000100 000000011 000000001 000000001 111000001 110100000 110111100 {68}
2662 9 1/3 3.75 {0, 4, 6, 2} (1.5708, 0) -1.0472 000011010 000010111 000001101 000000011 110000010 101000011 011000001 110111001 011101110 {8}
2663 9 1/3 3.75 {5, 8, 6, 7} (1.5708, -2.0944) -1.0472 000111111 000001101 000000111 100011111 100101111 110110011 111110011 101111100 111111100 {2}
2664 9 1/3 3.75 {0, 5, 3, 2} (1.5708, 0) 1.0472 000100110 000010111 000001011 100000100 010000000 001000001 110100001 111000000 011001100 {4}
2665 9 1/3 3.75 {8, 5, 7, 6} (1.5708, 2.0944) -1.0472 000111111 000001101 000000111 100011111 100101111 110110011 111110011 101111100 111111100 {2}
2666 9 1/3 3.75 {8, 5, 6, 7} (1.10715, 3.14159) 2.63623 000111111 000001101 000000111 100011111 100101111 110110011 111110011 101111100 111111100 {2}
2667 9 1/3 3.75 {0, 5, 2, 3} (1.5708, 0) -2.0944 000100110 000010111 000001011 100000100 010000000 001000001 110100001 111000000 011001100 {4}
2668 9 1/3 3.75 {5, 8, 7, 6} (1.10715, 0) -2.63623 000111111 000001101 000000111 100011111 100101111 110110011 111110011 101111100 111111100 {2}
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2669 9 1/3 3.75 {0, 4, 2, 6} (1.5708, -3.14159) -2.0944 000011010 000010111 000001101 000000011 110000010 101000011 011000001 110111001 011101110 {8}
2670 9 1/3 3.75 {0, 1, 1, 0} (1.5708, 0) -3.14159 000000111 000000111 000000100 000000011 000000001 000000001 111000001 110100000 110111100 {68}
2671 9 1/3 3.625 {2, 3, 2, 3} (0, 0) 0 000011101 000001110 000000011 000000011 100000011 110000100 110001000 011110001 101110010 {28}
2672 9 1/3 3.625 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011101 000001110 000000011 000000011 100000011 110000100 110001000 011110001 101110010 {28}
2673 9 1/3 3.6 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000000011 000000001 000000001 110000101 110001001 111000000 111111100 {16}
2674 9 1/3 3.6 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000000011 000000001 000000001 110000101 110001001 111000000 111111100 {16}
2675 9 1/3 3.5 {1, 7, 2, 3} (0, 0) 2.0944 000001011 000000111 000000100 000000001 000000001 100000011 011000011 110001100 110111100 {92}
2676 9 1/3 3.5 {8, 1, 3, 2} (0, 0) 1.0472 000001011 000000111 000000100 000000001 000000001 100000011 011000011 110001100 110111100 {36}
2677 9 1/3 3.5 {7, 1, 3, 2} (0, 0) -2.0944 000001011 000000111 000000100 000000001 000000001 100000011 011000011 110001100 110111100 {92}
2678 9 1/3 3.5 {1, 8, 2, 3} (0, 0) -1.0472 000001011 000000111 000000100 000000001 000000001 100000011 011000011 110001100 110111100 {36}
2679 9 1/3 3.5 {8, 5, 6, 7} (1.5708, 2.0944) 1.0472 000001010 000001001 000000111 000000100 000000011 110000010 001100001 101011000 011010100 {4}
2680 9 1/3 3.5 {5, 2, 6, 4} (0.523599, -2.61799) -3.14159 000010111 000001111 000001010 000000011 100000001 011000101 110001000 111100000 110111000 {1}
2681 9 1/3 3.5 {4, 6, 5, 2} (0.857072, -1.5708) -1.44547 000010110 000001101 000001011 000000011 100000001 011000110 110001011 101101101 011110110 {3}
2682 9 1/3 3.5 {5, 8, 7, 6} (1.5708, -2.0944) 1.0472 000001010 000001001 000000111 000000100 000000011 110000010 001100001 101011000 011010100 {4}
2683 9 1/3 3.5 {6, 4, 2, 5} (0.857072, -1.5708) 1.44547 000010110 000001101 000001011 000000011 100000001 011000110 110001011 101101101 011110110 {3}
2684 9 1/3 3.5 {2, 5, 4, 6}(0.523599, -0.523599) 3.14159 000010111 000001111 000001010 000000011 100000001 011000101 110001000 111100000 110111000 {1}
2685 9 1/3 3.5 {6, 4, 5, 2} (0.523599, 2.61799) -3.14159 000010111 000001111 000001010 000000011 100000001 011000101 110001000 111100000 110111000 {1}
2686 9 1/3 3.5 {2, 5, 6, 4} (0.857072, 1.5708) 1.44547 000010110 000001101 000001011 000000011 100000001 011000110 110001011 101101101 011110110 {3}
2687 9 1/3 3.5 {5, 2, 4, 6} (0.857072, 1.5708) -1.44547 000010110 000001101 000001011 000000011 100000001 011000110 110001011 101101101 011110110 {3}
2688 9 1/3 3.5 {4, 6, 2, 5} (0.523599, 0.523599) 3.14159 000010111 000001111 000001010 000000011 100000001 011000101 110001000 111100000 110111000 {1}
2689 9 1/3 3.5 {5, 2, 6, 4} (1.0472, -2.61799) 3.14159 000010110 000001101 000001011 000000011 100000001 011000110 110001011 101101101 011110110 {3}
2690 9 1/3 3.5 {4, 6, 5, 2} (1.28976, -1.5708) -2.24593 000010111 000001111 000001010 000000011 100000001 011000101 110001000 111100000 110111000 {1}
2691 9 1/3 3.5 {6, 4, 2, 5} (1.28976, -1.5708) 2.24593 000010111 000001111 000001010 000000011 100000001 011000101 110001000 111100000 110111000 {1}
2692 9 1/3 3.5 {2, 5, 4, 6} (1.0472, -0.523599) 3.14159 000010110 000001101 000001011 000000011 100000001 011000110 110001011 101101101 011110110 {3}
2693 9 1/3 3.5 {6, 4, 5, 2} (1.0472, 2.61799) 3.14159 000010110 000001101 000001011 000000011 100000001 011000110 110001011 101101101 011110110 {3}
2694 9 1/3 3.5 {2, 5, 6, 4} (1.28976, 1.5708) 2.24593 000010111 000001111 000001010 000000011 100000001 011000101 110001000 111100000 110111000 {1}
2695 9 1/3 3.5 {5, 8, 6, 7} (1.10715, -3.14159) -2.63623 000001010 000001001 000000111 000000100 000000011 110000010 001100001 101011000 011010100 {4}
2696 9 1/3 3.5 {5, 2, 4, 6} (1.28976, 1.5708) -2.24593 000010111 000001111 000001010 000000011 100000001 011000101 110001000 111100000 110111000 {1}
2697 9 1/3 3.5 {4, 6, 2, 5} (1.0472, 0.523599) 3.14159 000010110 000001101 000001011 000000011 100000001 011000110 110001011 101101101 011110110 {3}
2698 9 1/3 3.5 {8, 5, 7, 6} (1.10715, 0) 2.63623 000001010 000001001 000000111 000000100 000000011 110000010 001100001 101011000 011010100 {4}
2699 9 1/3 3.5 {7, 1, 2, 3} (1.5708, 1.0472) -3.14159 000001011 000000111 000000100 000000001 000000001 100000011 011000011 110001100 110111100 {92}
2700 9 1/3 3.5 {1, 8, 3, 2} (1.5708, 0.523599) -3.14159 000001011 000000111 000000100 000000001 000000001 100000011 011000011 110001100 110111100 {36}
2701 9 1/3 3.5 {1, 7, 3, 2} (1.5708, -1.0472) 3.14159 000001011 000000111 000000100 000000001 000000001 100000011 011000011 110001100 110111100 {92}
2702 9 1/3 3.5 {8, 1, 2, 3} (1.5708, -0.523599) 3.14159 000001011 000000111 000000100 000000001 000000001 100000011 011000011 110001100 110111100 {36}
2703 9 1/3 3.44444 {2, 8, 7, 6} (0, 0) 2.0944 000101110 000011101 000000111 100001011 010000111 110100001 111010000 101110001 011111010 {4}
2704 9 1/3 3.44444 {8, 2, 6, 7} (0, 0) -2.0944 000101110 000011101 000000111 100001011 010000111 110100001 111010000 101110001 011111010 {4}
2705 9 1/3 3.44444 {8, 2, 7, 6} (1.5708, 1.0472) -3.14159 000101110 000011101 000000111 100001011 010000111 110100001 111010000 101110001 011111010 {4}
2706 9 1/3 3.44444 {2, 8, 6, 7} (1.5708, -1.0472) 3.14159 000101110 000011101 000000111 100001011 010000111 110100001 111010000 101110001 011111010 {4}
2707 9 1/3 3.42857 {0, 3, 4, 1} (1.5708, 0) -1.42745 000101010 000011001 000001111 100000110 010000101 111000011 001110011 101101100 011011100 {4}
2708 9 1/3 3.42857 {0, 3, 1, 4} (1.5708, 0) 1.71414 000101010 000011001 000001111 100000110 010000101 111000011 001110011 101101100 011011100 {4}
2709 9 1/3 3.33333 {2, 3, 2, 3} (0, 0) 0 000011101 000010011 000001111 000001111 110000011 101100000 101100000 011110000 111110000 {12}
2710 9 1/3 3.33333 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011101 000010011 000001111 000001111 110000011 101100000 101100000 011110000 111110000 {12}
2711 9 1/3 3.25 {2, 6, 7, 3} (0, 0) 0 000010110 000001111 000000101 000000011 100000001 010000000 111000000 110100000 011110000 {76}
2712 9 1/3 3.25 {1, 2, 5, 4} (0.588003, -3.14159) 2.24593 000011110 000001110 000000111 000000011 100000011 110000001 111000001 111110001 001111110 {2}
2713 9 1/3 3.25 {2, 3, 6, 5} (1.5708, 0) -1.0472 000011100 000011100 000001010 000000110 110000011 111000001 110100001 001110001 000011110 {24}
2714 9 1/3 3.25 {4, 5, 0, 6} (0.588003, -2.0944) 2.24593 000011100 000001111 000000111 000000010 100000011 110000001 111000001 011110000 011011100 {1}
2715 9 1/3 3.25 {7, 5, 3, 4} (0.523599, -1.5708) -3.14159 000101110 000010101 000001110 100000011 010000010 101000001 111000001 101110001 010101110 {1}
2716 9 1/3 3.25 {5, 4, 6, 0} (0.588003, -1.0472) -2.24593 000011100 000001111 000000111 000000010 100000011 110000001 111000001 011110000 011011100 {1}
2717 9 1/3 3.25 {2, 1, 4, 5} (0.588003, 0) -2.24593 000011110 000001110 000000111 000000011 100000011 110000001 111000001 111110001 001111110 {2}
2718 9 1/3 3.25 {0, 6, 4, 5} (0.588003, 2.0944) 2.24593 000011100 000001111 000000111 000000010 100000011 110000001 111000001 011110000 011011100 {1}
2719 9 1/3 3.25 {3, 4, 7, 5} (0.523599, 1.5708) -3.14159 000101110 000010101 000001110 100000011 010000010 101000001 111000001 101110001 010101110 {1}
2720 9 1/3 3.25 {0, 5, 3, 2} (1.5708, 0) 1.0472 000100110 000010111 000001010 100000101 010000000 001000001 110100000 111000001 010101010 {4}
2721 9 1/3 3.25 {6, 0, 5, 4} (0.588003, 1.0472) -2.24593 000011100 000001111 000000111 000000010 100000011 110000001 111000001 011110000 011011100 {1}
2722 9 1/3 3.25 {6, 0, 4, 5} (1.10715, -2.0944) -2.63623 000011100 000001111 000000111 000000010 100000011 110000001 111000001 011110000 011011100 {1}
2723 9 1/3 3.25 {0, 5, 2, 3} (1.5708, 0) -2.0944 000100110 000010111 000001010 100000101 010000000 001000001 110100000 111000001 010101010 {4}
2724 9 1/3 3.25 {3, 4, 5, 7} (1.0472, -1.5708) -3.14159 000101110 000010101 000001110 100000011 010000010 101000001 111000001 101110001 010101110 {1}
2725 9 1/3 3.25 {0, 6, 5, 4} (1.10715, -1.0472) 2.63623 000011100 000001111 000000111 000000010 100000011 110000001 111000001 011110000 011011100 {1}
2726 9 1/3 3.25 {2, 1, 5, 4} (1.5708, -2.0944) -2.0944 000011110 000001110 000000111 000000011 100000011 110000001 111000001 111110001 001111110 {2}
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2727 9 1/3 3.25 {4, 5, 6, 0} (1.10715, 2.0944) -2.63623 000011100 000001111 000000111 000000010 100000011 110000001 111000001 011110000 011011100 {1}
2728 9 1/3 3.25 {5, 7, 3, 4} (1.0472, 1.5708) -3.14159 000101110 000010101 000001110 100000011 010000010 101000001 111000001 101110001 010101110 {1}
2729 9 1/3 3.25 {5, 4, 0, 6} (1.10715, 1.0472) 2.63623 000011100 000001111 000000111 000000010 100000011 110000001 111000001 011110000 011011100 {1}
2730 9 1/3 3.25 {2, 3, 5, 6} (1.5708, -3.14159) -2.0944 000011100 000011100 000001010 000000110 110000011 111000001 110100001 001110001 000011110 {24}
2731 9 1/3 3.25 {1, 2, 4, 5} (1.5708, 2.0944) -2.0944 000011110 000001110 000000111 000000011 100000011 110000001 111000001 111110001 001111110 {2}
2732 9 1/3 3.25 {2, 6, 3, 7} (1.5708, 0) -3.14159 000010110 000001111 000000101 000000011 100000001 010000000 111000000 110100000 011110000 {76}
2733 9 1/3 3.11111 {2, 3, 2, 3} (0, 0) 0 000011011 000001111 000000111 000000111 100000010 110000000 011100001 111110000 111100100 {64}
2734 9 1/3 3.11111 {0, 1, 2, 1} (0, 0) -3.14159 000101110 000010110 000001111 100000001 010000011 101000100 111001001 111010001 001110110 {9}
2735 9 1/3 3.11111 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000001111 000000111 000000111 100000010 110000000 011100001 111110000 111100100 {64}
2736 9 1/3 3.11111 {1, 0, 2, 1} (1.5708, -1.5708) 3.14159 000101110 000010110 000001111 100000001 010000011 101000100 111001001 111010001 001110110 {9}
2737 9 1/3 3 {2, 0, 1, 0} (0, 0) -3.14159 000001011 000000110 000000101 000000100 000000011 100000000 011100000 110010001 101010010 {67}
2738 9 1/3 3 {6, 5, 0, 7} (0.857072, -2.61799) -1.44547 000011001 000001111 000000111 000000001 100000010 110000001 011000000 011010001 111101010 {1}
2739 9 1/3 3 {0, 7, 6, 5} (0.857072, 2.61799) -1.44547 000011001 000001111 000000111 000000001 100000010 110000001 011000000 011010001 111101010 {1}
2740 9 1/3 3 {7, 0, 5, 6} (0.857072, 0.523599) 1.44547 000011001 000001111 000000111 000000001 100000010 110000001 011000000 011010001 111101010 {1}
2741 9 1/3 3 {5, 6, 7, 0}(0.857072, -0.523599) 1.44547 000011001 000001111 000000111 000000001 100000010 110000001 011000000 011010001 111101010 {1}
2742 9 1/3 3 {5, 6, 0, 7} (1.28976, 2.61799) 2.24593 000011001 000001111 000000111 000000001 100000010 110000001 011000000 011010001 111101010 {1}
2743 9 1/3 3 {0, 7, 5, 6} (1.28976, -2.61799) 2.24593 000011001 000001111 000000111 000000001 100000010 110000001 011000000 011010001 111101010 {1}
2744 9 1/3 3 {7, 0, 6, 5} (1.28976, -0.523599) -2.24593 000011001 000001111 000000111 000000001 100000010 110000001 011000000 011010001 111101010 {1}
2745 9 1/3 3 {6, 5, 7, 0} (1.28976, 0.523599) -2.24593 000011001 000001111 000000111 000000001 100000010 110000001 011000000 011010001 111101010 {1}
2746 9 1/3 3 {0, 2, 1, 0} (1.5708, -1.5708) 3.14159 000001011 000000110 000000101 000000100 000000011 100000000 011100000 110010001 101010010 {67}
2747 9 1/3 28 {2, 3, 2, 3} (0, 0) 0 000001011 000001001 000000111 000000111 000000010 110000011 001100000 101111000 111101000 {64}
2748 9 1/3 28 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001011 000001001 000000111 000000111 000000010 110000011 001100000 101111000 111101000 {64}
2749 9 1/3 26.5 {2, 3, 2, 3} (0, 0) 0 000010111 000001100 000001011 000001011 100000111 011100010 110010001 101111001 101110110 {4}
