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Abstract

This thesis presents the study of atomic cloud density and temperature in a magneto-

optical trap (MOT). The purpose is to find the method in obtaining the densest and

coldest cloud the setup can produce. In steady state trap, the highest atomic density

possible is that of a cloud in multiple scattering regime where a repulsive force between

atoms sets a limit to the density. The number of atoms loaded into the trap is controlled

by the trapping beam intensity which also changes the temperature. Therefore the trap

density and temperature cannot be controlled separately. The cloud compression is

studied as a method of increasing atomic density above what is possible in steady state

trap without noticeable influence on the cloud temperature. Cloud compression is also

found when the cloud is translated by changing the magnetic field zero-point although

in a less predictable fashion than the compression.
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Chapter 1

Introduction

The concept of the magneto-optical trap (MOT) was first suggested by Jean Dalibard [1],

when pioneers of the field such as Pritchard and Chu were still struggling with dipole

trapping of neutral atoms. At that point, dipole traps were able to trap roughly 1000

atoms [1]. The MOT was shown to be able to trap a much higher number of atoms (on

the order of 107 [2]), making it a preferred choice as a source of cold atoms.

A MOT uses the scattering force between photons and atoms in order to reduce

the atomic momentum, effectively cooling the atoms down. The direction of the force

exchanged between atom and photon is selected by tuning the frequency of the laser

to be slightly red-detuned. The atom and photon can come into resonance through the

Doppler effect when the atom is moving in the opposite direction to the laser propagation.

This cooling mechanism is known as Doppler cooling. By introducing a linearly varying

magnetic field using anti-Helmholtz coils, the scattering force varies in space due to the

varying Zeeman shift. This creates a harmonic potential around the zero-point of the

magnetic field which leads to trapping of atoms. The mathematical description of the

trap will be provided in Chapter 2.

The MOT is a widely used technique for experiments in quantum information, as

the trap can produce ultracold atomic clouds with temperatures below 100 µK [3]. In

addition, the number of atoms participating in the process can be controlled using trap

parameters such as the trapping beam intensity and the magnetic field gradient. The

lower temperature prolongs the time the atoms remain within the same field, thus pro-

longing the coherence of the quantum information process. For general discussion, a

longer coherence time is considered more preferable. The limit of coherence time re-
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quired depends on the specific process involved. It could be microseconds – such as in

information processing [4], or seconds as in optical memories [5, 6]. In experiments re-

garding light-atom interactions, long coherence times alone might not be beneficial if the

interaction is too small to be observed. Therefore, the trap also needs to provide a large

number of atoms for the experiment, as it will increase the strength of the interaction.

This is not the case if the beam transverse size – and therefore the interaction region –

is smaller than the cloud size. In the latter case, the atomic density is more relevant.

Since having a high number of atoms in the cloud is not directly correlated with having

high atomic density, the decision on whether to optimize for maximum number of atoms

or atomic density depends on the application researchers have in mind.

To determine which cloud properties we will focus on in the characterization process,

we have to consider the application we have in mind. A particular interest of our group

is to demonstrate enhancement of optical nonlinearities. Optical nonlinearities are non-

linear interactions between light fields mediated by a material, such as second harmonic

generation or self-phase modulation. The nonlinear interactions are difficult to observe

in nature because of the minuscule interaction strength compared to that of linear op-

tical phenomena such as absorption or dispersion. It is possible to observe nonlinear

interactions with the use of a medium specially designed to enhance the nonlinear effects

along with high power lasers with intensities of several W/cm2. In quantum information,

the level of optical power in the system is that of a few photons – often only one or two

photons. One of the primary interests in the field is to create a two-photon logic gate

which is required for performing universal quantum computing with photons [7]. The

most sought after gate is the controlled-phase gate where the phase of one photon is

shifted by π due to the presence of another photon. While this phenomenon of cross-

phase modulation (XPM) has been observed, the result is far from the desired π phase

shift [8]. XPM is often hindered by the absorption of the field making the result even
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more obscured.

Various schemes have been developed to enhance optical nonlinearities for quantum

information [9, 10, 11, 12]. Schmidt and Imamoğlu [13] proposed a scheme to create large

XPM based on electromagnetically induced transparency (EIT). This scheme is shown

theoretically to allow the creation of arbitrarily large XPM without the hindrance of

absorption. It has been discussed that the phase shift is in fact limited by the effect of

the pulse bandwidth [14] and its transverse mode [15]. This stems from an idea initially

proposed by Shapiro [16, 17] which points out the role of the non-instantaneous response

function in limiting the imparted phase on photon pulse. This is not to say that a large

XPM close to π is impossible. This argument does not take into account enhancement

of nonlinearity by using the large dipole moment of Rydberg atoms which increases

nonlinear susceptibility, enhancement of field intensity, or the increase in interaction

strength due to the increase in number of atoms participating in the process which also

increases the susceptibility involved in the process.

The increase in field intensity can be accomplished by focusing the light beam while

it travels through the medium. However, there are two major problems to this approach.

Firstly, focusing a beam to the size of a micron or less, as required to achieve high intensity

with single-photon beam, is technically challenging. This is because the minimum beam

size at the focal point increases with decreasing numerical aperture as found in short

focus lenses. Secondly, the more tightly focused the beam, the shorter the Rayleigh

range, the length along the optical axis where the beam is considered to remain tightly

focused. Therefore, the range where nonlinear interaction is pronounced is significantly

reduced with the tightly focused beam and limits the number of atoms participating in

the process.

Instead of using lens systems, one can use tapered nanofibers (TNF) as a method of

focusing light. TNF are commercial fibers which are heated and pulled until the heated
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region reaches a transverse size of a few hundred nanometers. The length of the tapered

region can be as long as a few millimeters which is much longer than the Rayleigh length

of a beam focused to the same transverse size. Since the waist of the fiber is smaller

than an optical wavelength, the fiber will be surrounded by an evanescent field. This

field is highly intensified compared to the input field due to the adiabatic decrease in

the size of the guided mode. In the experiment by Nayak [18] et al. for instance, the

transverse diameter of the fiber typically decreases from 120 µm to around 400 nm .

EIT due to atoms interacting with the evanescent field of a TNF has been shown in

hot Rubidium vapor [19], demonstrating optical nonlinearity at nanowatt optical power.

The same demonstration has not yet been done with cold atoms; it has only been shown

theoretically possible by Le Kien and Hakuta [20].

The intensity of the evanescent field is shown theoretically to decrease with the dis-

tance from the fiber surface and disappears within a wavelength [21, 22]. This means the

interaction region between light and atoms is very small in the TNF setup. The number

of participating atoms is then affected by atomic density rather than the total number

of atoms. Therefore, the characteristics of the MOT cloud that we are interested in are

temperature and atomic density which depend on four main parameters: trap intensity,

trap detuning, magnetic field gradient, and number of atoms. Depending on the interplay

between the trap parameters, the MOT cloud can exhibit different features. There are

four regimes for the steady state MOT corresponding to different features of atomic den-

sity [23]. The temperature limited regime is the regime with the least number of atoms.

Here, the density increases with an increasing number of atoms. The multiple scattering

regime is where the atomic density becomes constant with changes in the number of

atoms. The two-component regime is where the atoms spill outside the harmonic trap

and form a low density cloud around the trap center. The optically-thick regime has the

highest number of atoms where a large, dense cloud is formed. The last two regimes are
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sometimes mentioned in the literature but not extensively discussed as a MOT generally

produces a cloud in the first two regimes. A more detailed discussion for the first two

regimes will be presented in Chapter 2.

One system that can produce an atomic cloud with higher density than the steady

state MOT and with extremely low temperature is the Bose-Einstein Condensate (BEC).

The atoms in this system share the same wave function leading to a macroscopic quantum

state [24]. While this is a system with great potential in quantum information, a BEC

is not necessary for demonstrating giant optical nonlinearities and the preparation of a

BEC will greatly complicate our setup. We are interested in a particular technique used

to prepare a high density atomic cloud called the compressed magneto-optical trap. The

atoms are first collected in a trap at low magnetic field gradient, and then the cloud is

compressed by increasing the gradient in steps. This technique has been reported to give

transient increase in atomic density [25].

The increase in the number of participating atoms in the atom-light interaction due

to the transient compression can be estimated by considering the TNF system. Let the

radius of the fiber be a0 with the penetration depth of the evanescent field being a. The

length of the tapered region (region in which the fiber waist can be approximated as a0)

is assumed to be much longer than the cloud radius r. Assuming that the intensity of

the evanescent field is azimuthally symmetric, the volume where the field intersects with

the atomic cloud is given by V = 2π(a2−a2
0)r. This leads to the number of participating

atoms being N = n · 2π(a2 − a2
0)r, where n is the atomic density. The ratio between the

number of atoms in the volume during compression N2 and the number in steady state

N1 is

N2

N1

=
n2

n1

r2

r1

. (1.1)

We note here that this ratio does not depends only on the ratio between the atomic
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densities but also ratio between the sizes of the cloud. It will not be the case if the

tapered region is smaller than the cloud size. In that case, the ratio between the number

of participating atoms will only depend on the atomic density. Therefore, the evaluation

or discussion of the result pertaining towards its use with atom-light interaction will

always depend on the geometry of the system. In this thesis, I will use the TNF model

discussed here in order to evaluate the experimental results.

The dependence on model is also true for the evaluation of preferable cloud temper-

ature, or rather the averaged velocity. This is because the coherence time of a process

is limited by either the time the atoms spend in the light beam or the coherence time

of the excited state which is the fundamental limit of an atomic system. The worst case

scenario is where an atom escape using the shortest path between the fiber surface and

the edge of the evanescent field. This distance is the transverse distance a − a0. We

only need the atoms to evolve coherently within the beam. Therefore, the atoms can

decay right at a which corresponds to an atom of velocity v = (a− a0)Γ, where Γ is the

decay rate of the transition. If this is the average velocity of the ensemble, the preferable

temperature of the ensemble corresponding to this velocity is T = m
kB

(a− a0)2Γ2. Again,

this estimation is according to our model of the system. For other systems, the preferable

cloud temperature will be different.

The rest of my thesis is detailed as follows. After reviewing the relevant theories

in Chapter 2, I will describe the setup and the methods used in the experiment in

Chapter 3. In Chapter 4, I will show the experimental results of three major parts of the

characterization. In the first part, I explore the trap parameter space available in our

setup and show how different parameters of the MOT affect atomic density and cloud

temperature. The result includes the transition of the MOT cloud from the temperature

limited to the multiple scattering regimes where the atomic density is the highest in a

steady state trap. The density in this regime has been reported to be on the order of
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roughly 1010cm−3 [26] and often not more. The temperature of the cloud is shown to

increase with the trap intensity. In the second part, I investigate the compressed MOT

as a way to transiently increase the atomic density while not significantly affecting the

temperature. In the third part, I will investigate the translation of the cloud by moving

the zero-point of the magnetic field. This allows the cloud to be formed outside the

influence of the TNF as the fiber significantly alters the shape and temperature of the

cloud [27, 28]. Appendix A will be used to describe the basics of atom-light interaction

and the forces on the atom. The result of this appendix will be used throughout the

theoretical discussion of the MOT.
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Chapter 2

Magneto-Optical Trap

The main cooling mechanism of the MOT is Doppler cooling which uses the Doppler

effect to shift red-detuned light fields into resonance with atoms that are moving in the

opposite direction of the field propagation. By incorporating a linearly varying field from

an anti-Helmholtz coil, a harmonic trap can be formed to obtain a cloud of millions of

atoms. The temperature of the cloud, however, can be lower than the limit predicted

by Doppler cooling. The observation of sub-Doppler temperature by Lett et. al. [3] led

to the discovery of an additional cooling mechanism called polarization gradient cooling,

and it is now widely used to describe the phenomenon.

A steady state MOT has different regimes of operation where the cloud shows different

features. The most widely discussed are the temperature limited regime and the multiple

scattering regime. The properties of the cloud in these two regimes are quite well-known,

although most relations are described in semi-empirical forms due to the complexity of

the system. I will describe the common knowledge in the field regarding these two regimes

and specifically how the atomic density and temperature behave.

Since the maximum atomic density of a steady state MOT cloud is limited to what

is achievable in the multiple scattering regime, I will also investigate a technique to

achieve densities beyond this limit. The compressed magneto-optical trap is a technique

used to prepare high density clouds for BECs by increasing the magnetic field gradient

after a steady state MOT is achieved. The effect of a change in magnetic field gradient

to steady state clouds, as observed and discussed in literature, will be reviewed in this

chapter and used as a baseline for the discussion of transient behavior during compression

in Chapter 4.
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Figure 2.1: Schematic of magneto-optical trap. The bronze rings represent the magnetic
field coils in an anti-Helmholtz configuration. The white ball in the middle represents
the atomic cloud. The pink stripes are the laser beams arranged in counterpropagating
pairs of mutually orthogonal polarization.

2.1 Overview: Conceptual Description of the MOT

In order to trap a large ensemble of atoms, the atoms need to be cooled and confined

to a specific location. In a MOT, the momentum of an atom is modified by exchanging

momentum with photons through resonant scattering. Since the photons scatter into

random directions, the average momentum transferred over several cycles is largely in

the direction of the cooling laser.

The MOT setup consists of three pairs of counterpropagating red-detuned laser beams

arranged in three perpendicular directions as shown in Fig. 2.1. The polarization of each

pair is chosen to have mutually orthogonal polarization. In our setup, the polarizations

are σ+ and σ− which allow atoms to transition into Zeeman sublevels with the change

of ∆m = 1 and ∆m = −1, respectively. Without the magnetic field, these beams only

create friction forces since they will come into resonance with atoms that are moving

in the opposite direction of the wave’s propagation and thus decelerate those atoms.
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Therefore, the configuration is known as an optical molasses. This cooling process is

called Doppler cooling due to the use of the Doppler effect in decelerating the atoms.

To apply position-specific forces and create a trap, the magnetic coils are set in an

anti-Helmholtz configuration creating a magnetic field zero-point at the center of the

crossing beams with linearly varying magnetic field. The varying magnetic field shifts

the magnetic sublevels depending on the position of the atom. The one-dimensional

scheme in Fig. 2.2 use the F = 0 → F ′ = 1 as an example. The magnetic field shifts

the excited sublevel m = +1 closer to the ground state when the magnetic field is in the

negative direction which is when z < 0. This will bring the atom closer to resonance

with the σ+ beam which has a positive k-vector. The Doppler effect will brings the atom

with v < 0 into resonance with the beam and push the atom towards the center of the

trap. A similar mechanism happens at z > 0 to atoms of v > 0. Therefore, the atom

will always be pushed back towards the zero-point, and a cold atomic cloud is formed at

the center. A detailed discussion of the cooling and trapping force will be addressed in

Section 2.2.

For real atoms, there are generally many hyperfine levels F , where F̂ = Î + Ĵ as

discussed in Section A.1, which can be chosen to be the ground state. The transition

of interest to this work, the D2 transition of Rubidium 87, has two hyperfine levels

F = 1 and F = 2. The atoms can decay into any of the F levels with the probabilities

dictated by the Clebsch-Gordan coefficients. The trapping transition is chosen to be

F = 2 → F ′ = 3 with the majority of the atoms decaying back to their original states

since it is a cyclic transition, allowing the atoms to be addressed by the trapping beams

for many consecutive cycles. A small portion of the atoms will decay into the dark state

F = 1 which is not addressed by the trapping laser. These atoms will experience no

trapping forces and eventually escape. To keep the trap from losing atoms, this level

is addressed by another field called the repumping field whose function is to excite the

10



Figure 2.2: (a) Conceptual schematic for a one-dimensional trap. The blue line is the
magnetic field strength Bz. (b) The magnetic sublevels of F = 0 (ground state) and
F ′ = 1 (excited state) in various positions along z-axis.

atoms in the dark state to F ′ = 3 and let them decay back into F = 2 where they will

be cooled and trapped.

2.2 Cooling and Trapping Mechanisms

The main cooling mechanism, as stated previously, is Doppler cooling. Combined with

the Zeeman shift of the magnetic sublevels, the Doppler effect also provides the trapping

force. There is also an additional cooling mechanism at the center of the trap called

polarization gradient cooling which allows us to cool the atomic ensemble below the

limit of Doppler cooling. The mechanism of this additional cooling force depends on the

polarization of the light field and the internal structure of the atomic species.
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2.2.1 Doppler Cooling and Trapping

We will first consider how the presence of the magnetic field shifts the magnetic sublevels.

For the purpose of illustrating the trapping force we will consider the force on axis of

an anti-Helmholtz coil. Since the magnetic field changes linearly in space around the

magnetic field zero-point, we can describe our field as Bz = ∂Bz

∂z
z.

An atom in a magnetic field B will experience Zeeman energy splitting due to the

interaction between the atom’s magnetic moment and the magnetic field. This interaction

is described by the Hamiltonian −~µ ·B, where ~µ is the total atomic magnetic moment.

Following the description in [29], the total magnetic momentum is defined to be, ~µ =

µB(glL̂+gsŜ+gI Î) where L̂ is the orbital angular momentum operator, Ŝ is the spin, and

Î is the nuclear spin. Therefore, this Hamiltonian signifies the coupling of the magnetic

field to the total angular momentum. The strength of this coupling is governed by the

Bohr magneton µB = e~/2melectron and the Landé g-factors gi.

In a MOT, the states participating in the trapping process are the magnetic sublevels

mF of the same hyperfine level F . The magnetic field is generally very weak at the center;

i.e. the Zeeman splitting due to the external field is smaller than the hyperfine splitting.

The magnetic Hamiltonian is approximated to be ĤB = µBgF F̂zBz [29]. The first-

order energy shift calculated from time-independent perturbation theory is ∆EF,mF =

µBgFmFBz. Values of gF , which is a combination of gl, gs, gI and l, s, F , can be found in

Ref. [30] for rigorous calculations.

