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Abstract
 

We investigate Electromagnetically Induced Transparency (EIT) induced by evanescent fields 

generated through selective reflection at an interface of glass and hot rubidium vapor. We ob

serve a distinct transmission window corresponding to EIT for incident angles above the critical 

angle for total internal reflection (TIR). This is a surprising result, as the size of the interaction 

region is on the order of microns, and one would expect the motion of atoms to destroy the 

EIT phenomenon. The transmission window exhibits a sharp cusp whose width is limited to 

about 1 MHz – less than the natural width of the atomic transition and thus strong evidence for 

EIT. We develop an analytical model to describe our observations where the cusp is due to a 

depth-dependent atomic susceptibility, and we show that our model provides reasonable agree

ment with the observed spectra. Deviations of the theory from the data are discussed. We show 

that the width of the transmission window is independent of the size of the interaction region, 

which indicates that the main source of decoherence is likely due to collisions with the inter

face rather than diffusion of atoms or Rb-Rb spin-exchanging collisions. Applications of this 

system to compact optical frequency standards and comparisons with current EIT based optical 

clocks are discussed. A theoretical discussion of the Goos-Hänchen effect in the presence of 

EIT is presented and compared with measured data. 
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Chapter 1
 

Introduction 

In this thesis, I shall describe an experiment which investigates electromagnetically induced 

transparency (EIT) induced by evanescent optical fields in a hot atomic vapour. Before I explain 

why this is interesting, I shall describe why EIT itself is interesting and useful. 

The phenomenon of EIT is a well-known non-linear optical effect whereby the interaction 

of two optical fields with an appropriately chosen atomic system results in a narrow trans

parency window for one of the optical fields. The effect was first observed by Boller et al. [2] 

in 1991 using a hot gas of neutral strontium atoms. Since then, the number of systems where 

EIT and analagous coherent effects have been observed has increased drastically. In addition 

to warm atomic vapours, EIT has been observed in solid-state systems [3], superconducting 

qubits [4, 5], and optomechanical architectures [6, 7, 8]. Broadly speaking, EIT has attracted a 

great deal of interest for two related applications: quantum memories and photon-photon gates. 

Light pulses can be trapped inside an EIT medium as an atomic excitation and then reversible 

mapped back into a propagating optical excitation some time later [9, 10]. The non-linearity 

associated with EIT can also be used for photon-photon gates; in particular, it can be used as a 

controlled phase gate (eg. Schmidt and Imamoǧlu [11]) which is a universal quantum gate [12]. 

EIT can also be achieved with guided, rather than free space, fields, and this has both practical 

advantages for long-distance quantum communication and theoretical advantages for increas

ing gate fidelity [13]. In particular, nano-fibers [14] offer a convenient method for interacting 

bulk EIT media with guided modes via evanescent fields [15]. Nano-fibers also have several 

other interesting features that makes them worthy of study. As the fiber diameter is smaller than 

the wavelength of light, it is possible to obtain very high light intensities even for very low light 

levels. The higher intensity of the light, the stronger the light couples to atomic systems; this 
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effect is what makes nano-fibers particularly attractive for quantum gates. Non-linear optical
 

effects have already been observed with nano-fibers embedded in hot atomic vapour at the 10 

nW level [16]. An additional advantage of the evanescent fields from nano-fibers is that they 

can be used to trap atoms in a two-color dipole trap [14]. 

EIT has also garnered interest as an optical frequency reference [17]. The EIT transmission 

window is created only at the two-photon resonance, and in typical experiments with akali 

metal atoms this means that the frequency difference between the two optical fields is on the 

order of a few gigahertz. In comparison, the EIT linewidth can be extremely narrow: tens of 

kilohertz are easily obtained in typical EIT experiments using buffer gas and moderate control 

field intensities, while in paraffin coated vapour cells the EIT linewidth can reach the level 

of about 100 Hz [18]. While the frequency stability of such clocks is far worse than that 

of hydrogen masers and cesium fountains, clocks based on EIT can be used as compact and 

transportable references [17, 19, 20]. 

Our method of observing EIT in evanescent fields is to create the fields using total inter

nal reflection from an interface of glass and hot atomic vapour. This particular spectroscopic 

technique is known as selective reflection [21, 22, 23]. Selective reflection is interesting in its 

own right, as it allows one to probe the transient response of atoms when they collide with the 

interface [24]. It is also a useful technique for probing the spectral properties of dense atomic 

vapours [25]. Total internal reflection from two dielectrics also gives rise to the Goos-Hänchen 

shift, where the lateral and angular position of a totally reflected light beam of finite size is 

shifted relative to the expectation from geometrical optics [26, 27]. When there is a dense 

atomic vapour as one of the dielectrics a frequency-dependent modification of the beam shift 

appears [28]. 

So why is EIT in evanescent fields interesting? I shall give three reasons, in order of im

portance. First, our method of investigating EIT in evanescent fields using selective reflection 

is much simpler than implementing a nano-fiber system in either warm or cold atomic vapour. 
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While we cannot study the propagation characteristics of nano-fibers nor can we trap atoms 

with our system1, it still allows us to study many of the same spectroscopic phenomenon with 

greater ease. Second, the system has potential as a compact optical clock. The length scale of 

the evanescent fields is on the order of an optical wavelength, so in principle one could build 

an optical clock at the micro-metric scale. Of course, current laser and electronics technology 

would ultimately limit the size to be above the micro-metric scale. Such a clock would be 

both transportable and extremely compact, and it could potentially be used as a magnetome

ter with micrometric resolution. Third, and most importantly, achieving EIT in such a small 

interaction region is a very surprising result. One would expect the motion of the atoms and 

collisions with the interface to completely wash out the EIT phenomenon, and yet this is not 

observed. This is similar to work that has been done with EIT in micro-metric and nano-metric 

thin cells, where a warm atomic vapour is confined in one direction to lengths on the order of 

a micron [31, 32, 33, 34]. One would expect collisions with the walls in the short dimension 

to wash out the EIT transmission peak, but only atoms that fly parallel to the walls contribute 

to EIT formation. Thus, when we restrict our interaction regions to microscopic sizes new 

and interesting physics appears. One theoretical example of this is the potential for enhanced 

Goos-Hänchen shifts in Doppler broadened vapours under EIT conditions due to the necessity 

of phase-matching between the probe and control fields. To investigate new and interesting 

physics is itself a sufficient reason alone to study EIT in evanescent fields. 

This thesis is organized as follows. Chapter 2 discusses the basic theory behind the experi

ment. A significant amount of the work in this thesis was in developing a theory that accounts 

for the observed EIT spectra. Both EIT and Maxwell’s equations are briefly reviewed, and then 

a discussion of the problem of selective reflection is presented. Some limitations of the basic 

model are explained, and extensions are proposed. A discussion of the classic Goos-Hänchen 

shift is presented along with an analysis of the effect under EIT conditions with a Doppler 

1It is, however, possible to trap cold atoms with evanescent fields near a surface [29, 30] 

3
 



broadened gas and the potential increase in the shift. 

Chapter 3 outlines the experimental apparatus. The choice and properties of the atomic 

system, as well as the system used to generate evanescent fields, are discussed. Our methods 

for measuring the phase profile and beam shift are also presented. 

Chapter 4 details the measurements of the interface reflectivity and comparisons with the 

theoretical model developed in Chapter 2, and deviations from the basic theory are discussed. 

Further characteristics of the EIT spectra are presented, and those results are used to show 

that diffusion of atoms does not play an important role in the decoherence mechanisms of our 

system. Finally, a measurement of the Goos-Hänchen shift is presented in the presence of EIT. 

Finally, Chapter. 5 summarizes the work that has been presented and discusses improve

ments to and applications of the experimental system. 

4
 



Chapter 2 

Theory 

About half of the work in this thesis was developing a theory that would describe the effect of 

EIT in evanescent fields. That theory is described in this chapter. The following two sections 

will outline the physics of EIT and the behaviour of electromagnetic waves at dielectric inter

faces. I realize that to some this is basic physics, but it will help to establish nomenclature and 

conventions. The subsequent sections will derive the theory that will be used for the remainder 

of the thesis. 

2.1 Electromagnetically induced transparency (EIT) 

In this thesis, the quantum system of interest is an ensemble of three-level atoms in a Λ

configuration as shown in Fig. 2.1. We have two ground-state levels with no dipole allowed 

|bñ

Probe
Wp

Control
Wc

Dc{
{

|añ

|cñ

d

Figure 2.1: Level scheme for EIT with a Λ-type three level system. 

transition between them, labelled |b� and |c�, and a single excited state which has a dipole al

lowed transition with each ground state, labelled |a�. We have two optical fields, a probe and a 

control field, which couple transitions |b� − |a� and |c� − |a�, respectively. The control field is 
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detuned from resonance by an amount Δc, and the probe field is detuned from the control field 

by an amount δ. The Hamiltonian that describes this system is, in the interaction picture and 

rotating wave approximation, ⎞⎛ 

H
 = −�
 

⎜⎜⎜⎜⎝
 

Δc + δ Ωp Ωc 

Ω∗ 
p 0 0
 

⎟⎟⎟⎟⎠
 
(2.1)
 

Ω∗ 
c 0 δ 

where the coupling of the probe and control fields are described by their respective Rabi fre

quencies, defined as Ω = � d/� [35]. Here, d� is the dipole matrix element and E� the electric E · �

field vector. Under the condition that δ = 0, this Hamiltonian has as one of its eigenstates the 

so-called dark state [36] 
Ωc|b� − Ωp

Ω2 
c + Ω2

|c�
 |ψ� =
 (2.2)
 
p 

which has no component of the excited state and therefore does not couple to the optical fields. 

This means that a collection of atoms that have this Hamiltonian will quickly be pumped into 

a state that is transparent to both optical fields. In the absence of ground state relaxation 

mechanisms, the atoms will remain there indefinitely. This effect is called coherent population 

trapping (CPT). EIT is a special case of CPT, where we require that Ωp be much less than all 

other Rabi frequencies and dephasing rates, so the dark state is simply the state |b�. 

In any real atomic system, spontaneous emission and other dephasing processes destroy 

pure states such as Eq. (2.2). In order to have a full description of EIT, I must include those 

effects too. I use the density matrix formalism and the master equation 

i 
∂tρ = [ρ, H] + (∂tρ)decay (2.3) 

to determine the state of the system, where (∂tρ)decay describes the rate of change of the density 

matrix elements due to spontaneous decay and ground state dephasing. A common method for 

determining the effect of damping is the Lindblad formalism [36] which includes damping 
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using a superoperator of the form 

Γ 
(∂tρ)decay from j→i = (2σij ρσji − σjiσij − ρσjiσij ) (2.4)

2 

where σij = |i��j| and Γ is a decoherence rate. The master equation can be used to determine 

the temporal dynamics of the system, and has been used succesfully in describing stopped 

light experiments in EIT [35]. My task is simplified because in this thesis only the steady-state 

response of the system to the optical fields is relevant. Once the steady-state density matrix is 

known, I calculate the polarization of the atoms as P = Ndρab where N is the number density 

of atoms. The susceptibility for plane wave fields, defined through P = �0χE, is [36] 

Nd2 δ + iγ 
χ = (2.5)

��0 |Ωc|2 − (δ + iγ)(Δc + δ + iΓ/2) 

where γ is the relaxation rate of the ground state coherence (no population exchange) and Γ is 

the relaxation rate of the ground-excited state coherence. In this thesis, Γ is the sum of both the 

natural linewidth and the collisional broadening. The susceptibility is plotted in Fig. 2.2. Note 

Figure 2.2: Real and imaginary parts of the susceptibility as given in Eq. (2.5) in the presence 
of the control field. 

that the narrow transmission window is accompanied by steep normal dispersion as required 

by the Kramers-Kronig relations. The steep dispersion gives rise to a very slow group velocity, 
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the magnitude of which can be varied with the control field. If the control field is turned off as a
 

pulse propagates through an EIT medium then it is possible to stop the optical pulse inside the 

EIT medium. If the control field is turned back on again the pulse will re-accelerate and leave 

the medium. What makes this possible is that when the optical field is in the atomic vapour the 

optical and atomic state combine to form a dark state polariton [9], where the contribution of 

each part to the polariton is determined by the control field strength. For Ωc = 0 the polariton 

is purely atomic, and when Ωc �= 0 the polariton is a combination of optical and atomic parts. 