2750 9 1/3 26.5 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001100 000001011 000001011 100000111 011100010 110010001 101111001 101110110 {4}
2751 9 1/3 26 {5, 6, 5, 6} (0, 0) 0 000011100 000010011 000001110 000001110 110000011 101100001 101100001 011110000 010011100 {16}
2752 9 1/3 26 {5, 6, 6, 5} (1.5708, 0) -3.14159 000011100 000010011 000001110 000001110 110000011 101100001 101100001 011110000 010011100 {16}
2753 9 1/3 25 {0, 4, 3, 1} (0, 0) 0 000101111 000011111 000000011 100001111 010001111 110110000 110110000 111110000 111110000 {16}
2754 9 1/3 25 {0, 4, 1, 3} (1.5708, 0) -3.14159 000101111 000011111 000000011 100001111 010001111 110110000 110110000 111110000 111110000 {16}
2755 9 1/3 24 {7, 8, 7, 8} (0, 0) 0 000001111 000000111 000000111 000000110 000000101 100000011 111110011 111101101 111011110 {100}
2756 9 1/3 24 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001111 000000111 000000111 000000110 000000101 100000011 111110011 111101101 111011110 {100}
2757 9 1/3 22.5 {1, 2, 1, 2} (0, 0) 0 000101111 000010111 000010111 100001111 011001011 100110011 111100001 111111000 111111100 {4}
2758 9 1/3 22.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 000101111 000010111 000010111 100001111 011001011 100110011 111100001 111111000 111111100 {4}
2759 9 1/3 20.5 {1, 2, 1, 2} (0, 0) 0 000010011 000001101 000001101 000000110 100000011 011000000 011100011 100110101 111010110 {8}
2760 9 1/3 20.5 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001101 000001101 000000110 100000011 011000000 011100011 100110101 111010110 {8}
2761 9 1/3 20 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000000101 100000001 011000000 011100000 111000000 111110000 {56}
2762 9 1/3 20 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000000101 100000001 011000000 011100000 111000000 111110000 {56}
2763 9 1/3 2.875 {5, 8, 6, 7} (0, 0) 0 000101111 000010011 000000101 100001100 010000011 100100001 101100011 110010100 111011100 {8}
2764 9 1/3 2.875 {4, 2, 3, 5} (0.857072, -1.5708) -1.44547 000101011 000011111 000010100 100000111 011001011 110010100 011101000 110110001 110110010 {1}
2765 9 1/3 2.875 {2, 4, 5, 3} (0.857072, -1.5708) 1.44547 000101011 000011111 000010100 100000111 011001011 110010100 011101000 110110001 110110010 {1}
2766 9 1/3 2.875 {5, 3, 2, 4} (0.857072, 1.5708) 1.44547 000101011 000011111 000010100 100000111 011001011 110010100 011101000 110110001 110110010 {1}
2767 9 1/3 2.875 {3, 5, 0, 1} (0.857072, -2.61799) -1.44547 000011100 000010111 000001011 000000011 110001111 101010101 110011011 011110100 011111100 {1}
2768 9 1/3 2.875 {0, 1, 3, 5} (0.857072, 2.61799) -1.44547 000011100 000010111 000001011 000000011 110001111 101010101 110011011 011110100 011111100 {1}
2769 9 1/3 2.875 {1, 0, 5, 3} (0.857072, 0.523599) 1.44547 000011100 000010111 000001011 000000011 110001111 101010101 110011011 011110100 011111100 {1}
2770 9 1/3 2.875 {3, 5, 4, 2} (0.857072, 1.5708) -1.44547 000101011 000011111 000010100 100000111 011001011 110010100 011101000 110110001 110110010 {1}
2771 9 1/3 2.875 {5, 3, 1, 0}(0.857072, -0.523599) 1.44547 000011100 000010111 000001011 000000011 110001111 101010101 110011011 011110100 011111100 {1}
2772 9 1/3 2.875 {5, 3, 0, 1} (1.28976, 2.61799) 2.24593 000011100 000010111 000001011 000000011 110001111 101010101 110011011 011110100 011111100 {1}
2773 9 1/3 2.875 {3, 5, 2, 4} (1.0472, -2.61799) 3.14159 000101011 000011111 000010100 100000111 011001011 110010100 011101000 110110001 110110010 {1}
2774 9 1/3 2.875 {0, 1, 5, 3} (1.28976, -2.61799) 2.24593 000011100 000010111 000001011 000000011 110001111 101010101 110011011 011110100 011111100 {1}
2775 9 1/3 2.875 {1, 0, 3, 5} (1.28976, -0.523599) -2.24593 000011100 000010111 000001011 000000011 110001111 101010101 110011011 011110100 011111100 {1}
2776 9 1/3 2.875 {3, 5, 1, 0} (1.28976, 0.523599) -2.24593 000011100 000010111 000001011 000000011 110001111 101010101 110011011 011110100 011111100 {1}
2777 9 1/3 2.875 {5, 3, 4, 2} (1.0472, -0.523599) -3.14159 000101011 000011111 000010100 100000111 011001011 110010100 011101000 110110001 110110010 {1}
2778 9 1/3 2.875 {2, 4, 3, 5} (1.0472, 2.61799) 3.14159 000101011 000011111 000010100 100000111 011001011 110010100 011101000 110110001 110110010 {1}
2779 9 1/3 2.875 {4, 2, 5, 3} (1.0472, 0.523599) -3.14159 000101011 000011111 000010100 100000111 011001011 110010100 011101000 110110001 110110010 {1}
2780 9 1/3 2.875 {5, 8, 7, 6} (1.5708, 0) -3.14159 000101111 000010011 000000101 100001100 010000011 100100001 101100011 110010100 111011100 {8}
2781 9 1/3 2.85714 {0, 1, 4, 3} (1.5708, 3.14159) -1.42745 000100101 000010101 000001100 100000011 010000011 001000010 111000011 000111101 110110110 {4}
2782 9 1/3 2.85714 {0, 1, 3, 4} (1.5708, -3.14159) 1.71414 000100101 000010101 000001100 100000011 010000011 001000010 111000011 000111101 110110110 {4}
2783 9 1/3 2.8 {2, 6, 7, 3} (0, 0) 0 000010111 000001110 000000101 000000011 100000111 010000001 111010000 110110000 101111000 {8}
2784 9 1/3 2.8 {2, 6, 3, 7} (1.5708, 0) 3.14159 000010111 000001110 000000101 000000011 100000111 010000001 111010000 110110000 101111000 {8}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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2785 9 1/3 2.75 {1, 8, 5, 4} (0, 0) 0 000001100 000001000 000000110 000000011 000000001 110000011 101000001 001101000 000111100 {16}
2786 9 1/3 2.75 {1, 2, 5, 4} (0.588003, -3.14159) 2.24593 000010111 000001011 000000111 000000001 100000001 010000001 101000001 111000000 111111100 {6}
2787 9 1/3 2.75 {8, 0, 7, 1} (0.857072, -1.5708) -1.44547 000010111 000010100 000001111 000001010 110000001 001100001 111000000 101100000 101011000 {4}
2788 9 1/3 2.75 {1, 3, 5, 6} (1.5708, 3.14159) 1.0472 000001010 000001001 000000110 000000101 000000011 110000101 001101001 101010001 010111110 {24}
2789 9 1/3 2.75 {4, 5, 0, 6} (0.588003, -2.0944) 2.24593 000011100 000001101 000000111 000000011 100000011 110000000 111000000 001110000 011110000 {1}
2790 9 1/3 2.75 {0, 3, 4, 7} (0.523599, -1.5708) -3.14159 000010111 000001011 000001010 000000101 100000001 011000101 100101000 111000000 110111000 {1}
2791 9 1/3 2.75 {5, 4, 6, 0} (0.588003, -1.0472) -2.24593 000011100 000001101 000000111 000000011 100000011 110000000 111000000 001110000 011110000 {1}
2792 9 1/3 2.75 {2, 1, 4, 5} (0.588003, 0) -2.24593 000010111 000001011 000000111 000000001 100000001 010000001 101000001 111000000 111111100 {6}
2793 9 1/3 2.75 {0, 8, 1, 7} (0.857072, -1.5708) 1.44547 000010111 000010100 000001111 000001010 110000001 001100001 111000000 101100000 101011000 {4}
2794 9 1/3 2.75 {0, 6, 4, 5} (0.588003, 2.0944) 2.24593 000011100 000001101 000000111 000000011 100000011 110000000 111000000 001110000 011110000 {1}
2795 9 1/3 2.75 {1, 7, 0, 8} (0.857072, 1.5708) 1.44547 000010111 000010100 000001111 000001010 110000001 001100001 111000000 101100000 101011000 {4}
2796 9 1/3 2.75 {6, 0, 5, 3} (0.588003, -3.14159) -2.24593 000101110 000011010 000000011 100001101 010000101 110100011 100110011 111001101 001111110 {2}
2797 9 1/3 2.75 {4, 7, 0, 3} (0.523599, 1.5708) -3.14159 000010111 000001011 000001010 000000101 100000001 011000101 100101000 111000000 110111000 {1}
2798 9 1/3 2.75 {3, 4, 6, 7} (1.5708, 0) 1.0472 000101100 000011010 000001111 100000111 010000111 111000001 101110000 011110000 001111000 {8}
2799 9 1/3 2.75 {7, 1, 8, 0} (0.857072, 1.5708) -1.44547 000010111 000010100 000001111 000001010 110000001 001100001 111000000 101100000 101011000 {4}
2800 9 1/3 2.75 {6, 0, 5, 4} (0.588003, 1.0472) -2.24593 000011100 000001101 000000111 000000011 100000011 110000000 111000000 001110000 011110000 {1}
2801 9 1/3 2.75 {0, 6, 3, 5} (0.588003, 0) 2.24593 000101110 000011010 000000011 100001101 010000101 110100011 100110011 111001101 001111110 {2}
2802 9 1/3 2.75 {0, 6, 5, 3} (1.5708, -1.0472) -2.0944 000101110 000011010 000000011 100001101 010000101 110100011 100110011 111001101 001111110 {2}
2803 9 1/3 2.75 {7, 1, 0, 8} (1.0472, -2.61799) 3.14159 000010111 000010100 000001111 000001010 110000001 001100001 111000000 101100000 101011000 {4}
2804 9 1/3 2.75 {6, 0, 4, 5} (1.10715, -2.0944) -2.63623 000011100 000001101 000000111 000000011 100000011 110000000 111000000 001110000 011110000 {1}
2805 9 1/3 2.75 {3, 4, 7, 6} (1.5708, 0) -2.0944 000101100 000011010 000001111 100000111 010000111 111000001 101110000 011110000 001111000 {8}
2806 9 1/3 2.75 {7, 4, 0, 3} (1.0472, -1.5708) 3.14159 000010111 000001011 000001010 000000101 100000001 011000101 100101000 111000000 110111000 {1}
2807 9 1/3 2.75 {6, 0, 3, 5} (1.5708, 1.0472) -2.0944 000101110 000011010 000000011 100001101 010000101 110100011 100110011 111001101 001111110 {2}
2808 9 1/3 2.75 {0, 6, 5, 4} (1.10715, -1.0472) 2.63623 000011100 000001101 000000111 000000011 100000011 110000000 111000000 001110000 011110000 {1}
2809 9 1/3 2.75 {1, 7, 8, 0} (1.0472, -0.523599) -3.14159 000010111 000010100 000001111 000001010 110000001 001100001 111000000 101100000 101011000 {2}
2810 9 1/3 2.75 {0, 8, 7, 1} (1.0472, 2.61799) 3.14159 000010111 000010100 000001111 000001010 110000001 001100001 111000000 101100000 101011000 {4}
2811 9 1/3 2.75 {2, 1, 5, 4} (1.5708, -2.0944) -2.0944 000010111 000001011 000000111 000000001 100000001 010000001 101000001 111000000 111111100 {6}
2812 9 1/3 2.75 {4, 5, 6, 0} (1.10715, 2.0944) -2.63623 000011100 000001101 000000111 000000011 100000011 110000000 111000000 001110000 011110000 {1}
2813 9 1/3 2.75 {3, 0, 4, 7} (1.0472, 1.5708) -3.14159 000010111 000001011 000001010 000000101 100000001 011000101 100101000 111000000 110111000 {1}
2814 9 1/3 2.75 {5, 4, 0, 6} (1.10715, 1.0472) 2.63623 000011100 000001101 000000111 000000011 100000011 110000000 111000000 001110000 011110000 {1}
2815 9 1/3 2.75 {1, 3, 6, 5} (1.5708, 0) 2.0944 000001010 000001001 000000110 000000101 000000011 110000101 001101001 101010001 010111110 {24}
2816 9 1/3 2.75 {8, 0, 1, 7} (1.0472, 0.523599) -3.14159 000010111 000010100 000001111 000001010 110000001 001100001 111000000 101100000 101011000 {2}
2817 9 1/3 2.75 {1, 2, 4, 5} (1.5708, 2.0944) -2.0944 000010111 000001011 000000111 000000001 100000001 010000001 101000001 111000000 111111100 {6}
2818 9 1/3 2.75 {1, 8, 4, 5} (1.5708, 0) 3.14159 000001100 000001000 000000110 000000011 000000001 110000011 101000001 001101000 000111100 {16}
2819 9 1/3 2.71429 {0, 1, 4, 5} (1.5708, 3.14159) -1.42745 000010101 000001101 000000111 000000011 100000010 010000010 111000001 001111000 111100100 {4}
2820 9 1/3 2.71429 {0, 1, 5, 4} (1.5708, -3.14159) 1.71414 000010101 000001101 000000111 000000011 100000010 010000010 111000001 001111000 111100100 {4}
2821 9 1/3 2.66667 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001001 000000101 000000011 111000000 110100000 110010000 111110000 {28}
2822 9 1/3 2.66667 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001001 000000101 000000011 111000000 110100000 110010000 111110000 {28}
2823 9 1/3 2.625 {2, 3, 2, 3} (0, 0) 0 000011001 000001111 000000111 000000111 100000001 110000000 011100010 011100100 111110000 {76}
2824 9 1/3 2.625 {1, 5, 2, 5} (0, 0) -3.14159 000101010 000010101 000000111 100001010 010000010 100100001 011000001 101110001 011001110 {8}
2825 9 1/3 2.625 {5, 4, 0, 6} (0.857072, -2.61799) -1.44547 000110011 000011111 000001111 100000100 110000011 011000000 011100011 111010101 111010110 {1}
2826 9 1/3 2.625 {0, 6, 5, 4} (0.857072, 2.61799) -1.44547 000110011 000011111 000001111 100000100 110000011 011000000 011100011 111010101 111010110 {1}
2827 9 1/3 2.625 {1, 5, 4, 2} (1.5708, 0) 1.0472 000100111 000010110 000001101 100000111 010000010 001000001 111100000 110110001 101101010 {4}
2828 9 1/3 2.625 {6, 0, 4, 5} (0.857072, 0.523599) 1.44547 000110011 000011111 000001111 100000100 110000011 011000000 011100011 111010101 111010110 {1}
2829 9 1/3 2.625 {4, 5, 6, 0}(0.857072, -0.523599) 1.44547 000110011 000011111 000001111 100000100 110000011 011000000 011100011 111010101 111010110 {1}
2830 9 1/3 2.625 {4, 5, 0, 6} (1.28976, 2.61799) 2.24593 000110011 000011111 000001111 100000100 110000011 011000000 011100011 111010101 111010110 {1}
2831 9 1/3 2.625 {0, 6, 4, 5} (1.28976, -2.61799) 2.24593 000110011 000011111 000001111 100000100 110000011 011000000 011100011 111010101 111010110 {1}
2832 9 1/3 2.625 {1, 5, 2, 4} (1.5708, 0) -2.0944 000100111 000010110 000001101 100000111 010000010 001000001 111100000 110110001 101101010 {4}
2833 9 1/3 2.625 {6, 0, 5, 4} (1.28976, -0.523599) -2.24593 000110011 000011111 000001111 100000100 110000011 011000000 011100011 111010101 111010110 {1}
2834 9 1/3 2.625 {5, 4, 6, 0} (1.28976, 0.523599) -2.24593 000110011 000011111 000001111 100000100 110000011 011000000 011100011 111010101 111010110 {1}
2835 9 1/3 2.625 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011001 000001111 000000111 000000111 100000001 110000000 011100010 011100100 111110000 {76}
2836 9 1/3 2.625 {5, 1, 2, 5} (1.5708, -1.5708) 3.14159 000101010 000010101 000000111 100001010 010000010 100100001 011000001 101110001 011001110 {8}
2837 9 1/3 2.6 {1, 5, 4, 2} (0, 0) 0 000100101 000010111 000001111 100000010 010000000 001000000 111000001 011100000 111000100 {8}
2838 9 1/3 2.6 {1, 5, 2, 4} (1.5708, 0) 3.14159 000100101 000010111 000001111 100000010 010000000 001000000 111000001 011100000 111000100 {8}