When considering a transition between two levels, we have to take into account that

both levels are shifted by the magnetic field. Therefore, the energy shift for a particular

transition is the difference between the energy shifts for individual levels introduced by

the Zeeman splitting:

∆EF ′,mF ′ −∆EF,mF = (gF ′mF ′ − gFmF )µB
∂Bz

∂z
z. (2.1)

12



To illustrate the workings of the MOT, we use the hypothetical transition of F =

0 → F ′ = 1. These hyperfine levels have one and three magnetic sublevels respectively.

Following the setup illustrated in Fig. 2.2, the detuning to the level mF ′ = +1 will

decrease only if z < 0 while the opposite is true for mF ′ = −1. Since mF = 0 and gF ′ for

all mF ′ are the same [30], we can write the frequency shift as

∆ω0 = mF ′
gF ′µB
~

∂Bz

∂z
z = mF ′βz (2.2)

with β =
gF ′µB

~
∂Bz

∂z
.

The Doppler shift in frequency comes from the atomic velocity along the axis of the

wave’s propagation. If the atom is at rest, the electromagnetic wave at its position is

E = ~E0 cos(ωt). If the atom moves at velocity v, the field in the atomic frame becomes

E = ~E0 cos(ωt − k · ratom) = ~E0 cos ((ω − k · v)t). Therefore, k · v is the frequency shift

due to the Doppler effect.

For a stationary atom with resonance frequency ω0, the detuning between the light

field and the atomic resonance is ∆ = ω − ω0. Incorporating both the Doppler and

Zeeman shift, the description of total detuning becomes ∆d = ∆ − k · v + mF ′βz. For

each dimension of the trap, we have two counterpropagating beams of polarization σ+

and σ− with k± signifying the propagation direction of each beam. We assume the two

beams to be perfectly counterpropagating, that is k− = −k+ and |k+| = |k−| = k as

they have the same wavelength. In our scheme, a particular atom of velocity -v will

come into resonance with the σ+ beam which addresses the mF = +1 level when it is

in the −z position. Therefore, the detuning in the atomic frame for the σ+ beam is

∆d+ = ∆ + kv+ βz. Similarly, the very same atom will observe the σ− beam having the

detuning of ∆d− = ∆− kv − βz.

The force responsible for cooling is the scattering force as discussed in Appendix A
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which has the form

Fσ±(∆d) = ~k±
Γ

2

(
Ω2/2

∆2 + (Γ/2)2 + Ω2/2

)
. (A.22)

where Ω = dE0/~ is the Rabi frequency, and Γ is the decay rate of the transition. Along

a pair of counterpropagating beams, the total force is the sum of the scattering force due

to the σ+ and σ− beam:

FMOT = Fσ+(∆d+) + Fσ−(∆d−)

= ~k+
Γ

2

(
Ω2/2

∆2
d+ + (Γ/2)2 + Ω2/2

)
+ ~k−

Γ

2

(
Ω2/2

∆2
d− + (Γ/2)2 + Ω2/2

)
. (2.3)

Since the energy shift due to Doppler effect and Zeeman effect is small (βz + kv � ∆),

we find the first order approximation using Taylor series expansion [29, 31]. The force

will have linear dependence on these frequency shifts and takes the form of

FMOT = −~kΓ∆
Ω2/2

(∆2 + (Γ/2)2 + Ω2/2)2
(βz + kv). (2.4)

By defining α = −2~k2Γ∆ Ω2/2
(∆2+(Γ/2)2+Ω2/2)2

which is positive for red-detuned field, we can

write the force on an atom in the MOT as

FMOT = −α|v| − κ|z| (2.5)

where κ = αβ
k

. This force takes the same form as that in a damped harmonic oscillator.

The friction term −αv is the cooling force while the harmonic term −κz creates the trap.

The force on other axes can be derived in the same fashion with the possibility of

having different magnetic field gradients (the axial gradient is half that on the axis) and

trapping beam intensities (hidden in the Rabi frequency Ω). This means the cooling force

might not be the same along the x, y and z axes. There is also heating of the atoms,

partly due to spontaneous emission which gives rise to equal heating in all directions.

Therefore, the average velocity of the cloud 〈v2
i 〉 along a particular dimension can vary
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from dimension to dimension under the competition between cooling and heating. Be-

cause of the anisotropic velocity components, it is more beneficial for characterization

purposes to define the temperature for each dimension separately with 〈v2
i 〉, rather than

with the average speed over three dimensions 〈v2〉. This definition of temperature is not

equivalent to the thermodynamic definition but is a commonly used jargon which is used

to put the result of the cooling into perspective with a usual atomic gas. It also makes

keeping track of the changes in the cloud due to the changes in parameters easier, and

therefore this will be the definition we use throughout this thesis.

2.2.2 Doppler Limit

The limit to Doppler cooling is estimated by considering the ensemble in steady state

of energy exchange. Since the trapping mechanism does not cool, only the friction term

is taken in account. The cooling force in one dimension of the trap is −αv where v is

assumed to be on the axis of field propagation. The energy that is used to cool the atom

is equal to the work on the atom from the friction force:

E|cooling = F · r. (2.6)

The cooling rate is the derivative of Eq. (2.6). If the force is taken to be constant over

an infinitesimal time period, the cooling rate is

dE

dt

∣∣∣∣
cooling

= F · v = −αv2. (2.7)

In the steady state, the cooling rate is equal to the heating rate. There are two

processes that contribute to the heating of the atomic cloud: one is spontaneous emission

which adds random momentum in three dimension to the ensemble, and the other is

fluctuations in the number of absorbed photons as pointed out in Ref. [31].

To calculate the heating rate, we will first calculate the change of 〈v2
i 〉 with time. For

an ensemble of atoms under the influence of a light field, the spontaneous emission comes
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form the population in the excited state ρee = 1
2

(Ω)2/2

(Γ/2)2+∆2+2(Ω)2/2
(Eq. (A.20)) and occurs

at the rate of Γ. Assuming the the intensity of the field is small such that Ω � Γ, the

excited state population in a MOT is six times more populated than it would have been

under the influence of one beam. Each emission gives a random velocity kick vrec = ~k/m

to the atom which is distributed equally over three dimensions. Therefore, the change in

〈v2
i 〉 for just one dimension is

d〈v2
i 〉

dt

∣∣∣∣
scat

=
6v2

recΓρee

3
(2.8)

= 2v2
recΓρee (2.9)

as derived in Ref. [32]. The 6 corresponds to the number of beams. The 3 corresponds

to the number of dimensions the fluorescence photons are scattered into.

The other source of heating is the fluctuations in the number of scattered photon.

Since the process is random, the momentum transferred to the atom in any given period

of time will have a variance. C. J. Foot reasons in Ref. [31] that this randomness is due to

the laser having random number of photons. Therefore, the variance of the momentum

transferred also follows the same statistics as the laser.

Since a laser has Poissonian photon statistics, the variance in photon number of the

laser beam is Var(Np) = Np where Np is the average number of photons in the laser field.

The change in 〈v2
i 〉 during the time dt is

d〈v2
i 〉 = v2

recVar(Np) = v2
recNp. (2.10)

The average number of photons interacting with the atoms can be written as Np = Γρeedt.

There are two beams equally participating in the scattering which leads to a variance of

2Np and a change in 〈v2
i 〉 as follows:

d〈v2
i 〉

dt

∣∣∣∣
abs

= v2
rec2Γρee (2.11)
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The total heating rate can be found by adding the heating rate from both processes

dE

dt

∣∣∣∣
heating

=
1

2
m
d〈v2

i 〉
dt

∣∣∣∣
scat

+
1

2
m
d〈v2

i 〉
dt

∣∣∣∣
abs

= 2mv2
recΓρee

=
~2k2Γ

m

Ω2/2

(Γ/2)2 + ∆2 + Ω2/2
(2.12)

In steady state, the cloud is also in thermal equilibrium. There is no net heat transfer,

and therefore

dE

dt

∣∣∣∣
cooling

+
dE

dt

∣∣∣∣
heating

= 0 (2.13)

Substituting the cooling and heating rate, 〈v2
i 〉 can be found from

α〈v2
i 〉 =

~2k2Γ

m

Ω2/2

∆2 + (Γ/2)2 + Ω2/2

〈v2
i 〉 =

~
2m

∆2 + (Γ/2)2 + Ω2/2

|∆|
(2.14)

for ∆ < 0. This expression is only valid if the laser is red-detuned; i.e., the light cools the

atoms. While heating from spontaneous emission remains the same for any dimension

we wish to examine, if the trapping beam intensity varies from dimension to dimension,

the average velocity in a dimension will be different. We find the temperature using the

equipartition theorem which leads to the relation: kBT/2 = m〈v2〉/2. Thus the condition

for steady state temperature is

T =
~

2kB

∆2 + (Γ/2)2 + Ω2/2

|∆|
. (2.15)

In case of low intensity where Ω � Γ, Ω2/2 is negligible, and the minimum temper-

ature occurs at ∆ = −Γ/2 (negative sign coming from the red-detuning). This gives us

the limit of Doppler cooling:

TD =
~Γ

2kB
. (2.16)
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2.2.3 Polarization Gradient Cooling

It was reported in 1988 by Lett et. al. [3] that a cloud with sub-Doppler temperature

could be obtained from a MOT which led to a discovery of additional cooling mechanisms.

This was confirmed and explained by Jean Dalibard and Claude Cohen-Tannoudji a year

later [33] and collectively called polarization gradient cooling. It should be noted here

that there are other suggested mechanisms such as in Refs. [34, 35, 36]. I choose to

present only polarization gradient cooling as it is the most widely accepted explanation.

There are two distinct mechanisms in polarization gradient cooling which happen in

different settings, and both result from polarization changes in space. The first, and

more frequently discussed, is Sisyphus cooling which happens in a MOT with counter-

propagating linearly polarized light. The other does not have any specific name and

appears in the system of counterpropagating circularly polarized light. Although we use

the spin-orbit state throughout this discussion following the derivation in Ref. [33], the

same procedure can be applied to the hyperfine levels.

Sisyphus Cooling

In the case where the counterpropagating fields are orthogonally linearly polarized, we

write the total electric field as

Etotal(z, t) =
~E+(z)

2
exp{−ıωt}+ c.c. (2.17)

where ~E+(z) = E0~εx exp{ıkz} + E ′0~εy exp{−ıkz}. The beam with ~εx polarization prop-

agates in the positive direction, and ~εy polarization beam propagates in the negative

direction. If the two beams have exactly the same amplitude, the superposition of the

electric fields is

Etotal =
E0√

2

(
~εx + ~εy√

2
cos(kz) + ı

~εx − ~εy√
2

sin(kz)

)
exp(ıωt) + c.c. (2.18)
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The helicity of the field polarization changes between linearly polarized and circularly

polarized depending on the position. For a state with only one ground state sublevel –

for instance, Jg = 0 – the dynamics of the atomic states under the influence of the light

field will not be perturbed by the change in polarization since the atoms always decay

back to the same ground state. If the ground state is Jg = 1/2, which has two magnetic

sublevels, the two sublevels will experience different Stark shifts at different positions in

space. For example, at z = 0, the atoms are under the influence of linearly polarized

light, and the ground state sublevels are degenerate. The population of the atoms are

equally distributed over the sublevels. At z = λ/8, the polarization of the field becomes

σ−. Under this field, the mg = −1/2 sublevel is shifted by −Ω2/4∆ as a result of the

AC-Stark shift [31] while mg = 1/2 is shifted by +Ω2/4∆. The different shifts between

the energy sublevels cause a redistribution of atomic population to have more atoms in

mg = −1/2. At z = λ/4, the polarization returns to linear, and the two sublevels are

degenerate once again. This pattern continues in a sinusoidal fashion over space, creating

potential hills with alternating crests and troughs for mg = −1/2 and mg = 1/2 as shown

in Fig. 2.3.

An atom in a particular ground state sublevel moving in this sinusoidal potential will

be like a ball moving up and down a set of hills. An atom going up a hill loses kinetic

energy by converting it to potential energy which it regains when rolling down hill. If

the atom is interrupted while moving up the hill by being excited to another level, it will

continue moving along the same path but no longer subjected to the change in potential

energy. If we take the transition from Jg = 1/2 → Je = 3/2, we can see from Fig. 2.3

that an atom in the mg = −1/2 sublevel will be excited by the σ+ beam at the top of

its potential hill. This will take it to the me = 1/2 sublevel of the excited state. The

Clebsh-Gordon coefficient of the transition favors a decay into the mg = 1/2 state. If

timed correctly, the atom will decay into the trough of the mg = 1/2 potential, releasing
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Figure 2.3: AC-shifted ground state energy levels (lines) and populations (dots) for
Jg = 1/2 in lin ⊥ lin configuration and its variation along z-axis as shown in Ref. [33].
The labels at the bottom indicate the ground state that is at the lowest energy at the
particular position.

any potential energy gained from climbing the mg = −1/2 hill into the fluorescence

photon. Therefore, the kinetic energy the atom once possessed is reduced by the process.

In order for this process to work efficiently, the velocity of the atom must be such

that the excitation always happens when the atom is climbing up hills. This limits the

range of atomic velocities that can be significantly affected by Sisyphus cooling. To find

the velocity that maximizes this process and subsequently find the order of magnitude of

the friction coefficient, we define τp = 1/Γ′ as the time the atom takes to be transferred

between ground state sublevels which have a maximum energy separation of ∆′. The

maximum energy dissipated from the process is then ~∆′. In order to have the highest

efficiency, the atom must travel from the potential trough to the nearest crest which is

λ/4 away in the time τp before decaying into a potential minimum of the other sublevel.

Therefore, the maximum friction force will occur if

vτp = λ/4

v =
λΓ′

4
. (2.19)
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The power dissipated is

P =
~∆′

τp

= ~∆′Γ′. (2.20)

Assuming the friction force to take the form F = −α′v, the power dissipated is

P = −F · v = −α′v2. (2.21)

Comparing Eq. (2.20) and Eq. (2.21), we find the friction coefficient α′:

α′ = −~∆′Γ′

v2

= −16~∆′

λ2Γ′

∼ −~k2 ∆′

Γ′
(2.22)

The energy separation between the ground state sublevels is estimated by using the

energy shift between the ground and the excited state due to AC-Stark shift which is

δ = Ω2/2∆. Γ′ is stated in Ref. [33] to have the form Γ′ ∼ Ω2Γ/∆2 which leads to

α′ ∼ −~k2 ∆

Γ
(2.23)

A more rigorous calculation using quantum mechanics yields the friction coefficient

of Ref. [33]

α′ = −3~k2 ∆

Γ
. (2.24)

This additional cooling allows the temperatures of the clouds to to drop below the Doppler

limit as it increases the friction coefficient while it does not change the heating process.

However, the limit to this cooling has been observed to be inconsistent with theoretical

derivation. The actual limit and some possible causes of this discrepancy will be discussed

in Section 2.2.4.
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Polarization Gradient Cooling in σ+/σ− Configuration

In the case where the two beams are circularly polarized, the superposition of the fields

leads to ~E+(z) = E0~εσ+ exp{ıkz}+ E∗0~εσ− exp{−ıkz} with polarization vectors

~εσ+ = − 1√
2

(~εx + ı~εy) (2.25)

~εσ− =
1√
2

(~εx − ı~εy). (2.26)

The σ+ beam is propagating in the positive direction, and the σ− beam is propagating

in the negative direction. The total field is

Etotal =

(
E ′0 − E ′0

2
√

2
[~εxcos(kz)− ~εysin(kz)]− ıE

′
0 + E0

2
√

2
[~εxsin(kz) + ~εycos(kz)]

)
exp{−ıωt}+c.c.

(2.27)

In the case where the amplitude of the two counterpropagating waves are equal, as in

the MOT, the first term in Eq. (2.27) disappears. The polarization becomes linear with

rotating direction along the z-axis. Without the change in helicity in space, Sisyphus

cooling no longer applies. The atomic frame in this case will be moving with the velocity

of the atoms and rotating such that the polarization of the light is constant. The rotation

of this frame is also governed by the speed of the atom. Since the polarization rotates

around the z-axis, the rotation operator is T̂ (t) = exp{−ıkvtĴz/~}, kvt being the phase

gained with time, and Jz is the atom’s total angular momentum. This transformation is

proven to bring d · (~εx sin(kz)+~εy cos(kz)) to simply d ·~εy with a result of adding another

term of Hadd = kvĴz to the usual atom-light Hamiltonian stated in Eq. (A.4).

The eigenstates of the atom-light interaction, disregarding Hadd, can be found by

choosing the ~εy in the rotating frame to be the quantization axis. For the purpose of

illustrating the process, we will assume that the transition is J = 1 → J = 2 which has

three ground state sublevels as discussed in Ref. [33]. The energy of these levels are shifted

from the unperturbed states by the presence of the field. The mg = 0 level has the lowest

energy with a Stark shift of ∆′0. The mg = −1 and mg = 1 levels are equally shifted by
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the linear polarized light by ∆′1 which can be expressed in terms of ∆′0. The eigenstates

of the ground states are denoted as |gi〉y where y signifies the quantization axis. The

eigenstate of the full Hamiltonian, including Hadd, can be calculated using the first order

approximation of time-independent perturbation theory with Hadd as the perturbation

term. The eigenstates from this approximation are |ḡi〉y = |gi〉y +
∑

k6=i
kvy〈gk|Jz |gi〉y

~(∆′
ik)

|gk〉y

where ∆′ik is the energy difference between ground state i and k which can be found in

terms of ∆′0 by calculating the Stark shift.

While the eigenstates of |ḡ1〉y and |ḡ−1〉y are equally shifted, |ḡ1〉z and |ḡ−1〉z are

not. The asymmetry can be checked by calculating 〈Jz〉; if 〈Jz〉 = 0, then the state

is symmetrical. The calculation shows that 〈Jz〉 = 40
17

~kv
∆′

0
[33] leading to a population

imbalance in the z-dimension of

Π+1 − Π−1 =
〈Jz〉
~

=
40

17

kv

∆′0
(2.28)

where Πi = 〈ḡ|ḡi〉z is the state population. The friction force associated with this imbal-

ance is

~k(Π+1 − Π−1)Γ′ =
40

17

~k2Γ′

∆′0
v (2.29)

where ~kΓ′ is the force of one photon. This imbalance has direct dependence on the

velocity of the atom. If v > 0, the state mg = −1 has higher population (∆′0 < 0

since the laser is red-detuned). The force in this case is negative due to the favored

exchange of momentum between the atoms in mg = −1 and σ− beam by the Clebsh-

Gordon coefficients, and the atoms are pushed in the opposite direction of their velocities.