Thus, when there is no control field present the atom-light state becomes purely atomic and is 

therefore stationary. This is what allows reversible mapping of optical states into and out of 

EIT media. 

The above theory for EIT neglects an important effect that is present in warm atomic 

vapours: the motion of the atoms. From the perspective of a single atom, its velocity with 

respect to the direction of propagation of the probe and control fields will cause the apparent 

frequencies of the light fields to shift due to the Doppler effect. These frequency shifts differ 

between each atom and lead to inhomogeneous broadening of the natural line. Contrast this to 

collisional broadening which is homogeneous as it affects all atoms the same way. The stan

dard way to account for this effect is to replace Δc with Δc −�kc · �v, where �kc is the wavevector 

of the control field and �v is the velocity of the atom, and δ with δ − (�kp − �kc) · �v = δ − Δ�k · �v 

(�kp being the wavevector of the probe field). One then integrates Eq. (2.5) over a Maxwellian 

distribution of velocities (here I restrict this discussion to one dimension) � �1/2 
m mvz 

2 1 vz 
2 

P (vz)dvz = exp(− )dvz = � exp(− 
2 )dvz (2.6)

2πkBT 2kB T 2πv2 2vTT 

which gives the probability of an atom having a velocity vz. Generally, such integrals cannot be 

expressed in terms of elementary functions1, so I instead follow Javan et al. [37] and Figueroa 

et al. [38] and approximate the Gaussian in Eq. (2.6) by a Lorentzian with the same height and 

1Technically, this integral can be expressed in terms of the Faddeeva function, but this adds little to the 
discussion. 
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width
 
1 1 

P (vz)dvz ≈ √ dvz. (2.7) 
z2πvT 1 + v2 

22vT 

This is technically not a probability distribution, as it is no longer normalized, but given that the 

Doppler width kpvT is typically 180 − 200 MHz compared to natural linewidths on the order 

of 10 MHz it is a suitable approximation near resonance. Besides, one can actually calculate 

the convolution of Eqs. (2.5) and (2.7) without resorting to special functions: the result is 

√ 
Nd2 π δ + iγ� 

χ = (2.8)
��0 |Ωc|2 − (δ + iγ�)(Δc + δ + iΓ�/2) 

√ 
where Γ� = Γ + 2 2kpvT and γ� = γ + ΔkvT . It is a convenient twist of fate that the form 

of the EIT lineshape is invariant under the convolution. Note that most studies do not consider 

the effect of the wavevector mismatch on the EIT lineshape for Λ-level schemes. There are 

two reasons for this. The first is that the wavevector mismatch is generally very small for co

propagating beams and small hyperfine splittings, and the residual Doppler broadening of the 

two-photon resonance is on the order of kilohertz. The second reason is that EIT experiments 

are often performed with buffer gas in addition to the active atoms. Buffer gas acts to reduce the 

effect of wavevector mismatch by the process of Dicke-narrowing [39], so I shall set γ� = γ. 

Counterintuitively, Doppler broadening actually leads to a reduction in the EIT width. Since 

the form of the susceptibility is unchanged for stationary atoms as opposed to Doppler broad

ened atoms, the expression for the EIT width [38] 

Ω2 

FWHM = 2γ + 4 c (2.9)
Γ� 

is still valid even though I use Γ� instead of Γ. This expression for the EIT width will become 

important when I discuss evanescent EIT. 
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2.2 Maxwell’s equations, boundary conditions, and Fresnel equations 

In the previous section I outlined the effect that light has on three-level atoms in a Λ-configuration. 

Now I want to do the opposite: elaborate how the atoms affect the optical fields. The effect that 

the atoms have on the optical fields is determined by Maxwell’s equations. In non-magnetic 

matter and in the absence of free charges and currents, Maxwell’s equations can be written as 

[40] 

� · D� = 0 (2.10a) 

� · B� = 0 (2.10b) 

�× E� = −B�̇ (2.10c) 

�× B� = µ0Ḋ (2.10d) 

where B� is the magnetic field, µ0 is the permeability of free space, and the upper dot indicates 

a time derivative. The electric displacement D� is 

D� = �0E� + P� (2.11) 

where �0 is the permittivity of free space and P� is the polarization. In general, B� , E� , and P�

are functions of both position and time. The electromagnetic wave equation can be derived by 

taking the curl of Eq. (2.10c), the time derivative of Eq. (2.10d) and using Eq. (2.11) to get 

1 ¨ 1 ¨ 1 �2E� − E� = P� − �(� · P� ) (2.12) 
c2 �0c2 �0 

where, as usual, c = (�0µ0)
−1/2 is the speed of light in a vacuum. In this thesis, I am only 

concerned about the case where the electric fields are harmonic with angular frequency ω and 

have a harmonic time-dependence e−iωt, so I can immediately eliminate time derivatives and 

obtain 
ω2 ω2 1 

(�2 + )E� = − P� − �(� · P� ). (2.13) 
c2 �0c2 �0 
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In the special case that we have a homogenous, isotropic, linear medium where P� = �0χE� (χ 

is thus a constant scalar) Eq. (2.13) can be simplified to 

ω2 

(�2 + 
c2 

(1 + χ))E� = 0 (2.14) 

√ 
and the index of refraction n can be immediately be identified as n = 1 + χ. 

From Maxwell’s equations, one can derive a set of boundary conditions that the electric 

and magnetic fields must obey at an interface of two non-magnetic media. The derivation of 

the boundary conditions can be found in [40], and they are 

n 21E1 
⊥ = n 22E2 

⊥ (2.15a) 

|| ||
E�1 = E�2 (2.15b) 

B�1 = B�2 (2.15c) 

where ⊥ denotes the component of the field that is perpendicular to the interface and || denotes 

the components that are parallel to the interface. The magnetic field is irrelevant here except for 

how it determines the electric field at the boundary, so by using Eq. (2.10c) and the assumption 

of harmonic time dependence I can replace the magnetic field with B� = 
ω
i �× E� . 

Now that I have the boundary conditions, I want to determine what happens to an incident 

plane wave at the interface of two semi-infinite, homogenous, isotropic, linear media. It is 

worth spelling out the exact problem now, as I will return to it when I discuss the case of 

selective reflection from an atomic vapour. Consider the situation in Fig. 2.3. Let us assume 

� i�k1·�rthat we have an incident plane wave given by E�1(�r) = E1e where E�1 is the complex 

amplitude of the incident field and �k1 is the wavevector of the incident field. I similarly define 

the reflected field E�2(�r) and the transmitted field E�3(�r) and their respective wavevectors. I 

assume that my interface is in the x − y plane, and that my incident field propagates in the 

x − z plane at an angle θ with the z-axis. In that case, the incident wavevector is given by 

�k1 = n1k0(sin θx̂ + cos θẑ) = n1k0(ax̂ + bẑ) where I have defined k0 = ω/c. By the law of 
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Figure 2.3: Reflection and transmission at a boundary between two different dielectrics. 

reflection, the reflected wavevector is given by �k2 = n1k0(ax̂− bẑ), and by Snell’s law 

n1 sin θ = n2 sin θt (2.16) 

2 2the transmitted field has a wavevector �k3 = n2k0(sin θtx̂+cos θtẑ) where cos θt = n2 − n1 sin
2 θ. 

The relationship between the wavevectors arises due to the fact that the boundary conditions 

given by Eq. (2.15) have to hold at all points along the boundary. The relationships between 

the electric fields on either side of the boundary depend on the polarization of the field, as evi

denced by the fact that Eqs. (2.15a) and (2.15b) are for polarizations parallel and perpendicular 

to the interface. In this thesis, I will deal only with the case of polarization perpendicular to the 

plane of incidence. In that case, the boundary conditions take the form of the Fresnel equations 

for the reflected and transmitted fields [41] 

� n1 cos θ − n2 − n1
2 sin2 θ � �E2 = � 2 E1 = rE1 (2.17a) 

n1 cos θ + n2
2 − n2

1 sin
2 θ 

2n1 cos θ 
E�3 = � E�1 = tE�1. (2.17b) 

n1 cos θ + n2
2 − n2

1 sin
2 θ 

If one is interested in energy transport between the media, then one needs to calculate the 

z-component of the Poynting vector as 

�0c
2 �0c 

S · ẑ = �(E� × B� ∗ ) · ẑ = |E� |2�(�k ∗ · ẑ), (2.18)
2 2ω 

S2·ẑ S3·ẑand then one can define the reflectivity R = 
�

= |r|2 and transmisivity T = 
�

= 
S�1·ẑ S�1·ẑ

cos θt|t|2� . Now there is an interesting bit of physics that comes from this definition of 
cos θ 
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energy transport. In the case that n2 < n1 it is possible to have the incident field at angles 

such that sin θt > 1. When this occurs we also have that cos θt is imaginary, so the transmitted 

electric field is � �� � � 
n1

E�3(�r) = E�3 exp in1k0x sin θ − n2k0z sin2 θ − 1 . (2.19) 
n2 

Instead of having a travelling wave that penetrates and carries energy into the second medium, 

we have an evanescent wave that travels parallel to the interface and decays exponentially 

into the second medium. Furthermore, the evanescent wave does not transport energy into the 

second medium, since the z-component of its wavevector is purely imaginary and Eq. (2.18) re

quires a real wavevector. Note also that the magnitude of the reflection coefficient in Eq. (2.17a) 

is now unity. This is the effect of total internal reflection (TIR). 

2.3 Selective reflection 

In this section, I will attempt to formally state the problem of selective reflection as it applies 

to this thesis. In the next couple of sections, I will then proceed to solve it using the Green’s 

function method. 

The statement of the problem follows Fig. 2.3. I consider two semi-infinite media which 

have an interface in the x − z plane; the region z < 0 has a linear, homogeneous, isotropic 

dielectric with index of refraction n1, and the region z > 0 contains an atomic vapour of three-

level atoms in a Λ-configuration as shown in Fig. 2.1. Two electromagnetic plane waves are 

incident on the surface with wavevector2 �k1 = n1k0(ax̂+ bẑ); one of these waves is the control 

field and the other is the probe field as defined in Sec. 2.1. I assume that the susceptibility for 

the control field is zero, so I can immediately use the Fresnel transmission coefficient given by 

Eq. (2.17b) and Snell’s law to determine both amplitude and wavevector of the control field 

2If I ignore residual Doppler broadening, the fact that the control field’s wavevector is different in magnitude 
from the probe field’s is irrelevant. 
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inside the vapour
 

Ωc(�r) = Ωc exp(ik0(αx + βz)) (2.20) 

√ 
where α = n1 sin θ = n1a and β = 1 − α2. The susceptiblity for the probe field for a 

particular velocity class of atoms is 

Nd2 δ + iγ 
χ(z, �v) = (2.21)

��0 |Ωc exp(ik0βz)|2 − (δ + iγ)(Δc − �k3 · �v + δ + iΓ/2) 

where the only position dependence is on the z-coordinate. Often the spatial variation of the 

control field is not included in the susceptibility (such as in Eq. (2.8)), but in the case of selec

tive reflection the spatial variation is of critical importance. 