2839 9 1/3 2.57143 {2, 3, 6, 5} (1.5708, 3.14159) -1.42745 000010011 000001111 000001001 000000101 100000010 011000000 010100000 110010000 111100000 {4}
2840 9 1/3 2.57143 {2, 3, 5, 6} (1.5708, -3.14159) 1.71414 000010011 000001111 000001001 000000101 100000010 011000000 010100000 110010000 111100000 {4}
2841 9 1/3 2.5 {0, 4, 5, 4} (0, 0) 2.47465 000110111 000101111 000011011 110011111 101101111 011110101 110111011 111110100 111111100 {3}
2842 9 1/3 2.5 {7, 0, 7, 3} (0, 0) 1.42745 000101111 000011101 000010011 100000001 011001111 110010111 110011011 101011101 111111110 {4}
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2843 9 1/3 2.5 {4, 0, 4, 5} (0, 0) -2.47465 000110111 000101111 000011011 110011111 101101111 011110101 110111011 111110100 111111100 {3}
2844 9 1/3 2.5 {0, 7, 3, 7} (0, 0) -1.42745 000101111 000011101 000010011 100000001 011001111 110010111 110011011 101011101 111111110 {4}
2845 9 1/3 2.5 {4, 0, 5, 4} (1.5708, 1.23732) -3.14159 000110111 000101111 000011011 110011111 101101111 011110101 110111011 111110100 111111100 {3}
2846 9 1/3 2.5 {0, 7, 7, 3} (1.5708, 0.713724) -3.14159 000101111 000011101 000010011 100000001 011001111 110010111 110011011 101011101 111111110 {4}
2847 9 1/3 2.5 {0, 4, 4, 5} (1.5708, -1.23732) 3.14159 000110111 000101111 000011011 110011111 101101111 011110101 110111011 111110100 111111100 {3}
2848 9 1/3 2.5 {7, 0, 3, 7} (1.5708, -0.713724) 3.14159 000101111 000011101 000010011 100000001 011001111 110010111 110011011 101011101 111111110 {4}
2849 9 1/3 2.46154 {0, 1, 2, 3} (1.5708, 0) -0.56207 000010110 000001110 000000101 000000011 100000101 010000011 111010001 110101001 001111110 {4}
2850 9 1/3 2.46154 {0, 1, 3, 2} (1.5708, 0) 2.57952 000010110 000001110 000000101 000000011 100000101 010000011 111010001 110101001 001111110 {4}
2851 9 1/3 2.44444 {2, 3, 2, 3} (0, 0) 0 000011111 000001101 000000011 000000011 100000011 110000110 110001001 101111000 111110100 {28}
2852 9 1/3 2.44444 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000001101 000000011 000000011 100000011 110000110 110001001 101111000 111110100 {28}
2853 9 1/3 2.4 {7, 2, 7, 3} (0, 0) 2.0944 000010011 000001011 000000101 000000101 100000011 010000000 001100010 110010100 111110000 {4}
2854 9 1/3 2.4 {2, 8, 3, 7} (0, 0) 1.0472 000010011 000001011 000000101 000000101 100000011 010000000 001100010 110010100 111110000 {4}
2855 9 1/3 2.4 {2, 7, 3, 7} (0, 0) -2.0944 000010011 000001011 000000101 000000101 100000011 010000000 001100010 110010100 111110000 {4}
2856 9 1/3 2.4 {8, 2, 7, 3} (0, 0) -1.0472 000010011 000001011 000000101 000000101 100000011 010000000 001100010 110010100 111110000 {4}
2857 9 1/3 2.4 {2, 7, 7, 3} (1.5708, 1.0472) -3.14159 000010011 000001011 000000101 000000101 100000011 010000000 001100010 110010100 111110000 {4}
2858 9 1/3 2.4 {8, 2, 3, 7} (1.5708, 0.523599) -3.14159 000010011 000001011 000000101 000000101 100000011 010000000 001100010 110010100 111110000 {4}
2859 9 1/3 2.4 {7, 2, 3, 7} (1.5708, -1.0472) 3.14159 000010011 000001011 000000101 000000101 100000011 010000000 001100010 110010100 111110000 {4}
2860 9 1/3 2.4 {2, 8, 7, 3} (1.5708, -0.523599) 3.14159 000010011 000001011 000000101 000000101 100000011 010000000 001100010 110010100 111110000 {4}
2861 9 1/3 2.375 {1, 2, 4, 3} (0.588003, -3.14159) 2.24593 000101111 000010111 000001111 100000011 010000011 101000011 111000000 111111001 111111010 {2}
2862 9 1/3 2.375 {1, 2, 4, 5} (1.5708, 3.14159) 1.0472 000100111 000010011 000001011 100000111 010000001 001000001 100100001 111100000 111111100 {8}
2863 9 1/3 2.375 {2, 1, 3, 4} (0.588003, 0) -2.24593 000101111 000010111 000001111 100000011 010000011 101000011 111000000 111111001 111111010 {2}
2864 9 1/3 2.375 {2, 1, 4, 3} (1.5708, -2.0944) -2.0944 000101111 000010111 000001111 100000011 010000011 101000011 111000000 111111001 111111010 {2}
2865 9 1/3 2.375 {1, 2, 5, 4} (1.5708, 0) 2.0944 000100111 000010011 000001011 100000111 010000001 001000001 100100001 111100000 111111100 {8}
2866 9 1/3 2.375 {1, 2, 3, 4} (1.5708, 2.0944) -2.0944 000101111 000010111 000001111 100000011 010000011 101000011 111000000 111111001 111111010 {2}
2867 9 1/3 2.33333 {2, 7, 5, 6} (0, 0) 2.0944 000100111 000010101 000001110 100000110 010000011 001000001 111100001 101110001 110011110 {16}
2868 9 1/3 2.33333 {7, 2, 6, 5} (0, 0) -2.0944 000100111 000010101 000001110 100000110 010000011 001000001 111100001 101110001 110011110 {16}
2869 9 1/3 2.33333 {7, 2, 5, 6} (1.5708, 1.0472) -3.14159 000100111 000010101 000001110 100000110 010000011 001000001 111100001 101110001 110011110 {16}
2870 9 1/3 2.33333 {2, 7, 6, 5} (1.5708, -1.0472) 3.14159 000100111 000010101 000001110 100000110 010000011 001000001 111100001 101110001 110011110 {16}
2871 9 1/3 2.28571 {0, 1, 8, 6} (1.5708, 3.14159) -1.42745 000010110 000010011 000001110 000001011 110000101 001100000 101010001 111100000 010110100 {12}
2872 9 1/3 2.28571 {0, 1, 6, 8} (1.5708, -3.14159) 1.71414 000010110 000010011 000001110 000001011 110000101 001100000 101010001 111100000 010110100 {12}
2873 9 1/3 2.25 {7, 2, 7, 3} (0, 0) 2.0944 000010011 000001011 000000101 000000101 100000011 010000011 001100010 110011100 111111000 {4}
2874 9 1/3 2.25 {2, 8, 3, 7} (0, 0) 1.0472 000010011 000001011 000000101 000000101 100000011 010000011 001100010 110011100 111111000 {4}
2875 9 1/3 2.25 {2, 7, 3, 7} (0, 0) -2.0944 000010011 000001011 000000101 000000101 100000011 010000011 001100010 110011100 111111000 {4}
2876 9 1/3 2.25 {8, 2, 7, 3} (0, 0) -1.0472 000010011 000001011 000000101 000000101 100000011 010000011 001100010 110011100 111111000 {4}
2877 9 1/3 2.25 {2, 3, 6, 5} (0.588003, -3.14159) 2.24593 000001111 000001001 000000101 000000011 000000010 110000010 101000000 100111001 111100010 {6}
2878 9 1/3 2.25 {0, 1, 4, 5} (1.5708, 3.14159) 1.0472 000010010 000001010 000000100 000000100 100000001 010000001 001100011 110000101 000011110 {16}
2879 9 1/3 2.25 {5, 6, 0, 7} (0.588003, -2.0944) 2.24593 000001110 000000111 000000110 000000011 000000001 100000001 111000000 111100000 010111000 {1}
2880 9 1/3 2.25 {6, 5, 7, 0} (0.588003, -1.0472) -2.24593 000001110 000000111 000000110 000000011 000000001 100000001 111000000 111100000 010111000 {1}
2881 9 1/3 2.25 {3, 2, 5, 6} (0.588003, 0) -2.24593 000001111 000001001 000000101 000000011 000000010 110000010 101000000 100111001 111100010 {6}
2882 9 1/3 2.25 {0, 7, 5, 6} (0.588003, 2.0944) 2.24593 000001110 000000111 000000110 000000011 000000001 100000001 111000000 111100000 010111000 {1}
2883 9 1/3 2.25 {5, 6, 2, 8} (0.857072, -2.61799) -1.44547 000001011 000001010 000000111 000000101 000000010 110000101 001101000 111010000 101101000 {1}
2884 9 1/3 2.25 {1, 0, 6, 5} (1.5708, 1.0472) 1.0472 000011000 000001110 000000111 000000011 100000011 110000001 011000000 011110000 001111000 {2}
2885 9 1/3 2.25 {2, 8, 5, 6} (0.857072, 2.61799) -1.44547 000001011 000001010 000000111 000000101 000000010 110000101 001101000 111010000 101101000 {1}
2886 9 1/3 2.25 {0, 2, 3, 1} (1.5708, 3.14159) -1.0472 000001010 000001001 000000110 000000101 000000011 110000011 001100011 101011101 010111110 {8}
2887 9 1/3 2.25 {8, 2, 6, 5} (0.857072, 0.523599) 1.44547 000001011 000001010 000000111 000000101 000000010 110000101 001101000 111010000 101101000 {1}
2888 9 1/3 2.25 {7, 0, 6, 5} (0.588003, 1.0472) -2.24593 000001110 000000111 000000110 000000011 000000001 100000001 111000000 111100000 010111000 {1}
2889 9 1/3 2.25 {0, 1, 5, 6} (1.5708, -1.0472) 1.0472 000011000 000001110 000000111 000000011 100000011 110000001 011000000 011110000 001111000 {2}
2890 9 1/3 2.25 {6, 5, 8, 2}(0.857072, -0.523599) 1.44547 000001011 000001010 000000111 000000101 000000010 110000101 001101000 111010000 101101000 {1}
2891 9 1/3 2.25 {0, 1, 6, 5} (1.10715, 3.14159) 2.63623 000011000 000001110 000000111 000000011 100000011 110000001 011000000 011110000 001111000 {2}
2892 9 1/3 2.25 {6, 5, 2, 8} (1.28976, 2.61799) 2.24593 000001011 000001010 000000111 000000101 000000010 110000101 001101000 111010000 101101000 {1}
2893 9 1/3 2.25 {7, 0, 5, 6} (1.10715, -2.0944) -2.63623 000001110 000000111 000000110 000000011 000000001 100000001 111000000 111100000 010111000 {1}
2894 9 1/3 2.25 {2, 8, 6, 5} (1.28976, -2.61799) 2.24593 000001011 000001010 000000111 000000101 000000010 110000101 001101000 111010000 101101000 {1}
2895 9 1/3 2.25 {0, 2, 1, 3} (1.5708, 0) -2.0944 000001010 000001001 000000110 000000101 000000011 110000011 001100011 101011101 010111110 {8}
2896 9 1/3 2.25 {8, 2, 5, 6} (1.28976, -0.523599) -2.24593 000001011 000001010 000000111 000000101 000000010 110000101 001101000 111010000 101101000 {1}
2897 9 1/3 2.25 {5, 6, 8, 2} (1.28976, 0.523599) -2.24593 000001011 000001010 000000111 000000101 000000010 110000101 001101000 111010000 101101000 {1}
2898 9 1/3 2.25 {1, 0, 5, 6} (1.10715, 0) -2.63623 000011000 000001110 000000111 000000011 100000011 110000001 011000000 011110000 001111000 {2}
2899 9 1/3 2.25 {0, 7, 6, 5} (1.10715, -1.0472) 2.63623 000001110 000000111 000000110 000000011 000000001 100000001 111000000 111100000 010111000 {1}
2900 9 1/3 2.25 {3, 2, 6, 5} (1.5708, -2.0944) -2.0944 000001111 000001001 000000101 000000011 000000010 110000010 101000000 100111001 111100010 {6}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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2901 9 1/3 2.25 {5, 6, 7, 0} (1.10715, 2.0944) -2.63623 000001110 000000111 000000110 000000011 000000001 100000001 111000000 111100000 010111000 {1}
2902 9 1/3 2.25 {6, 5, 0, 7} (1.10715, 1.0472) 2.63623 000001110 000000111 000000110 000000011 000000001 100000001 111000000 111100000 010111000 {1}
2903 9 1/3 2.25 {0, 1, 5, 4} (1.5708, 0) 2.0944 000010010 000001010 000000100 000000100 100000001 010000001 001100011 110000101 000011110 {16}
2904 9 1/3 2.25 {2, 3, 5, 6} (1.5708, 2.0944) -2.0944 000001111 000001001 000000101 000000011 000000010 110000010 101000000 100111001 111100010 {6}
2905 9 1/3 2.25 {2, 7, 7, 3} (1.5708, 1.0472) -3.14159 000010011 000001011 000000101 000000101 100000011 010000011 001100010 110011100 111111000 {4}
2906 9 1/3 2.25 {8, 2, 3, 7} (1.5708, 0.523599) -3.14159 000010011 000001011 000000101 000000101 100000011 010000011 001100010 110011100 111111000 {4}
2907 9 1/3 2.25 {7, 2, 3, 7} (1.5708, -1.0472) 3.14159 000010011 000001011 000000101 000000101 100000011 010000011 001100010 110011100 111111000 {4}
2908 9 1/3 2.25 {2, 8, 7, 3} (1.5708, -0.523599) 3.14159 000010011 000001011 000000101 000000101 100000011 010000011 001100010 110011100 111111000 {4}
2909 9 1/3 2.2 {0, 5, 4, 1} (0, 0) 0 000010001 000001001 000000101 000000011 100000001 010000001 001000001 000100000 111111100 {24}
2910 9 1/3 2.2 {0, 5, 1, 4} (1.5708, 0) -3.14159 000010001 000001001 000000101 000000011 100000001 010000001 001000001 000100000 111111100 {24}
2911 9 1/3 2.14286 {0, 1, 4, 3} (1.5708, 0) -1.42745 000101010 000011010 000001111 100000101 010000101 111000011 001110011 111001100 001111100 {4}
2912 9 1/3 2.14286 {4, 0, 1, 3} (0.785398, -3.14159) -2.3664 000001110 000001010 000001001 000000111 000000101 111000001 100110000 110100000 001111000 {2}
2913 9 1/3 2.14286 {0, 4, 3, 1} (0.785398, 0) 2.3664 000001110 000001010 000001001 000000111 000000101 111000001 100110000 110100000 001111000 {2}
2914 9 1/3 2.14286 {0, 4, 1, 3} (1.5708, -1.0472) -1.71414 000001110 000001010 000001001 000000111 000000101 111000001 100110000 110100000 001111000 {2}
2915 9 1/3 2.14286 {4, 0, 3, 1} (1.5708, 1.0472) -1.71414 000001110 000001010 000001001 000000111 000000101 111000001 100110000 110100000 001111000 {2}
2916 9 1/3 2.14286 {0, 1, 3, 4} (1.5708, 0) 1.71414 000101010 000011010 000001111 100000101 010000101 111000011 001110011 111001100 001111100 {4}
2917 9 1/3 2.125 {2, 3, 2, 3} (0, 0) 0 000001101 000000110 000000011 000000011 000000010 100000101 110001011 011110101 101101110 {64}
2918 9 1/3 2.125 {3, 2, 6, 1} (0.588003, -2.0944) 2.24593 000111010 000011101 000001101 100000111 110000011 111000011 011100000 100111000 011111000 {1}
2919 9 1/3 2.125 {2, 3, 1, 6} (0.588003, -1.0472) -2.24593 000111010 000011101 000001101 100000111 110000011 111000011 011100000 100111000 011111000 {1}
2920 9 1/3 2.125 {6, 1, 3, 2} (0.588003, 2.0944) 2.24593 000111010 000011101 000001101 100000111 110000011 111000011 011100000 100111000 011111000 {1}
2921 9 1/3 2.125 {1, 5, 4, 2} (1.5708, 0) 1.0472 000100111 000010110 000001100 100000111 010000011 001000001 111100001 110110000 100111100 {4}
2922 9 1/3 2.125 {1, 6, 2, 3} (0.588003, 1.0472) -2.24593 000111010 000011101 000001101 100000111 110000011 111000011 011100000 100111000 011111000 {1}
2923 9 1/3 2.125 {1, 6, 3, 2} (1.10715, -2.0944) -2.63623 000111010 000011101 000001101 100000111 110000011 111000011 011100000 100111000 011111000 {1}
2924 9 1/3 2.125 {1, 5, 2, 4} (1.5708, 0) -2.0944 000100111 000010110 000001100 100000111 010000011 001000001 111100001 110110000 100111100 {4}
2925 9 1/3 2.125 {6, 1, 2, 3} (1.10715, -1.0472) 2.63623 000111010 000011101 000001101 100000111 110000011 111000011 011100000 100111000 011111000 {1}
2926 9 1/3 2.125 {3, 2, 1, 6} (1.10715, 2.0944) -2.63623 000111010 000011101 000001101 100000111 110000011 111000011 011100000 100111000 011111000 {1}