A similar process happens for atoms moving in the v < 0 direction. Therefore, the

mechanism gives rise to a cooling force.

For an order of magnitude calculation with Γ′ ∼ Γ and ∆′0 ∼ Ω2

∆
, the friction coefficient

23



is

α′ = −40

17

~k2Γ∆

Ω2
. (2.30)

A more rigorous calculation using quantum mechanics in Ref. [33] shows that the force

does not in fact depend on the amplitude of the field. The actual friction coefficient is

in fact

α′ =
120

17

−∆Γ

5Γ2 + 4∆2
~k2. (2.31)

The fact that the force depends on the population imbalance poses restrictions to

the ground states in which this phenomenon can be observed. The atoms must have

ground state sublevels that allow for population imbalance through optical pumping,

and therefore needs at least three magnetic sublevels to operate.

Polarization Gradient Cooling in More Than One Dimension

The treatments described previously are for a one dimensional trap since we have dis-

cussed before that each dimension of the trap can have different strengths of the cooling

force making the trap condition nonisotropic. It also allows us to reduce greatly the com-

plexity of the derivation. This reduction has a great flaw when it comes to describing

polarization gradient cooling as the mechanism depends on the change of polarization in

space due to interference of the trapping beams. In one dimension, we assume the beams

to perfectly counterpropagate which results in a field that has either varying helicity or

a rotating linear polarization. In a more realistic case, the beams are slightly misaligned;

i.e., k− is not perfectly −k+. The resulting polarization is now much more complicated

because |k− · k̂+| is no longer k. For example, the polarization of the σ+/σ− configuration

will no longer be a rotating linear polarization such as when the amplitude of the fields

are equal. This effect can be minimized by adjusting the alignment.

A more complicated scenario happens when two or more dimensions are taken into

account. Even with perfect alignment, the interference between the two or three pairs of
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beams will produce various degrees of polarization helicity depending on (1) the phase

difference between each pair of trapping fields φij, for i, j being the dimension, and (2) the

position inside the field. This allows Sisyphus cooling to exist even in a trap with σ+/σ−

configuration. The strength of the force depends on the light shift of the ground state

sublevels which is related to the helicity of the total light field. It has been shown by

Mølmer in Ref. [37] for the case of linearly polarized optical molasses that the change in

helicity can create an average friction force that depends on φij. Steane et.al. numerically

showed that small misalignment of the beam can cause interference patterns in the atomic

distribution. Similar to the case of Sisyphus cooling in one dimension, the amount of

Stark shift varies with helicity of the field polarization in the three dimensional case. In

ideal case, the variation will be that of sinusoidal pattern with the period of π/2. If one

of the beam is misaligned, the Stark shift is shown to have a beat pattern [38]. The

varying Stark shift translates into varying ‘stickiness’ in the molasses causing varying

rates of atomic diffusion inside the trap. This leads to an interference pattern in the

atomic distribution which is also observable in the MOT.

2.2.4 Temperature Limit of Polarization Gradient Cooling

The MOT clouds have been known to reach temperatures approaching the recoil limit [3].

This limit is where we assume the momentum of the atom is equal to that of a fluorescence

photon. For every cooling or trapping scheme that involves constant photon scattering,

this is the fundamental limit of the trap temperature.

Using the relationship between temperature and kinetic energy of the atom from

equipartition theorem 1
2
kBTrecoil = p2

2m
where p is the momentum of a fluorescence photon,

the recoil limit is

Trecoil =
~2k2

2kBm
. (2.32)

A theoretical derivation of this limit from polarization gradient cooling is attempted

25



in Ref. [33] using the method discussed in Ref. [39]. The method yields a result that does

not fit with the experimental observation. This is probably because the calculation is

based on a one-dimensional cooling force. A calculation for the limit of a higher dimension

trap was attempted in Ref. [37]. They used the semi-classical model for the light-atom

interaction and therefore cannot obtain the recoil limit. To the best of my knowledge,

this limit is imposed with no connection to the nature of the cooling force.

2.3 Steady State MOT

The characteristics of a MOT cloud, such as the size of the cloud and the atomic density,

depend strongly on the cloud’s regime. There are four distinct regimes for a steady state

cloud. The easiest way to picture the cloud’s transition between these regimes is to keep

the trapping conditions constant and consider only a change in the number of trapped

atoms. The regimes are as follows:

1. The temperature limited regime is the regime where the cloud has the least

number of atoms. This is where all the mechanisms of cooling and heating

previously discussed hold.

2. The multiple scattering regime is where the cloud has become dense enough

that a significant portion of fluorescence photons are re-absorbed by the

atoms in the trap. The re-scattering results in a repulsive force between

atoms, limiting the atomic density in this regime.

3. The two-component regime is where the number of atoms is too high to

be packed into the harmonic part of the trap and the atoms spill out into

the shallower potential well around the harmonic trap. The approximation

of the trap as a damped harmonic oscillator no longer holds. The cloud
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will appear to have two different density components with the denser part

residing inside the harmonic potential.

4. The optically dense (or optically thick) regime is where the shallow part

of the trap is also filled. It has the highest number of atoms of the four

regimes.

A MOT cloud is most often reported to be in either temperature limited or multiple

scattering regime. Therefore, we will disregard the two-component and the optically thick

regimes and focus the discussion on the properties of the cloud in these two regimes.

The properties of the cloud depend on four main parameters, but they also depend on

the beam alignment, the beam intensity profile, and the background pressure from hot

atoms. An imperfection in beam alignment can reduce the trapping and cooling forces.

Any non-uniformity in the transverse intensity causes the trap condition to change from

position to position. Collisions with hot atoms affect the trap lifetime which in turn

affects the number of atoms in the steady state trap. In the following discussions, the

trap is assumed to have perfect alignment and perfectly uniform intensity profile. The

experimental results still follow the trends predicted by theory but might not match

quantitatively.

2.3.1 The Forces

The distinction between the temperature limited and the multiple scattering regime is a

difference in the forces involved. In the temperature limited regime, the forces are simply

the trap forces calculated in previous sections. Assuming spherical symmetry over the

trap for simplicity, the force in the radial direction is Fr(r, vr) = −αvr − κr.

The cloud in the multiple scattering regime has two additional forces due to the cloud

having higher atomic density than in the temperature limited regime. One is a repulsive
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photon-pressure force due to the re-scattered trapping field. The other is an attractive

force due to an attenuation of the trapping beam intensity as it passes through. To derive

the expression for the force, we first consider an atom at position r′ scattering photons

from the laser beam with scattering rate

Rscat =
Γ

2

(
Ω2/2

∆2 + (Γ/2)2 + Ω2/2

)
. (A.22)

These scattered photons fly off in every direction. Another atom at position r with a

cross-section for re-absorbing photons σR will see the photon flux Φphoton described by

Φphoton =
Γ

2

(
Ω2/2

∆2 + (Γ/2)2 + Ω2/2

)
σR

4π|r− r′|2
. (2.33)

The total force due to re-scattering experienced by the atom at r is the sum of the forces

contributed by every atom in the ensemble which can be written as [40]

FR = ~k
Γ

2

(
Ω2/2

∆2 + (Γ/2)2 + Ω2/2

)
σR
4π

∫
n(r′)

r - r′

|r - r′|3
dr′3 (2.34)

where n(r′) describes the spatial distribution of the atoms in the cloud. The form of

the force here is similar to the electrostatic force experienced by an electron inside an

insulator filled with negative charges. This force satisfies the inverse-square law and

has a divergence of ∇ · FR = ~k Γ
2

(
Ω2/2

∆2+(Γ/2)2+Ω2/2

)
σR
4π
n(r) [40], indicating an outward

component. Assuming the cloud to have spherical symmetry and uniform atomic density,

we can use Gauss’s Law to calculate the force at a distance r from the center of the trap.

Despite the similarity, there is a major distinction between the electrostatic force and

the photon-pressure force. Unlike the electrostatic force, the photon-pressure force needs

a mediator – the optical photon – to make the momentum exchange. Therefore, the

receiving atom will experience a force coming from one atom at a time. This is different

from the electrostatic force in which the electron experiences the net force contributed

by all charges at all times. Using this argument, we can write a simplified form of the

28



photon-pressure force force on an atom residing at r as

FR = ~k
Γ

2

(
Ω2/2

∆2 + (Γ/2)2 + Ω2/2

)
σR

4πr2
r̂

=
IσL
c

σR
4πr2

r̂ (2.35)

where σL = ~ω
I

Γ
2
( Ω2/2

∆2+(Γ/2)2+Ω2/2
) is the laser scattering cross-section.

Generally, σR is larger than σL or else the effect of the photon-pressure force will

be shadowed by another attractive force due to attenuation of the trapping beam. This

force is calculated in Ref. [40] as being a result of the shadow in the laser cast by the

atoms. The final form of the force is

FA = − Iσ2
L

c4πr2
r̂. (2.36)

The extra forces found in the multiple scattering regime have the combined form of

FR + FA =
Iσ2

L

c4πr2

(
σR
σL
− 1

)
. (2.37)

According to Ref. [38], the calculation for the explicit form of σR has to take two

scattering process into account: elastic scattering (Rayleigh scattering) with a scattering

cross section of σL, and inelastic scattering (fluorescence) which has a scattering cross-

section of photon at resonance σL0. The scattering cross section of the inelastic part can

be written in terms of σL as

σL0 =
~ωΓ

2I

(
Ω2/2

Ω2/2 + Γ2/4

)
= σL

(
∆2 + Γ2/4 + Ω2/2

Ω2/2 + Γ2/4

)
. (2.38)

The ratio between the intensity of elastic Iel and total scattering intensity Itotal = Iel+Iinel

is calculated by Mollow [41] to be

Iel

Itotal

=
∆2 + Γ2/4

∆2 + Γ2/4 + Ω2/2
. (2.39)
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This ratio leads to a total re-scattered intensity of

IinputσR = Iinput
Iel

Itotal

σL + Iinput

(
1− Iel

Itotal

)
σL0

σR =
Iel

Itotal

σL +

(
1− Iel

Itotal

)
σL0

=
Iel

Itotal

σL +

(
1− Iel

Itotal

)(
∆2 + Γ2/4 + Ω2/2

Ω2/2 + Γ2/4

)
σL (2.40)

which gives

σR
σL
− 1 =

(
Ω2/2

Ω2/2 + ∆2 + Γ2/4

)(
∆2

Ω2/2 + Γ2/4

)
. (2.41)

This equations shows us that σR > σL as mentioned before. We replace σR
σL
− 1 in

Eq. (2.37) with Eq. (2.41) whenever we want to calculate the strength of the additional

forces in multiple scattering regime.

2.3.2 Capture Velocity

When the trap is first turned on for the first time in the day, the initial cloud is very faint.

Given time, the MOT will be slowly filled up with more atoms and the cloud becomes

brighter, although no parameters in the trap has changed. Some time is needed to cool

the hot atoms from hot Rubidium gas to the capture velocity. The capture velocity is

defined to be the velocity of an atom entering the trap that can be decelerated to zero

when the atom reaches the center of the trap [38]. This is only a convenient definition

which gives an estimate without the need for complicated calculations or simulations of

the actual dynamics of the atoms.

A more mathematical definition can be derived by imagining an atom entering a trap

of radius r0 with kinetic energy 1
2
mv2

c . The atom will experience a cooling force from its

point of entry to the center of the trap. In Ref. [38], the cooling force is defined to be half

the maximum scattering force, or ~kΓ/4, which corresponds to a work of ~kΓrd/4 done on

the atom. Since the atom comes to a stop at the center of the trap, conservation of energy
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dictates that the work done on the atom is equal to the atom’s initial kinetic energy.

Therefore, vc =
√

~kΓrd/2m which corresponds to a temperature (for one dimension) of

Tc = ~kΓrd/2kB. This temperature is used as a measure of trap depth and is not the

temperature of the cloud. The trap depth is an estimate of the highest temperature of the

hot atoms that the trap can capture. A very rough estimation using our trap parameters

shows Tc = 15K, much lower than the room temperature, which is the reason why the

atoms must be left to cool before it can be properly trapped. Because the scattering

force is a dispersive force which cannot be described as a potential, capture velocity is

sometimes a preferred measurement to the trap depth [26].

2.3.3 Number of Atoms and Trap Lifetime

The change in the number of atoms inside the trap is due to three mechanisms: load-

ing of the trap, loss due to collision with background atoms, and loss due to collision

with other trapped atoms. The equation for the number of trapped atoms follows the

approximation [38]

dN

dt
= R− N

τ
− βN

2

V
. (2.42)

The first term R is the loading rate of trap. This quantity will not be discussed in

detail here due to its complex dependence on several parameters such as background

pressure, trapping beam intensity, trap volume, alignment, detuning, etc. The second

term, which is the first order loss term, is the loss due to collisions with hot atoms and

usually dominates the losses in a typical MOT. The trap lifetime τ gives an estimate of

the time an atom spend in the trap. The third term is due to the internal collisions and

depends on density. This term is negligible in a MOT because the density is usually not

high enough to offset β. Therefore, the equation for the change in number of atoms with

time is

dN

dt
= R− N

τ
. (2.43)
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The solution to this inhomogeneous differential equation is

N(t) = N0(1− exp{−t/τ}) (2.44)

where N0 = Rτ is the steady state number of atoms. The trap’s loading profile is

governed by τ which gives us the convenience of measuring the trap lifetime.

2.3.4 Cloud Radius and Atomic Density

In the temperature limited regime, the force in the trap is that of a damped harmonic

oscillator. Although we do not usually assign a potential to the trap due to the dissipative

damping force, the harmonic term can be considered to be a result of a harmonic potential

which gives rise to the relation between the cloud radius and the temperature due to

equipartition theorem

1

2
κr〈r2〉 =

1

2
kBT. (2.45)

This indicates that in the first regime the size of the cloud depends only on the tem-

perature and not on the number of atoms in the trap. Hence, the atomic density is

proportional to the number of trapped atoms given that the spring constant κ remains

unchanged. The spring constant is different for different directions even in the ideal case

where the intensity of all trapping beams are equal, since the magnetic field gradient on

the transverse plane is half that of the gradient on the axis. In this case, the shape of

the cloud is more like that of a pumpkin with rT ≡ rz = rx,y/
√

2. This yields an average

atomic density of

n =
3N

π(2rT )3
. (2.46)

If we assume the cloud to have spherical symmetry for simplicity of further discussion,

then

n =
3N

4πr3
T

. (2.47)
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In the multiple scattering regime, the radius is no longer determined by the temper-

atures of the cloud but rather by the number of atoms in the trap as a result of having

repulsive forces between atoms at higher trap densities. Ignoring the cooling term as

it no longer determines the trap size, the density of the cloud in steady state is such

that the trapping force balances the repulsive forces given by Eq. (2.37). We assume the

cloud to have spherical symmetry for simplicity. For an atom at distance r from the trap

center, with N atoms residing within a sphere of radius r, the total force on the atom is∑
F (r) = −κr +N

IσLσR
c4πr2

−N Iσ2
L

c4πr2
= 0. (2.48)

With some algebra, Eq. (2.48) leads to an average atomic density of

n =
N

4/3πr3
=

3cκ

Iσ2
L

1

(σR/σL − 1)
. (2.49)

The density in this regime no longer depends on the number of atoms, only on the spring

constant and trapping intensity. Therefore, the more atoms in the trap the larger the

cloud.

The different behaviors of the atomic density in the temperature limited regime and

multiple scattering regime give us a convenient and readily observable way to distinguish

between the two regimes.

2.3.5 Temperature

The temperature of the MOT cloud is determined from the average speed of the trapped

atoms. However, this is under the assumption that the cooling and trapping forces in all

dimensions are the same. As discussed in Section 2.2.1, the forces can be different for

different dimensions due to the difference in the friction coefficient α. Therefore, each

dimension is subject to its own trap parameters. For the purpose of characterizing the

trap, each dimension will be treated separately so as to not obscure the degree of change

in one dimension by the other.
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To simplify the following discussion, we think of the trap as having symmetry in all

directions. For small clouds, i.e. those in the temperature limited regime, the magnetic

field can be considered negligible. Therefore, the temperature should not depend on the

magnetic field gradient – similar to optical molasses. Neglecting polarization gradient

cooling for the moment, the steady state temperature of the cloud follows Eq. (2.15)

which is often written as Eq. (2.50)

kBT = ~
∆2 + (Γ/2)2 + Ω2/2

|∆|
(2.15)

kBT

~Γ
=

1

2

Ω2

|∆|Γ
+

1

2

(2∆/Γ)2 + 1

2|∆|/Γ
(2.50)

In reality, polarization gradient cooling can play a significant part in determining the

cloud temperature and render Eq. (2.50) incomplete. However, polarization gradient

cooling does not depend on the trapping beam intensity. This can be seen from the fric-

tion coefficients given by Eq. (2.24) and (2.31). Therefore, the presence of polarization

gradient cooling should not affect the scaling of the temperature with trapping beam

intensity. Due to the complexity in mathematically incorporating the effect of polariza-

tion gradient cooling into the derivation, Eq. (2.50) is generally stated in semi-empirical

form:

kBT

~Γ
= Cσ+/−

Ω2

|∆|Γ
+ C0 (2.51)

where Cσ+/−, C0 is found by performing linear regression on the experimental data. The

validity this equation is shown in experimental results in Refs. [42, 43]. Cσ+/−, which

is the constant for Doppler cooling, depends on detuning in a real MOT [43]. In that

reference, the temperature is also shown to increase with magnetic field gradient at the

gradient of below 1 G/cm before it reaches a plateau. This has been associated with the

change in atomic density in the multiple scattering regime because the size of the cloud

in this regime depends on the number of atoms. Therefore, the cloud can be large enough

that the effect of the magnetic field cannot be ignored any longer. It was also observed in
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Ref. [44] where the gradient is on the order of a hundred G/cm that the temperature of

the cloud will decrease due to a decrease in capture velocity. The effect of the magnetic

field gradient on the temperature will be discussed in more detail in Section 2.4.1.