The incident probe field is described as an electric field E�1(�r) = E�1 exp(i�k1 ·�r), where �k1 is 

defined as above. I assume that the polarization of the wave is solely in the ŷ direction. I label 

the reflected and trasmitted probe fields as in Sec. 2.2. From the boundary condition given in 

Eq. (2.15b) and the form of the susceptibility in Eq. (2.21), I know that the x-dependence of 

the reflected and transmitted fields must be the same as that of the incident field: eik0αx. From 

Eq. (2.14), one can deduce that the reflected field must therefore be a plane wave of the form 

E�2(�r) = E�2 exp(in1k0(ax − bz)). (2.22) 

Since the probe susceptibility can depend on position the transmitted probe field will not always 

be a plane wave. In general, I cannot use the Fresnel equations to determine the amplitude of 

the reflected field. The problem is now to find the amplitude of the reflected probe field E�2 

given the above conditions, and the additional assumption that the susceptibility of the atoms 

is small (χ � 1). 

2.4 Solution for incident angles below the critical angle 

If the incident field intersects the interface at an angle that is less than the critical angle for total 

internal reflection, then both the control field and the probe field are travelling waves inside the 
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atomic vapour. Their common wavevector is then simply �k3 = k0(αx̂ + βẑ), where β is a 

real quantity. The spatial dependence of the control field, as given in Eq. (2.20), is then purely 

a phase factor, and its magnitude does not vary with space. Therefore, the susceptibility in 

Eq. (2.21) does not vary with position, indicating that the EIT medium is homogeneous. That 

means that the machinery of the Fresnel equations can be used to calculate both the transmitted 
√ 

and reflected probe fields, as long as I use n2 = 1 + χ. Nominally, the range of validity of 

this analysis is for all θ ≤ θc. 

There is a subtlety here that involves the motion of the atoms, as they are not allowed to 

roam around all of space. There is an interface with which they can collide, and this can have 

a significant impact on the reflection coefficient. This analysis has been done in detail for two-

level atoms by Nienhuis et al. [24], and I freely admit that much of the theory in this thesis 

was based on their work. I will describe the general principle of how the motion of atoms can 

affect the reflection coefficient, and then I will state the conditions under which I can ignore it. 

Consider a gas of two level atoms with a ground state and an excited state. When an atom 

collides with the wall it loses all coherence, and its state reverts to that of the ground state. One 

must then distinguish between atoms that are approaching the surface and have yet to collide, 

and atoms that have already collided and are leaving the surface. Atoms that are approaching 

the surface are assumed to have had an infinity of time to approach, so they must be in the steady 

state by the time they reach the surface. It is the transient behaviour of the atoms that leave the 

surface after being de-excited that causes a measurable change in the reflection spectra. In the 

limit of no saturation one can show that the contribution of atoms leaving the surface is exactly 

the same as those that are approaching the surface, so that to correctly account for the motion 

of the atoms one must integrate the susceptibility over half the Maxwell velocity distribution 

in the z-direction. For angles that are far from the critical angle, this has a profound impact 

on the two-level absorption spectra. In the case of near normal incidence this will result in a 

lopsided Doppler profile, and for angles near grazing incidence this results in profiles that are 
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narrowed compared to their Doppler counterparts.
 

The magnitude of this transient effect depends on the magnitude of the z-component of 

the transmitted wavevector, be it real or imaginary. For angles near the critical angle, the z-

component of the transmitted wavevector is much smaller than that of the x-component of the 

wavevector. Therefore, the Doppler broadening associated with the x-direction washes out the 

transient effects of the collisions with the interface. In this thesis, I only investigate angles 

that are near the critical angle because they are the only angles that give a significant signal. 

Therefore, I ignore the effect of the transient behaviour of the atoms in my calculation of the 

susceptibility. I account for the motion of the atoms by assuming the only wavevector compo

nent of interest for Doppler broadening is �k3 · x̂ = k0α, and I use Eq. (2.8) with the appropriate 
√ 

spatial variation of the control field. The factor Γ� then becomes Γ� = Γ + 2 2αk0vT . 

The reflectivity of the interface is plotted for θ ≤ θc in Fig. 2.4. One notices that well 

Figure 2.4: Theoretical plots of the reflectivity of the interface when θ < θc. The top curve 
corresponds to θ = θc, with the angular step for each curve being 2.2 mrad. The plots here are 
for Γ = 2π × 500 MHz, Ωc = 2π × 100 MHz, and γ = 2π × 1 MHz. 

below the critical angle, there is no distinct transmission peak as one would expect for EIT. In 

fact, it looks more like a dispersive resonance than a transmissive one. There are two ways of 
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� � 

understanding this: one is purely mathematical and the other intuitive. First, the mathematical 

reason. If one takes the Fresnel reflection coefficient r as defined in Eq. (2.17a) and expands it 

to first order in the susceptibility, one arrives at 

n1 cos θ χ 
r ≈ r0 1 − 

2 (2.23) 
n1 − 1 β 

where I have defined r0 = r(n2 = 1). For any complex variable z where |z| � 1, the quantity 

|1+z|2 ≈ 1+2�(z) if we neglect second-order and higher terms. In Eq. (2.23) the appropriate 

complex variable is χ/β, and in the case of β being real the correction to the reflectivity is 

proportional to the real part of the susceptibility with a minus sign out front. This is why the 

spectra in Fig. 2.4 look very similar to the real part of the EIT susceptibility in Fig. 2.2. 

The intuitive explanation is best done with the plot in Fig. 2.5. Recall that the critical 

Figure 2.5: Magnitude of the reflection coefficient r0 near the critical angle. 

angle is given by θc = sin−1(n2/n1), so that when n2 increases the critical angle increases and 

vice-versa. In the case that n2 describes an EIT medium, the index of refraction is lower for 

negative detunings and higher for positive detunings. This means that for negative detunings 

the critical angle is shifted to lower values and consequently the reflectivity increases. For 

positive detunings, the critical angle is shifted to higher values and the reflectivity decreases. 
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This dependence on the real part of the index of refraction is what leads to the dispersive spectra
 

seen in Fig. 2.4. 

2.5 Evanescent EIT 

When the incident angle exceeds the critical angle, one unfortunately cannot use the Fresnel 

equations to calculate the reflection coefficient. The z-component of the transmitted wavevec

tor, k0β, is imaginary, and this means that the magnitude of the control field varies with the 

penetration depth z. Ergo, the medium is no longer homogeneous, and the Fresnel equations 

no longer apply. One must backtrack to the wave equation in order to solve this problem. For

tunately, there are many simplifications, both rigourous and approximate, that one can use to 

make this problem tractable. 

Let us consider the wave equations (2.13) and (2.14). The reader may recall that I dispensed 

with the term �(� · P� (�r)), and I did this by noting that � · D� is equivalent to � · E� when χ is 

independent of �r. At first glance, it would seem that I can no longer neglect this term. However, 

if the field is a plane wave whose polarization is solely in the ŷ direction and propagates in the 

x − z plane, then this term still vanishes when χ is a function of z only. Equation (2.14) still 

holds in the region z > 0. 

I can further simplify the wave equation for this particular problem by noting that because 

the susceptibility is a function of z only, it cannot modify the properties of the wave in the 

x-direction. This follows from Eq. (2.15a). Since the incident field is a plane wave and varies 

along x as eik0αx, so too must the transmitted wave vary in the same manner. Let E�3(�r) = 

ik0αx ̂u3(z)e y and similarly for E�1 and E�2: the problem is to solve 

(∂z 
2 − k0

2η2)u3(z) = −k02χ(z)u3(z) (2.24) 
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� 
for the region z > 0 (η = −iβ = n2

1 sin
2 θ − 1) and the boundary conditions 

u1(0) + u2(0) = u3(0) (2.25a) 

∂z [u1(z) + u2(z)] |z=0 = ∂zu3(z)|z=0 (2.25b) 

where Eq. (2.25b) comes from Eq. (2.15c) and the relationship between B� and E� . The above 

equations are as simple as I can make the problem, and unfortunately it is not simple enough. 

Equation (2.24) describes a wave-like entity travelling in the z-direction with a spatially vary

ing wavevector. No analytical solution or solution method exists for the general problem, 

because if it did we would all know how to solve the Schrodinger equation exactly in one 

dimension for any potential. It is here that I must resort to approximation. 

The key approximation that I shall use is the Born approximation which may be familiar 

to readers interested in scattering theory in quantum mechanics [42]. For the problem at hand, 

the physical content of the approximation is as follows: I assume that the transmitted wave 

is not substantially altered by the presence of the EIT medium. Let us imagine that there are 

no atoms for a moment and consider the transmitted electric field. We know that this is a field 

which decays exponentially into the vapour, and its amplitude is given by the Fresnel equations. 

Now re-introduce the atoms. The vacuum expression for the transmitted electric field induces 

a particular polarization on the atoms, which in turn generates an electric field that propagates 

both towards the interface and away from the interface. Now, the polarization of the atoms is 

determined not just by the external field (the vacuum expression for the transmitted field), but 

by the total field. So the field that is produced by the atoms must be added to the external field, 

and thus the polarization of the atoms must be recalculated. With the new polarization, we get 

a different electric field, and so it goes ad infinitum. The only way to calculate this infinite 

progression self-consistently is to solve Eq. (2.24) exactly. The first order Born approximation 

cuts this progression off at the first term: I calculate the electric field produced by the atoms 

if their polarization is determined by the vacuum expression for the transmitted field. I do not 
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consider the back-action of the atoms on themselves.
 

With that long-winded explanation out of the way, let us return to a mathematical descrip

tion. I write that the transmitted field is given as the sum of a zeroth and first order term 

(0) (1)
u3(z) = u3 (z) + u3 (z) and similarly for the reflected field u2(z). The zeroth order term 

solves the pair of differential equations 

(0)
(∂z 

2 − k0
2η2)u3 (z) = 0 z > 0 

(2.26) 
(∂z 

2 + n1
2k0

2b2)u
(0)
2 (z) = 0 z < 0 

subject to the boundary conditions given in Eqs. (2.25a) and (2.25b) with each ui(z) replaced 

with u(0) i (z). Thus, the zeroth order terms are nothing but the solutions in the case of no atoms: 

travelling or evanescent waves where the amplitudes at z = 0 are related by Fresnel equations. 

The first order terms solve the differential equations 

(1) (0)
(∂2 − k0

2η2)u (z) = −k02χ(z)u (z) z > 0z 3 3 
(2.27) 

(∂2 + n2k2b2)u
(1)
(z) = 0 z < 0z 1 0 2 

subject to the boundary conditions 

(1) (1)
u2 (0) = u3 (0) (2.28a) 

(1) (1)
∂zu (z)|z=0 = ∂zu (z)|z=0. (2.28b)2 3 

The solution for the region z < 0 is simple: it is a travelling wave. But the solution for the 

region z > 0 is not as simple, although it is possible to obtain analytically. The use of the 

Green’s function method for solving this problem is the subject of the next section. 