2927 9 1/3 2.125 {2, 3, 6, 1} (1.10715, 1.0472) 2.63623 000111010 000011101 000001101 100000111 110000011 111000011 011100000 100111000 011111000 {1}
2928 9 1/3 2.125 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000000110 000000011 000000011 000000010 100000101 110001011 011110101 101101110 {64}
2929 9 1/3 2.1 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000000111 000000011 110001011 110010011 111000000 111111001 111111010 {8}
2930 9 1/3 2.1 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000000111 000000011 110001011 110010011 111000000 111111001 111111010 {8}
2931 9 1/3 2 {1, 8, 1, 4} (0, 0) 1.0472 000001101 000001011 000000111 000000010 000000001 110000100 101001000 011100000 111010000 {90}
2932 9 1/3 2 {8, 1, 4, 1} (0, 0) -1.0472 000001101 000001011 000000111 000000010 000000001 110000100 101001000 011100000 111010000 {90}
2933 9 1/3 2 {8, 1, 1, 4} (1.5708, 0.523599) -3.14159 000001101 000001011 000000111 000000010 000000001 110000100 101001000 011100000 111010000 {90}
2934 9 1/3 2 {1, 8, 4, 1} (1.5708, -0.523599) 3.14159 000001101 000001011 000000111 000000010 000000001 110000100 101001000 011100000 111010000 {90}
2935 9 1/3 18 {1, 2, 1, 2} (0, 0) 0 000001011 000000100 000000100 000000010 000000010 100000001 011000001 100110001 100001110 {192}
2936 9 1/3 18 {0, 6, 2, 6} (0, 0) -3.14159 000010101 000001011 000000111 000000010 100000010 010000001 101000000 011110001 111001010 {6}
2937 9 1/3 18 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001011 000000100 000000100 000000010 000000010 100000001 011000001 100110001 100001110 {192}
2938 9 1/3 18 {6, 0, 2, 6} (1.5708, -1.5708) 3.14159 000010101 000001011 000000111 000000010 100000010 010000001 101000000 011110001 111001010 {6}
2939 9 1/3 16.5 {2, 3, 2, 3} (0, 0) 0 000011100 000001100 000000011 000000011 100000010 110000101 110001001 001110001 001101110 {24}
2940 9 1/3 16.5 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011100 000001100 000000011 000000011 100000010 110000101 110001001 001110001 001101110 {24}
2941 9 1/3 16 {6, 2, 6, 3} (0, 0) 1.0472 000010101 000001110 000001011 000000001 100000010 011000111 110001001 011011000 101101100 {6}
2942 9 1/3 16 {2, 5, 3, 5} (0, 0) -3.14159 000011100 000001111 000000111 000000011 100000010 110000001 111000001 011110001 011101110 {6}
2943 9 1/3 16 {2, 6, 3, 6} (0, 0) -1.0472 000010101 000001110 000001011 000000001 100000010 011000111 110001001 011011000 101101100 {6}
2944 9 1/3 16 {2, 6, 6, 3} (1.5708, 0.523599) -3.14159 000010101 000001110 000001011 000000001 100000010 011000111 110001001 011011000 101101100 {6}
2945 9 1/3 16 {5, 2, 3, 5} (1.5708, -1.5708) 3.14159 000011100 000001111 000000111 000000011 100000010 110000001 111000001 011110001 011101110 {6}
2946 9 1/3 16 {6, 2, 3, 6} (1.5708, -0.523599) 3.14159 000010101 000001110 000001011 000000001 100000010 011000111 110001001 011011000 101101100 {6}
2947 9 1/3 14.5 {2, 3, 2, 3} (0, 0) 0 000011101 000001110 000000011 000000011 100000000 110000111 110001011 011101101 101101110 {62}
2948 9 1/3 14.5 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011101 000001110 000000011 000000011 100000000 110000111 110001011 011101101 101101110 {62}
2949 9 1/3 14 {1, 5, 2, 5} (0, 0) 2.0944 000010111 000001100 000000011 000000001 100000110 010000011 110010001 101011000 101101100 {13}
2950 9 1/3 14 {7, 2, 7, 3} (0, 0) 1.0472 000010100 000001110 000001001 000000011 100000011 011000101 110001001 010110000 001111100 {14}
2951 9 1/3 14 {5, 1, 5, 2} (0, 0) -2.0944 000010111 000001100 000000011 000000001 100000110 010000011 110010001 101011000 101101100 {13}
2952 9 1/3 14 {2, 7, 3, 7} (0, 0) -1.0472 000010100 000001110 000001001 000000011 100000011 011000101 110001001 010110000 001111100 {14}
2953 9 1/3 14 {5, 1, 2, 5} (1.5708, 1.0472) -3.14159 000010111 000001100 000000011 000000001 100000110 010000011 110010001 101011000 101101100 {13}
2954 9 1/3 14 {2, 7, 7, 3} (1.5708, 0.523599) -3.14159 000010100 000001110 000001001 000000011 100000011 011000101 110001001 010110000 001111100 {14}
2955 9 1/3 14 {1, 5, 5, 2} (1.5708, -1.0472) 3.14159 000010111 000001100 000000011 000000001 100000110 010000011 110010001 101011000 101101100 {13}
2956 9 1/3 14 {7, 2, 3, 7} (1.5708, -0.523599) 3.14159 000010100 000001110 000001001 000000011 100000011 011000101 110001001 010110000 001111100 {14}
2957 9 1/3 13 {1, 4, 5, 2} (0, 0) 2.0944 000010101 000001001 000000111 000000011 100000010 010000001 101000001 001110000 111101100 {16}
2958 9 1/3 13 {7, 0, 1, 4} (0, 0) 1.0472 000010011 000001111 000001001 000000101 100000011 011000011 010100000 110011000 111111000 {4}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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2959 9 1/3 13 {4, 1, 2, 5} (0, 0) -2.0944 000010101 000001001 000000111 000000011 100000010 010000001 101000001 001110000 111101100 {16}
2960 9 1/3 13 {0, 7, 4, 1} (0, 0) -1.0472 000010011 000001111 000001001 000000101 100000011 011000011 010100000 110011000 111111000 {4}
2961 9 1/3 13 {4, 1, 5, 2} (1.5708, 1.0472) -3.14159 000010101 000001001 000000111 000000011 100000010 010000001 101000001 001110000 111101100 {16}
2962 9 1/3 13 {0, 7, 1, 4} (1.5708, 0.523599) -3.14159 000010011 000001111 000001001 000000101 100000011 011000011 010100000 110011000 111111000 {4}
2963 9 1/3 13 {1, 4, 2, 5} (1.5708, -1.0472) 3.14159 000010101 000001001 000000111 000000011 100000010 010000001 101000001 001110000 111101100 {16}
2964 9 1/3 13 {7, 0, 4, 1} (1.5708, -0.523599) 3.14159 000010011 000001111 000001001 000000101 100000011 011000011 010100000 110011000 111111000 {4}
2965 9 1/3 12 {1, 7, 8, 7} (0, 0) 2.0944 000001111 000000111 000000011 000000011 000000011 100000001 110000010 111110101 111111010 {23}
2966 9 1/3 12 {3, 0, 3, 4} (0, 0) 1.0472 000010101 000001111 000000110 000000011 100000011 010000001 111000000 011110001 110111010 {9}
2967 9 1/3 12 {3, 6, 5, 6} (0, 0) -3.14159 000010110 000001010 000000111 000000011 100000000 010000001 101000001 111100001 001101110 {14}
2968 9 1/3 12 {7, 1, 7, 8} (0, 0) -2.0944 000001111 000000111 000000011 000000011 000000011 100000001 110000010 111110101 111111010 {23}
2969 9 1/3 12 {0, 3, 4, 3} (0, 0) -1.0472 000010101 000001111 000000110 000000011 100000011 010000001 111000000 011110001 110111010 {9}
2970 9 1/3 12 {7, 1, 8, 7} (1.5708, 1.0472) -3.14159 000001111 000000111 000000011 000000011 000000011 100000001 110000010 111110101 111111010 {23}
2971 9 1/3 12 {0, 3, 3, 4} (1.5708, 0.523599) -3.14159 000010101 000001111 000000110 000000011 100000011 010000001 111000000 011110001 110111010 {9}
2972 9 1/3 12 {6, 3, 5, 6} (1.5708, -1.5708) 3.14159 000010110 000001010 000000111 000000011 100000000 010000001 101000001 111100001 001101110 {14}
2973 9 1/3 12 {1, 7, 7, 8} (1.5708, -1.0472) 3.14159 000001111 000000111 000000011 000000011 000000011 100000001 110000010 111110101 111111010 {23}
2974 9 1/3 12 {3, 0, 4, 3} (1.5708, -0.523599) 3.14159 000010101 000001111 000000110 000000011 100000011 010000001 111000000 011110001 110111010 {9}
2975 9 1/3 11 {7, 2, 3, 4} (0, 0) 2.0944 000010101 000001001 000000111 000000010 100000010 010000000 101000001 001110000 111000100 {8}
2976 9 1/3 11 {2, 7, 4, 3} (0, 0) -2.0944 000010101 000001001 000000111 000000010 100000010 010000000 101000001 001110000 111000100 {8}
2977 9 1/3 11 {2, 7, 3, 4} (1.5708, 1.0472) -3.14159 000010101 000001001 000000111 000000010 100000010 010000000 101000001 001110000 111000100 {8}
2978 9 1/3 11 {7, 2, 4, 3} (1.5708, -1.0472) 3.14159 000010101 000001001 000000111 000000010 100000010 010000000 101000001 001110000 111000100 {8}
2979 9 1/3 10.5 {2, 3, 2, 3} (0, 0) 0 000011011 000001000 000000111 000000111 100000011 110000000 001100000 101110001 101110010 {102}
2980 9 1/3 10.5 {1, 5, 2, 5} (0, 0) -3.14159 000010111 000001010 000001001 000000011 100000111 011000111 100011000 110111001 101111010 {10}
2981 9 1/3 10.5 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000001000 000000111 000000111 100000011 110000000 001100000 101110001 101110010 {102}
2982 9 1/3 10.5 {5, 1, 2, 5} (1.5708, -1.5708) 3.14159 000010111 000001010 000001001 000000011 100000111 011000111 100011000 110111001 101111010 {10}
2983 9 1/3 10 {6, 2, 3, 2} (0, 0) 2.0944 000010101 000001001 000000110 000000011 100000011 010000000 101000000 001110001 110110010 {43}
2984 9 1/3 10 {4, 0, 4, 7} (0, 0) 1.0472 000101011 000010101 000001111 100000110 010000010 101000001 011100000 101110001 111001010 {9}
2985 9 1/3 10 {2, 6, 2, 3} (0, 0) -2.0944 000010101 000001001 000000110 000000011 100000011 010000000 101000000 001110001 110110010 {43}
2986 9 1/3 10 {0, 4, 7, 4} (0, 0) -1.0472 000101011 000010101 000001111 100000110 010000010 101000001 011100000 101110001 111001010 {9}
2987 9 1/3 10 {2, 6, 3, 2} (1.5708, 1.0472) -3.14159 000010101 000001001 000000110 000000011 100000011 010000000 101000000 001110001 110110010 {43}
2988 9 1/3 10 {0, 4, 4, 7} (1.5708, 0.523599) -3.14159 000101011 000010101 000001111 100000110 010000010 101000001 011100000 101110001 111001010 {9}
2989 9 1/3 10 {6, 2, 2, 3} (1.5708, -1.0472) 3.14159 000010101 000001001 000000110 000000011 100000011 010000000 101000000 001110001 110110010 {43}
2990 9 1/3 10 {4, 0, 7, 4} (1.5708, -0.523599) 3.14159 000101011 000010101 000001111 100000110 010000010 101000001 011100000 101110001 111001010 {9}
2991 9 1/3 1.875 {1, 8, 4, 7} (0, 0) 2.0944 000100110 000010100 000001011 100000101 010000011 001000011 110100000 101011000 001111000 {8}
2992 9 1/3 1.875 {8, 1, 7, 4} (0, 0) -2.0944 000100110 000010100 000001011 100000101 010000011 001000011 110100000 101011000 001111000 {8}
2993 9 1/3 1.875 {1, 6, 4, 5} (0.588003, -3.14159) 2.24593 000101111 000010010 000000101 100001111 010000001 100100001 101100010 110100101 101111010 {2}
2994 9 1/3 1.875 {1, 2, 4, 5} (1.5708, 3.14159) 1.0472 000100111 000010010 000001010 100000111 010000001 001000001 100100000 111100001 100111010 {12}
2995 9 1/3 1.875 {4, 2, 7, 1} (0.588003, -2.0944) 2.24593 000110101 000001111 000001011 100010101 100100010 011000000 110100000 011010000 111100000 {1}
2996 9 1/3 1.875 {2, 4, 1, 7} (0.588003, -1.0472) -2.24593 000110101 000001111 000001011 100010101 100100010 011000000 110100000 011010000 111100000 {1}
2997 9 1/3 1.875 {6, 1, 5, 4} (0.588003, 0) -2.24593 000101111 000010010 000000101 100001111 010000001 100100001 101100010 110100101 101111010 {2}
2998 9 1/3 1.875 {7, 1, 4, 2} (0.588003, 2.0944) 2.24593 000110101 000001111 000001011 100010101 100100010 011000000 110100000 011010000 111100000 {1}
2999 9 1/3 1.875 {1, 5, 7, 4} (0.857072, -2.61799) -1.44547 000100111 000011101 000011000 100000111 011000011 011000010 110100000 100111000 110110000 {1}
3000 9 1/3 1.875 {7, 4, 1, 5} (0.857072, 2.61799) -1.44547 000100111 000011101 000011000 100000111 011000011 011000010 110100000 100111000 110110000 {1}
3001 9 1/3 1.875 {4, 7, 5, 1} (0.857072, 0.523599) 1.44547 000100111 000011101 000011000 100000111 011000011 011000010 110100000 100111000 110110000 {1}
3002 9 1/3 1.875 {1, 7, 2, 4} (0.588003, 1.0472) -2.24593 000110101 000001111 000001011 100010101 100100010 011000000 110100000 011010000 111100000 {1}
3003 9 1/3 1.875 {5, 1, 4, 7}(0.857072, -0.523599) 1.44547 000100111 000011101 000011000 100000111 011000011 011000010 110100000 100111000 110110000 {1}
3004 9 1/3 1.875 {5, 1, 7, 4} (1.28976, 2.61799) 2.24593 000100111 000011101 000011000 100000111 011000011 011000010 110100000 100111000 110110000 {1}
3005 9 1/3 1.875 {1, 7, 4, 2} (1.10715, -2.0944) -2.63623 000110101 000001111 000001011 100010101 100100010 011000000 110100000 011010000 111100000 {1}
3006 9 1/3 1.875 {7, 4, 5, 1} (1.28976, -2.61799) 2.24593 000100111 000011101 000011000 100000111 011000011 011000010 110100000 100111000 110110000 {1}
3007 9 1/3 1.875 {4, 7, 1, 5} (1.28976, -0.523599) -2.24593 000100111 000011101 000011000 100000111 011000011 011000010 110100000 100111000 110110000 {1}
3008 9 1/3 1.875 {1, 5, 4, 7} (1.28976, 0.523599) -2.24593 000100111 000011101 000011000 100000111 011000011 011000010 110100000 100111000 110110000 {1}
3009 9 1/3 1.875 {7, 1, 2, 4} (1.10715, -1.0472) 2.63623 000110101 000001111 000001011 100010101 100100010 011000000 110100000 011010000 111100000 {1}
3010 9 1/3 1.875 {6, 1, 4, 5} (1.5708, -2.0944) -2.0944 000101111 000010010 000000101 100001111 010000001 100100001 101100010 110100101 101111010 {2}
3011 9 1/3 1.875 {4, 2, 1, 7} (1.10715, 2.0944) -2.63623 000110101 000001111 000001011 100010101 100100010 011000000 110100000 011010000 111100000 {1}
3012 9 1/3 1.875 {2, 4, 7, 1} (1.10715, 1.0472) 2.63623 000110101 000001111 000001011 100010101 100100010 011000000 110100000 011010000 111100000 {1}
3013 9 1/3 1.875 {1, 2, 5, 4} (1.5708, 0) 2.0944 000100111 000010010 000001010 100000111 010000001 001000001 100100000 111100001 100111010 {12}
3014 9 1/3 1.875 {1, 6, 5, 4} (1.5708, 2.0944) -2.0944 000101111 000010010 000000101 100001111 010000001 100100001 101100010 110100101 101111010 {2}
3015 9 1/3 1.875 {8, 1, 4, 7} (1.5708, 1.0472) -3.14159 000100110 000010100 000001011 100000101 010000011 001000011 110100000 101011000 001111000 {8}