2.4 Compressed Magneto-optical Trap

Some applications of the MOT, such as the preparation of BECs and atomic ensembles

for cold collisions, require atomic densities that are higher than the ≈ 1010cm2 normally

obtained in the steady state MOT. One well-known technique is called the dark MOT. It

is similar to an ordinary MOT with the repumping laser being blocked at the center of the

trap, which allows the atoms to go into a dark state. Without being constantly excited

and de-excited, there is no photon pressure to limit the atomic density and therefore

allows the dark MOT to obtain high atomic densities. However, without the atoms being

actively cooled this can limit how cold the cloud can be. It was shown that a steady

state dark MOT works well for smaller atoms [45] but not for heavy alkalis such as

cesium [46]. This is because the center of the trap, which generally provides polarization

gradient cooling, is not used. A common technique for creating a dark MOT is to shut

off the center of the repumping laser after a steady state MOT has been achieved. In

this case, the atoms in the center region of the trap are already sufficiently cooled and

will maintain high density and low temperature.

Implementation of a dark MOT is not necessary if a transient increase in density

is what we are interested in. A transient compression by increasing the magnetic field

gradient has been demonstrated by Petrich et.al. [25] in a regular MOT. A similar pro-

cedure is applied to the dark MOT in Ref. [47]. This is a very attractive alternative as it

does not require any modification of the setup aside from an electronic control to allow

instantaneous and arbitrary change to the coil current.
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2.4.1 Magnetic Compression

To obtain a high atomic density with this method, we start with a trap at a low gradient

which allows more atoms to be loaded. Once the trap is in its steady state, the magnetic

field gradient is increased to compress the trap. To interpret the result, we will first

discuss the theory and observation of the steady state MOT with a change in magnetic

field gradient.

Atomic Density and Regime Transition

The steady state density and its response to the change in field gradient are different for

the temperature limited and multiple scattering regimes. For the temperature limited

regime, the density is nTL = 3N
4πr3T

= 3N
4π

κ3/2

(kBT )3/2
(Eq. (2.47)) while the multiple scattering

regime has a density of nMS = 3c
Iσ2

L

κ
(σR/σL−1)

(Eq. (2.49)). The density in the tempera-

ture limited regime is more sensitive to the change in spring constant than the multiple

scattering. Equating the density gives us the value of κ at which the change in regime

occurs.

κ1/2 =
4πc

NIσ2
L

(kBT )3/2

(σR/σL − 1)
. (2.52)

If at any point the trap compression requires the change of κ above this value, the trap

will transition from the temperature limited to the multiple scattering regime. It is

possible that the transient increases in atomic densities observed in [25, 47] are a result

of crossing this limit.

Trap Depth and Temperature

The trapping force in a MOT will be extended up to the position where the Zeeman shift

is comparable to the detuning; i.e., µB
∂Bz

∂z
rd ≈ ~|∆| [44]. The distance from the center
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of the trap to a such point is written as a function of the trap parameters

rd ≈
~|∆|
µB

∂Bz

∂z

−1

≈ ∆α

kκ
. (2.53)

As discussed in Ref. [44], this radius is approximated under the assumption that the

laser beams are infinitely large; therefore, the volume where all the six beams cross is

also infinitely large. In reality, the laser beams have finite sizes which defines the spatial

limit from the trapping force. A simple calculation using parameters from our MOT

(∆ = −15 MHz, ∂Bz

∂z
= 10 G/cm) gives rd ≈ 0.95 cm which is slightly smaller than the

1.25 cm expected from the trapping beam. Given that the transverse intensity profiles

usually tapers out significantly before they reach 1.25 cm, rd can be approximated as

the radius of the beam. For higher magnetic field gradients which yield rd smaller than

the beam radius, the trap depth is determined by rd, and this gives the trap potential

of Uc = ~kΓ
4
rd = ~Γ

4
α∆
κ

corresponding to Tc = ~Γ
2kB

α∆
κ

. On the other hand, a reduction

in magnetic field gradient widens the trapping area as can be seen from Eq. (2.53). If

rd is larger than the beam radius, the trap depth is Uc = ~kΓ
4
L where L is the radius

of the beam corresponding to Tc = ~kΓ
2kB

L. According to this estimation, the increase in

magnetic field gradient will not affect the trap depth until rd ≤ L.

The reduction in trap depth implies that the temperature of the atomic cloud de-

creases with the increase in gradient. It also implies that less atoms will be loaded into

the trap as the velocity of the atom that can be trapped is reduced. At high gradient, a

drastic decrease on loading rate is reported in Ref. [48]. The reduction in trap depth is

also used to obtain a single atom MOT in [44] by using a gradient of 350 G/cm. Another

way of reducing the trap depth is by reducing the beam size as used in Ref. [49] to trap

a single atom.
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Chapter 3

Experimental Setup and Methods

A MOT setup was previously built in our lab for the propose of demonstrating EIT in a

cloud of a few atoms. In that stage, we did not have instantaneous control of trap parame-

ters, such as the trapping beam intensity, the trapping beam detuning, the magnetic field

gradient, and the number of atoms. Control of these parameters is necessary for char-

acterization of the MOT cloud. For this reason, the setup has been modified to provide

the control necessary for measurements to be performed on the cloud. In this chapter, I

will first detail the setup, the components we use, and their functions. I will also briefly

describe the optimization process before measurements can be performed. I will end this

chapter with a description of the methods for measuring the number of atoms, the cloud

radii, and the temperatures. These are the methods used in characterizing the MOT for

every experiment to follow.

3.1 Components of Experimental Setup

3.1.1 Atomic Species and Transitions

The atomic species used in the experiment is Rubidium 87 with the D2 transition (F =

2→ F ′ = 3) used as the trapping transition. This corresponds to an optical wavelength

of 780.246 nm. This is also a cyclic transition with a small probability of atoms de-

exciting into the dark state F = 1. We address this with a repumping laser set to the

F = 1 → F ′ = 3 transition, corresponding to 780.232 nm, in order to pump the atoms

back to F = 2. These transitions are shown in Fig. 3.1

Detailed information on the D2 transition including Clebsch-Gordan coeffecients can
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be found in Ref. [30]. I recap the crucial information in Table 3.1.

Properties Symbol Value
Mass m 1.44316060(11)× 10−25 kg

D2 Decay Rate/ Natural linewidth Γ 2π × 6.065(9) MHz
D2 Doppler Temperature TD 146 µK

Dipole Moment σ± d(mF =±2→mF ′=±3) 2.534(3)× 10−29 C ·m
Saturation Intensity σ± Isat(mF =±2→mF ′=±3) 1.669(2) mW/cm2

Resonant Cross Section σ± σ0(mF =±2→mF ′=±3) 2.907× 10−9cm2

Table 3.1: Rubidium 87 Properties
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193.7408(46) MHz

229.8518(56) MHz

302.0738(88) MHz

72.9113(32) MHz
266.650(9) M

156.947(7) M

72.218(4) M

F = 3

F = 2

F = 1

F = 0

F = 2

F = 1

2.563 005 979 089 11(4) GHz

4.271 676 631 815 19(6) GHz

Hz

g = 1/ 2

(0.70 MHz/ G)
F

g = -1/2

(-0.70 MHz/G)
F

g = 2/ 3

(0.93 MHz/ G)
F

g = 2/ 3

(0.93 MHz/ G)
F

g = 2/ 3

(0.93 MHz/ G)
F

5 P3/2
2

5 S1/2
2

780.241 209 686(13) nm
384.230 484 468 5(62) THz
12 816.549 389 93(21) cm

1.589 049 439(58) eV

-1

Trapp 780.246 nming: Repump 780.232 nming:

6.834 682 610 904 29(9) G

Hz

Hz

Hz

Figure 3.1: Energy levels of Rb87 D2 transition as shown by Steck [30] with the trapping
and repumping transitions.
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Figure 3.2: Schematic of experimental setup.
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3.1.2 Optical Components

External Cavity Diode Lasers

Both our repumping laser and trapping laser are diode lasers from homemade units (prin-

ciple of design described in Ref. [50]). The temperature and the current are regulated by

Thorlabs ITC102 units which have both a proportional-integral-derivative (PID) tem-

perature controller and a current limiting circuit. Temperature sensors (AD590) are

attached in the diode housings to provide reading for the PID controllers, which in turn

control the current going through Peltier elements to cool or heat the diode. The output

of the diodes are incident on diffraction gratings to create an external cavity, allowing

tunability of laser frequency by adjusting the optical feedback into the diode. Coarse fre-

quency selection is done by adjusting two screws, one located directly behind the grating

for horizontal angle control and the other, attached to the platform underneath the grat-

ing, for vertical angle control. The horizontal screw is also connected to a piezoelectric

element which allows scanning of the laser frequency over a GHz range. The scan range

is generally limited by the mode-hop-free range. The piezo signal is provided by a home-

made controller circuit generating a ramping signal of roughly 60 V range (adjustable).

Diode current and temperature can also be used to tune the frequency of the laser. The

zeroth-order diffraction from the grating is reflected off a mirror to the output port while

the first-order is reflected back into the diode to provide optical feedback.

Saturated Absorption Spectroscopy

Since the cooling and trapping forces are sensitive to detuning from the atomic transi-

tions, the range of detuning in which a MOT cloud can be formed is limited to about

−20 MHz. A frequency locking circuit is needed to prevent the trapping laser from

drifting. The laser frequency can be electronically locked to a particular transition using

an absorption profile. In a hot gas system, the absorption line is broadened due to the
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Reference Detector
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QWP

Vapor Cell
Signal Beam
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Figure 3.3: Schematic of saturated absorption spectroscopy as used in setup (Fig. 3.2).
Two beams are injected into the hot vapor cell at an angle with one another. The
absorption profile is detected by the reference detector after a single passing to provide
reference of the Doppler broadening. The other beam is retro-reflected, passing through a
quarter-wave plate twice which changes the beam polarization from horizontal to vertical.
The outgoing beam is reflected off a polarizing beam splitter, allowing separation between
incoming and outgoing beam, and the saturated absorption profile is detected from the
outgoing port.

Doppler effect resulting in a broadened linewidth causing a loss in frequency resolution.

To counter the effect of Doppler broadening, we use saturated absorption spectroscopy

to better resolve the hyperfine lines. This technique is done by passing a laser beam

through a hot vapor cell, then reflecting it back along the same path. Each beam on its

own will be in resonance with a set of velocity groups. If a velocity group can be addressed

by both, it will absorb the forward beam which has a more intense component around the

transition frequencies. This creates a transparency window for the back-reflected beam.

Given the counterpropagating configuration, there are two types of velocity groups

that can be addressed by both beams. The first is v = 0, which will be addressed by the

resonance frequencies of the hyperfine transitions. The second is the velocity group that

brings the light field into resonance (ω1) of a transition through red-shift while being in

resonance with another transition (ω2) through blue-shift. In this case there is a velocity

group that gives ω = ω1 + kv and ω = ω2 − kv simultaneously, creating a transparency

at the frequency ω = ω2−ω1

2
between two resonances. The width of these transparencies

is determined by hole burning (reduction of the ground state population due to a strong
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Figure 3.4: Saturated absorption signal from D2 transition. (a) is the F = 2 → F ′

(trapping beam). (b) is the F = 1→ F ′ (repumping beam).

pump beam) and is given by [31]:

∆ωhole = Γ

(
1 +

I

Isat

)1/2

(3.1)

where I is the intensity of the pump beam and Isat = π
3
~cΓ
λ3

= 2
(

Ω
Γ

)2
as defined in

Appendix A.

Because the crossover peaks have stronger signals, the setup is designed such that

it will lock on the crossover peak F ′ = 2, 3, which is the strongest signal among the

F = 2 → F ′ transitions, as opposed to a hyperfine line. An acousto-optical modulator

(AOM) is used to create a frequency difference between the trapping beam and the

spectroscopic beam (details of the AOM setup are given in a later part of this section).

The schematic of the setup used is shown in Fig. 3.3. Another beam is injected into

the cell at a different angle and its absorption profile is detected as a Doppler-broadened

reference. The lock takes the saturated absorption signal and subtracts it from the

Doppler broadened reference signal. The results of the subtractions are shown in Fig. 3.4.

The circuit locks to a positive slope around the zero voltage (the offset level of the signal

is adjustable) and gives a small correction signal to the laser’s piezo element depending

on how far and in which direction the signal deviates from zero. If the laser drifts towards

blue-detuning and the signal becomes positive then the circuit will apply a voltage to
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contract the piezoelectric element and shift the laser towards red-detuning, and vice versa.

This design is a slight variation from the typical locking on the differential signal which

allows locking directly on resonance, a commonly used technique described in Ref. [51].

Tapered Amplifier (TA)

A Tapered amplifier is a semiconductor diode in which a gain medium amplifies an

external coherent field. Thus, the tapered amplifier requires similar temperature and

current control system to the diode laser only with higher capacity (the TA diode current

limit is 2 A, an order of magnitude or so higher than a normal laser diode). We free-space

inject a 20 mW field from the trapping laser to create an output of field 600 mW. Due

to its rectangular spatial mode, the beam is subjected to mode cleaning through a series

of lenses and pinholes which results in a net output power of 380 mW. The schematic of

the setup is labeled in Fig. 3.2.

Acousto-optic modulator (AOM)

An AOM is a device which shifts the laser frequency using acoustic waves in a crystal.

The output pattern is that of a diffraction pattern, which allows the users to pick the

order of frequency shift as needed. In our experiment, the AOM is set up to create

approximately 130 MHz difference between the spectroscopic beam and the trap beams,

allowing us to lock on the side of a crossover peak.

There are two ways of setting up the AOM to achieve this effect. The first configura-

tion uses two 70-MHz AOMs working at the same frequency. One is placed in the beam

path before the saturated absorption spectroscopy setup to create a red-shift. The other

is placed after the TA mode-cleaning to a create blue-shift. This configuration reduces the

optical loss by passing the trapping beam only once through the AOM, which results in

a total trapping beam power of 150 mW. This level of optical power allows investigation

into both the temperature limited and multiple scattering regimes. The disadvantages
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Figure 3.5: The positions and setups of the two AOMs used to create steady state MOT
cloud.

of this configuration are the distortion in the trapping beam intensity profile and the

angular shift in beam path dependent uopn the frequency of the AOM signal. In this

configuration, the detuning of the trapping beam has to be fixed during the experiment

because of the latter effect.

To allow instantaneous change in detuning needed for the investigation of atomic cloud

compression, another configuration is used. Here, the selected mode from an AOM is

reflected back into the AOM to form a double-pass configuration (shown in Fig. 3.2). The

beam path of the output beam is insensitive to any frequency change in the AOM signal,

allowing detuning of the trap beam up to −15 MHz without significant distortion of the

spatial mode. Further detuning is limited mainly by the change in intensity profile as
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the beam position deviates upon making the second pass through the AOM. The biggest

disadvantage is the limited trapping beam power which goes up to 70 mW. However, due

to a better intensity profile, the cloud in general is colder and less susceptible to beam

alignment than the first configuration.

Since the cloud formation is less sensitive to the repumping laser, I do not use any

AOMs in the beam path and lock the laser on the positive slope of one at the F = 1→ F ′

transitions generates the brightest cloud.

3.1.3 The Anti-Helmholtz Magnetic Coils

Our magnetic coils are made from shielded wire looped tightly to create a 4 cm radius

ring with one hundred loops on each coil. The resistance is 0.03 Ω each. The coils are put

inside a cylindrical brass casket for water-cooling. However, since our experiment does not

require operation at high current for a long duration of time, the water-cooling system is

not used. The two coils are then placed 12 cm apart in order to accommodate the vacuum

chamber and connectors to the water-cooling system. The two coils are connected to a

high-current source which can supply up to 100 A. With the coil-controlling circuits, only

35 A is presently achievable.

The exact form of the magnetic field from anti-Helmholtz coils (Fig. 3.6), can be

found by integrating the vector potential A over each loop, then applying the curl to

get the fields B = ∇×A. The details of the magnetic field calculation can be found in

textbooks on electromagnetism such as Ref. [52]. In cylindrical coordinates, there is an

azimuthal symmetry in the field and therefore only two components of the magnetic field

need be considered: the on-axis field (Bz) and the radial field (Bρ). The exact solutions

for magnetic field components for when I1 = I2 are

Bz =
µI

2π

1

[(R + ρ)2 + (z − A)2](1/2)
[K(k2) +

R2 − ρ2 − (z − A)2

(R− ρ)2 + (z − A)2
E(k2)] (3.2)
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Figure 3.6: Schematic of an anti-Helmholtz coil pair with radius R and separation of 2A.
The current running through the coils are in opposite direction which creates opposing
magnetic fields. Thus the configuration has a zero-point in between the coils. The exact
position of the zero-field depends on the ratio between the current I1 and I2.

Bρ =
µI

2πρ

z − A
[(R + ρ)2 + (z − A)2](1/2)

[−K(k2) +
R2 + ρ2 + (z − A)2

(R− ρ)2 + (z − A)2
E(k2)] (3.3)

where E(k2) and K(k2) are elliptic integrals and k2 = 4Rρ
(R+ρ)2+(z−A)2

, A is the distance of

the coils from the center, R the radius of the coil. The solution is convenient when the

z-component of the magnetic field at ρ = 0 is of interest. The magnetic field calculated

for our experimental configuration is shown in Fig. 3.7(a) with the gradient change as a

function of total coil current shown in Fig. 3.7(b).

Close to the center of the trap, the exact solution for Bρ breaks down. The mag-

netic field close to this region can be calculated using the series approximation found in

Ref. [53]. This method is used in the magnetic field numerical simulations. The result

from the simulation is compared to the measured result from the coil setup (without

the vacuum chamber) for validation since we cannot directly measure the magnetic field

gradient once the vacuum chamber is in place. The simulation is also used to predict the

change of the gradient around the zero-point with the current input.