2.6 Green’s functions for evanescent EIT 

The method of Green’s functions that I use in this section borrows heavily from Tai [43]. The 

problem that I want to solve is now 

(∂2 − k2η2)g3(z|z�) = −δ(z − z�) z > 0z 0 
(2.29) 

(∂2 + n2
1k0

2b2)g2(z|z�) = 0 z < 0z 
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subject to the boundary conditions
 

g2(0|z �) = g3(0|z �) (2.30a) 

∂zg2(z|z �)|z=0 = ∂zg3(z|z �)|z=0 (2.30b) 

for the Green’s functions g3(z|z�) and g2(z|z�). The Green’s functions must satisfy several 

conditions: they must be continuous at z = z�, the derivative of g3(z|z�) must change at z = z� 

by −1 and they must be symmetric with respect to exchange of z and z�. This is, of course, in 

addition to satisfying the differential equations for z � � and the relevant boundary conditions. = z

One can construct the Green’s function for the region z > 0 as the sum of two terms: one from 

the point source polarization δ(z − z�) and the other from the wave scattered from the interface. 

For the region z < 0, we only need the scattering term as there is no polarization in that region. 

The coefficients of the scattering terms are chosen so that the boundary conditions are satisfied. 

Thus, the Green’s function for the region z > 0 is 

g3(z|z �) = 
1
 

2k0η 

⎧ ⎪⎨ ⎪⎩
 

e
−k0η(z−z�) � −k0η(z+z�) �+ r e z ≥ z

k0η(z−z�) + r� −k0η(z+z�) �e e 0 ≤ z ≤ z
(2.31)
 

and the Green’s function for the region z < 0 is 

1 � −in1k0bz−k0ηz� g2(z|z �) = t e (2.32)
2k0η 

� iη−n1b 2iηwhere r = and t� = are the reflection and transmission coefficients as seen from 
n1b+iη n1b+iη 

the EIT medium. The first order correction to the transmitted field is then the convolution of 

the Green’s function g3(z|z�) and the polarization � ∞ 
(1) (0)
u (z) = −k2 χ(z �)tu (z �)g3(z|z �)dz� . (2.33)3 0 1 

0 

(1)To determine u2 (z), we use Eq. (2.28a) and the fact that the reflected field is a travelling 

(1) (1)wave. This means that u2 (z) = u3 (0) exp(−in1k0bz). One can show that this is equivalent 
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to convolving the polarization with the Green’s function given in Eq. (2.32). The first order
 

correction to the reflected field is thus
 � �� � � ∞ 
(1) k0 2n1b 2iη (0) −2k0ηz� u (0) = u (0) χ(z �)e dz� 2 2η n1b + iη n1b + iη 1 � ∞ 

0 

(0) 2ik0n1b −2k0ηz� = u1 (0)r0 χ(z �)e dz� (2.34)
(n1

2 − 1) 0 

where I have included the transmission of the incident field into the vapour (first set of brackets 

in first line) and the transmission of the field from the vapour into the dielectric (second set 

of brackets). Equation (2.34) bears striking resemblance to the second term in Eq. (2.23); so 

much so in fact, that I am motivated to introduce the effective susceptibility � ∞ 
−2k0ηz� χeff = 2k0η χ(z �)e dz� (2.35) 

√0 � � 
Nd2 π δ + iγ Ω2 

= log 1 − c (2.36)
��0 Ωc 

2 (δ + iγ)(δ +Δc + iΓ�/2) 

where the last line is obtained from a straightforward (seriously!) integration. The effective 

susceptibility can then be used directly in Eq. (2.23). 

A plot of the reflectivity of the interface above the critical angle is shown in Fig. 2.6. Two 

plots are shown: one (blue) using Eq. (2.36), and the other (red dashed) ignores the variation of 

control field with depth. One can see that the lineshape, properly described using the variation 

of the control field, is distinctly non-Lorentzian. The intuitive reason is this: since the width of 

the transparency window is determined by the intensity of the control field, atoms that are close 

to the interface will see a much wider transparency window than those that are farther away. 

The farthest atoms will see a transmission window whose width is limited by the ground state 

dephasing rate. The sum of all the Lorentzians with different widths results in the distinctive 

lineshape. I have plotted the effective susceptibility for only one angle in Fig. 2.6, as the theory 

predicts no variation of the shape with angle. 
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Figure 2.6: Reflectivity of the interface for θ = θc + 3◦ . The solid blue curve uses the effec
tive susceptibility as given by Eq. (2.36) whereas the red dashed curve uses the regular EIT 
susceptibility given by Eq. (2.8). 

2.7 Limitations 

Every model has its limitations, and the one described in the preceding pages is no exception. 

There are two main limitations to the model. The first is that, assuming incident plane waves, 

it is not valid for incident angles near the critical angle. Near the critical angle the first order 

correction to the reflected field blows up, rendering the model unphysical. Further, one can 

intuitively see that the variation in the real part of the index of refraction near the critical 

angle will lead to the transmitted probe field sometimes being a travelling wave, sometimes an 

evanescent wave, depending on the detuning. This will lead to hybridization of the lineshapes 

near the critical angle. The second, related, limitation is that I assume that we have incident 

plane waves. In most experiments, and in particular ours, both the control and the probe field 

are Gaussian beams which can be decomposed into a sum of plane waves. Therefore, they have 

a finite range of incident angles, and near the critical angle some angles can experience TIR 

and some will not. This can also lead to hybridization of the line shape. All that being said, 
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I would like to discuss in the following sections possible corrections and improvements to the 

model that could be used if higher precision was desired. 

2.7.1 Higher order Born approximation 

It is reasonably straightforward to formally extend the derivation of the correction to the re

flected field in Sec. 2.6 to higher order terms in the Born approximation. To do so, I write that 

the z-dependent part of the transmitted field is 

∞

u3(z) = u
(
3 
n)
(z) (2.37) 

n=0 

and similarly for the reflected field. Each order n then solves the differential equations 

(n) (n−1)
(∂2 − k0

2η2)u (z) = −k02χ(z)u z > 0z 3 3 
(2.38) 

(∂2 + n2k2b2)u
(n)

(z) = 0 z < 0z 1 0 2 

with the appropriate boundary conditions relating the transmitted and reflected fields of the 

same order. In Eq. (2.38), u(3 
n)
(z) = 0 for n < 0. The unfortunate problem with this extension 

is that to calculate each new correction of order n to the reflected field I have to have already 

calculated the profile of the transmitted field to order n − 1. The formal solution for the 

(1)transmitted field u3 is given by Eq. (2.33). All subsequent orders for the polarization will have 

(0) (n−1)the same form, except with u3 (z) replaced with u3 (z). From the boundary conditions we 

always know what the reflected field is. So the formal solution for the nth order correction to 

the reflected field is the following equation: � ∞ � ∞ � ∞ 
(n) (0)
u (0) = k2n dz1 dz2 . . . dznχ(z1)g3(0|z1)χ(z2)g3(z1|z2) . . . χ(zn)g3(zn−1|zn)u (z).2 0 3
 

0 0 0
 

(2.39) 

As it turns out, the calculation for the first order correction to the transmitted field can be 

done analytically. However, the resulting expression conveys no real physics, and the expres

sion for the reflected field cannot be computed analytically. Instead, I will simply plot the 

results with the second order correction in Fig. 2.7. I would like to draw attention to the fact 
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Figure 2.7: Theoretical reflectivity of the interface as a function of detuning for 
θc + 0.75◦ ≤ θ ≤ θc + 3◦ when the second order correction is included. 

that while the first order correction does not introduce asymmetry in the reflectivity as a func

tion of angle, the second order correction clearly does. This is likely because while the zeroth 

order transmitted field is independent of the detuning, the first order transmitted field is not. 

The polarization that it produces will generate a reflected field that is certainly not symmetric 

about zero detuning. 

I would like to point out that in Fig. 2.7 I have purposely included traces that show large 

deviations from the traces corresponding to larger angles. The experimental data do not show 

this kind of structure, but it is unclear as to why not. Perhaps the fact that we have Gaussian 

beams washes out such structure near the critical angle, or perhaps higher orders of the Born 

approximation are required. 

2.7.2 Gaussian Beams 

In all of the above work, I have assumed that I have infinite plane waves and thus only one 

wavevector to work with. What about the case where both the probe and the control field are 
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beams of finite size and therefore with some spread in wavevectors? This section will develop
 

a simple model that accounts for a finite spread in wavevectors using the machinery developed 

in the previous sections. Further details about the Gaussian beams at interfaces can be found 

in Kozaki et al. [44]. 

Consider the coordinate system shown in Fig. 2.8. Starting with the ‘incident coordinates’, 

z

z1

z2

z3

x

x2
x1

x3
qt

qq

Figure 2.8: Coordinate system used for considering the transformation of a Gaussian beam at 
an interface. The incident coordinates are (x1, z1), the reflected coordinates are (x2, z2), and 
the transmitted coordinates are (x3, z3). The coordinates (x, z) are the interface coordinates. 
The origin of the z coordinate for the incident, reflected and transmitted systems is at the origin 
of the interface coordinates. 

I know from the Fourier transformation of the Helmholtz equation that, given an initial distri

bution of wavevectors E1(kx1 , 0), the propagating field is � ∞ � 
2E1(x1, z1) = 

1 
E1(kx1 , 0) exp(iz1 n1k0

2 − kx2 
1 
+ ikx1 x1)dkx1 . (2.40)

2π −∞ 

I use a standard coordinate transformation between the incident and interface coordinates to 

find that the incident field at the z = 0 plane is given by � ∞1 
E1(x, 0) = E1(kx1 , 0) exp(ip(kx1 )x)dkx1 (2.41)

2π −∞ 

where p(kx1 ) = kx1 cos θ + sin θ n1
2k0

2 − kx2 
1 
≈ kx1 cos θ + n1k0 sin θ is the projection of 

the wavevector along the interface coordinate x in the paraxial approximation. Now, I want to 

determine what the spatial profile of the transmitted field is. To do so, I again use the solution 
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for the Helmholtz equation given an initial distribution of wavevectors
 � ∞ �
1 

E3(x, z) = E3(p, 0) exp(iz k0
2 − p2 + ipx)dp (2.42)

2π −∞ 

where the distribution E3(p, 0) can be determined from Eq. (2.41) and the Fresnel transmission 

coefficient t (Eq. (2.17b)). Note that cos θ = n1
2k0

2 − p2/(n1k0) and cos θt = k0
2 − p2/k0. 

Additionally, I have made the approximation that χ � 1 so that I may ignore the effect of 

the atoms on the wavevectors. After playing around with integrals and delta functions and 

worrying about 2π’s, the final expression for the transmitted field is � ∞ �
1 

E3(x, z) = t(p(kx1 ))E1(kx1 , 0) exp(iz k0
2 − p(kx1 )

2 + ip(kx1 )x)dkx1 . (2.43)
2π −∞ 

All I need to do is apply the above equation to the control and the probe fields to calculate 

what the correction to the reflection coefficient is. However, there is a bit of a snag. In my 

derivation of Eq. (2.34) I assumed that the only x-dependence was a phase factor. That is no 

longer the case, so I must make a further approximation. If I ignore the spatial variation of the 

control field, then the susceptibility is still independent of x and the only spatial variation in 

x is a simple phase factor. Further, I will also ignore the x variation of the probe field outside 

of the phase factor, as it contributes little to the underlying physics. These two approximations 

allow me to use the Green’s functions derived in Sec. 2.6 and also significantly reduce the 

mathematical complexity. 