3016 9 1/3 1.875 {1, 8, 7, 4} (1.5708, -1.0472) 3.14159 000100110 000010100 000001011 100000101 010000011 001000011 110100000 101011000 001111000 {8}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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3017 9 1/3 1.83333 {1, 2, 1, 2} (0, 0) 0 000000110 000000011 000000011 000000010 000000001 000000001 100000001 111100001 011011110 {48}
3018 9 1/3 1.83333 {1, 2, 2, 1} (1.5708, 0) -3.14159 000000110 000000011 000000011 000000010 000000001 000000001 100000001 111100001 011011110 {48}
3019 9 1/3 1.68 {1, 2, 1, 2} (0, 0) 0 000011111 000000111 000000111 000000101 100001011 100010000 111100001 111010000 111110100 {20}
3020 9 1/3 1.68 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011111 000000111 000000111 000000101 100001011 100010000 111100001 111010000 111110100 {20}
3021 9 1/3 1.66667 {1, 2, 1, 2} (0, 0) 0 000001100 000000111 000000111 000000010 000000001 100000011 111000000 011101000 011011000 {28}
3022 9 1/3 1.66667 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001100 000000111 000000111 000000010 000000001 100000011 111000000 011101000 011011000 {28}
3023 9 1/3 1.65625 {2, 3, 2, 3} (0, 0) 0 000010101 000001110 000001011 000001011 100000101 011100010 110010011 011101101 101110110 {4}
3024 9 1/3 1.65625 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010101 000001110 000001011 000001011 100000101 011100010 110010011 011101101 101110110 {4}
3025 9 1/3 1.625 {6, 2, 6, 5} (0, 0) 1.0472 000100110 000010101 000001001 100000110 010000011 001000000 110100001 100110001 011010110 {30}
3026 9 1/3 1.625 {2, 6, 5, 6} (0, 0) -1.0472 000100110 000010101 000001001 100000110 010000011 001000000 110100001 100110001 011010110 {30}
3027 9 1/3 1.625 {2, 6, 6, 5} (1.5708, 0.523599) -3.14159 000100110 000010101 000001001 100000110 010000011 001000000 110100001 100110001 011010110 {30}
3028 9 1/3 1.625 {6, 2, 5, 6} (1.5708, -0.523599) 3.14159 000100110 000010101 000001001 100000110 010000011 001000000 110100001 100110001 011010110 {30}
3029 9 1/3 1.61111 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000001001 100000111 011100011 111010010 111011100 111111000 {8}
3030 9 1/3 1.61111 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000001001 100000111 011100011 111010010 111011100 111111000 {8}
3031 9 1/3 1.58333 {1, 2, 1, 2} (0, 0) 0 000011011 000001111 000001111 000000010 100000100 111000001 011010000 111100000 111001000 {8}
3032 9 1/3 1.58333 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000001111 000001111 000000010 100000100 111000001 011010000 111100000 111001000 {8}
3033 9 1/3 1.55556 {6, 7, 6, 7} (0, 0) 0 000100111 000010111 000001110 100000111 010000111 001000001 111110000 111110000 110111000 {4}
3034 9 1/3 1.55556 {6, 7, 7, 6} (1.5708, 0) 3.14159 000100111 000010111 000001110 100000111 010000111 001000001 111110000 111110000 110111000 {4}
3035 9 1/3 1.5 {8, 1, 8, 5} (0, 0) 1.0472 000010111 000001111 000000101 000000011 100000111 010000000 111010000 110110000 111110000 {4}
3036 9 1/3 1.5 {1, 8, 5, 8} (0, 0) -1.0472 000010111 000001111 000000101 000000011 100000111 010000000 111010000 110110000 111110000 {4}
3037 9 1/3 1.5 {1, 8, 8, 5} (1.5708, 0.523599) -3.14159 000010111 000001111 000000101 000000011 100000111 010000000 111010000 110110000 111110000 {4}
3038 9 1/3 1.5 {8, 1, 5, 8} (1.5708, -0.523599) 3.14159 000010111 000001111 000000101 000000011 100000111 010000000 111010000 110110000 111110000 {4}
3039 9 1/3 1.4 {1, 6, 5, 2} (0, 0) 0 000010001 000001001 000000101 000000011 100000001 010000000 001000000 000100000 111110000 {24}
3040 9 1/3 1.4 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010001 000001001 000000101 000000011 100000001 010000000 001000000 000100000 111110000 {24}
3041 9 1/3 1.25 {3, 4, 3, 4} (0, 0) 0 000001010 000000110 000000101 000000011 000000011 100000001 011000001 110110000 001111100 {40}
3042 9 1/3 1.25 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001010 000000110 000000101 000000011 000000011 100000001 011000001 110110000 001111100 {40}
3043 9 1/3 1.16667 {2, 3, 2, 3} (0, 0) 0 000011111 000001011 000000111 000000111 100000111 110000011 101110000 111111001 111111010 {32}
3044 9 1/3 1.16667 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000001011 000000111 000000111 100000111 110000011 101110000 111111001 111111010 {32}
3045 9 1/3 1.12 {1, 2, 1, 2} (0, 0) 0 000011111 000001111 000001111 000000110 100000001 111000001 111100011 111100100 111011100 {8}
3046 9 1/3 1.12 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011111 000001111 000001111 000000110 100000001 111000001 111100011 111100100 111011100 {8}
3047 9 1/3 1.1 {1, 2, 1, 2} (0, 0) 0 000000110 000000011 000000011 000000001 000000001 000000001 100000001 111000001 011111110 {8}
3048 9 1/3 1.1 {1, 2, 2, 1} (1.5708, 0) -3.14159 000000110 000000011 000000011 000000001 000000001 000000001 100000001 111000001 011111110 {8}
3049 9 1/3 1.05882 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000000111 000000111 000000011 110000011 111100000 111111001 111111010 {8}
3050 9 1/3 1.05882 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000000111 000000111 000000011 110000011 111100000 111111001 111111010 {8}
3051 9 1/3 1.05556 {1, 2, 1, 2} (0, 0) 0 000011101 000001111 000001111 000000111 100000010 111000000 111100001 011110000 111100100 {4}
3052 9 1/3 1.05556 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011101 000001111 000001111 000000111 100000010 111000000 111100001 011110000 111100100 {4}
3053 9 1/3 0.941176 {1, 2, 1, 2} (0, 0) 0 000001100 000000111 000000111 000000011 000000011 100000011 111000011 011111101 011111110 {8}
3054 9 1/3 0.941176 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001100 000000111 000000111 000000011 000000011 100000011 111000011 011111101 011111110 {8}
3055 9 1/3 0.933333 {2, 3, 2, 3} (0, 0) 0 000001010 000000111 000000011 000000011 000000001 100000001 010000000 111100000 011111000 {8}
3056 9 1/3 0.933333 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001010 000000111 000000011 000000011 000000001 100000001 010000000 111100000 011111000 {8}
3057 9 1/3 0.888889 {2, 3, 2, 3} (0, 0) 0 000010101 000001111 000000111 000000111 100000010 010000000 111100001 011110000 111100100 {4}
3058 9 1/3 0.888889 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010101 000001111 000000111 000000111 100000010 010000000 111100001 011110000 111100100 {4}
3059 9 1/3 0.88 {3, 4, 3, 4} (0, 0) 0 000001111 000000101 000000101 000000011 000000011 100000011 111000001 100111000 111111100 {4}
3060 9 1/3 0.88 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000000101 000000101 000000011 000000011 100000011 111000001 100111000 111111100 {4}
3061 9 1/3 0.777778 {2, 3, 2, 3} (0, 0) 0 000011111 000001010 000000111 000000111 100000111 110000011 101110001 111111000 101111100 {12}
3062 9 1/3 0.777778 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000001010 000000111 000000111 100000111 110000011 101110001 111111000 101111100 {12}
3063 9 1/3 0.75 {2, 3, 2, 3} (0, 0) 0 000001111 000000101 000000011 000000011 000000010 100000011 110000001 101111000 111101100 {64}
3064 9 1/3 0.75 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001111 000000101 000000011 000000011 000000010 100000011 110000001 101111000 111101100 {64}
3065 9 1/3 0.72 {3, 4, 3, 4} (0, 0) 0 000001111 000000011 000000011 000000001 000000001 100000110 100001000 111001001 111110010 {4}
3066 9 1/3 0.72 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000000011 000000011 000000001 000000001 100000110 100001000 111001001 111110010 {4}
3067 9 1/3 0.666667 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000010 000000010 000000001 000000001 110000011 001100100 110011100 {32}
3068 9 1/3 0.666667 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000010 000000010 000000001 000000001 110000011 001100100 110011100 {32}
3069 9 1/3 0.65625 {2, 3, 2, 3} (0, 0) 0 000011111 000001001 000000111 000000111 100000111 110000001 101110010 101110100 111111000 {12}
3070 9 1/3 0.65625 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000001001 000000111 000000111 100000111 110000001 101110010 101110100 111111000 {12}
3071 9 1/3 0.48 {1, 2, 1, 2} (0, 0) 0 000001111 000000111 000000111 000000011 000000011 100000101 111001000 111110001 111111010 {4}
3072 9 1/3 0.48 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001111 000000111 000000111 000000011 000000011 100000101 111001000 111110001 111111010 {4}
3073 9 1/3 0.470588 {1, 2, 1, 2} (0, 0) 0 000011111 000001111 000001111 000000011 100001111 111010110 111011001 111111001 111110110 {8}
3074 9 1/3 0.470588 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011111 000001111 000001111 000000011 100001111 111010110 111011001 111111001 111110110 {8}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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3075 9 1/3 0.388889 {2, 3, 2, 3} (0, 0) 0 000001011 000000110 000000011 000000011 000000001 100000011 010000001 111101000 101111100 {4}
3076 9 1/3 0.388889 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001011 000000110 000000011 000000011 000000001 100000011 010000001 111101000 101111100 {4}
3077 9 1/3 0.380952 {2, 3, 2, 3} (0, 0) 0 000010111 000001101 000000111 000000111 100000111 010000010 111110001 101111000 111110100 {8}
3078 9 1/3 0.380952 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001101 000000111 000000111 100000111 010000010 111110001 101111000 111110100 {8}
3079 9 1/3 0.333333 {3, 4, 3, 4} (0, 0) 0 000001001 000000101 000000011 000000001 000000001 100000001 010000000 001000000 111111000 {4}
3080 9 1/3 0.333333 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000101 000000011 000000001 000000001 100000001 010000000 001000000 111111000 {4}
3081 9 1/3 0.222222 {3, 4, 3, 4} (0, 0) 0 000001001 000000101 000000011 000000001 000000001 100000001 010000001 001000000 111111100 {4}
3082 9 1/3 0.222222 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000101 000000011 000000001 000000001 100000001 010000001 001000000 111111100 {4}
3083 9 1/3 0.166667 {3, 4, 3, 4} (0, 0) 0 000001001 000000101 000000011 000000001 000000001 100000001 010000001 001000001 111111110 {4}
3084 9 1/3 0.166667 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000101 000000011 000000001 000000001 100000001 010000001 001000001 111111110 {4}
3085 9 1/4 8.82843 {2, 3, 2, 3} (0, 0) 0 000010101 000001001 000000011 000000011 100000101 010000001 100010000 001100000 111111000 {20}
3086 9 1/4 8.82843 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010101 000001001 000000011 000000011 100000101 010000001 100010000 001100000 111111000 {20}
3087 9 1/4 8.68629 {2, 3, 2, 3} (0, 0) 0 000001101 000001011 000000110 000000110 000000011 110000101 101101001 011110001 110011110 {12}
3088 9 1/4 8.68629 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001011 000000110 000000110 000000011 110000101 101101001 011110001 110011110 {12}
3089 9 1/4 60.2843 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000000111 000000100 110001011 110010011 111100001 111011001 111011110 {8}
3090 9 1/4 60.2843 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000000111 000000100 110001011 110010011 111100001 111011001 111011110 {8}
3091 9 1/4 6.68629 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000000111 000000101 110000011 110000011 111100001 111011001 111111110 {4}
3092 9 1/4 6.68629 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000000111 000000101 110000011 110000011 111100001 111011001 111111110 {4}
3093 9 1/4 6.34315 {3, 4, 3, 4} (0, 0) 0 000001010 000001001 000000110 000000101 000000101 110000011 001110010 101001101 010111010 {24}
3094 9 1/4 6.34315 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001010 000001001 000000110 000000101 000000101 110000011 001110010 101001101 010111010 {24}
3095 9 1/4 6 {3, 8, 7, 8} (0, 0) 2.35619 000010011 000001111 000001111 000000101 100000000 011000000 011100000 111000000 111100000 {4}
3096 9 1/4 6 {8, 3, 8, 7} (0, 0) -2.35619 000010011 000001111 000001111 000000101 100000000 011000000 011100000 111000000 111100000 {4}
3097 9 1/4 6 {8, 3, 7, 8} (1.5708, 1.1781) -3.14159 000010011 000001111 000001111 000000101 100000000 011000000 011100000 111000000 111100000 {4}
3098 9 1/4 6 {3, 8, 8, 7} (1.5708, -1.1781) 3.14159 000010011 000001111 000001111 000000101 100000000 011000000 011100000 111000000 111100000 {4}
3099 9 1/4 50.6274 {3, 4, 3, 4} (0, 0) 0 000001101 000001011 000001010 000000110 000000110 111000001 100110001 011110000 110001100 {12}
3100 9 1/4 50.6274 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001101 000001011 000001010 000000110 000000110 111000001 100110001 011110000 110001100 {12}
3101 9 1/4 46.6274 {2, 3, 2, 3} (0, 0) 0 000010110 000001111 000000001 000000001 100000101 010000010 110010000 110001000 011110000 {8}
3102 9 1/4 46.6274 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010110 000001111 000000001 000000001 100000101 010000010 110010000 110001000 011110000 {8}
3103 9 1/4 4.74755 {7, 0, 6, 1} (1.5708, -1.5708) -1.23096 000110111 000101111 000011010 110000110 101000111 011000001 110110001 111110000 110011100 {2}
3104 9 1/4 4.74755 {0, 7, 1, 6} (1.5708, 1.5708) -1.23096 000110111 000101111 000011010 110000110 101000111 011000001 110110001 111110000 110011100 {2}
3105 9 1/4 4.74755 {7, 0, 1, 6} (0.955317, 0) -3.14159 000110111 000101111 000011010 110000110 101000111 011000001 110110001 111110000 110011100 {2}