The best separation between coils for steepest and most linear gradient is when 2A =

R. However, if our concern is with the linearity of the gradient at the center, the condition
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is much more lenient since the atomic cloud is rarely larger than 1 or 2 mm and the

gradient is approximately linear over a few centimeters. Therefore, a separation of 12 cm

is suitable for the experiment.
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Figure 3.7: (a) The Bz field for a total current of 10 A and a separation of 2A = 12 cm.
(b) The change in Bz gradient around the center of the trap with the total current in the
coils.

A shift in the zero-point of the magnetic field can be used to move the atomic cloud.

We have evaluated two methods both with simulation and experiment. One is using

an additional coil which is found to be ineffective due to distance between this extra

coil and the center of the trap which is about 10-15 cm. The current is limited by the

available current source and by heating of the coil, therefore limiting the magnetic field

that can be generated. A shift of only a fraction of a millimeter is achievable with this

method. The other method is to introduce a current imbalance into the anti-Helmholtz

coils. The current imbalance is identified as a percentage of the current in one coil when

the current in evenly distributed. The simulation shows that for a total current of 10 A,

the cloud would move 6 mm for every 10% of current imbalance. We generally focus on

moving just a few millimeters to ensure that the trapping condition does not change too

drastically. The simulation also shows that the gradient deviates from the initial value

by only 0.4% if the current imbalance is kept within 10% of the average value, giving us

another operational limit.
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3.1.4 The Vacuum Chamber

Figure 3.8: Schematic of the vacuum chamber and the function of each port.

The MOT chamber is made of glass and is 5.5 cm in height and 7 cm in diameter.

Attached are nine windows, seven with a diameter of 2.5 cm and two with a diameter

of 5.0 cm on the vertical ports. The function of each port is shown in Fig. 3.8. This

chamber is attached to a four-way cross by a glass tube. One side of the cross leads to

Rb/NF/3.4/12/FT10+10 Alkali Metal Dispenser (getters) from SAES. The getters are

wired to a DC high current power supply which heats the rubidium salt coated on the

getters and releases neutral 87Rb gas. Another side of the cross leads to a three way cross

in which the ion pump and a right-angle valve are attached. The pressure of the chamber

is measured by the ion pump gauge which can show the pressure down to 10−8 Torr. The

pressure is usually below this limit and therefore the exact number is unknown.

3.1.5 Electronics and Computer Control

In addition to laser locking, we need electronics to control the current in the magnetic

coils and to adjust the power of the AOM signal to allow simultaneous changes on the

trapping conditions.
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Magnetic Coil On-Off Switch

This circuit was previously designed and built for simple on-off operation, allowing fast

shutdown of the magnetic coil current in 200 µs. The circuit has two transistors to control

an industrial grade insulated gate bipolar transistor (IGBT), which is the gate for the

high current (Fig. 3.9). The magnetic coils are connected in parallel to the IGBT. This

circuit is used in characterization of steady state atomic cloud.

Figure 3.9: Schematic of magnetic coil on-off switch designed by Lucia Duca [54]. This
circuit is used in characterization of steady state atomic cloud where only on-off operation
is needed.

Magnetic Coil Current Control Circuit

In order to compress and translate the cloud, the current in each coil has to be controlled

individually. The following circuit is used to provide continuous control over a single coil

current using an electronic signal programmed by a computer. The transistors in the

schematic (Fig. 3.10(a)) are a MOSFET and an industrial grade IGBT. The advantage

of the IGBT is the high power tolerance that is not found in a typical MOSFET which

allows it to operate at a current of tens of amperes for a long period of time without

being destroyed. The increase in coil current is found to be linear with the controlling

voltage, which is convenient to operate. It should be noted that the region of linear
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response depends on the supply voltage and it should be checked prior to performing the

experiment (Fig. 3.10(b)). This circuit replaces the on-off switch.
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Figure 3.10: (a) Schematic of the continuous current controller. The load in this
schematic is one of the coils. (b) The total coil current as a function of controlling
voltage.

AOM Power Control

The intensity of trapping field is controlled by adjusting the power of the frequency signal

going into the AOM. This can be done by varying the signal amplitude coming from

the function generator. However, I found that the control is limited since the function

generator is digital and therefore the attenuation needs to be preprogrammed. The

minimum amplitude is also limited by the device, leading to no change in the trapping

beam intensity over the allowed range. To gain better control, I use a voltage controlled

attenuator (VCA) to vary the signal amplitude. The amount of attenuation changes

in response to the voltage applied to the device. The attenuation can be varied over

tens of dB, allowing a range of control on the trap intensity from complete shutdown

of the trapping light to passing of about 50% of the input. For the study of the cloud
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regime, the voltage controlling the VCA comes from another function generator. For

cloud compression and translation, the signal comes from a digital-to-analog card (DAC)

due to the more complex sequence required.

During temperature measurement, the time interval for shutting down the trapping

beam needs to be accurate to a hundredth of millisecond in order to minimize the error

in synchronization with the CCD camera. I use a function generator to provide the

shutdown signal since its time resolution is much better than a DAC. This signal is added

to the intensity control signal via a subtraction circuit (Fig. 3.11) with a potentiometer,

allowing variation on the strength of the shutdown signal to make certain that the AOM

is completely turned off.

+
-

+
-

Vshutdown

R=10k

R=10k

R=9.1k

R=9.1k

R=27k

R=27k

R    =100kMax

Vsignal

Figure 3.11: Schematic for VCA control circuit.

Digital-to-Analog Card (DAC) for Computer Control

While experimental parameters of the MOT can be controlled by combining signals from

analog function generators, the compression and translation sequences require more com-

plex waveforms and better synchronization than the signal generators can provide. DAC

is used instead to provide the signals to different parts of the setup where accuracy of a

millisecond is acceptable. It also allows both analog and digital control of the electronics.

The DAC used is an Acces I/O PCI-DA12-8 card with a PCI connection for fastest

possible communication between the card itself and the computer. The card also has IRQ
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functionality which allows the waveform to be saved and continuously repeated until the

card receives an end signal. However, this function is not necessary at the moment as

the required outputs are mostly square waves or a series of stepping functions.

The program for controlling the DAC is written using Microsoft Visual C++ Express

(2008) with two parallel threads for running the GUI input form (Fig. 3.12) and the

output signal simultaneously. The program is designed to operate in different modes

corresponding to different operations on the cloud. The steady state (or DC) mode gives

constant voltages in all required channels to create a steady state cloud. The compression

mode creates a signal that will increase in equal steps until it reaches the programmed

final value. The same signal is fed to the control circuits of the magnetic coils. The

translation mode does the same operation as the compression mode but with one of the

magnetic coil signal being reduced in equal steps as the other increases. An example

of the signal is shown in Fig. 3.13. There are also two trigger channels from the card,

signaling the beginning and the end of the compression period.

3.2 Alignment and Optimization

In the first alignment of the MOT, the position of the magnetic field zero-point must

be determined. Without the vacuum chamber, the magnetic field is measured using a

Gaussmeter. The point is marked by an LED which also serves as a mock cloud for

aligning the imaging system. After the image is properly focused onto the CCD camera

with some allowance for of what to re-focus if necessary, the trapping beams are aligned

to cross at the LED.

The trapping laser – after being amplified, frequency shifted, and mode cleaned – is

split into three beams. These beams are expanded to about an inch in diameter and sent

through the three dimensions of the trap, each with a quarter wave plate to control the
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Figure 3.12: The GUI of the DAC control program.

polarization of the beam. After aligning the beams to cross at the magnetic field zero-

point, the beams go through another set of quarter wave plates and are retroreflected

back along the same path using metallic mirrors. As the beam are generally of the same

size as the optics, the quarter wave plates and mirrors are used for marking the beam

path for the retroreflected beams.

At this point, the LED is taken out of the system and the vacuum chamber is placed

back between the coils. Care must be taken to ensure that the edge of the windows

does not clip any part of the beams. The trap is turned on and, if everything is aligned

correctly, a cloud should be clearly observable after some time. One mistake that can be

made is when the trap is turned on for the first time during the day. The cloud will be

rather faint, and the experimenter may be tempted to re-adjust the beams immediately.

It might actually be that the gas inside the chamber is too hot to be captured right away.
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Figure 3.13: Example of a coil controlling signal for trap compression coming from the
DAC.

The experimenter should allow some time for the atoms to accumulate inside the trap.

This might take up to half an hour to reach steady state, but after ten minutes it should

be possible to tell whether the trap is working properly and what kind of adjustment

should be done.

The balance in trapping beam intensities on all dimensions should be checked before

further optimization. Imbalance of the trapping beam intensities, aside from introducing

anisotropic temperatures, is observed to limit the number of atoms in the trap. Once

this is done, we can proceed to optimize the alignment. The beams might not be exactly

counterpropagating or crossing each other at right angles on the first try. The latter can

result in fringes in the atomic distribution as discussed at the end of Section 2.2.3. The

fringes are actually a very useful guideline as the increase in the fringe width indicates

that the alignment is moving closer to ideal. The experimenter needs to systematically

adjust the alignment of each pair of beams until the fringes are no longer visible.

In the case where the intensity of the trapping beam is uniform throughout the trans-

verse profile, the cloud profile should be Gaussian. In the experiment, the beams ideally

have Gaussian profiles, and they are distorted by components such as the TA and AOM.

This distortion of the beam profile results in a varying trap condition over space and

gives a distorted cloud. This is more readily observed in traps with low trapping force
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such as when the magnetic field gradient is low (5 G/cm instead of 10 G/cm or higher) or

with low intensity (4 mW/cm2 per beam instead of 6 mW/cm2 or higher). With higher

forces the cloud is often observed to have a nearly Gaussian profile with some distortion

which can be corrected by small adjustments in the alignment. Once a Gaussian-shaped

MOT cloud is formed, the measurements can begin.

3.3 Measurement Methods

The two properties of the MOT cloud that we are most interested in are the atomic

density and the temperature and how they behave in different regimes. The temperature

data can be used to ascertain the existence of polarization gradient cooling. The change in

density with number of atoms can be used to distinguish between the temperature limited

and the multiple scattering regime. To measure these properties, we need methods to

measure the cloud size, the number of atoms, and the expansion of the cloud. Examples

given in this section are for the purpose of illustrating the procedure. The experimental

results will be given in Chapter 4.

3.3.1 Number of Atoms

The number of atoms inside the trap is measured by looking at the optical signal coming

from either the fluorescence from the trapped atoms or the absorption of a probe beam.

The fluorescence signal is due to the photons scattered from the trapping beams and

therefore is directly proportional to the number of trapped atoms. This is the same signal

used in imaging the cloud but is gathered from a separate port of the vacuum chamber

onto a photodiode to allow analogue measurement of the optical power. The absorption

method uses another weak laser beam as a probe and is aligned to pass through the cloud

and is collected on a photodiode.

I usually choose one method for gathering data for an experiment depending on the
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nature of the experiment. Fluorescence detection is used when the cloud has the potential

to move such as when the magnetic field gradient is changed. This choice is due to the

wide active area of the photodiode I use – approximately 3 × 3 mm2. A millimeter

displacement will not move the cloud outside of the detector’s active area, but it can

end up partially outside the probe beam resulting in an error on the measured number of

atoms. This problem can be prevented by increasing the size of the probe. However, there

is no way to observe how the probe and the cloud intersect, and the absorption signal will

be reduced if most of the probe does not pass through the cloud. The absorption method

is more favored when the cloud remains at a certain position and the fluorescence signal

is compromised by background light.

Fluorescence Detection

A fluorescence image of the cloud is captured by a highly sensitive photodetector with

an active area of 3 × 3 mm2, large enough for a MOT cloud of 1 mm diameter. I use a

lens of 50 mm focal length and 1.5′′ diameter to gather fluorescence photons. The lens is

placed approximately 10 cm away from the trap center. The number of photons gathered

from the imaging system is determined by converting the response of the photodetector

from voltage to power using the calibration graph of the particular detector in Fig. 3.14.

To find the total power emitted by the cloud, we must first find the ratio between the

solid angle of our detection system, or more precisely the solid angle of the lens, and the

solid angle of a sphere. The solid angle of a cone is Ω(θ) = 2π(1− cosθ) where θ is half

the apex of the cone. Using this formula, we find the total solid angle of a sphere to be

Ω(θ = π) = 4π which gives us the ratio

Ω(θ)

Ω(θ = π)
=

1− cosθ

2
. (3.4)

Each photon has an energy of E = ~ω = hc/λ. The number of photons scattered from
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Figure 3.14: The detector’s response to optical power with a linear regression. The best
fit line is y = 4.96× 105(V/W )x+ 0.0018(W ).

each atom per unit time is the scattering rate

Rscat =
Γ

2

(
It/Itsat

1 + 4(∆
Γ

)2 + It/Itsat

)
(A.23)

where It is the total trapping intensity (6 beams combined) and Itsat is the saturation

intensity of the trapping beam. The number of atoms calculated from the data is

Natom =
P

hc/λ

2

(1− cosθ)

1

Rscat

. (3.5)

where P is the optical power of the fluorescence signal.

Absorption Detection

The other way of determining the number of atoms in the trap is by measuring the

absorption of a probe injected into the cloud. Since the ensemble is one of cold atoms, the

linewidth of the absorption is relatively narrow; i.e., ≈ 6 MHz. This creates a challenge

in locking the laser to the right frequency. One way to get around this difficulty is to

use a scanning laser instead. By scanning over the absorption line, we can determine the

absorption at resonance and calculate the number of participating atoms. The size of

the probe beam is set to a diameter of 2 mm to cover the entire cloud in order to give

accurate readings.
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The probe power is very weak so to not disturb the trap mechanism. However, we

must take into account that the probe will be competing with the trapping beam. The

atoms absorbing the probe is the portion that is not participating in the cooling process.

Since the trapping intensity is much higher than the probe intensity (around 36 mW/cm2

in total compared to 0.4 mW/cm2), I assume that the cooling process is not disturbed by

the presence of the probe. The absorption signal then comes from the probe’s interaction

with the ground state population ρgg = 1− ρee.
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Figure 3.15: An example of absorption profile of an 87Rb MOT cloud taken using an
AC-coupled oscilloscope. The slope seen here is the change in input intensity with the
scanning of the laser. This is only detectable because we are detecting at the µW optical
power level. The two absorption lines correspond to two different hyperfine levels in the
excited state.

The transmission of a medium follows the Beer-Lambert law which states that the

transmitted signal follows the relation

T =
I

Iin

= exp{−σln} = exp{− σ
A
N} (3.6)

where I is the transmitted intensity, Iin is the input intensity, σ is the scattering cross

section of one atom given by Eq. (A.24), l is the length of the medium which the light

passes through, and n is the mean atomic density over the laser beam area A. For an

accurate measurement, the entire cloud has to reside inside the probe beam. For N being
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the number of atoms participating in the absorption and N0 the number of trapped

atoms, N = N0ρgg = N0(1− ρee) where ρii is the probability or population of the atoms

in a state. The calculation for the expression is derived in Appendix A. We can replace

the density with n = N
Al

.

The signal recorded from the experiment is in fact the power of the transmitted beam.

With the beam collimated along the length of the cloud, the transmission can be written

as ratio of output to input power. The absorption shows up as a dip in the signal as

the laser scans across the resonant frequencies. The size of this dip is easier to measure

than the total signal, as I can use the AC-coupling mode of the oscilloscope to zoom

into the signal. The reference level is measured separately using the DC-coupling. The

transmission signal is shown in Fig. 3.15. The transmitted optical power can be written

as P = Pin − Pdip and the number of atoms participating in the absorption is

N = −A
σ

ln

(
1− Pdip

Pin

)
. (3.7)

where σ = ~ωΓ
2(Ip+Ipsat)

for resonant light is used. N is assumed to be the number of atoms

in the ensemble in the ground state during the cooling process. The total number of

atoms is related to N by

N0 =
N

ρgg

(3.8)

= −A
σ

ln

(
1− Pdip

Pin

)
2(1 + 4(∆/Γ)2 + 2It/Itsat)

2(1 + 4(∆/Γ)2) + It/Itsat

(3.9)

Compared with the fluorescence method, there can be a discrepancy in number of

atoms of about 25%. For instance, the number of atoms indicated by fluorescence detec-

tion is 1.5 × 106 while the number from absorption detection is ≈ 1.9 × 106. The cloud

size for this case is less than 0.5 mm and typically gives a cloud with density of in the

order of 109−1010cm−3. This discrepancy in number of atoms and therefore density may

become troublesome if the data is to be compared between methods. Since the primary
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interest at the moment is the trend and not the absolute numbers, these discrepancies

are overlooked. For a particular characterization – the atomic density with the change of

number of atoms under different field gradients, for instance – only one method is used

and never to be directly compared with the result of another.

3.3.2 Trap Lifetime from Loading Profile

Assuming there are no collisions between trapped atoms, the change in number of atoms

with time is N(t) = N0(1− exp{−t/τ}) (Eq. (2.44)) where τ is the trap lifetime, and N0

is the steady state number of atoms. The lifetime of the trap is found by collecting the

fluorescence signal during the loading. An example of this signal is shown in Fig. 3.16.

The lifetime is extracted by fitting the data to ln(N0−N(t)) = ln(N0)− t/τ (Fig. 3.17).

The lifetime is simply the inverse of the slope of this linear fit.
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Figure 3.16: An example of fluorescence signal during trap loading.

3.3.3 Cloud Radius

The fluorescence image of the cloud is taken using a grayscale CCD camera. The value in

each pixel is averaged over many images to reduce noise due to the fluctuation in number

of atoms. The data collection is controlled by a program written in LabVIEW which also
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Figure 3.17: An example of linear fitting of trap loading data. (a) The fitting procedure
is done only on the loading part. (b) The log of the signal from the entire period.

controls the camera operation mode and exposure. The CCD camera is triggered by a

signal from a function generator which also synchronizes the trapping beam shutdown.

This method is used to capture the image of both the steady state cloud and the expanded

cloud in temperature measurement (Section 3.3.4).