Addressing the Green’s functions themselves, I would like to point out that the derivation 

of the Green’s functions relied in no way on the fact that they were decaying exponentials. In 

general they are of the form eik0βz, where β can be complex. At first glance, it appears that 

the integral in Eq. (2.35) will not converge if β is solely real. However, β can never be solely 

real because it is defined through k0β = k0
2 − p(kx1 )

2, and p(kx1 ) extends over an infinite 

range for most fields that can be generated in the lab. Therefore, I claim that the integral always 

converges. 
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After all those arguments, I finally want to actually write down an expression for the re

flected field. Under the first order Born approximation, the reflected field for an incident plane 

wave with transverse wavevector kx1 is � ∞2in1k0 2ik0β(kx1E2(kx1 , 0) = r0(kx1 )E1(kx1 , 0) + 
2 r0(kx1 )E1(kx1 , 0)b(kx1 ) χ(z)e )zdz 
n − 11 0 

(2.44) 

where one must remember that the position dependence of χ is due to the control field having 

the form given in Eq. (2.43). To get the total reflected field, I simply integrate over the initial 

distribution: 

� ∞ � ∞ 

E2(0) = E2(kx1 , 0)dkx1 = r0(kx1 )E1(kx1 , 0)dkx1 
−∞ −∞� ∞ � ∞2in1k0 2ik0β(kx1+ 

2 r0(kx1 )E1(kx1 , 0)b(kx1 )χ(z)e 
)zdzdkx1 . (2.45) 

n − 11 −∞ 0 

As one might imagine, the above equation cannot be integrated analytically, so I have plotted 

the reflection spectrum in Fig. 2.9. The important feature to note is that the model using 

(a) Reflectivity assuming a Gaussian probe beam 
with angular divergence of 0.5 mrad. 

(b) Reflectivity assuming a plane wave probe field. 

Figure 2.9: Reflectivity of the interface for both Gaussian and plane wave probe fields. Curves 
of the same colour correspond to the same angle between the two graphs. 

Gaussian beams does not show the same divergence when the angle of incidence is slightly 

above the critical angle as compared to the plane wave case. The amplitude of the EIT signal 
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saturates at a finite value. This allows us to see that the lineshape should change smoothly
 

between a dispersive signal to a sharp transmission peak. Note, however, that the Gaussian 

beam model has its own problems, such as the reflectivity being larger than unity near the 

critical angle. The reason is that I have still invoked the first-order Born approximation before 

inserting finite-sized beams, and that procedure will never be valid near the critical angle. 

Effectively what I have done is to smooth out the singularity at θc for beams of non-zero 

divergence, but the singularity remains if the divergence approaches zero. On physical grounds 

there should be no singularity for plane waves, so this naive model still remains incorrect near 

the critical angle. 

2.8 Goos-Hänchen shift 

The Goos-Hänchen shift (GHS) was first proposed in 1929 by Picht [45] and first measured by 

F. Goos and H. Hänchen in 1947 [26]. The basic idea is that if a light beam is totally internally 

reflected it picks up a phase that depends on the angle of incidence. This angle-dependent 

iφ(�k)phase can be represented as a wavevector dependent phase e . For a beam with a small 

spread in wavevectors, I can approximate φ(�k) ≈ φ0 + 
dk
dφ 
x1 
kx1 where kx1 is the transverse 

wavevector. The reflected beam in the reflected coordinates (see Fig. 2.8) is then � ∞1 dφ dφ 
E2(x2, 0) = E2(kx1 , 0) exp(ikx1 x2 +iφ0 +i kx1 )dkx1 = E2(x2 − , 0) (2.46)

2π dkx1 dkx1−∞ 

where a property of Fourier transforms leads to a shift in the position of the beam. Therefore, 

the point on the interface that the reflected beam appears to originate from is not the same as 

that expected from geometrical optics as shown in Fig. 2.10. There are two ways to visualize 

the GHS by considering that it relies on evanescent fields. The first is to imagine that the beam 

is reflecting not off of the interface but off of the skin layer a distance (k0 n1
2 sin2 θ − n2

2)
−1 

into the rarer medium. The second way to visualize it is to consider that in evanescent fields 

energy flows parallel to the interface, not perpendicular to it. Therefore, the energy of the beam 
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Figure 2.10: Diagram of the GHS. The actual reflected beam (solid) appears to come from a dif
ferent location on the interface compared to the expectation from geometrical optics (dashed). 
One possible interpretation of the shift is that the beam reflects off of the skin layer created by 
the evanescent field. 

flows parallel to the interface for a short distance before re-emerging [46]. 

The mathematical derivation starts from the reflection coefficient given in Eq. (2.17a). 

When θ > θc, the magnitude of the reflection coefficient is unity, but the phase varies with 

the incident angle. The phase imparted to a totally reflected beam with polarization perpendic

ular to the plane of incidence is ⎛� 
sin2 θ − n

φ = 2 tan−1 ⎝ n

2
2 
2
1 

⎞
 

cos θ
 
⎠ . (2.47)
 

d 1 dI take the derivative of the above equation with respect to θ, and using ≈ 
k0 

I find that 
dkx1 dθ 

the GHS is [47] 
1 dφ 1 2n1 sin θ 

DGHS = = � . (2.48)
k0 dθ k0 n1

2 sin2 θ − n2
2 

Apparently one can get a giant lateral displacement by sending in a beam at an angle arbitrarily 

close to the critical angle. This is obviously unphysical, and this problem persists in every 

derivation of the GHS starting from plane waves. It is possible to derive an expression valid 

near the critical angle if one uses a Gaussian ansatz [48], and this derivation shows that the 

maximum displacement will always be much less than the beam width. Therefore, from single 

reflection experiments it is impossible to achieve a giant GHS. That being said, it is possible to 
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achieve large displacements if one uses multiple reflections as in the original experiment [26].
 

In addition to the lateral GHS, there is also an angular Goos-Hänchen shift (AGHS). This 

phenomena was originally proposed by Ra et al. [49] in 1977 and measured by Merano et 

al. [27] in 2009. The AGHS is exactly what its name suggests: the beam is reflected at an angle 

that is different from the geometrical optics expectation as shown in Fig. 2.11. Therefore, the 

DAGHS

n1

n2

G
eom

etrical optics

Figure 2.11: Diagram of the AGHS. An incident beam is reflected at an angle that is different 
than the angle of incidence. 

angle of incidence is not equal to the angle of reflection. In contrast to the lateral GHS, the 

AGHS occurs only when there is partial reflection of the incident field. In a sense it is easier 

to understand: an angle-dependent amplitude change causes the beam to reshape and therefore 

the beam’s center-of-mass shifts in k-space. 

To derive the AGHS, I will assume that I have an incident Gaussian beam of waist w0 

whose Fourier transform is E(kx1 , 0) = exp(−kx2 
1 
w0

2/4). The reflected field, in the reflected 

coordinates as defined in Fig. 2.8, is � ∞ k2 2 

E2(x2, 0) ≈ 
1 

r(kx1 ) exp − x1 
w0 + ikx1 x2 dkx1 . (2.49)

2π 4−∞ 

d log rLet us write r = exp(log r). If I approximate log r ≈ log r|kx1 =0 + |kx1 =0kx1 , then the 
dkx1 

integrand is a product of a Gaussian and an exponential. Thus, the argument of the Gaussian 

2 0
2 

2 d log rundergoes the transformation k2 w0/4 → w (kx1 − )2. The actual angular shift is then 2x1 4 w dkx10 
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DAGHS = 2 d log r 
k20w

2
0 dθ . Grinding through the derivatives, I find that the angular shift is
 

2 2n1 sin θ 
DAGHS = � . (2.50)

k2 2 2 2 
0 w0 n2 − n1 sin

2 θ 

Note that the angular shift is inversely proportional to the square of the beam waist: this sug

gests that for small beams the angular shift can become quite large. However, this expression 

likely has the same limitations as Eq. (2.48), as it derives from the same underlying assump

tions, so the angular shift cannot exceed the beam divergence. In general, one can write down 

the expression for both the lateral and the angular GHS as the real and imaginary parts of the 

derivative of the logarithm of the reflection coefficient [50] 

1 d log r 
iDGHS + k0w0

2DAGHS = D̃ = . (2.51)
k0 dθ 

This form is especially useful when calculating the modification to the GHS caused by the 

presence of an EIT medium. Given the reflection coefficient in Eq. (2.23), where depending on 

the regime I will use the regular or the effective susceptibility, the GHS is given by 

n1 sin θ n1 cos θ ∂χ 
D̃ = D̃(χ = 0) − χ − . (2.52)

k0β3 k0β(n2
1 − 1) ∂θ 

The above equation hides some very interesting physics. All resonant media will have the 

second term, where the GHS is modified by the frequency-dependent change in the index of 

refraction of the medium. Atomic vapours will also have the third term in the case of linear 

absorption because the Doppler broadening of the medium will change slightly with a change 

in the incident angle. But in an atomic vapour under EIT conditions, the third term can be very 

large. The reason is that in order to get EIT in an atomic vapour, one needs the wavevectors 

for the probe and control fields to be parallel (phase-matched). Recall from Sec. 2.1 that in 

order to account for Doppler broadening I replace Δc → Δc − �kc · �v and δ → δ − (�kp − �kc) · �v 

and then integrate over a Maxwell distribution of velocities. An angular misalignment of the 

two fields by an angle δθ results in additional Doppler broadening on the order of δθkpvT that 

adds directly to the ground-state dephasing γ. If this is comparable to or larger than the power 
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broadened EIT linewidth (Eq. (2.9)) then the EIT window will be destroyed. This fact is known 

in regular atomic vapour cells where the Doppler broadening acts as a spatial filter for divergent 

beams [51, 52]. Therefore, to get EIT and hence an effect of EIT on the GHS we require that 

probe field have a divergence such that θdivkpvT � Ω2 
c /Γ

�. This is equivalent to requiring that 

the divergence be much less than the ratio of the EIT linewidth to the Doppler linewidth. For 

the case of an EIT linewidth of 1 MHz and a Doppler linewidth of 200 MHz this corresponds 

to a divergence of 5 mrad, or a 50 µm wide beam at a wavelength of 795 nm. 

The sensitivity of the EIT effect to good alignment means that the index of refraction is 

very sensitive to changes in the angle of the probe beam. In the case of total internal reflection, 

the extreme sensitivity of the index of refraction to changes in angle corresponds to an extreme 

sensitivity of the reflected phase with respect to angle. This can translate into a giant GHS 

which is due entirely to the motion of atoms inside the vapour, unlike other proposals where 

giant beam shifts due to EIT are created from multiple reflections [53]. Interestingly, the faster 

the atoms move the larger the beam shift. Note that this conclusion is likely not subject to the 

same limitations as Eqs. (2.48) and (2.50), as I don’t need to be near the critical angle. 

To quantitatively show the giant GHS, I shall consider the case of EIT with evanescent 

fields, as that is traditionally where the lateral beam shift is expected, and I use the effective 

susceptibility as given in Eq. (2.36) to perform the calculation. The two places where the 

Doppler effect enters are the one-photon and EIT decoherence rates Γ� and γ�. As a reminder, 

the Doppler broadened one-photon linewidth under the condition of evanescent EIT is given 
√ 

as Γ� = Γ + 2 2n1 sin θk0vT . In general, wavevector mismatch changes γ to γ�(θ). The 

wavevector mismatch in evanescent fields is 

Δ�k(θ) · x̂ = Δk(θ) = n1k0(sin θ − sin θctrl) + Δk sin θctrl (2.53) 

where θctrl is the angle of incidence of the control field, and Δk is the wavevector mismatch for 

parallel fields. Usually, one wants θctrl = θ, but in order to correctly describe the modification 
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to the GHS I will keep the angles separate for now. At the end of the calculation I shall set them 

equal to each other. Exactly how the decoherence rate is modified due to wavevector mismatch 

depends on the details of the system, for which I will give two examples below. 