3106 9 1/4 4.74755 {0, 7, 6, 1} (0.955317, -3.14159) -3.14159 000110111 000101111 000011010 110000110 101000111 011000001 110110001 111110000 110011100 {2}
3107 9 1/4 4 {2, 8, 7, 8} (0, 0) 2.35619 000001111 000001111 000000101 000000011 000000011 110000000 111000000 110110000 111110000 {8}
3108 9 1/4 4 {7, 1, 7, 6} (0, 0) 0.785398 000001001 000000100 000000100 000000011 000000011 100000000 011000011 000110100 100110100 {8}
3109 9 1/4 4 {8, 2, 8, 7} (0, 0) -2.35619 000001111 000001111 000000101 000000011 000000011 110000000 111000000 110110000 111110000 {8}
3110 9 1/4 4 {1, 7, 6, 7} (0, 0) -0.785398 000001001 000000100 000000100 000000011 000000011 100000000 011000011 000110100 100110100 {8}
3111 9 1/4 4 {8, 2, 7, 8} (1.5708, 1.1781) -3.14159 000001111 000001111 000000101 000000011 000000011 110000000 111000000 110110000 111110000 {8}
3112 9 1/4 4 {1, 7, 7, 6} (1.5708, 0.392699) -3.14159 000001001 000000100 000000100 000000011 000000011 100000000 011000011 000110100 100110100 {8}
3113 9 1/4 4 {2, 8, 8, 7} (1.5708, -1.1781) 3.14159 000001111 000001111 000000101 000000011 000000011 110000000 111000000 110110000 111110000 {8}
3114 9 1/4 4 {7, 1, 6, 7} (1.5708, -0.392699) 3.14159 000001001 000000100 000000100 000000011 000000011 100000000 011000011 000110100 100110100 {8}
3115 9 1/4 38.9706 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000011010 000000111 111000011 111000011 110100001 111111001 110111110 {4}
3116 9 1/4 38.9706 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000011010 000000111 111000011 111000011 110100001 111111001 110111110 {4}
3117 9 1/4 36.9706 {3, 4, 3, 4} (0, 0) 0 000001111 000001010 000000101 000000011 000000011 110000100 101001001 110110000 101110100 {16}
3118 9 1/4 36.9706 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001010 000000101 000000011 000000011 110000100 101001001 110110000 101110100 {16}
3119 9 1/4 3.54692 {2, 3, 2, 3} (0, 0) 0 000001101 000001010 000000111 000000111 000000011 110000000 101100001 011110000 101110100 {4}
3120 9 1/4 3.54692 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001010 000000111 000000111 000000011 110000000 101100001 011110000 101110100 {4}
3121 9 1/4 3.43146 {2, 3, 2, 3} (0, 0) 0 000011110 000010001 000001111 000001111 110000011 101100010 101100001 101111000 011110100 {8}
3122 9 1/4 3.43146 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011110 000010001 000001111 000001111 110000011 101100010 101100001 101111000 011110100 {8}
3123 9 1/4 3.17157 {3, 4, 3, 4} (0, 0) 0 000001111 000001010 000000101 000000011 000000011 110000111 101001001 110111000 101111100 {44}
3124 9 1/4 3.17157 {0, 1, 3, 4} (1.5708, 3.14159) 1.5708 000100101 000010101 000001110 100000011 010000011 001000000 111000000 001110000 110110000 {4}
3125 9 1/4 3.17157 {0, 1, 4, 3} (1.5708, 0) 1.5708 000100101 000010101 000001110 100000011 010000011 001000000 111000000 001110000 110110000 {4}
3126 9 1/4 3.17157 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001010 000000101 000000011 000000011 110000111 101001001 110111000 101111100 {44}
3127 9 1/4 3.02944 {3, 4, 3, 4} (0, 0) 0 000001100 000001010 000000101 000000011 000000011 110000011 101000001 010111001 001111110 {24}
3128 9 1/4 3.02944 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001100 000001010 000000101 000000011 000000011 110000011 101000001 010111001 001111110 {24}
3129 9 1/4 3 {7, 0, 2, 1} (0, 0) 2.35619 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
3130 9 1/4 3 {0, 7, 0, 2} (0, 0) 0.785398 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
3131 9 1/4 3 {0, 7, 1, 2} (0, 0) -2.35619 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
3132 9 1/4 3 {7, 0, 2, 0} (0, 0) -0.785398 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
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3133 9 1/4 3 {0, 7, 2, 1} (1.5708, 1.1781) -3.14159 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
3134 9 1/4 3 {7, 0, 0, 2} (1.5708, 0.392699) -3.14159 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
3135 9 1/4 3 {7, 0, 1, 2} (1.5708, -1.1781) 3.14159 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
3136 9 1/4 3 {0, 7, 2, 0} (1.5708, -0.392699) 3.14159 000001011 000000111 000000010 000000001 000000001 100000000 010000000 111000000 110110000 {4}
3137 9 1/4 29.6569 {6, 7, 6, 7} (0, 0) 0 000101111 000010111 000010110 100001111 011001111 100110111 111111001 111111001 110111110 {4}
3138 9 1/4 29.6569 {6, 7, 7, 6} (1.5708, 0) -3.14159 000101111 000010111 000010110 100001111 011001111 100110111 111111001 111111001 110111110 {4}
3139 9 1/4 25.3137 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001001 000000111 000000111 111000011 110110010 110111101 111111010 {8}
3140 9 1/4 25.3137 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001001 000000111 000000111 111000011 110110010 110111101 111111010 {8}
3141 9 1/4 23.3137 {2, 3, 2, 3} (0, 0) 0 000010111 000001110 000000001 000000001 100000100 010000011 110010001 110001000 101101100 {4}
3142 9 1/4 23.3137 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001110 000000001 000000001 100000100 010000011 110010001 110001000 101101100 {4}
3143 9 1/4 21.6569 {2, 3, 2, 3} (0, 0) 0 000010111 000001101 000001011 000001011 100000110 011100111 110011001 101111000 111101100 {36}
3144 9 1/4 21.6569 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001101 000001011 000001011 100000110 011100111 110011001 101111000 111101100 {36}
3145 9 1/4 20 {2, 3, 2, 3} (0, 0) 0 000011000 000010111 000001111 000001111 110000011 101100010 011100001 011111000 011110100 {8}
3146 9 1/4 20 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011000 000010111 000001111 000001111 110000011 101100010 011100001 011111000 011110100 {8}
3147 9 1/4 2.86193 {0, 3, 1, 5} (1.5708, -1.5708) -1.23096 000111101 000101111 000011011 110000111 101000101 111000011 110110011 011101101 111111110 {2}
3148 9 1/4 2.86193 {3, 0, 5, 1} (1.5708, 1.5708) -1.23096 000111101 000101111 000011011 110000111 101000101 111000011 110110011 011101101 111111110 {2}
3149 9 1/4 2.86193 {0, 3, 5, 1} (0.955317, 0) -3.14159 000111101 000101111 000011011 110000111 101000101 111000011 110110011 011101101 111111110 {2}
3150 9 1/4 2.86193 {3, 0, 1, 5} (0.955317, -3.14159) -3.14159 000111101 000101111 000011011 110000111 101000101 111000011 110110011 011101101 111111110 {2}
3151 9 1/4 2.66667 {2, 3, 2, 3} (0, 0) 0 000000110 000000101 000000011 000000011 000000001 000000001 110000000 101100000 011111000 {4}
3152 9 1/4 2.66667 {2, 3, 3, 2} (1.5708, 0) -3.14159 000000110 000000101 000000011 000000011 000000001 000000001 110000000 101100000 011111000 {4}
3153 9 1/4 2.58579 {0, 1, 4, 5} (1.5708, 3.14159) 1.5708 000010101 000001101 000000110 000000110 100000011 010000011 111100000 001111000 110011000 {4}
3154 9 1/4 2.58579 {0, 1, 5, 4} (1.5708, 0) 1.5708 000010101 000001101 000000110 000000110 100000011 010000011 111100000 001111000 110011000 {4}
3155 9 1/4 2.4 {2, 3, 2, 3} (0, 0) 0 000001100 000001011 000000111 000000111 000000011 110000000 101100000 011110000 011110000 {4}
3156 9 1/4 2.4 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001100 000001011 000000111 000000111 000000011 110000000 101100000 011110000 011110000 {4}
3157 9 1/4 2.29289 {2, 3, 2, 3} (0, 0) 0 000001101 000001010 000000111 000000111 000000001 110000000 101100001 011100000 101110100 {8}
3158 9 1/4 2.29289 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001010 000000111 000000111 000000001 110000000 101100001 011100000 101110100 {8}
3159 9 1/4 2.25548 {1, 2, 1, 2} (0, 0) 0 000001011 000000111 000000111 000000010 000000010 100000001 011000001 111110000 111001100 {4}
3160 9 1/4 2.25548 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001011 000000111 000000111 000000010 000000010 100000001 011000001 111110000 111001100 {4}
3161 9 1/4 2.20349 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000000110 100000001 011000001 111100000 111100000 111011000 {4}
3162 9 1/4 2.20349 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000000110 100000001 011000001 111100000 111100000 111011000 {4}
3163 9 1/4 2.17157 {0, 8, 5, 7} (0, 0) 2.35619 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {4}
3164 9 1/4 2.17157 {7, 0, 7, 5} (0, 0) 0.785398 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {8}
3165 9 1/4 2.17157 {8, 0, 7, 5} (0, 0) -2.35619 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {4}
3166 9 1/4 2.17157 {0, 7, 5, 7} (0, 0) -0.785398 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {8}
3167 9 1/4 2.17157 {8, 0, 5, 7} (1.5708, 1.1781) -3.14159 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {4}
3168 9 1/4 2.17157 {0, 7, 7, 5} (1.5708, 0.392699) -3.14159 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {8}
3169 9 1/4 2.17157 {0, 8, 7, 5} (1.5708, -1.1781) 3.14159 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {4}
3170 9 1/4 2.17157 {7, 0, 5, 7} (1.5708, -0.392699) 3.14159 000001011 000000111 000000111 000000010 000000001 100000011 011000011 111101100 111011100 {8}
3171 9 1/4 2.15802 {2, 3, 2, 3} (0, 0) 0 000011101 000010010 000001111 000001111 110000000 101100001 101100001 011100000 101101100 {4}
3172 9 1/4 2.15802 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011101 000010010 000001111 000001111 110000000 101100001 101100001 011100000 101101100 {4}
3173 9 1/4 2.11438 {4, 5, 4, 5} (0, 0) 0 000011101 000011101 000011010 000000110 111000011 111000011 110100011 001111100 110011100 {4}
3174 9 1/4 2.11438 {4, 5, 5, 4} (1.5708, 0) 3.14159 000011101 000011101 000011010 000000110 111000011 111000011 110100011 001111100 110011100 {4}
3175 9 1/4 2 {0, 4, 5, 3} (0, 0) 0.785398 000001001 000000101 000000101 000000010 000000010 100000000 011000000 000110000 111000000 {8}
3176 9 1/4 2 {4, 0, 3, 5} (0, 0) -0.785398 000001001 000000101 000000101 000000010 000000010 100000000 011000000 000110000 111000000 {8}
3177 9 1/4 2 {4, 0, 5, 3} (1.5708, 0.392699) -3.14159 000001001 000000101 000000101 000000010 000000010 100000000 011000000 000110000 111000000 {8}
3178 9 1/4 2 {0, 4, 3, 5} (1.5708, -0.392699) 3.14159 000001001 000000101 000000101 000000010 000000010 100000000 011000000 000110000 111000000 {8}
3179 9 1/4 17.6569 {3, 4, 3, 4} (0, 0) 0 000001111 000001010 000000101 000000011 000000011 110000000 101000001 110110001 101110110 {20}
3180 9 1/4 17.6569 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001010 000000101 000000011 000000011 110000000 101000001 110110001 101110110 {20}
3181 9 1/4 16 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000001011 000000101 110000110 111000000 110110000 111010001 111100010 {16}
3182 9 1/4 16 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000001011 000000101 110000110 111000000 110110000 111010001 111100010 {16}
3183 9 1/4 10.3431 {2, 3, 2, 3} (0, 0) 0 000011011 000001001 000000111 000000111 100000010 110000001 001100011 101110100 111101100 {56}
3184 9 1/4 10.3431 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000001001 000000111 000000111 100000010 110000001 001100011 101110100 111101100 {56}
3185 9 1/4 1.91037 {1, 2, 1, 2} (0, 0) 0 000001011 000000111 000000111 000000101 000000010 100000001 011100001 111010000 111101100 {4}
3186 9 1/4 1.91037 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001011 000000111 000000111 000000101 000000010 100000001 011100001 111010000 111101100 {4}
3187 9 1/4 1.7746 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000001111 000000110 110000001 111000111 111101011 111101101 111011110 {12}
3188 9 1/4 1.7746 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000001111 000000110 110000001 111000111 111101011 111101101 111011110 {12}
3189 9 1/4 1.71108 {1, 2, 1, 2} (0, 0) 0 000011101 000001111 000001111 000000011 100000001 111000000 111000000 011100001 111110010 {4}
3190 9 1/4 1.71108 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011101 000001111 000001111 000000011 100000001 111000000 111000000 011100001 111110010 {4}
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3191 9 1/4 1.67157 {1, 2, 4, 5} (1.5708, -3.14159) 0.785398 000100111 000010010 000001010 100000110 010000001 001000001 100100001 111100001 100011110 {4}
3192 9 1/4 1.67157 {1, 2, 5, 4} (1.5708, 3.14159) -2.35619 000100111 000010010 000001010 100000110 010000001 001000001 100100001 111100001 100011110 {4}
3193 9 1/4 1.58579 {1, 2, 1, 2} (0, 0) 0 000011111 000001111 000001111 000000011 100000001 111000111 111001000 111101001 111111010 {8}
3194 9 1/4 1.58579 {1, 2, 2, 1} (1.5708, 0) 3.14159 000011111 000001111 000001111 000000011 100000001 111000111 111001000 111101001 111111010 {8}
3195 9 1/4 1.51472 {3, 4, 3, 4} (0, 0) 0 000001111 000001010 000000101 000000011 000000011 110000011 101000001 110111001 101111110 {24}
3196 9 1/4 1.51472 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001111 000001010 000000101 000000011 000000011 110000011 101000001 110111001 101111110 {24}
3197 9 1/4 1.47759 {3, 4, 3, 4} (0, 0) 0 000001001 000000111 000000100 000000011 000000011 100000001 011000000 010110001 110111010 {4}
3198 9 1/4 1.47759 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000111 000000100 000000011 000000011 100000001 011000000 010110001 110111010 {4}
3199 9 1/4 1.35925 {3, 4, 3, 4} (0, 0) 0 000001011 000000110 000000101 000000011 000000011 100000001 011000000 110110000 101111000 {8}