The profile of a well-optimized cloud is typically Gaussian with minor distortion

that are often visible only during analysis of the cloud profile. For a cloud that is not

yet fully optimized, such as those in Fig. 3.18, the profile can have fringes as shown

in Fig. 3.18(a) which are results of spatially dependent polarization gradient cooling

discussed in Section 2.2.3. The Sisyphus cooling depends on the splitting between ground

state sublevels which can have a beat pattern if the three pairs of trapping beams are

not crossing at the right angles. The varying cooling force is the reason that causes the

interference fringes. A perfect alignment of the cooling beams should give a fringe-free

cloud as shown in Fig. 3.18(b) which can still have distortion due to the non-uniformity

of the trapping beam profile which distorted the trap from the ideal harmonic shape.

Because of the possibility of having distorted cloud profiles, I developed two methods
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Figure 3.18: An example of a cloud under the influence of interference as discussed in
Section 2.2.3 (a) and one that is not (b). The cloud in (b) is distorted by non-uniformity
in the trapping beam profile.

of determining the cloud size from an image: the Gaussian fit method and the area fit

method. Both analyses are done in MATLAB.

Gaussian Fit

This is the primary method that is used as the clouds generally have Gaussian profiles.

Care should be taken with the image of the xy-direction since the camera is in fact point-

ing at a 45◦ angle with respect to the horizontal trapping beams. Therefore, the cloud

profile in the xy-dimension is half a projection of x-dimension and half of y-dimension

which can result in an asymmetric Gaussian profile. If the trap is optimized with equal

trapping beam intensity on both x and y dimensions, no difference in the profile of the

two dimensions should be observed in both the steady state profile and during the ex-

pansion. In this case, the Gaussian fit method will give an accurate representation of

the cloud size. The azimuthal symmetry will also allow us to disregard the fact that the

image is a projection onto the 45◦ plane.

The profile of the cloud is assumed to follow the Gaussian distribution

y = A exp{−(x− x0)2

2σ2
} (3.10)

where y is the CCD signal representing the intensity of the cloud image at a particular

position in one dimension. The size of the Gaussian is defined to be the position from
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the maximum of the profile to where the signal is 1/e of the maximum value. In this

case, the size of the cloud will be
√

2σ according to the notation used.

Since Matlab has an algorithm for polynomial fitting, the equation is modified to have

polynomial form:

ln y = − x2

2σ2
+
x0x

σ2
+

(
lnA− x2

0

2σ2

)
. (3.11)

The value of
√

2σ can be extracted from the coefficient of x2. The goodness of fit is

determined using the R-squared from the least squared method. This method is use for

linear regression, but it can also be modified to use with nonlinear fit as well [55].

The fitting procedure is as follows. The images of the cloud are taken and averaged

as previously described. For images with background patterns (speckle patterns, for

instance), the image of the background is taken separately and subtracted from the

cloud image before analysis. The center of the cloud is determined by summing up each

column (for finding the center in the horizontal or xy-dimension) or row (for vertical or

z-dimension). The position of the maximum is determined by a Gaussian fit to average

out the fluctuations. The second step is summing 10 rows (or columns) around the

center and fitting the profile to a Gaussian function (Fig. 3.19). This is done for the two

dimensions separately. The width of the Gaussian function in pixels is then converted

into millimeters by taking into account the magnification of the imaging system (×1 in

this case) and the physical size of a CCD pixel (3.75× 3.75 µm2).

Area Fit

This method is strictly used for estimating the atomic density, as it does not provide

separate information for xy and z dimensions. It is used mostly when the cloud takes

a shape that cannot be accurately captured using the Gaussian fit method. Generally,

proper optimization uses the steps mentioned in Section 3.2 will avoid having such a

skewed cloud. In experiments such as trap compression and cloud translation it is possible
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Figure 3.19: An example of the cloud profiles from one image (without averaging) along
the horizontal (a) and vertical (b) dimension and its Gaussian fit. The noise observed
here can be greatly reduced by averaging over several images.

to observe a cloud of various distorted shapes as a result of changes in the trap condition

that cannot be accounted for in the optimization process.

The area fit method measures the area of the cloud in the image by counting pixels

with values higher than a cutoff. Using the model of a Gaussian cloud, the cutoff is

set to 1/e of the highest value. First, the image of the cloud is averaged to remove

large fluctuations. The program then searches for the highest value in the picture to

calculate the cutoff. The program counts the number of pixels with values above this

cutoff and converts it into an area. The volume is extrapolated by assuming that there is

a spherical cloud with the same cross section that gives approximately the same volume.

This method has been tested with Gaussian cloud and compared to the Gaussian fit

method. The radii and volume are found to be the same. Due to the comparable results,

I am quite confident in using this method with the clouds that are not Gaussian. It should

be kept in mind that for the clouds that have very distinctly non-Gaussian profiles, a

more elaborate model for extrapolating the volumes will be needed.
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3.3.4 Temperature Measurement

As mentioned in Section 2.2, the ensemble of trapped atoms can have average velocity

components that differ from dimension to dimension due to each dimension of the trap

having different cooling and trapping forces. To account for the anisotropy during char-

acterization, the temperature of each dimension has to be measured separately. This

definition of temperature is not the same as the definition given by thermodynamics.

However, this is a common jargon used with the MOT, because it is more convenient to

keep track of changes during characterization using this definition. Since the transverse

magnetic field is azimuthally symmetric, the force on the x and y dimensions should be

equal for an optimized trap and therefore the transverse velocity components should also

be azimuthally symmetric. Therefore, the temperature of the transverse dimension of

the cloud can be measured directly from the image although the camera is placed at 45◦

without the need to account for this tilting.

The temperature of a particular dimension can be measured by the rate of cloud

expansion along the dimension without the influence of the trapping forces. To see how

this works, we first assume the atoms to have a Maxwell-Boltzmann velocity distribution

in one dimension of

f(vi) =

√
m

2πkBTi

exp

(
− m

2kBTi

v2
i

)
. (3.12)

The initial atomic distribution is taken to be a Gaussian function n(r0) = n0exp{−r2
0/R

2
0}

where R0 is the initial cloud radius and r0 is the position variable at time t = 0. Without

the influence of the trap, the atoms move to different positions according to the velocities

they initially have. If we are observing at a position r from the cloud center, once a time

t has passed the atoms which are at r will be the ones that have the velocity and initial

position such that r = vt + r0. To find how many will reside at r, we have to integrate

over all the initial positions of the atoms, r0. The velocity distribution is assumed to be
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independent of the position. Therefore, the atomic distribution at time t and position r

is the integration over the distribution of the initial atomic positions multiplied by the

probability of an atom in position r0 having the velocity v = (r − r0)/t:

n(r, t) =

∞∫
−∞

√
m

2πkBT
exp{− m

2kBT

(r − r0)2

t2
}n0 exp{−r2

0/R
2
0}dr0. (3.13)

Equation 3.13 is a convolution of two functions. Therefore, we can compute this using

the Fourier transform property of the convolution which states that [56]

F

 ∞∫
−∞

G(x0)H(x− x0)dx0

 = F [G(x)] F [H(x)] . (3.14)

The Fourier transformation is defined by

F [G(x0)] =

∞∫
−∞

G(x0) exp{−ı2πkx}dx. (3.15)

From this theorem, Eq. (3.13) can be computed much more easily by first performing

the Fourier transformation on each distribution separately, joining the function in the

momentum space, and performing an inverse Fourier transformation. Since the function

for both atomic distribution and velocity distribution are Gaussian, the result of the

calculation is also a Gaussian function. The width of the resulting Gaussian distribution

is

R2(t) = R2
0 +

2kBT

m
t2. (3.16)

Expression 3.16 is the expansion of the cloud width under the assumption that the velocity

distribution is not disturbed during the expansion. Hence, the trap, meaning both the

magnetic field and the trapping light, has to be shut down during the expansion. This

condition also prevents us from monitoring the expansion continuously since there cannot

be any interaction with light and therefore no fluorescence photons. The expansion is

recorded by taking still pictures of the cloud after it is allowed to expand for a set period
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of time. Typically, an image of the cloud is taken every 1 ms from an expansion time

of 1 ms to 10 ms. The pictures for each shutdown interval are averaged over 5 to 15

images, and the cloud radius is measured using the Gaussian fit method described in

Section 3.3.3. The expansion rate is estimated by performing linear regression on the

plot of t2 and R2 as shown in Fig. 3.20, and the temperature of the particular dimension

can be extracted from the slope. During this process, the repumping beam need not be
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Figure 3.20: An example of data fitting for temperature measurement.The temperature
in this example is ∼ 120µK.

shut down since the majority of the atoms are in the F = 2 states due to the cyclic

trapping transition. If some of them are not, they will interact with the repumping laser

only once and gain a recoil energy which is negligible compared to the initial kinetic

energy of the ensemble.

This ballistic expansion can be interrupted by other factors aside from the trap forces.

One is the collisions with hot atoms which makes the cold atoms move randomly rather

than in straight line as previously assumed. This limits the time where Eq. (3.16) is valid

during the expansion. The data gathered from the setup so far is usable to approximately

10 ms after the trap shutdown. It has been demonstrated that it is possible to observe

the expansion up to 30 ms under appropriate conditions [43].
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Chapter 4

Results of MOT Characterization

After trap optimization, changes in cloud properties can be measured by varying trap

parameters. The main parameters of interest are trapping beam intensity and magnetic

field gradient. However, alignment and intensity profile can also affect cloud properties.

To reduce variability during characterization, some parameters need to be kept constant.

In our system, the coherence time of a quantum information process is dependent on

the loss rate of atoms from the cloud. One parameter that affects this coherence time

is the trap lifetime. In this chapter, the first focus will be on the effect of background

pressure on the trap lifetime. A getter current setting can then be extracted so the

remainder of the characterization can begin. Characterization will first be performed

in steady state MOT where change in cloud regime will be demonstrated. Afterward,

the effect of the field gradient on the steady state MOT will be studied as a baseline

for a trap compression experiment. The transient compression of atomic density will be

investigated and discussed in the section that follows. Lastly, I will examine the effects

of cloud translation by shifting the magnetic field’s zero-point.

4.1 The Effect of Background Pressure

The background pressure affects the loss rate of a MOT as discussed in Section 2.3.3.

The loss of atoms will in turn affect the coherence time of a quantum information pro-

cess performed by the ensemble. There are, of course, other factors that can affect the

coherence time. However, in order to rule out the effect of hot collisions, a suitable value

for the background pressure must be set.
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The pressure gauge used for the vacuum chamber is the one attached to the ion

pump which has a minimum resolution of 10−8 Torr. The pressure in the system is below

10−8 Torr and does not rise significantly enough to be detected once the chamber is

filled with rubidium vapor. Therefore, no quantitative measurement can be made on the

actual background pressure in the current setup.However, rubidium vapor is produced

by heating rubidium salt coated on electric wires, called getters, with electrical current.

Hence, the background pressure will increase proportionally with the amount of current

running through the getters. The power in these wires can be directly controlled from

the getter’s power source albeit at a resolution of half an ampere which is quite crude.
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Figure 4.1: Fluorescence signal at the MOT loading for different getter currents. The
first part of the signal comes from background atoms which increases as the background
pressure increases. The cloud signal is superimposed on this background.

From this experiment, an optimal current can be determined to give the longest

possible lifetime without significantly compromising the number of atoms collected in

the trap. As shown in Fig. 4.1, the number of atoms in the steady state trap increases

as the getter current increases. Using the method described in Section 3.3.2, the trap

lifetime can be extracted from the loading curve and is shown in Fig. 4.2 as a function of

the getter current. According to this data, the best compromise is to operate the setup

at a getter current of 7 A which has a lifetime of 0.97 s. This value comes right before the
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background pressure significantly reduces the lifetime. The lifetime is longer with lower

getter current but with a reduction in the number of trapped atoms. At a current below

6 A, the fluorescence signal is too small to identify the loading curve and perform the

fitting due to the low number of atoms. This makes a getter current of 6 A the lowest

operational limit we have for our setup.
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Figure 4.2: Measured trap lifetime as a function of getter current.

If the lifetime can be compromised, the getter current can be used to control the

number of atoms as seen in Fig. 4.1. However, the extent of control using this method

still needs to be determined. It would be a great advantage if a simple relation between

the getter current and the steady state number of atoms can be found. In the simplest

case, the change in the number of atoms is directly proportional to the resistive heating

which depends on the square of getter current. By taking a closer look at a plot on log-

log scale, this relation turns out to be nonlinear therefore suggesting a more complicated

correlation. With this relation undetermined and poor resolution on the getter current,

loading atoms by changing getter current is not used in any experiment. Figure 4.3 shows

the change in fluorescence signal at steady state, which is directly proportional to the

number of atoms, with getter current. The cubic fit is to give a suggested trend but is

not meant to be used for prediction as the resolution for the getter current is already 0.5
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Figure 4.3: The fluorescence power after the cloud reaches steady state at different getter
currents. The line is a cubic fit to give a suggested trend.

4.2 Regime Transition with Trap Intensity

Once a suitable getter current is determined, the investigation into the regimes of the

steady state cloud can begin. The most obvious difference between the temperature

limited and the multiple scattering regimes lies in the change of atomic density with

respect to the number of atoms. The density increases with the number of atoms in

the temperature limited regime, whereas the density is independent of the number of

atoms in the multiple scattering regime (as discussed in Section 2.3.4). Ideally, the

number of atoms should be changed while trap conditions should remain stable in order to

demonstrate the transition between both regimes. With the limitations from Section 4.1

in mind, another option arises from a method used in Ref. [43]. The trapping beam

intensity can be varied to control the number of atoms in the trap. The detuning is set

to ?20 MHz throughout this experiment.

The temperatures of the xy and z dimensions are measured to evaluate whether the

cloud is at sub-Doppler temperature which is below 146 µK for Rubidium 87 as stated

in Table 3.1. The sub-Doppler temperature is also a positive indication of the trap
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being in the temperature limited regime, although the temperatures in and of themselves

cannot be used to classify the regime. Figure 4.4 shows the temperatures for the vertical

dimension (the coil axis) and the horizontal dimension (the transverse plane) for three

different trap intensities. The lines in the figure are used to guide the eyes only and are

not linear fit lines. For an intensity of 30 mW/cm2, temperatures below the Doppler

limit are observed.
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Figure 4.4: Cloud temperatures at ∆ = −20 MHz with varying total trapping intensity.
The blue dots are the temperatures in the xy-dimension and the green dots are temper-
atures in the z-dimension. The data at 30 mW/cm2 show the temperatures below the
Doppler limit of 146 µK for both dimensions of the cloud. The lines drawn are to guide
the eyes only and are not for fitting the data to any trend.

Theoretically, the temperature changes linearly with the trapping beam intensity

according to Eq. (2.50). This is confirmed experimentally in Refs. [42, 43]. Our data

follows this trend; however, since there are only three data points, it is not possible to

conclude that the trend is linear.

For each trapping beam intensity, the number of atoms and the cloud radius is mea-

sured. From this measurement a density is calculated. Figure 4.5(b) shows an increase of

the density up to a peak before dropping down as trap intensity increases. This can be

explained if the cloud is in the multiple scattering regime. A more intense trapping beam

results in a higher scattering rate which in turn increases the probability of re-scattering
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Figure 4.5: (a) Atomic density and (b) number of atoms with the change in trapping
field intensity at a magnetic field gradient of 14.5 G/cm.

resulting in an increase of repulsive photon pressure. This peak appears when the ensem-

ble transitions from the temperature limited regime to the multiple scattering regime.

The regimes can be readily visualized by looking at Fig. 4.6 which is a plot of atomic

density against the number of atoms. The plot exhibits the same trend as observed in

Refs. [23, 43] with the first part of the trend showing an increase in atomic density with

number of atoms before reaching a plateau. These are the trends predicted by the theory

of the temperature limited and the multiple scattering regime respectively. The third

part, which is a decrease of atomic density with number of atoms, corresponds to the de-

crease in density in Fig. 4.5(b) where the number of atoms barely changes (Fig. 4.5(a)).

This, as mentioned earlier, can be easily explained for a cloud in multiple scattering

regime. These data confirm that the cloud in our MOT is indeed in either of these two

regimes and therefore the atomic density in our setup is limited by the atomic density of

the multiple scattering regime.
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Figure 4.6: Atomic density changes with number of atom at three different field gradients.

4.3 The Effect of Field Gradient on the Steady State Cloud

Before proceeding to cloud compression, the effect of field gradient on the steady state

atomic cloud was investigated in order to provide some baseline on the cloud behavior for

the compression experiment. In this part of the experiment, the intensity of the trapping

beam is 6 mW/cm2 per beam and the detuning is kept at −8.3 MHz.

Theoretically, the radius of a cloud in the temperature limited regime should scale

as
(
dB
dz

)−1/2
. This is derived from the simple relation between the cloud radius and the

temperature:

1

2
κr2 =

1

2
kBT

r =

√
kBT

κ

r =

√
~kkBT
αµB

(
∂B

∂z

)−1/2

. (4.1)

In the multiple scattering regime, the cloud radius depends on the number of atoms

which makes the relation between the field gradient and the cloud radius much more

complicated.

The change in cloud radius with gradient is plotted using log values in Fig. 4.7. The
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slopes of linear fits of these data determine the power of ∂B
∂z

. Theoretically, it would

be -0.5 in the temperature limited regime. The log-log plot of the data actually shows

two different slopes on each dimension, the z-dimension being less noticeable. These two

parts on the xy-dimension are fitted separately using linear fit and the slopes are found

to be -0.59 and -0.22. This change suggests a transition from the temperature limited

regime to the multiple scattering regime as the gradient increases. The critical value

the gradient is mentioned in Section 2.4.1 although it is not possible to predict the exact

value. The reduction in slope suggests a modification in the trapping force which governs

the size of the cloud.
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Figure 4.7: Cloud radii as a function of field gradient, plotted using logarithmic values.
The blue dots are the radii in the xy-dimension. The red dots are the ones in the
z-dimension.