It is straightforward to show that 

∂χ ∂Γ� ∂χ ∂γ� ∂χ 
= + 

∂θ ∂θ ∂Γ� ∂θ ∂γ� 
√ ∂χ ∂γ� ∂χ 

= 2 2n1k0vT cos θ + (2.54)
∂Γ� ∂θ ∂γ� 

where √ 
∂χ iNd2 π δ + iγ� 

= (2.55)
∂Γ� 2��0 (δ + iΓ�/2)[(δ + iγ�)(Δc + δ + iΓ�/2) − Ω2 

c ] 

and 

√ � � � � 
∂χ iNd2 π 1 Ω2 i 

= log 1 − c + ,
∂γ� ��0 Ω2 

c (δ + iγ�)(Δc + δ + iΓ�/2) (δ + iγ�)(Δc + δ + iΓ�/2) − Ω2 
c 

(2.56) 

and I evaluate the two above equations at θcontrol = θ. I admit that the preceding expressions 

are not very transparent, but they do show some qualitative features. Note that both equations 

approach zero for δ = 0 as Ωc → ∞, so there is no giant GHS if I drive the atoms very 

hard. On the other hand, if Ωc → 0 Eq. (2.56) also approaches zero. Therefore, to get a 

maximum enhancement of the GHS I have to set the control field to some intermediate value 

where the sensitivity of the EIT window to decoherence is maximized. They also show that the 

modification to the beam shift due to Doppler broadening of the natural line is very small: it 

scales roughly as Γ�−2 in Eq. (2.55). Compare this with the second term in Eq. (2.52) due to 

modification of the index of refraction which scales as Γ�−1 . Thus, we do not expect a large 

change in the beam shift due to the one-photon Doppler effect. 

Now I want to find how the particular decoherence mechanism affects the GHS. For ballistic 

atoms with average thermal velocity vT , the decoherence rate is modified by simple Doppler 
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broadening to become 

√ 
γ� = γ + 2Δk(θ)vT (2.57a) 

√∂γ� 
= 2n1k0vT cos θ. (2.57b)

∂θ 

So the decoherence rate for ballistic atoms scales linearly with the Doppler broadening, and 

the modification to the GHS scales as Γ�0 . In Fig. 2.12 I plot the spectrum of the GHS in 

the case of ballistic atoms. Clearly, there is a significant enhancement of both the lateral and 

Figure 2.12: Beam shift calculated from Eq. (2.52) for ballistic atoms. The angle was set to be 
5 mrad above critical, the ground state decoherence to be 2π × 0.5 MHz, the ground-excited 
state decoherence rate to be Γ = 2π × 5.6 MHz, the temperature to be T = 180◦C, and the 
beam waist to be 500 µm. Each curve is for a different control field power logarithmically 
spaced from Ωc = 102Γγ (purple) to Ωc = 10−2Γγ MHz (blue). 

the angular beam shifts near the EIT window, and these occur when the control field Rabi 

frequency satisfies Ω2 
c /Γγ ≈ 1. The maximum lateral beam shift occurs at the points where 

the real part of the susceptibility is maximized, while the the maximum angular shift occurs 

when the imaginary part is maximized. The reason is that the lateral shift is due to a phase 

change with angle, and that depends on the real part of the susceptibility. The angular shift 
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depends on an amplitude change with angle, and this is related to the imaginary part. Note
 

that if I considered the case when the incident angle is below the critical angle the opposite 

argument would hold. Note also that if the atoms are moving ballistically, then there is no 

extra collisional broadening of the line which is why Γ = 2π × 5.6 MHz in Fig. 2.12 

If I have atoms that move diffusively, rather than ballistically, then the modification to the 

decoherence mechanism has a quadratic dependence on the wavevector [51] given by 

γ� = γ + DΔk(θ)2 (2.58a) 

∂γ� 

∂θ 
= 2n1DΔkk0 cos θ (2.58b) 

where D is the diffusion coefficient. One way to think about this case compared to ballistic 

atoms is that the diffusing atoms move with an effective thermal velocity DΔk, which is much 

less than vT . This results in a much smaller modification to the GHS, as can be clearly seen in 

Fig. 2.13 Contrary to the case of ballistic atoms, the beam shifts increase monotonically over 

Figure 2.13: Beam shift calculated from Eq. (2.52) for diffusive atoms. The parameters are the 
same as in Fig. 2.12, except here the diffusion coefficient is set to be 5 cm2/s and Γ = 2π×505.6 
MHz. due to collisional broadening. 
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the range of control field powers in Fig. 2.13. The monotonic increase is because the third term 

in Eq. (2.52) is much less than the second term which depends only on χ, and χ increases with 

Ωc over a much larger range. To more clearly illustrate the difference between the diffusive and 

ballistic regimes, I show the maximum beam shifts as a function of control field Rabi frequency 

in Fig. 2.14. There is clearly a peak in the maximum shift obtained with ballistic atoms near 

Figure 2.14: Maximum beam shifts for ballistic (blue) and diffusive (red) atoms. The bare 
decoherence is γ = 2π × 0.5 MHz for the blue solid circles and red x’s, while γ = 2π × 0.1 
MHz for the blue open circles and red +’s. Other parameters are the same as in Fig. 2.12 

. 

Ω2 
c /Γγ ≈ 1 that is absent in the case of diffusive atoms. The maximum shift also increases 

with decreasing bare decoherence γ. Unfortunately, neither shift in Fig. 2.14 is large enough 

to fully separate two beams that could experience EIT – the condition for the entire beam 

to experience EIT being that its width is much large than 50 µm. While one could imagine 

decreasing the decoherence rate further there is a lower limit imposed by the residual Doppler 
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broadening for parallel beams of γ ≈ 2π × 5 kHz. Therefore, to further increase the beam
 

shifts one would need to increase the temperature of the cell and thus the number density, with 

the goal of achieving a lateral beam shift larger than the beam width or an angular beam shift 

larger than the beam divergence (for this example, θdiv ≈ 500 µrad). With a large enough beam 

shift, the enhanced GHS could be used as a frequency-selective beam separator. 
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Chapter 3 

Experiment 

In this chapter, I will discuss the actual experimental apparatus used to detect evanescent EIT. 

The purpose of this section is to provide enough detail to re-create this particular experiment 

based almost entirely on this chapter and the references therein. 

The reader may notice that the first person pronoun partially changes from the ‘I’ of the 

previous section to the ‘we’ of the subsequent sections. I have done so because while the 

theoretical section was almost entirely my work, the actual experiment was performed with 

significant assistance from others. It therefore seems rather arrogant to continue to exclusively 

use the singular pronoun. 

3.1 Atomic System 

Our atomic system is rubidium-87. Rubidium is a convenient atomic medium for our purposes 

for several reasons. The first is that, as an akali metal, it has one free valence electron and 

hence a simple electronic structure. As a result, all of its spectroscopic properties have been 

well investigated both theoretically and experimentally [54]. A second reason is that, as an akali 

metal, it has a high vapour pressure even at room temperature. In regular EIT experiments, it is 

therefore easy to obtain high optical depths at moderate temperatures. In our case, it is possible 

to obtain very large number densities at high but still reasonable temperatures. Lastly, the 

transition wavelengths in rubidium are at convenient wavelengths in the near infrared, where 

both cheap laser diodes and high-quality Titanium-Sapphire lasers exist. 

The lowest lying optical transitions in 87Rb are the D1 and D2 transitions, and these have 

central wavelengths of 794.978 nm and 780.241 nm, respectively. We use the D1 transition as 
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our approximation to a Λ-level system. The energy level diagram for that particular transition
 

is shown in Fig. 3.1. The D1 transition is convenient for our purposes because the hyperfine
 

|F=1ñ

D= 6.8 Ghzhfs

D= 816 Mhzhfs2

|F`=1ñ

|F`=2ñ

|F=2ñ

2
5 P1/2

2
5 S1/2

2pc/w = 794.978 nm

Figure 3.1: Level diagram for the D1 transition in 87Rb . 

splitting of all the levels of interest are large enough that it is possible to resolve individual 

transitions in a Doppler broadened gas without resorting to more complex spectroscopic tech

niques. In particular, the upper hyperfine splitting is about 800 MHz which is larger than the 

Doppler broadened width of the individual transitions. 

In our experiment we use the |F = 1� → |F � = 1� transition as the probe transition and the 

|F = 2� → |F � = 1� as the control field transition. The large hyperfine splitting between the 

two ground states is convenient because it means that we can ignore the problem of the control 

field also coupling to the probe transition. This effectively means that we can use large control 

field Rabi frequencies, as the condition for ignoring the coupling is that Ωc � Δhfs, where Δhfs 

is the hyperfine splitting. The large hyperfine splitting is one reason we use 87Rb instead of the 

more abundant 85Rb, which has a hyperfine splitting of about half that of 87Rb . 

3.2 Optical setup 

An overview of the optical apparatus is shown in Fig. 3.2. We generate a probe field from a 
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Figure 3.2: Diagram of setup. PBS stands for a polarizing beam-splitting cube, AOM for 
acousto-optic modulator, and the mirror with a Δx represents a moveable mirror. The opti
cal phase-locked loop (OPLL) is used to stabilize the frequency difference between the two 
lasers. LO is the local oscillator used for phase measurements, and is only present for those 
measurements. See text for remaining details. 

home-built external-cavity diode laser (ECDL) [55] and a control field from a Coherent MBR

110 Ti:Sapphire (Ti:Sa) laser. The Ti:Sa acts as the master-oscillator as it has very good long-

term and short-term stability. The short-term stability is achieved partly through the design of 

the laser cavity as a single monolithic block, and the laser has a short-term linewidth of less 

than 100 kHz. The long-term stability of the Ti:Sa is achieved via locking the laser cavity 

to a temperature-stabilized reference cavity inside the laser enclosure. In our experience, the 

Ti:Sa frequency does not drift by measurable amounts; it only makes rare large frequency hops 

which are easily detectable. 

The ECDL has a short-term linewidth of about 1 MHz, and it lacks the long-term stability of 

the Ti:Sa. Since in EIT experiments one can achieve spectral features that can be considerably 
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less than 1 MHz in width, a method for improving the ECDL linewidth is needed. Improved
 

long-term stability is also desirable. We lock the frequency of the ECDL to the Ti:Sa using an 

optical phase-locked loop (OPLL). The procedure is as follows. First, we split off 2.5 mW of 

power from each laser and overlap the beams on an ultra-fast photodiode (New Focus 1577A, 

bandwidth of about 7 GHz). The photodiode is AC-coupled, so the signal that is measured is 

a sinuisoidal signal that oscillates at the frequency difference between the two lasers. For EIT, 

we need this frequency difference to be equal to the hyperfine splitting. We generate a signal 

at a frequency of about 18 MHz that is used as a seed for an electronic phase-locked loop that 

generates a signal at around 213 MHz. We can scan the frequency of the probe field by scanning 

the frequency of the 18 MHz signal over a small range. The 213 MHz signal and an amplified 

optical beat-frequency signal are sent to a phase-frequency detector (PFD) which digitizes the 

analog signals and divides them down to lower frequencies before digitally comparing the 

phase. The PFD generates an error signal which is separated into high- and low-frequency 

components which are sent to the ECDL’s current and piezo modulation, respectively. This 

system allows us to obtain a relative linewidth between the probe and the control fields on the 

1 Hz scale. The long-term stability of the ECDL is also much improved, as it is referenced the 

stability of the Ti:Sa. Further details about the OPLL can be found in [55, 56]. 