3200 9 1/4 1.35925 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001011 000000110 000000101 000000011 000000011 100000001 011000000 110110000 101111000 {8}
3201 9 1/4 1.33333 {4, 5, 4, 5} (0, 0) 0 000000100 000000100 000000011 000000010 000000001 000000001 110000001 001100000 001011100 {4}
3202 9 1/4 1.33333 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000100 000000100 000000011 000000010 000000001 000000001 110000001 001100000 001011100 {4}
3203 9 1/4 1.20468 {1, 2, 1, 2} (0, 0) 0 000011011 000001111 000001111 000000011 100000111 111000110 011011001 111111000 111110100 {4}
3204 9 1/4 1.20468 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000001111 000001111 000000011 100000111 111000110 011011001 111111000 111110100 {4}
3205 9 1/4 1.08831 {1, 2, 1, 2} (0, 0) 0 000011011 000001111 000001111 000000011 100000101 111000010 011010000 111101001 111110010 {8}
3206 9 1/4 1.08831 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011011 000001111 000001111 000000011 100000101 111000010 011010000 111101001 111110010 {8}
3207 9 1/4 1.07901 {1, 2, 1, 2} (0, 0) 0 000001001 000000101 000000101 000000010 000000010 100000001 011000011 000110101 111001110 {4}
3208 9 1/4 1.07901 {1, 2, 2, 1} (1.5708, 0) -3.14159 000001001 000000101 000000101 000000010 000000010 100000001 011000011 000110101 111001110 {4}
3209 9 1/4 1.00981 {1, 2, 1, 2} (0, 0) 0 000001101 000000111 000000111 000000011 000000011 100000001 111000000 011110001 111111010 {4}
3210 9 1/4 1.00981 {1, 2, 2, 1} (1.5708, 0) 3.14159 000001101 000000111 000000111 000000011 000000011 100000001 111000000 011110001 111111010 {4}
3211 9 1/4 0.8 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000010 000000001 000000001 110000000 001100000 111011000 {4}
3212 9 1/4 0.8 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000010 000000001 000000001 110000000 001100000 111011000 {4}
3213 9 1/4 0.757359 {2, 3, 2, 3} (0, 0) 0 000010111 000001001 000000011 000000011 100000110 010000001 100010010 101110100 111101000 {8}
3214 9 1/4 0.757359 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010111 000001001 000000011 000000011 100000110 010000001 100010010 101110100 111101000 {8}
3215 9 1/4 0.700881 {3, 4, 3, 4} (0, 0) 0 000001001 000000111 000000111 000000011 000000011 100000001 011000000 011110001 111111010 {4}
3216 9 1/4 0.700881 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000111 000000111 000000011 000000011 100000001 011000000 011110001 111111010 {4}
3217 9 1/4 0.671573 {2, 3, 2, 3} (0, 0) 0 000001101 000001010 000000111 000000111 000000011 110000111 101101001 011111000 101111100 {12}
3218 9 1/4 0.671573 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001010 000000111 000000111 000000011 110000111 101101001 011111000 101111100 {12}
3219 9 1/4 0.666667 {4, 5, 4, 5} (0, 0) 0 000000100 000000100 000000011 000000011 000000001 000000001 110000001 001100000 001111100 {4}
3220 9 1/4 0.666667 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000100 000000100 000000011 000000011 000000001 000000001 110000001 001100000 001111100 {4}
3221 9 1/4 0.649165 {3, 4, 3, 4} (0, 0) 0 000001001 000000110 000000101 000000011 000000011 100000000 011000011 010110100 101110100 {4}
3222 9 1/4 0.649165 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000110 000000101 000000011 000000011 100000000 011000011 010110100 101110100 {4}
3223 9 1/4 0.632069 {2, 3, 2, 3} (0, 0) 0 000000110 000000101 000000011 000000011 000000001 000000001 110000011 101100100 011111100 {4}
3224 9 1/4 0.632069 {2, 3, 3, 2} (1.5708, 0) -3.14159 000000110 000000101 000000011 000000011 000000001 000000001 110000011 101100100 011111100 {4}
3225 9 1/4 0.615849 {0, 1, 0, 1} (0, 0) 0 000001110 000001110 000001001 000000111 000000110 111000001 110110001 110110001 001101110 {4}
3226 9 1/4 0.615849 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001110 000001110 000001001 000000111 000000110 111000001 110110001 110110001 001101110 {4}
3227 9 1/4 0.608555 {2, 3, 2, 3} (0, 0) 0 000001101 000001010 000000111 000000111 000000001 110000111 101101001 011101000 101111100 {4}
3228 9 1/4 0.608555 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001101 000001010 000000111 000000111 000000001 110000111 101101001 011101000 101111100 {4}
3229 9 1/4 0.598625 {0, 1, 0, 1} (0, 0) 0 000011101 000011101 000011011 000000110 111000011 111000011 110100010 001111101 111011010 {4}
3230 9 1/4 0.598625 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011101 000011101 000011011 000000110 111000011 111000011 110100010 001111101 111011010 {4}
3231 9 1/4 0.585786 {4, 5, 4, 5} (0, 0) 0 000000101 000000100 000000011 000000010 000000001 000000001 110000001 001100000 101011100 {4}
3232 9 1/4 0.585786 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000100 000000011 000000010 000000001 000000001 110000001 001100000 101011100 {4}
3233 9 1/4 0.530818 {3, 4, 3, 4} (0, 0) 0 000001001 000000111 000000100 000000011 000000011 100000001 011000011 010110101 110111110 {4}
3234 9 1/4 0.530818 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000111 000000100 000000011 000000011 100000001 011000011 010110101 110111110 {4}
3235 9 1/4 0.514719 {3, 4, 3, 4} (0, 0) 0 000001011 000000110 000000101 000000011 000000011 100000001 011000011 110110100 101111100 {4}
3236 9 1/4 0.514719 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001011 000000110 000000101 000000011 000000011 100000001 011000011 110110100 101111100 {4}
3237 9 1/4 0.510958 {4, 5, 4, 5} (0, 0) 0 000000101 000000100 000000010 000000010 000000001 000000001 110000001 001100001 100011110 {4}
3238 9 1/4 0.510958 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000100 000000010 000000010 000000001 000000001 110000001 001100001 100011110 {4}
3239 9 1/4 0.5 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000011 000000001 000000001 110000000 001100000 111111000 {4}
3240 9 1/4 0.5 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000011 000000001 000000001 110000000 001100000 111111000 {4}
3241 9 1/4 0.406983 {4, 5, 4, 5} (0, 0) 0 000000101 000000100 000000011 000000011 000000001 000000001 110000001 001100000 101111100 {4}
3242 9 1/4 0.406983 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000100 000000011 000000011 000000001 000000001 110000001 001100000 101111100 {4}
3243 9 1/4 0.316034 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000010 000000001 000000001 110000001 001100000 111011100 {4}
3244 9 1/4 0.316034 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000010 000000001 000000001 110000001 001100000 111011100 {4}
3245 9 1/4 0.299312 {3, 4, 3, 4} (0, 0) 0 000001001 000000111 000000111 000000011 000000011 100000001 011000011 011110101 111111110 {4}
3246 9 1/4 0.299312 {3, 4, 4, 3} (1.5708, 0) -3.14159 000001001 000000111 000000111 000000011 000000011 100000001 011000011 011110101 111111110 {4}
3247 9 1/4 0.292893 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000010 000000010 000000001 000000001 110000001 001100001 110011110 {4}
3248 9 1/4 0.292893 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000010 000000010 000000001 000000001 110000001 001100001 110011110 {4}
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3249 9 1/4 0.255479 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000011 000000001 000000001 110000001 001100000 111111100 {4}
3250 9 1/4 0.255479 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000011 000000001 000000001 110000001 001100000 111111100 {4}
3251 9 1/4 0.228764 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000010 000000001 000000001 110000001 001100001 111011110 {4}
3252 9 1/4 0.228764 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000010 000000001 000000001 110000001 001100001 111011110 {4}
3253 9 1/4 0.171573 {4, 5, 4, 5} (0, 0) 0 000000101 000000101 000000011 000000011 000000001 000000001 110000001 001100001 111111110 {4}
3254 9 1/4 0.171573 {4, 5, 5, 4} (1.5708, 0) -3.14159 000000101 000000101 000000011 000000011 000000001 000000001 110000001 001100001 111111110 {4}
3255 9 1/5 83.0132 {6, 7, 6, 7} (0, 0) 0 000100111 000011111 000011111 100000001 011000110 011000110 111011001 111011001 111100110 {4}
3256 9 1/5 83.0132 {6, 7, 7, 6} (1.5708, 0) 3.14159 000100111 000011111 000011111 100000001 011000110 011000110 111011001 111011001 111100110 {4}
3257 9 1/5 8.23607 {2, 8, 6, 4} (0, 0) 0 000001100 000001010 000000100 000000011 000000001 110000000 101000001 010100000 000110100 {16}
3258 9 1/5 8.23607 {2, 8, 4, 6} (1.5708, 0) 3.14159 000001100 000001010 000000100 000000011 000000001 110000000 101000001 010100000 000110100 {16}
3259 9 1/5 75.7771 {7, 8, 7, 8} (0, 0) 0 000001011 000001011 000000111 000000111 000000100 110000000 001110000 111100000 111100000 {16}
3260 9 1/5 75.7771 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001011 000001011 000000111 000000111 000000100 110000000 001110000 111100000 111100000 {16}
3261 9 1/5 7.92705 {2, 3, 2, 3} (0, 0) 0 000001010 000001001 000000111 000000111 000000100 110000000 001110000 101100001 011100010 {8}
3262 9 1/5 7.92705 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001010 000001001 000000111 000000111 000000100 110000000 001110000 101100001 011100010 {8}
3263 9 1/5 7.63932 {0, 1, 0, 1} (0, 0) 0 000011011 000011011 000000100 000000100 110000010 110000001 001100011 110010100 110001100 {8}
3264 9 1/5 7.63932 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011011 000011011 000000100 000000100 110000010 110000001 001100011 110010100 110001100 {8}
3265 9 1/5 7.54509 {1, 6, 5, 2} (0, 0) 0 000010010 000001001 000000101 000000011 100000001 010000001 001000001 100100000 011111100 {8}
3266 9 1/5 7.54509 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010010 000001001 000000101 000000011 100000001 010000001 001000001 100100000 011111100 {8}
3267 9 1/5 7.04627 {0, 1, 0, 1} (0, 0) 0 000111111 000111111 000010111 110001111 111000111 110100010 111110001 111111000 111110100 {4}
3268 9 1/5 7.04627 {0, 1, 1, 0} (1.5708, 0) -3.14159 000111111 000111111 000010111 110001111 111000111 110100010 111110001 111111000 111110100 {4}
3269 9 1/5 63.4164 {6, 7, 6, 7} (0, 0) 0 000101111 000011111 000010001 100001111 011000111 110100110 110111001 110111001 111110110 {4}
3270 9 1/5 63.4164 {6, 7, 7, 6} (1.5708, 0) 3.14159 000101111 000011111 000010001 100001111 011000111 110100110 110111001 110111001 111110110 {4}
3271 9 1/5 6.58359 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000001111 000000110 110000001 111000001 111100011 111100100 111011100 {16}
3272 9 1/5 6.58359 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000001111 000000110 110000001 111000001 111100011 111100100 111011100 {16}
3273 9 1/5 6 {0, 4, 5, 1} (0, 0) 0 000010010 000001010 000000110 000000101 100000001 010000001 001100000 111000000 000111000 {8}
3274 9 1/5 6 {0, 4, 1, 5} (1.5708, 0) 3.14159 000010010 000001010 000000110 000000101 100000001 010000001 001100000 111000000 000111000 {8}
3275 9 1/5 57.8885 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000011011 000000101 111000011 111000011 110100001 111011000 111111100 {4}
3276 9 1/5 57.8885 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000011011 000000101 111000011 111000011 110100001 111011000 111111100 {4}
3277 9 1/5 56.8328 {7, 8, 7, 8} (0, 0) 0 000101011 000010111 000001111 100000000 010000111 101000000 011010000 111010000 111010000 {4}
3278 9 1/5 56.8328 {7, 8, 8, 7} (1.5708, 0) -3.14159 000101011 000010111 000001111 100000000 010000111 101000000 011010000 111010000 111010000 {4}
3279 9 1/5 53.3607 {0, 4, 3, 1} (0, 0) 0 000101111 000011111 000000011 100001111 010001111 110110100 110111000 111110001 111110010 {8}
3280 9 1/5 53.3607 {0, 4, 1, 3} (1.5708, 0) 3.14159 000101111 000011111 000000011 100001111 010001111 110110100 110111000 111110001 111110010 {8}
3281 9 1/5 5.62868 {6, 7, 6, 7} (0, 0) 0 000110111 000101001 000011111 110001111 101000110 011100111 101111001 101111001 111101110 {4}
3282 9 1/5 5.62868 {6, 7, 7, 6} (1.5708, 0) -3.14159 000110111 000101001 000011111 110001111 101000110 011100111 101111001 101111001 111101110 {4}
3283 9 1/5 45.1246 {2, 3, 2, 3} (0, 0) 0 000010100 000001011 000000110 000000110 100000001 010000011 101100001 011101000 010011100 {16}
3284 9 1/5 45.1246 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010100 000001011 000000110 000000110 100000001 010000011 101100001 011101000 010011100 {16}
3285 9 1/5 4.87539 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000001100 100000001 011100011 011100001 111001001 111011110 {8}
3286 9 1/5 4.87539 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000001100 100000001 011100011 011100001 111001001 111011110 {8}
3287 9 1/5 4.81966 {1, 6, 5, 2} (0, 0) 0 000001101 000001000 000000100 000000011 000000011 110000001 101000001 000110000 100111100 {32}
3288 9 1/5 4.81966 {1, 6, 2, 5} (1.5708, 0) 3.14159 000001101 000001000 000000100 000000011 000000011 110000001 101000001 000110000 100111100 {32}
3289 9 1/5 4.62617 {7, 8, 7, 8} (0, 0) 0 000101111 000011111 000011111 100000011 011001100 111010011 111010011 111101100 111101100 {4}
3290 9 1/5 4.62617 {7, 8, 8, 7} (1.5708, 0) 3.14159 000101111 000011111 000011111 100000011 011001100 111010011 111010011 111101100 111101100 {4}