Cloud temperatures were also measured in a changing magnetic field gradient. The

gradient theoretically should have no effect on the temperature. This is because the the-

ory is derived from the cooling force only and should work well with small atomic clouds

that reside at the center of the trap where the magnetic field is small. Therefore, the

scaling of temperature with gradient stated in Eq. (2.50) is related to the temperature

limited regime. When the cloud becomes larger, such as when it transitions into the

multiple scattering regime, the effect of the magnetic field gradient will appear. Voroz-

covs et. al. [43] has reported such an observation where the temperature is found to rise
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with gradient below 1 G/cm until it reaches a plateau. At very high gradients such as

used in Ref. [44], the effect is reversed; i.e., the temperature drops because of the reducing

trap depth. These effects are discussed in more detail in Section 2.4.1.

An increase in temperature with gradient was observed as shown in Fig. 4.8 at a

trapping beam intensity of 4.4 mW/cm2. At a higher trap intensity of 15 mW/cm2,

which implies stronger cooling and trapping forces, the trend over all the data in Fig. 4.9

is a small reduction of −3.3 µK · cm/G in the xy-dimension and −0.73 µK · cm/G in

z-dimension. With the possibility of other parameters (laser detuning, trapping beam

intensity, etc.) changing slowly at the same time it is impossible to conclude that such a

small trend is due to the change in gradient only. The temperature can be said to show

no change over the range of investigated gradient.

4 5 6 7 8
0

50

100

150

200

250

300

Field Gradient (G/cm)

T
e

m
p

e
ra

tu
re

 (
µ

K
)

Txy

Tz

Figure 4.8: Cloud temperatures as a function of field gradient for I = 4.4 mW/cm2. The
blue dots are the temperature of the xy-dimension and the green dots are the temperature
in the z-dimension. The trends show an increase in temperature with magnetic field
gradient.

The intensities used here are lower than typically reported for MOT where a total

intensity is often as high as 100 mW/cm2 or even above. Therefore, the friction coefficient

α in our setup will be different from those reported. The spring constant is also directly

proportional to α. At the total intensity of 100 mW/cm2, α is ∼ 1.5 times of that at the

total intensity of 26.4 mW/cm2. The scaling of κ in Fig. 4.9 is therefore faster than in
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Figure 4.9: Temperatures of the cloud with field gradient for 15 mW/cm2. The blue dots
are the temperatures in the xy-dimension and the green dots are the temperatures in the
z-dimension. The trend over all the data is a small reduction of −3.3 µK · cm/G in the
xy-dimension and −0.73 µK · cm/G in z-dimension. In light of other fluctuations, this
trend can be dismissed, and the temperatures can be concluded to show no change with
magnetic field gradient over this range.

Fig. 4.8 where the increase in temperature is not observed.

4.4 Trap Compression

According to Eq. (2.47) and Eq. (2.49), the density of the atomic cloud will continue to

increase with magnetic field gradient. This does not take into account the reduction of

the trap depth which results in loss of atoms. The trap can end up small – with only a few

atoms – but dense, and this will limit the number of atoms participating in atom-light

interactions. The way to increase the atomic density while still retaining a high number

of atoms in the trap is to transiently compress the atomic cloud.

The procedure starts with trapping atoms at low gradient, in our case around 10 G/cm,

as our trap does not allow us to go much lower without losing the cloud altogether. Once

the trap reaches steady state, it is temporarily compressed by increasing the magnetic

field gradient. This procedure has been reported to heat up the cloud and cause signifi-

cant loss in the number of atoms. In Ref. [25], the trap is red-detuned further to counter

the heating and the loss which I also investigate.
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In this experiment, the initial detuning for the trap is −8.3 MHz, the trap intensity

is 6.3 mW/cm2 per beam, and the initial field gradient is 10 G/cm. After the trap

has reached the steady state, the coil current is increased in five equal steps for 2 ms

each before it is held at the maximum value for a set period of time, generally tens of

milliseconds. The trap is then reverted back to its original condition. The highest field

gradient currently achievable in the setup is 35 G/cm which is much lower than the

228 G/cm in Ref. [25]. Although the condition is more similar to the setup in Ref. [47],

it must be noted that they implement the compression on a dark MOT while here it is

a regular MOT, and therefore the parameters and results cannot be directly compared.

The data regarding the number of atoms and the cloud size are taken every 2 ms,

starting 5 ms after the compression sequence begins (t=0). First, I investigate the effect

of increasing red-detuning on the atomic density during the compression sequence as

implemented by Petrich et al. [25]. The field gradient is increased to 30 G/cm and held

there for 50 ms. At this gradient, there is no transient increase in the atomic density. The

data in Fig. 4.10 show that the increase in red-detuning does not affect the atomic density.

The number of atoms during trap compression, however, decreases with increasing red-

detuning (Fig. 4.11). Therefore, at a gradient of ∼30 G/cm, increasing the red detuning

is not beneficial in terms of increasing the atomic density or preserving the number of

atoms. The detuning is thus kept constant in the later part of the experiment.

The change in number of atoms and cloud size with time is recorded for different

compression gradients. The result in Fig. 4.12 shows a 1.6 fold increase in atomic density

compared to the final density at a gradient of 35 G/cm. The density peaks at∼15 ms after

the trap reaches the compression gradient which is roughly 25 ms after the compression

sequence started. After repeating the experiment on a later date, it became apparent

that the time it takes for the atomic density to reach its peak is not always the same

and depends to some extent on the trap forces. One of the repeats is done at a trapping
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Figure 4.10: Atomic densities after the start of the compression sequence. Different data
sets correspond to different detunings. The final gradient is 30 G/cm.
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Figure 4.11: The number of atoms measured for the same initial condition but at different
detunings during compression. The final gradient is 30 G/cm.

beam intensity of 7.4 mW/cm2 per beam, and the peak time is ∼7 ms after the trap

reaches the final gradient. This suggests that the peak occurs faster with stronger forces.

However, a model has not yet been developed to predict the time and transient increase

of atomic density.

One explanation as to why there is a transient increase or a delay is in the fact that

the atoms are very slow at these temperatures, and therefore there is a lag times for

the cloud to respond to the change in trapping force. By increasing the spring constant

through increasing the field gradient, the force of the harmonic trap at a particular

distance becomes stronger and pulls the atoms towards the center of the trap. This will

increase the density once all the atoms come to the center of the trap. However, there
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Figure 4.12: Atomic densities after the start of the compression sequence. Different data
sets correspond to different magnetic field gradients.
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Figure 4.13: Atomic cloud radii after the start of the compression sequence. The blue
dots are the cloud radii where no transient increase in density is observed. The green-dot
set has a transient increase at the dip in radius.

is a density limit which a steady state trap can maintain. If this limit is not reached,

the trap will be able to maintain the new density. However, if the density becomes too

high for the trap, the trap cannot support the density and a reduction will occur either

from a reduction in trap depth, an extra repulsive force such as photon-pressure force,

collisional loss, or all processes combined. This process creates the observed transient

peak. The time scale of the delay can be roughly estimated by inferring the mean velocity

of the atoms. If the cloud has a temperature of ∼130 µK and a radius of 0.23 mm (as in

the datum of the trap before compression, presented at time 0 in Fig. 4.13), the time of
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flight required to get from one end of the trap to the center without cooling or colliding

is 1.5 ms. This will be the fastest possible time since the motion of the atom is actually

random due to the random kicks from fluorescence photons. This estimation also ignores

any forces that might act on the atom during its travel.

Figure 4.13 shows the change in the cloud radius during the compression process.

The data set which shows transient compression also shows a dip in the cloud radius

when the transient compression occurs. This hints at a repulsive force acting to reduce

the cloud density. Therefore, the reduction in atomic density after the transient peak is

not just the effect of losing atoms but also from the increase in cloud size. This feature

suggests that the transient increase in atomic density occurs in the multiple scattering

regime where the photon-pressure force limits the atomic density in steady state. The

dip in cloud radius can also be used to predict when the atomic density will reach its

peak in the compression process although software must first be developed to estimate

the size of the cloud in real time.

The temperature change due to trap compression is also investigated. The magnetic

field gradient of 10 and 26 G/cm are used as initial and final gradients, respectively,

with a trapping beam intensity of 6 mW/cm2 on the z-axis and 6.8 mW/cm2 in the

xy-direction. The initial detuning is −8.3 MHz but is set to be shifted to −14.7 MHz at

the start of the compression sequence. The data are taken 20 ms after the trap condition

is held constant, which is 30 ms after the compression sequence start. This is roughly

the time where the atomic density reaches its peak.

T 10 G/cm 26 G/cm w/o detuning w/ detuning
Txy (µK) 176 137 173 132
Tz (µK) 203 161 194 164

Table 4.1: Comparison of cloud temperatures with no compression (first two columns)
and with compression (last two columns).

Table 4.1 shows the results of the study. The first two columns are the tempera-
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tures for the steady state trap at different gradients. The trap at 26 G/cm shows lower

temperature suggesting a reduction of trap depth. These results are used as a baseline

for the last two columns which are the temperatures from the compressed trap. The

compression with and without an increase in red-detuning is compared with its steady

state counterpart. I find that without detuning, the temperature does not significantly

change from its initial temperature. Once an increase in red-detuning is applied, the

temperatures significantly drops. The decrease of temperature with an increase in red-

detuning is already known from the steady state trap. This is because the increase in

red-detuning reduces the scattering force and therefore the trap is able to trap slower

atoms compared to when the detuning is closer to resonance. For compressed MOT, the

red-detuning also provide compensation to the larger Zeeman shift due to the increase in

gradient. In our experiment, the gradient does not increase enough to make the increase

red-detuning a necessity. Figure 4.14 shows the change in temperature with increase of

red-detuning during the trap compression.
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Figure 4.14: Temperatures of the compressed cloud with detuning 30 ms after the com-
pression sequence starts.

The ratio of the number of atoms participating in the atom-light interaction around

a tapered nanofiber, as described in Chapter 1, can be found using Eq. (1.1). The ratios
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from the experimental data are n2

n1
= 1.7 and r2

r1
≈ 1.2

1.4
(from the 35 G/cm data in

Fig. 4.13). The ratio of the number of atoms interacting with the evanescent field is then

N2

N1

= 1.5. (4.2)

This is an increase from the number of atoms obtainable in steady state. However,

it should be noted that the increase in density alone does not translate to an increase in

participating atoms in a straightforward manner. The change in the cloud radius must

be taken into account as it is also a factor in this model. A dramatic increase in atomic

density might not be beneficial if it also leads to a dramatic decrease in cloud radius as

well.

4.5 Translation

The general method for translating a MOT cloud is to modify the magnetic field so

the zero-point is shifted. In this experiment, a shift along the coil axis is achieved

by introducing a small current imbalance into the anti-Helmholtz coils. The current

imbalance is a few percent of the balanced current in one coil. I have calculated the field

gradient and found it to change only slightly within the first 10% of introduced imbalance

which at least guarantees that the trap condition will not be drastically changed by the

change in current. This restriction on the current imbalance will also limit how far we

can shift the cloud. For a gradient of 10 G/cm, a 10% imbalance results in a 3 mm

shift. Considering that a large cloud has a diameter of around 1 mm, this will allow the

formation of the cloud at a reasonable distance from a tapered nanofiber.

The simulation of the magnetic field gradient predicts a linear translation of the

magnetic field zero-point. This is verified by tracking the translation of the cloud after

10 ms of stepwise ramping and 20 ms of holding the trap parameters. With a trapping

beam intensity of 6.3 mW/cm2 per beam and a coil current of 8 A per coil, a current
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imbalance up to 5% is introduced. Linear translation is observed in both z and xy

directions (Fig. 4.15(a)). This three dimensional movement is because the coils are not

perfectly on axis with one another.
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Figure 4.15: (a) Cloud radii and (b) positions as function of current imbalance.

Translation does not change the number of trapped atoms noticeably until a 10% cur-

rent imbalance is introduced. The cloud can either gain or lose atoms due to translation.

The change in number of atoms is due to the change in trap condition since the intensity

profile of the trapping beams are not perfectly uniform. This can also contribute to a

fluctuation in temperature and a change of cloud shape with the position of the cloud.

The cloud shape can be improved by small adjustments in the alignment of the trapping

beams, although it will also affect the shape of the cloud before the translation. The

setup has to be optimized for a good compromise between both positions in terms of

shape and number of atoms.

For the particular set of data in Fig. 4.15(b), the trap radius decreases while the num-

ber of atoms remains constant, suggesting that compression occurs with the translation.

Cases where expansion occurs are also observed before the optimization process. This

observation suggests a possibility of using the translation process to increase the atomic

density during the cloud transfer, although the outcome is less predictable than using
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magnetic compression.
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Chapter 5

Conclusion and Outlook

Magneto-optical trapping, despite being a standard technique for producing a cold atomic

cloud, is subject to many parameters that make quantitative comparison between differ-

ent MOT setups difficult and not always insightful. Therefore, it is necessary for each

research group to characterize the properties of the atomic cloud from their MOT be-

fore further experiments can be performed. There are theoretical explanations for the

behavior of a steady state MOT cloud that can be used semi-empirically to predict the

response of the cloud to a change in any of its major parameters: the trap intensity, the

trap detuning, the magnetic field gradient, and the number of atoms.

The goal of my investigation is to obtain a cold and dense atomic cloud for experiments

in atom-light interaction. The temperature of the cloud is related to the average velocity

of the atoms in the ensemble. Slower atoms will take more time to escape from the

laser beams intended for atom-light interaction and therefore allow coherent evolution

to persist over a longer time. The strength of atom-light interaction increases with the

number of atoms participating in the process. We are interested in interfacing a MOT

cloud with evanescent fields from a tapered nanofiber with a penetration depth of about

a wavelength. For this study, atomic density is a more relevant parameter than the total

number of atoms in the cloud. Current investigation has been aimed at finding how low

a temperature is attainable and finding techniques to increase the atomic density while

retaining that temperature.

In this thesis, I investigate the effects that the trapping parameters have on the

properties of a steady state atomic cloud. The atomic cloud is most likely to be in either

the temperature limited regime or the multiple scattering regime. These two regimes are
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distinguished by the existence of a repulsive force between atoms. This force is a result of

having high probability of re-scattering photons, limiting the atomic density obtainable.

In the multiple scattering regime, the atomic density does not depend on the number of

atoms. In the temperature limited regime, however, where this force is negligible, the

cloud density increases with the number of atoms. The loading of atoms is controlled

using the trapping beam intensity. I observe an increase in atomic density with number

of atoms up to about 30 mW/cm2, after which the atomic density reaches a peak as

predicted by the theory of the multiple scattering regime. The atomic density observed

in our experiment does not remain constant over large changes in intensity but decreases

after reaching a plateau where the cloud transitions into the multiple scattering regime.

This is a result of increasing the re-scattering rate by increasing the number of photons

being scattered, thus confirming that the cloud can transition between the two regimes

in our setup, provided that appropriate parameters are used. This also shows us that the

atomic density of a steady state cloud is limited by what is obtainable in the multiple

scattering regime.

The temperature of the cloud is measured and found to increase with trap intensity. A

temperature below the Doppler limit of 146 µK is observed at an intensity of 30 mW/cm2.

Since the atomic density and the temperature are interconnected in the steady state, it

is impossible to control them separately.

A way to increase the atomic density to beyond the steady state limit in the multiple

scattering regime is to transiently compress the cloud. The effect of the compression

is investigated and found that the temperature after the compression does not change

significantly from its initial temperature. The lack of heating is likely due to the small

gradient used in my experiment, which goes up to 35 G/cm. This is rather small compared

to the final gradient reported by Petrich et. al. [25] at 228 G/cm, which results in heating

of the trap. There is a loss of atoms associated with trap compression, but the degree
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varies from day to day, most likely from small shifts in the beam alignment or in the

intensity profile which leads to changes in the trapping conditions. The temperature can

be reduced by red-detuning the trapping beam while compressing as shown in Table 4.1,

although this does not appear to help in reducing the loss of atoms. The most significant

results of this study show that transient compression does not always occur, and that

atomic density does not always peak at the same time for repetitions of the experiment

from day-to-day. There is a possibility of determining almost in real time when the

atomic density peaks by looking at the change in cloud radius, but a program tho track

the cloud size must first be developed. The data with the transient increase in density

shows a distinct dip in radius with the minimum radius occurring at the same time as

the density peak.

The translation of the cloud is achieved by introducing a current imbalance in the

magnetic coils. As verified through simulation, for a current imbalance of less than 10% of

the balanced value, the magnetic field gradient around zero-point changes very little. The

zero-point is verified through experiment to shift linearly with the current imbalance as

predicted by the simulation. However, due to the non-uniformity of the intensity profile

of the trap beams, the trapped cloud can exhibit changes in shape and number of atoms.

While generally the number of atoms in the trap changes very little, often not significant

enough to be detected below the current imbalance of 10%, the change in the shape of

the cloud can be drastic, resulting in either expansion or compression at the end of the

translation.

To assess the usefulness of these results for an atom-light experiment, we need to

consider the details of the planned experiment. The next stage of the experiment is to

incorporate a tapered nanofiber into the MOT setup and observe an EIT signal from the

fiber modes. The change in the fiber’s transverse area adiabatically reduces the size of

the guided mode that results in an increase in intensity on the order of 104 times that
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of the input intensity. Therefore, the optical nonlinearity can be greatly enhanced. Our

goal is to implement the scheme for cross-phase modulation as purposed by Schmidt and

Imamoğlu [13] which uses an EIT system scheme to reduce light absorption.

This fiber will be prepared in the nanophotonics lab led by Dr. Paul Barclay. The

aimed waist at this stage is 500 nm, smaller than the wavelength intended to use in the

EIT experiment which is 780-795 nm. In this regime, the propagation modes through

the fiber will exhibit an evanescent field surrounding the tapered region. To obtain an

estimation of the cloud temperature needed, we consider the worst case scenario. Here, an

atom moves on the shortest path between the fiber surface and the edge of the evanescent

field (not meticulously defined here, but it can be considered as the distance where the

intensity is 1/e of that at the fiber surface). Since our wavelength is about 1.5 times the

fiber diameter, the evanescent field will not penetrate very far. Let’s assume that the field

exists in a diameter that is about the same size as the wavelength in which the penetration

depth for ∼ 800 nm wavelength will be about 150 nm. The coherence time of a quantum

information process with atoms has a fundamental limit of about a microsecond due to

spontaneous emission that interrupts coherent evolution. The velocity that would take an

atom to the edge of the light field during this time period is 0.15 m/s, which corresponds

to a temperature of ∼ 120 µK. This is below the Doppler limit that I have achieved in

the setup. Therefore in terms of temperature, the result from our cloud is satisfactory.