Aside from the small amount of power diverted for the OPLL, both the control and probe 

fields are sent through acousto-optic modulators (AOM) to enable pulsing of the fields for cer

tain measurements. The measurements that require pulsed fields are measuring the phase pro

file of the reflected probe beam (Sec. 3.4), measuring the group delay (Sec. 4.4), and attempting 

storage of the probe field (not described in detail in this thesis, but see [55] for procedural de

tails). The fields are continuous wave for the majority of measurements that we perform in the 

lab. The fields are then resized using telescopes; the probe field has a waist of about 0.5 mm, 

while the control field has a waist of about 1 mm. It is desirable for the control field to be larger 

than the probe field to reduce the effects of population exchange on the EIT profile [38]. The 
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probe and control fields are combined on a polarizing-beam splitting cube (PBS) with opposite 

polarizations, and the polarization of the fields is rotated by 90◦ before the fields strike the cell. 

The polarization of the probe field at the cell is vertical in the lab frame (perpendicular to the 

plane of incidence). Since the two fields are nominally orthogonally polarized after the cell, we 

filter the control field using a combination of waveplates and a PBS. The reflected power in the 

probe is measured using a photodiode. Generally we can reduce the control field power that 

leaks through the polarization filtration optics down to about 30 µW – about a fifth of the power 

of the probe after the polarization filtration. Descriptions of the phase and GHS measurement 

sections in Fig. 3.2 will follow in subsequent sections. 

3.3 Housing the atoms 

Housing the atoms has to address four main issues associated with evanescent EIT. The first is 

how to generate the evanescent fields. The second is that we need to have a number density 

high enough that we can obtain a measurable EIT signal. Thirdly is that we have to minimize 

decoherence mechanisms. Finally, we have to be able to change the angle of incidence of 

the beams with enough precision that we can sweep over the critical angle and observe EIT 

signatures. The housing for the atoms that we designed meets all of these needs. 

We use vapour cells containing isotopically pure 87Rb with anti-reflection coated windows 

as our means of containing the vapour. In our experiment anti-reflection coated windows are 

unnecessary, and perhaps even detrimental, but they are the only type of cells available in our 

lab. Unfortunately at our operating temperatures the anti-reflection coating degrades, and over 

time it develops opaque patches. These patches adversely affect the EIT signals and our ability 

to use polarization filtration to eliminate the control field. The cells contain, in addition to 

rubidium, between 30-50 Torr of neon buffer gas depending on the cell. We use buffer gas to 

ensure that the atoms remain in the interaction region for as long as possible. With the inclusion 
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of buffer gas the atoms move diffusively rather than ballistically, and they spend a much greater 

time inside the interaction region. 

We generate evanescent fields using a right-angle prism that is mechanically clamped to one 

of the cell windows. In order to reduce losses at the interface we coat the the prism face and cell 

window with index-matching gel. Light that is incident on the prism face is refracted towards 

the normal, and this allows us to access angles both above and below the critical angle. The 

relevant angles are shown in Fig. 3.3. Given an incident angle θ1, the angle that the ray makes 

q1

qq

q1

n=1

n1

n2

Figure 3.3: Ray diagram for reflection using a prism. 

with the prism/vapour (n1/n2) interface is θ = π/4 − sin−1(sin θ1/n1). This is important, as 

small changes in the incident angle result in changes in the prism/vapour angle that are a factor 

of 1/n1 less. Also useful is to calculate the critical angle for the ray incident on the prism 

which for n1 = 1.5 (BK7 prism) is about 4.8◦ . 

The cell is held in a cylindrical aluminum shell with the prism and cell window exposed 

so we can access them with the lasers. To reduce decoherence, the shell is enclosed in a mu-

metal sleeve that is about twice as long as the aluminum shell. The purpose of the mu-metal 

sleeve is to eliminate static and low-frequency magnetic fields that may break the degeneracy 

of the magnetic Zeeman levels in 87Rb and cause a reduction in contrast and broadening of the 

EIT line. The sleeve has slots cut into it so that the lasers can still access the prism and cell. 

The entire oven system can then be heated up to a measured temperature of about 130◦C, but 

with the addition of some standard house insulation the measured temperature can reach up to 

200◦C. I am careful to specify “measured” temperature here, because the measured temperature 
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is different from the temperature of the interface. The interface extends outside of the oven by
 

about 1 cm, and is therefore colder than the actual oven. A detrimental effect of this extension 

is that rubidium condensation tends to form on the cell window, and this can adversely affect 

the measured EIT signals. For fine angular control, we mount the entire system on a New Focus 

5-axis translation stage (model number 9081) which allows us to vary the angle of incidence 

with a stated precision of about 87 µrad. 

As an interesting note, finding the critical angle for the first time was rather tricky. Later, 

we realized that it was made easier by the fact that the high number density of the atoms and 

the intense control field cause the atoms to fluoresce with purple light [57]. Measurements of 
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Figure 3.4: Extended rubidium-87 energy level scheme, neglecting the hyperfine levels [1]. 
The relevant allowed transitions for purple fluorescence are shown. 

the wavelength of the purple light by a colleague for a different experiment revealed that the 

fluorescent light is at 420 nm, which should be a distinctly blue colour. The only transitions in 

87Rb near 420 nm are the 6P to 5S transitions as shown in Fig. 3.4. Therefore, we conclude that 
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the fluorescent light is due to the decay of the atoms along that transition, and the purple colour
 

is caused by mixing of the blue light with the strong red light scattered by the control field. The 

question now is how do the atoms reach states of such high energy under illumination from a 

field at 795 nm? Far off-resonant two-photon absorption of the 795 nm field is unlikely to be 

the cause because of the very large detunings. The most probable cause is an energy pooling 

process between two rubidium atoms that have been excited to the 52P1/2 state [58]. In the 

energy pooling process, two excited rubidium atoms collide, and one atom is promoted to a 

higher energy state with nearly twice the energy of the original excited state, while the other 

atom is demoted to the ground state. The energy difference between the original excited state 

and the higher energy state is made up by a contribution from the kinetic energy of the atoms. 

Given the results of [58], our higher energy state is most likely one of the 5D states where the 

energy difference between an excitation directly from the 5S to 5D state and two excitations to 

the 52P1/2 is 

1 1 
ΔE = h(ν5S→5D − 2ν5S→52P1/2 

) = hc − ≈ 67 meV. 
762.12 nm 794.978 nm 

In a gas at 105◦C, corresponding to the approximate temperature of the interface (Sec. 4.2), 

approximately 40% of all atoms have thermal energy sufficient to bridge this energy gap. If an 

atom is promoted to one of the 5D states, it can radiatively decay to one of the 6P states by 

emitting a photon at approximately 5 µm [57], and then the atom can decay to the 5S state by 

emitting a 420 nm photon. 

The purple fluorescence only occurs when the control field is a travelling wave inside the 

atoms, and hence it occurs only when the incident angle is less than the critical angle. Finding 

the critical angle is then a simple matter of adjusting the incident angle until the atoms stop 

fluorescing. 

46
 



3.4 Phase Measurement 

While measuring the reflectivity of the interface is done using a single photodiode, measuring 

the phase of the reflected signal poses some issues. One is how to measure it efficiently, prefer

ably while scanning the frequency of the probe. Another is how to deal with phase fluctuations 

from mechanical noise on the optical table and from air currents created by the hot oven sys

tem. Our method for measuring the phase is to generate a LO from the probe field that is shifted 

in frequency by 110 MHz. The frequency shifting is done by an AOM as shown in Fig. 3.2. 

The LO is then combined with the probe field on the same PBS that filters the control field. 

The resulting beat-note is measured on a home-built photodetector with a 1 GHz bandwidth. 

The phase is measured by comparing the phase of the measured beat-note with the 110 MHz 

signal that drives the AOM using a phase-detector chip. The phase detector chip allows us to 

continually measure the phase difference while scanning the frequency of the probe field over 

the EIT resonance. 

A further step is necessary to measure the phase as using RF interference signals does 

not eliminate the problem of mechanical noise and air currents which disturb the phase. The 

phase shift is also extremely small – on the order of tens of micro-radians. The scaling of 

the phase-detector chip is about 0.6 µV/µrad, which means that the voltage signal that we can 

measure is on the order of tens of micro-Volts. Our oscilloscope only has a sensitivity of a few 

milli-Volts. Furthermore, our interferometer has about a half-metre path length, so the voltages 

corresonding to phase fluctuations due to air currents and mechanical noise are large: around a 

Volt. We therefore use lock-in detection to amplify our signal while reducing the low frequency 

but large amplitude phase noise due to air currents. 

Since lock-in detection is not necessarily a common technique, I will give a brief descrip

tion of the principle behind it. Consider the case where one is measuring a signal V (t) that is 

a combination of some desired signal S(t) and some noise N(t) where V (t) = S(t) + N(t). 
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The idea of lock-in detection is to introduce a fast modulation to only the signal, so that the
 

signal is shifted to a frequency sideband that is larger than the bandwidth of the noise. In our 

experiment we introduce an amplitude modulation, so the signal undergoes the transformation 

S(t) → (1 + A sin(ωmodt))S(t) where ωmod is the modulation frequency and A is the modula

tion depth. One then measures the total signal V (t) and mixes it with a signal at the modulation 

frequency 

sin(ωmodt + ϕ)V (t) = sin(ωmodt + ϕ)(1 + A sin(ωmodt))S(t) + sin(ωmodt + ϕ)N(t) 

A A 
= S(t) cos ϕ + (S(t) + N(t)) sin(ωmodt + ϕ) − sin(2ωmodt + ϕ)S(t). 

2 2 

(3.1) 

One then uses a high-pass filter to eliminate all frequency components that are at νmod or higher. 

This eliminates all the noise N(t) and leaves just the DC component which is proportional to 

S(t) cos ϕ. By setting ϕ = 0, one gets a signal that is a scaled replica of the desired signal. 

Note that it is important to choose the filter and modulation frequencies appropriately; the 

modulation frequency not only has to be much larger than the noise bandwidth, it also has 

to be larger than the signal bandwidth so that one can choose a filter frequency that does not 

detrimentally affect the signal. 

In the context of the model described above, our time-dependent signal is the phase shift 

on the reflected field due to EIT, and it varies in time as we scan the frequency of the probe 

field. The noise is due to air currents and mechanical noise. Since we are only interested in the 

phase fluctuations due to EIT, we modulate the amplitude of our signal by turning the control 

field on and off. This turns the EIT interaction on and off, but does not affect the noise due 

to air currents and mechanical instability. The square wave is not a sinusoidal modulation as 

described in the theory above, but the higher harmonics of the square wave do not contribute 

to the signal generated by the lock-in amplifier. During the mixing process all harmonics that 

have frequencies higher than νmod will be mixed to frequencies no lower than νmod; these then 

get eliminated by the high-pass filter. 
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The lock-in detector also amplifies the signal after it has been mixed and filtered, so it is
 

necessary to calibrate the signal produced by the lock-in detector given a measured voltage. 