3291 9 1/5 4.34164 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001010 000000111 000000111 111000000 110110001 111110000 110110100 {4}
3292 9 1/5 4.34164 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001010 000000111 000000111 111000000 110110001 111110000 110110100 {4}
3293 9 1/5 4 {1, 2, 1, 2} (0, 0) 0 000010001 000001111 000001111 000000011 100000001 011000101 011001001 011100001 111111110 {12}
3294 9 1/5 4 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010001 000001111 000001111 000000011 100000001 011000101 011001001 011100001 111111110 {12}
3295 9 1/5 38.5795 {6, 7, 6, 7} (0, 0) 0 001011110 000110111 100011000 010001111 111000111 101100111 110111001 110111001 010111110 {4}
3296 9 1/5 38.5795 {6, 7, 7, 6} (1.5708, 0) -3.14159 001011110 000110111 100011000 010001111 111000111 101100111 110111001 110111001 010111110 {4}
3297 9 1/5 3.96556 {0, 4, 5, 1} (0, 0) 0 000010100 000001100 000000101 000000011 100000011 010000011 111000001 000111000 001111100 {16}
3298 9 1/5 3.96556 {0, 4, 1, 5} (1.5708, 0) 3.14159 000010100 000001100 000000101 000000011 100000011 010000011 111000001 000111000 001111100 {16}
3299 9 1/5 3.63932 {2, 6, 7, 3} (0, 0) 0 000011111 000001110 000000101 000000011 100000001 110000111 111001000 110101000 101111000 {8}
3300 9 1/5 3.63932 {2, 6, 3, 7} (1.5708, 0) 3.14159 000011111 000001110 000000101 000000011 100000001 110000111 111001000 110101000 101111000 {8}
3301 9 1/5 3.5 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000010 100000000 010000001 001000001 100100001 111001110 {8}
3302 9 1/5 3.5 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010011 000001001 000000101 000000010 100000000 010000001 001000001 100100001 111001110 {8}
3303 9 1/5 3.16718 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000001011 000000100 000000011 111000000 110100000 111010001 111010010 {4}
3304 9 1/5 3.16718 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000001011 000000100 000000011 111000000 110100000 111010001 111010010 {4}
3305 9 1/5 3.02786 {0, 1, 0, 1} (0, 0) 0 000001011 000001011 000000110 000000101 000000011 110000000 001100000 111010001 110110010 {8}
3306 9 1/5 3.02786 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001011 000001011 000000110 000000101 000000011 110000000 001100000 111010001 110110010 {8}
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3307 9 1/5 28.9443 {1, 2, 1, 2} (0, 0) 0 000011111 000001111 000001111 000000101 100000010 111000011 111100001 111011000 111101100 {8}
3308 9 1/5 28.9443 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011111 000001111 000001111 000000101 100000010 111000011 111100001 111011000 111101100 {8}
3309 9 1/5 27.1803 {1, 6, 5, 2} (0, 0) 0 000010010 000001001 000000101 000000011 100000000 010000001 001000001 100100000 011101100 {16}
3310 9 1/5 27.1803 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010010 000001001 000000101 000000011 100000000 010000001 001000001 100100000 011101100 {16}
3311 9 1/5 22.1115 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000000101 000000100 110000011 110000011 111100001 110011000 111011100 {4}
3312 9 1/5 22.1115 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000000101 000000100 110000011 110000011 111100001 110011000 111011100 {4}
3313 9 1/5 21.7082 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000000101 000000010 000000010 110000000 111000001 110110000 111000100 {8}
3314 9 1/5 21.7082 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000000101 000000010 000000010 110000000 111000001 110110000 111000100 {8}
3315 9 1/5 20 {1, 2, 1, 2} (0, 0) 0 000010001 000001111 000001111 000000110 100000001 011000001 011100011 011100101 111011110 {4}
3316 9 1/5 20 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010001 000001111 000001111 000000110 100000001 011000001 011100011 011100101 111011110 {4}
3317 9 1/5 2.90983 {1, 6, 7, 2} (0, 0) 0 000010111 000001101 000001011 000000110 100000001 011000000 110100000 101100000 111010000 {8}
3318 9 1/5 2.90983 {1, 6, 2, 7} (1.5708, 0) 3.14159 000010111 000001101 000001011 000000110 100000001 011000000 110100000 101100000 111010000 {8}
3319 9 1/5 2.80902 {1, 6, 5, 2} (0, 0) 0 000010010 000001001 000000101 000000011 100000001 010000000 001000000 100100000 011110000 {8}
3320 9 1/5 2.80902 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010010 000001001 000000101 000000011 100000001 010000000 001000000 100100000 011110000 {8}
3321 9 1/5 2.51471 {2, 3, 2, 3} (0, 0) 0 000010101 000001111 000000011 000000011 100000101 010000010 110010010 011101100 111110000 {8}
3322 9 1/5 2.51471 {2, 3, 3, 2} (1.5708, 0) -3.14159 000010101 000001111 000000011 000000011 100000101 010000010 110010010 011101100 111110000 {8}
3323 9 1/5 2.45898 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000001 001000001 100100001 111101110 {8}
3324 9 1/5 2.45898 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010011 000001001 000000101 000000011 100000000 010000001 001000001 100100001 111101110 {8}
3325 9 1/5 2.45683 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000001111 000001101 110000010 111100011 111100011 111011100 111101100 {4}
3326 9 1/5 2.45683 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000001111 000001101 110000010 111100011 111100011 111011100 111101100 {4}
3327 9 1/5 2.33953 {2, 3, 2, 3} (0, 0) 0 000011011 000010100 000001111 000001111 110000110 101100111 011111001 101111001 101101110 {4}
3328 9 1/5 2.33953 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000010100 000001111 000001111 110000110 101100111 011111001 101111001 101101110 {4}
3329 9 1/5 2.22222 {1, 2, 1, 2} (0, 0) 0 000011110 000001111 000001111 000000011 100001110 111010101 111011001 111110001 011101110 {4}
3330 9 1/5 2.22222 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011110 000001111 000001111 000000011 100001110 111010101 111011001 111110001 011101110 {4}
3331 9 1/5 2.1459 {0, 5, 6, 1} (0, 0) 0 000011010 000010110 000001111 000000011 110000011 101000001 011000001 111110001 001111110 {8}
3332 9 1/5 2.1459 {0, 5, 1, 6} (1.5708, 0) 3.14159 000011010 000010110 000001111 000000011 110000011 101000001 011000001 111110001 001111110 {8}
3333 9 1/5 2.05573 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100000 111100000 {16}
3334 9 1/5 2.05573 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100000 111100000 {16}
3335 9 1/5 15.4721 {2, 8, 7, 3} (0, 0) 0 000010111 000001011 000000010 000000001 100000111 010000011 100010000 111011000 110111000 {8}
3336 9 1/5 15.4721 {2, 8, 3, 7} (1.5708, 0) 3.14159 000010111 000001011 000000010 000000001 100000111 010000011 100010000 111011000 110111000 {8}
3337 9 1/5 14.8197 {0, 5, 4, 1} (0, 0) 0 000010011 000001011 000000101 000000101 100000011 010000011 001100000 110011001 111111010 {8}
3338 9 1/5 14.8197 {0, 5, 1, 4} (1.5708, 0) 3.14159 000010011 000001011 000000101 000000101 100000011 010000011 001100000 110011001 111111010 {8}
3339 9 1/5 118.138 {0, 1, 0, 1} (0, 0) 0 000011111 000011111 000010111 000001010 111000101 110100111 111011001 111101000 111011100 {4}
3340 9 1/5 118.138 {0, 1, 1, 0} (1.5708, 0) -3.14159 000011111 000011111 000010111 000001010 111000101 110100111 111011001 111101000 111011100 {4}
3341 9 1/5 11.5777 {7, 8, 7, 8} (0, 0) 0 000100111 000011111 000011111 100000000 011001011 011010000 111000011 111010100 111010100 {4}
3342 9 1/5 11.5777 {7, 8, 8, 7} (1.5708, 0) -3.14159 000100111 000011111 000011111 100000000 011001011 011010000 111000011 111010100 111010100 {4}
3343 9 1/5 11.0557 {7, 8, 7, 8} (0, 0) 0 000001100 000000111 000000111 000000011 000000011 100000000 111000000 011110000 011110000 {12}
3344 9 1/5 11.0557 {7, 8, 8, 7} (1.5708, 0) 3.14159 000001100 000000111 000000111 000000011 000000011 100000000 111000000 011110000 011110000 {12}
3345 9 1/5 1.96215 {0, 1, 4, 3} (1.5708, 0) 1.40974 000001100 000001010 000000110 000000101 000000011 110000001 101100000 011010000 000111000 {4}
3346 9 1/5 1.96215 {0, 1, 3, 4} (1.5708, 0) -1.73185 000001100 000001010 000000110 000000101 000000011 110000001 101100000 011010000 000111000 {4}
3347 9 1/5 1.95492 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000001 010000001 001000001 100100001 111111110 {8}
3348 9 1/5 1.95492 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010011 000001001 000000101 000000011 100000001 010000001 001000001 100100001 111111110 {8}
3349 9 1/5 1.86223 {1, 2, 1, 2} (0, 0) 0 000010011 000001111 000001111 000000011 100000001 011000011 011000001 111101001 111111110 {8}
3350 9 1/5 1.86223 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010011 000001111 000001111 000000011 100000001 011000011 011000001 111101001 111111110 {8}
3351 9 1/5 1.76393 {1, 6, 5, 3} (0, 0) 0 000001011 000001000 000000111 000000100 000000011 110000110 001101001 101011001 101010110 {16}
3352 9 1/5 1.76393 {1, 6, 3, 5} (1.5708, 0) 3.14159 000001011 000001000 000000111 000000100 000000011 110000110 001101001 101011001 101010110 {16}
3353 9 1/5 1.69098 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000010 100000000 010000000 001000000 100100001 111000010 {8}
3354 9 1/5 1.69098 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010011 000001001 000000101 000000010 100000000 010000000 001000000 100100001 111000010 {8}
3355 9 1/5 1.61301 {2, 3, 2, 3} (0, 0) 0 000011110 000010011 000001111 000001111 110000001 101100011 101100001 111101001 011111110 {8}
3356 9 1/5 1.61301 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011110 000010011 000001111 000001111 110000001 101100011 101100001 111101001 011111110 {8}
3357 9 1/5 1.55279 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000001 010000000 001000000 100100000 111110000 {8}
3358 9 1/5 1.55279 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010011 000001001 000000101 000000011 100000001 010000000 001000000 100100000 111110000 {8}
3359 9 1/5 1.52786 {2, 3, 2, 3} (0, 0) 0 000011010 000010101 000001111 000001111 110000011 101100010 011100001 101111000 011110100 {20}
3360 9 1/5 1.52786 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011010 000010101 000001111 000001111 110000011 101100010 011100001 101111000 011110100 {20}
3361 9 1/5 1.40325 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100001 111100010 {8}
3362 9 1/5 1.40325 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010011 000001001 000000101 000000011 100000000 010000000 001000000 100100001 111100010 {8}
3363 9 1/5 1.35721 {1, 2, 1, 2} (0, 0) 0 000011111 000001111 000001111 000000011 100000011 111000110 111001001 111111001 111110110 {12}
3364 9 1/5 1.35721 {1, 2, 2, 1} (1.5708, 0) -3.14159 000011111 000001111 000001111 000000011 100000011 111000110 111001001 111111001 111110110 {12}

Table A.1: Parameters for all widgets identified in Chapter 4. (cont.)
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3365 9 1/5 1.26393 {1, 6, 5, 2} (0, 0) 0 000010011 000001001 000000101 000000011 100000001 010000000 001000000 100100001 111110010 {8}
3366 9 1/5 1.26393 {1, 6, 2, 5} (1.5708, 0) 3.14159 000010011 000001001 000000101 000000011 100000001 010000000 001000000 100100001 111110010 {8}
3367 9 1/5 1.20976 {0, 1, 0, 1} (0, 0) 0 000001111 000001111 000000111 000000111 000000011 110000000 111100000 111110001 111110010 {4}
3368 9 1/5 1.20976 {0, 1, 1, 0} (1.5708, 0) -3.14159 000001111 000001111 000000111 000000111 000000011 110000000 111100000 111110001 111110010 {4}
3369 9 1/5 1.1734 {2, 3, 2, 3} (0, 0) 0 000011011 000010100 000001111 000001111 110000011 101100011 011100011 101111101 101111110 {4}
3370 9 1/5 1.1734 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011011 000010100 000001111 000001111 110000011 101100011 011100011 101111101 101111110 {4}
3371 9 1/5 1.15654 {2, 3, 2, 3} (0, 0) 0 000001100 000001001 000000111 000000111 000000010 110000111 101101001 001111000 011101100 {8}
3372 9 1/5 1.15654 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001100 000001001 000000111 000000111 000000010 110000111 101101001 001111000 011101100 {8}
3373 9 1/5 1.11456 {1, 2, 1, 2} (0, 0) 0 000010111 000001111 000001111 000000011 100000111 011000111 111011000 111111001 111111010 {4}
3374 9 1/5 1.11456 {1, 2, 2, 1} (1.5708, 0) -3.14159 000010111 000001111 000001111 000000011 100000111 011000111 111011000 111111001 111111010 {4}
3375 9 1/5 0.756966 {2, 3, 2, 3} (0, 0) 0 000001010 000001001 000000111 000000111 000000011 110000111 001101000 101111001 011111010 {8}
3376 9 1/5 0.756966 {2, 3, 3, 2} (1.5708, 0) -3.14159 000001010 000001001 000000111 000000111 000000011 110000111 001101000 101111001 011111010 {8}
3377 9 1/5 0.633667 {2, 3, 2, 3} (0, 0) 0 000011111 000011111 000001111 000001111 110000011 111100010 111100001 111111000 111110100 {8}
3378 9 1/5 0.633667 {2, 3, 3, 2} (1.5708, 0) -3.14159 000011111 000011111 000001111 000001111 110000011 111100010 111100001 111111000 111110100 {8}
3379 9 1/5 0.616115 {6, 7, 6, 7} (0, 0) 0 000011111 000011111 000001111 000001111 110000001 111100001 111100000 111100000 111111000 {8}
3380 9 1/5 0.616115 {6, 7, 7, 6} (1.5708, 0) 3.14159 000011111 000011111 000001111 000001111 110000001 111100001 111100000 111100000 111111000 {8}

Table A.1: Listing of graph parameters for all single-qubit widgets identified in Chapter 4.
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