The transient increase in atomic density that I achieved is 1.7 times that of the steady

state. An estimation is done in Section 4.4 to provide an idea of how this would translate

into the increase in number of atoms participating in a future experiment. An increase

of 1.5 times the steady state is estimated. Due to limitations on the coil currents, this is

the best I can obtain from the current setup.

The ultimate test is to experimentally interface the atomic cloud with the tapered

nanofiber and measure the difference in absorption between the compressed and steady
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state cloud to estimate the actual increase in number of atoms. A part of my work in

my Master’s program is in preparing the setup for the future experiment.

To be able to insert a fiber into the vacuum chamber, another MOT setup has been

designed to accommodate the fiber system. The fiber bracket, first designed by Mirko

Lobino – a previous post-doctoral fellow in the lab – is re-examined and modified for

the new vacuum chamber along with a fiber feedthrough [57]. The system is tested for

leaks and found to consistently maintain a pressure below 10−8 Torr. Major leaks, if any,

come mainly from the feedthrough which is suspected to be significantly deformed under

a high pressure difference. These leaks can be sealed by tightening the nut around the

feedthrough, but this will limit the number of times the feedthrough can be reused, and

several duplicates of the piece has been made.

The pulling of the tapered nanofiber is still underway as the pulling system needs to

be optimized for pulling down to a waist of a micron. The parameters for this step of

pulling are generally kept constant for the entire pulling process which has been reported

to be highly repeatable [58]. To the best of my knowledge, the parameters currently used

only guarantee a pulling down to roughly a few microns. The goal is to have a 500 nm

fiber – this has not been proven to be obtainable with the current pulling algorithm.

The LabVIEW program controlling the pulling has now been modified to be able to

instantaneously switch between two sets of parameters to follow the two-step algorithm

done by Nayak [27]. These parameters are not yet optimized for a repeatable process.

Another mechanical setup has been designed and assembled for transferring the ta-

pered nanofiber onto the bracket and into the vacuum chamber. Exposure to moisture

and dust has to be taken into consideration in the experiment since it can lead to heat-

ing and melting of the fiber once optical field is injected. This is a result of low heat

conduction in vacuum and high intensity of the light field around the tapered region.

To keep the exposure to air after the pulling at a minimum, a metal box is modified
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so that the bracket can be attached to its lid and the lid is then attached to a set of

translational stages. The design allows the lid to be quickly removed from the pulling

stage and attached to the box. Dismounting the bracket from the lid will need to be

done in a clean box which has yet to be set up.

In the implementation of a giant optical nonlinearity, we would need to interface the

atomic cloud with a field containing a few photons. The challenge would be to distinguish

between signals that are gigahertz apart and are at intensities of a few photons, especially

when they are copropagating along a tapered nanofiber. One way of doing so is to use

a cavity filter which can be designed to have a transmission linewidth in order of tens

of MHz and a high extinction ratio to ensure the authenticity of the signal. This is

most often done by assembling a spherical Fabry-Perot cavity from two separate pieces

of mirror, often one with a curved surface and one with a flat surface (hemispherical

cavity). This design, however, needed to be stabilized by an additional optical signal

which adds significant noise to a system with only a small signal to work with. On

the other hand, there are etalons, cavities built often from a single substrate with two

flat mirror surfaces (coplanar cavity). These are typically designed for high mechanical

stability without the need for any optical locking signal. However, the coplanar geometry

limits the extinction ratio obtainable from this design. To achieve both mechanical

stability and high extinction ratio, we designed a monolithic cavity filter built from a

single substrate with one curved mirror surface, mimicking the design of hemispherical

Fabry-Perot cavity. I have characterized one of these cavities which has an extinction

ratio of 45 dB, a full-width-half-maximum of ∼ 80 MHz, and a peak transmission of 60%.

These are suitable characteristics for a filter to be used in the atom-light experiment

which often has narrow linewidth of tens of MHz. The detail of the design and the

characterization are published in Ref. [59].

Now the characterization of the MOT within the parameters of our setup is completed.
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The steady state MOT and the compressed MOT both show expected behaviors similar

to what is reported previously in the literature, although the clouds are in different

parameter space. Methods of controlling the atomic density and temperatures of the

cloud have been investigated. Any further investigation would involve modification of

the current setup either to provide higher cooling and trapping forces or to include the

tapered nanofiber. This will be left to future students who and hopefully we will see the

enhancement in optical nonlinearities that are anticipated.
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Appendix A

Atom-Light Interaction

In order to derive the force on the atoms inside a magneto-optical trap, we first need to

understand how light and atoms interact and how this interaction results in forces on

the atoms. From a quantum mechanical point of view, the interaction between light and

atoms can be summed up as interchanges of energy quanta. An atom gains a quantum

of energy by absorbing a photon and transitioning to a higher energy state, or it loses

energy by emitting a photon and transitioning to a lower energy level. The energy of the

photon will be that of the energy gap between the two levels. The photon also carries

a momentum of ~k which changes the atomic momentum after the interaction. This

means that the interaction with photons, aside from changing the internal atomic state,

also changes the atomic momentum. In this appendix, I will give a brief description of

the atomic structure, the change of the atomic state under the influence of an external

field, and the force on the atom due to a light field.

A.1 Brief Review of Atomic Structure

In the simplest case, the atom is assumed to be an alkali atom; i.e. there is only one

valence electron. Electrons in other energy states are assumed to shield the effect of most

of the protons in the nucleus, leaving what is effectively equivalent to a Hydrogen atom.

A discussion on the energy levels of Hydrogen atoms can be found in various textbooks on

atomic physics. The following discussion will be a summary of the one given in Ref. [31].

The energy levels are affected by spin-orbit (L̂ · Ŝ) coupling which arises from the

electron moving inside the electric field from a proton. This electron experiences an
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effective magnetic field which causes the energy levels of different spin states to become

non-degenerate. The energy structure from this interaction is called the fine structure

which is labeled by Ĵ = L̂ + Ŝ indicating the electron’s total angular momentum. There

is also the hyperfine structure arising from the interaction between the nuclear magnetic

moment and the magnetic field generated by the electron, which is a coupling between

Î, the nuclear spin, and Ĵ. The hyperfine levels are labeled by F̂ = Î + Ĵ, which is also

an angular momentum.

In literature involving alkali atoms, the atomic state is synonymous with the state of

the valence electron. A more careful distinction is required if the atoms have more than

one valence electron.

A.2 Internal State Evolution from Atom-Light Interaction: Semi-Classical

Model

The energy exchange between an atom and a photon results in the transition of the atom

into a different energy level. In this simple model, the atom has two energy levels: the

ground state |g〉, being the lower energy level, and excited state |e〉. These two levels are

separated by an energy gap of ~ω0. To follow the derivation in Ref. [60], the state of the

atom can be represented as a density matrix

ρ̂ =

ρee ρeg

ρge ρgg

 (A.1)

where ρii is the population of the i state, and ρij represents the coherence between state

j and state i. Hence, ρij and ρji must be complex conjugates.

When the optical power is much higher than that of a few photons, the light field

can be described as classical electromagnetic wave E = ~E0 cos(ωt − kz) where ~E0 is the

slow-varying amplitude with its vector defining the polarization of the wave. Since an

96



atom is much smaller than a wavelength, we can apply the dipole approximation where

the amplitude of the wave is taken to be constant in space and therefore we only need to

consider the waveform in time. This allows us to describe the electromagnetic wave as

E =
~E0

2
exp{−iωt}+

~E0

2
exp{iωt} (A.2)

In the absence of the atom-light interaction, the Hamiltonian of the atom is

H0 =
p2

2m
+ ~ω0|e〉〈e| (A.3)

As of now, we are only interested in the internal degree of freedom, and therefore the

momentum term can be ignored. The atom-light interaction is included into the system

by adding the Hamiltonian

Ĥ(I) = −d̂ · E(t). (A.4)

The derivation of this Hamiltonian from classical electromagnetism can be found in

Ref. [61]. The elements in the dipole operator d̂ are governed by the selection rules.

Since it is impossible for an atom to go through the interaction and still remain at the

same state, the dipole operator cannot have diagonal elements. The operator in matrix

form is

d̂ =

 0 d

d∗ 0

 (A.5)

The matrix elements signify the transition of the atom to another state. Since |e〉〈g|

and |g〉〈e| are complex conjugates of one another, the matrix elements for these two

transitions are also complex conjugates.

With a time-dependent interaction term, obtaining the population dynamics is not

straightforward. We can use either time-dependent perturbation theory or the interac-

tion picture. If we want to consider a more general case where the ensemble of atoms

can be in a mixed state, the calculation using the interaction picture in density matrix

97



formalism is a more straightforward method. However, we will look into the solution

from time-dependent perturbation theory, as can be found in Ref. [31], to simplify the

calculation. The solution is shown to depend on the detuning ∆ = ω − ω0, which is

the frequency difference between the light field and the resonant frequency of the atomic

transition. Therefore, we will formulate the Hamiltonian in the interaction picture to

show dependency on the detuning and not the absolute frequency by defining

H0 =

~ω 0

0 0

 (A.6)

H(I) = −

 ~∆ d · E

d∗ · E 0

 (A.7)

The Hamiltonian in the interaction picture can be found by using the unitary operator

R̂ = exp{ıĤ0/t~} which in matrix form is

R̂ = I + ıĤ0t/~ +
1

2!
(ıĤ0t/~)2 + ...

=

exp{ıωt} 0

0 1

 (A.8)

This operator is applied to the total Hamiltonian H0 +H(I). Since R̂ commutes with Ĥ0,

the final form of the system Hamiltonian in interaction picture is

ĤI = R̂ĤR̂†

= R̂Ĥ(I)R̂†

= −

 ~∆ d · E exp{ıωt}

d∗ · E exp{−ıωt} 0

 (A.9)

= −

 ~∆ d/2 · (~E0 + ~E0 expı2ωt)

d∗/2 · (~E0 exp−ı2ωt +~E0) 0

 (A.10)
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Using the rotating wave approximation (RWA), the rapidly oscillating term in Eq. (A.10)

is neglected due to it being averaged to zero. This is the equivalent of neglecting the

high frequency term ω + ω0 in the solution from time-dependent perturbation theory.

The direction of the dipole moment is taken to be the same as the polarization of the

field. Therefore, the final form of the Hamiltonian in interaction picture is

ĤI = −

~∆ dE0
2

dE0
2

0

 , (A.11)

assuming d∗ = d for simplicity. Defining ρ̃ as the density in the interaction picture, the

equation for system evolution is

dρ̃

dt
=

ı

~

[
ρ̃, ĤI

]
=

 ıΩ
2

(ρ̃ge − ρ̃eg) ıΩ
2

(ρ̃gg − ρ̃ee) + ı∆ρ̃eg

ıΩ
2

(ρ̃ee − ρ̃gg)− ı∆ρ̃ge
ıΩ
2

(ρ̃eg − ρ̃ge)

 (A.12)

where Ω = dE0/~.

Aside from the interaction driven by the external field, the atoms in excited state

also spontaneously emit photons and decay to the ground state. This process is dictated

by the broadband vacuum modes of the light field [29, 32]. These modes are collectively

called the reservoir which also requires its own Hamiltonian. The evolution of the density

matrix is therefore

dρ

dt
=
ı

~
[ρ̂, ĤLight] +

ı

~
[ρ̂, ĤReservoir] (A.13)

The second term in Eq. (A.13) is found to be [29]

ı

~
[ρ̃, ĤReservoir] =

 −ρ̃eeΓ −ρ̃egΓ/2

−ρ̃geΓ/2 ρ̃eeΓ

 (A.14)

which signifies the decoherence for each element of the density matrix. By including this,
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the dynamic equations become

dρ̃ee

dt
= − ıΩ

2
(ρ̃eg − ρ̃ge)− Γρ̃ee (A.15)

dρ̃gg

dt
=

ıΩ

2
(ρ̃eg + ρ̃ge) + Γρ̃ee (A.16)

dρ̃eg

dt
=

(
ı∆− Γ

2

)
ρ̃eg +

ıΩ

2
(ρ̃gg − ρ̃ee) (A.17)

dρ̃ge

dt
= −

(
ı∆ +

Γ

2

)
ρ̃ge −

ıΩ

2
(ρ̃gg − ρ̃ee) (A.18)

The simplest case for solving these equations is when the atom is in the steady state.

By setting the left hand sides of Eq. (A.15) – (A.18) to zero and using an additional

relation 1 = ρ̃gg + ρ̃ee indicating a total probability of unity, the elements are found to be

ρ̃ee =
1

2

Ω2/2

(Γ/2)2 + ∆2 + Ω2/2
(A.19)

ρ̃eg =
Ω (2∆− ıΓ)

2Ω2 + 4∆2 + Γ2
(A.20)

ρ̃ge =
Ω (2∆ + ıΓ)

2Ω2 + 4∆2 + Γ2
(A.21)

The photon scattering rate per atom is given by the decay rate of the transition

multiplied by the population in the excited state, which is the portion of the ensemble

that can emit photons. Therefore, in the steady state, the scattering rate is

Rscat = Γρee

=
Γ

2

Ω2/2

∆2 + (Γ/2)2 + Ω2/2
(A.22)

=
Γ

2

I/Isat

1 + 4∆2 + I/Isat

(A.23)

where I is the intensity and Isat = π
3
~cΓ
λ3

= 2
(

Ω
Γ

)2
is the saturation intensity of the

transition. This results in the scattered power of ~ωRscat. We can define the scattering

cross section σ such that the scattered power is written as Iσ, where I is the input
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intensity. Therefore,

σ =
~ωRscat

I

=
~ωΓ

2Isat

1

1 + 4(∆/Γ)2 + I/Isat

(A.24)

A.3 Light Force on an Atom

So far, we are only interested in the internal atomic states. The external degrees of

freedom are also affected by the interaction due to the exchange of momentum between

the photons and the atom. The formalism of the forces on atoms will follow that of

Ref. [32], which is also similar to Ref. [62].

There are two kinds of forces in atom-light interaction: the dipole force due to an

intensity gradient and the radiation pressure force due to scattering, which are reactive

and dissipative forces. Although the dipole force can be treated purely classically with

transparent objects, we will forgo the classical treatment for the semi-classical treatment

with atoms which is more relevant to our problem. Since we are interested in atoms in

motion, the dipole approximation has to be lifted as hot atoms can travel considerable

distance (compared to an optical wavelength) in a short period of time.

In the Heisenberg picture, the evolution of the momentum operator follows the equa-

tion

∂p̂

∂t
=
ı

~
[Ĥ(r), p̂]. (A.25)

Since generally Ĥ(r) can be approximated to polynomial form, it is straightforward to

show that [Ĥ(r), p̂] = ı~∇Ĥ(r). This allows us to simplify the dynamic equation of the

momentum operator to

∂p̂

∂t
= −∇Ĥ(r). (A.26)

The force on the atom which is a quantum particle is the average of the change in
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momentum, leading to

F = −〈∇Ĥ(r)〉 (A.27)

The terms that are position dependent in our system are the terms involving the

electromagnetic wave. For this problem, we define the field to be

E(r, t) =
E0

2
exp{−ı(ωt+ Φ(r))}+

E0

2
exp{ı(ωt+ Φ(r))} (A.28)

The term Φ(r) signifies the phase due to change in position which for plane wave is

−k · r. Here, we do not assume a plane wave form for the purpose of generalization. The

Hamiltonian of the system is

Ĥ = ~ω − d · E |e〉〈g| − d · E |g〉〈e| (A.29)

It is possible to have coupling between the external degrees of freedom, such as po-

sition and momentum, and the internal degrees of freedom. In the MOT, where the

internal degrees of freedom are in steady states, the internal and external degrees of free-

dom can be decoupled. To be able to use the steady state solution we obtained from the

previous part, the Hamiltonian is transformed to the interaction picture and the RWA is

used to obtain the force in the form:

F =
~
2
〈|e >< g|〉〈∇

(
Ω(r)

2
exp{−ıΦ(r)}

)
〉+

~
2
〈|g >< e|〉〈∇

(
Ω(r)

2
exp{ıΦ(r)}

)
〉

(A.30)

where 〈|e >< g|〉 = Tr (ρ̃|e >< g|) can be replaced by the steady state ρ̃ge from Eq. (A.21).

After some rearrangement, the force is shown to be

F = ~Ω(r)

[
∇Ω(r)

Ω
Re(ρ̃ge exp{−ıΦ(r)})−∇Φ(r)(Im(ρ̃ge exp{−ıΦ(r)}))

]
(A.31)

The first term is the dipole force which depends on the change in amplitude of the

electromagnetic wave over space. The second term is the scattering force which depends

on the change in phase over space, a property that happens for every traveling wave and
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therefore is always present. This is the force that is responsible for the cooling in the

MOT.

To find an explicit form, we make the assumption that Φ = −k ·r. By exchanging ρ̃ge

for ρ̃ge exp{−ıΦ(r)} in the calculation for the internal state, we are able to find the steady

state solution for the real and imaginary part of ρ̃ge exp{−ıΦ(r)}. This substitution is

the same as applying the dipole approximation (as in the previous section). This gives

explicit forms for the forces as follows:

Fdipole = −~∆

4

(
∇Ω2

∆2 + (Γ/2)2 + Ω2/2

)
(A.32)

Fscattering = ~k
Γ

2

(
Ω2/2

∆2 + (Γ/2)2 + Ω2/2

)
(A.33)

The actual force per scattered photon is ~kΓ with the rest of the term being the

probability of applying the force. The scattering force is in the same direction as the

laser. This is because the momentum of the spontaneously emitted photons is random

in direction and therefore is averaged to zero over time. The absorbed photons have the

same direction and therefore cannot be averaged out.
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