We do this by producing a signal with a known modulation at a larger voltage, and we measure 

the output of the lock-in as a function of the input voltage. This gives a calibration curve which 

can then be scaled to the different gain settings of the lock-in detector. 

3.5 Beam shift measurement 

The last aspect of the experiment was to measure both the lateral and angular GHS, and to 

do so we needed a way to measure the position of the beam. Other groups have used split-

photodiodes [27] to measure beam shifts via power imbalances and then used a feedback loop 

to stabilize the beam to the center of the photodiode. The error signal provides a measure of the 

GHS. We do not have a split-photodiode, but we have the next best thing: a high-gain, low noise 

balanced detector originally used as a homodyne detector for quantum optics experiments. Our 

setup is then quite simple. We use the edge of a mirror to split the probe beam into two, and 

then we focus the resulting beams into the balanced detector. The mirror used to split the beam 

is mounted on a precision translation stage which allows us to adjust the mirror position in 

order to balance the detector. 

In a simple model to determine how the signal is influenced by the beam position, let us 

assume that the signal V is related to the power in the left and right photodiodes by V = 

g(PL − PR) where g is the photodiode gain. If we assume that the power in the left channel is 

= P0(
1 + x) where P0 is the total power in the beam and −1/2 ≤ x ≤ 1/2 is the beam PL 2 

position relative to center, then V = 2gP0x. Thus, the signal is proportional to the product of 

the total power and the displacement of the beam. In order to accurately measure the GHS, one 

must also measure the reflectivity of the interface at the same time. This is why we use a 50/50 

beam splitter in our experiment as shown in Fig. 3.2. 
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The above model would apply only in the case of a square top-hat beam. For our beams,
 

we have to take into account their Gaussian profile as well as possible asymmetric gains of the 

two photodiodes. Our signal is then V = gLPL − gRPR, and by conservation of energy1 we 

have that 
gLP0 − V 

PR = . (3.2) 
gL + gR 

If we cut a Gaussian beam of width w0 with a straight edge, the power to the right of the edge 

will be � ∞ � ∞2P0 −2x�2/w2 −2y�2/w2 
0PR = dy� dx� e 0 e 

πw0
2 

x−∞�√ � 
P0 2x 

= erfc , (3.3)
2 w0 

so the relation of the beam deviation x to the measured signal is 

w0 gL − V/P0 
x = √ erfc−1 2 (3.4)

2 gL + gR 

2
� ∞where erfc(x) = √ 

π x e
−x2 

dx. 

Finally, one can wonder how to differentiate between the lateral GHS and the angular GHS. 

In principle, one could simply look at the scaling of the beam shift as the distance between the 

interface and the detector increases. However, there is a simpler method for doing so. We place 

a lens in the path of the probe beam at such a location that an image of the interface is formed 

on the pick-off mirror. Since the image distance is defined as the distance from the lens such 

that all rays that start from the same point on the object end on the same point on the image, 

regardless of angle, the only beam shift that can be measured is the lateral beam shift. This 

also has the distinct advantage of eliminating a great deal of beam-pointing noise induced by 

the hot oven. The combined lateral and angular shift can be measured without the lens, and the 

two measurements (with and without) can be compared to determine the angular shift alone. 
1Strictly speaking, conservation of energy does not imply conservation of power. In the case of a system which 

can store energy, the power entering the system does not necessarily have to be the power leaving the system. In 
our experiment, however, the mirror does not store energy, so conversation of energy does imply conservation of 
power. 
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Chapter 4 

Results 

The following sections will present our results regarding EIT spectra using selective reflection, 

as well as characterization of those spectra. Further theoretical discussion will be provided as 

warranted. Additionally, I will present our results on measurements of the GHS in the presence 

of an EIT medium. 

4.1 EIT Spectra 

The first issue I must address is whether or not we have measured a non-linear optical effect. 

That evidence is shown in Fig. 4.1 when the angle of incidence is 3 mrad above the critical 

angle. When the the probe is detuned far from resonance (curve (a)) the reflectivity is unity 

and does not change with frequency. If the probe field is tuned to resonance with the control 

field off, there is a reduction in the reflectivity of the interface as the probe field is absorbed 

by the atoms in the evanescent field. If the control field is turned on, then we observe a trans

mission peak at the two photon resonance (zero detuning). The increase in the baseline of the 

signal between curves (b) and (d) is due simply to the leakage of the control field through the 

polarization filtration optics. When we measured the signal that corresponds to the control field 

leakage and add it to the on-resonance curve (b), we find that the baselines of the two signals 

match (curve (c)). 

The contrast of the EIT window is often important, especially in quantum memory experi

ments. The EIT contrast is defined as the ratio of the transmission peak amplitude to the probe 

absorption. In the case of Fig. 4.1, the measured contrast is about 36% for a moderate con

trol field power. We have been able to achieve contrasts of over 40% with larger control field 
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Figure 4.1: Reflectivity of the interface under various conditions. a) Probe field scanning 
far off-resonance, control field present. b) Probe field scanning over resonance, control field 
absent. c) Same as b), but the control field power that leaks through the filtering PBS is added 
to show consistency between a) and b). d) Probe field scanning over resonance, control field 
present. Control field power is 75 mW, and θ − θc ≈ 3 mrad. 

powers, although this necessarily leads to significant broadening of the EIT line. 

We generally leave the control field on and measure the reflected probe power as a function 

of the detuning for different angles. Figure 4.2 shows two representations of the spectrum 

of the reflected probe field for a large range of angles. We see that the reflection spectra 

behave qualitatively similar to what was predicted in Chapter 2. For angles below the critical 

angle, we observe a dispersive lineshape whose amplitude grows as the angle increases. For 

angles much larger than the critical angle, the lineshape is a sharp transmission peak that shows 

similar structure to what was predicted in Sec. 2.6. We see that there is a broad pedestal with 

a narrow cusp feature at the two-photon resonance. Again, the amplitude of the transmission 

peak decreases as the angle is tuned away from the critical angle. Near the critical angle we 

see a smooth transition between the dispersive lineshape and the transmission peak. 
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(a) Reflected probe power as a function of detuning. (b) Reflected probe power as a function of both angle 
Each curve corresponds to a different angle, where and detuning. The colour scheme shows the signal 
the angular separation between each curve is about as a relative deviation from the average value of 
0.52 mrad. each curve. 

Figure 4.2: Two representations of the reflected probe power. The angular axis is not calibrated 
to the critical angle, and is simply to provide the correct relative angular scale but not an 
absolute scale. 

4.2 Theoretical comparison 

In order to quantitatively compare the theory developed in Chapter 2 with the data, we need 

to separate the data into regimes where θ < θc and where θ > θc. For each regime, we then 

need to apply the appropriate model to the data. Figure 4.3 shows the result of that procedure. 

A few notes are in order so that I might meaningfully compare the theory to the data. First, 

we do not measure the absolute angular scale. It is possible to measure the angular scale in 

an absolute sense by determing where the beam strikes the entrance of the prism at 90◦ using 

the back-reflection of the beam. This provides an angular reference to which all other angle 

measurements can be related. The issue with that method is that it is insufficiently precise for 

our purposes. Our method for measuring the absolute scale is only accurate to about 0.18◦ , 

although we can measure the relative angle much more precisely. The difference in angle be

tween each spectrum in Fig. 4.2 is ∼ 0.045◦, and near the critical angle one can already see 

that the spectrum changes significantly from curve to curve. To the degree of precision af

forded by our absolute measurement, we find that the traces that exhibit hybridization of the 

53
 



two lineshapes correspond to the angles near the critical angle. In order to proceed with theoret

ical comparisons, we therefore manually adjust the offset angle to achieve the best theoretical 

agreement. The angles used for each trace in the theoretical fits are then determined from this 

offset angle and our calibration of the angular scale. 
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Figure 4.3: Reflection spectra for a range of angles extending below and above the critical 
angle. Blue circles are experimental data and red dashed lines are the theoretical fits. Each 
curve is calculated by taking the raw spectra, subtracting the mean and then dividing the result 
by the mean again to get a relative amplitude. Each trace here is offset by an arbitrary amount 
for illustrative purposes. 

We allow only the offset to vary freely when fitting the theory to the data. We do this 

because there are several unknowns about the interface. The first is that the cell window is 

anti-reflection coated for 90◦ incidence, and we do not know its reflectivity as a function of 

incidence. The second reason is that the index matching gel used between the prism face and 

the cell window does not provide perfect matching between the two indicies of refraction. One 
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can observe this in the lab by looking at the reflection of the strong control field off of the
 

interface; one sees a triplet of beams emerging from the interface. In the case of perfect index 

matching, there should only be one reflected beam corresponding to the beam that is reflected 

from the window-vapour interface. The extra spots come from reflections from the prism-gel 

and gel-window interfaces. Therefore, imperfect index-matching contributes to our lack of 

knowledge about the interface reflectivity. Lastly, the cell window is not a perfectly clean and 

uniform surface. While we attempt to clean the exterior window of the cell and the prism face 

as well as possible, some dust or dirt will always remain. The interface also extends by about 

a centimeter outside of the oven, so the cell window is colder than the rest of the cell. This 

leads to condensation of rubidium on the window. If the lasers strike a spot with rubidium 

condensation, the observed EIT signal is significantly lower than when the fields strike bare 

glass. Problems arise when the condensation covers a considerable portion of the window, 

and one must compromise. An additional issue with the difference in temperature between the 

oven and the interface is that the atomic number density may be lower than predicted from the 

temperature alone. While we could measure the interface reflectivity in situ when the cell is 

cold, such a measurement would only be valid if nothing about the interface changed, such as 

the location and extent of the rubidium condensation. 

The values of the control field Rabi frequency and atomic number density are allowed to 

change between the two different regimes of θ < θc and θ > θc. For θ < θc, Ωc = 2π × 160 

MHz and N = 6.8 × 1018 m−3, whereas for θ > θc Ωc = 2π × 210 MHz and N = 6.0 × 1018 

m−3. These number densities correspond to a temperature of approximately 105◦C, correlating 

well with our observation that the interface temperature should be colder than the measured 

temperature of the oven. The small change in the number density between the two regimes is 

mildly puzzling, but not particularly worrisome as it is only on the order of 10%. The large 

change in Ωc is worrisome, because it indicates that the EIT transmission peak is wider in the 

evanescent case than in the travelling wave case. Exactly why this is the case is not clear. 
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The ground state decoherence rate is fixed at 2π × 0.5 MHz in accordance with independent
 

measurements (see Sec. 4.3.1), and the excited state linewidth is set by the sum of the natural 

linewidth of 5.6 MHz, the collisional broadening of approximately 500 MHz, and the Doppler 

broadening which varies slightly with angle. 

We can clearly see from Fig. 4.3 that the theory is in reasonable agreement with the data for 

θ < θc and for θ � θc. This is especially so for angles less than critical. At the critical angle the 

amplitude is far larger than expected, but this is not surprising because our theory is not valid 

at the critical angle. To evaluate more carefully the quality of the fit for angles greater than θc, 

we present a close up of the fit and data for the trace corresponding to θ − θc ≈ 4.68 mrad in 

Fig. 4.4. A small discrepancy appears between theory and data at two-photon resonance where 

Figure 4.4: Data (blue circles) and theoretical fit (red dashed line) for the trace in Fig. 4.3 
corresponding to θ − θc ≈ 4.68 mrad. 

the cusp occurs. A possible reason for the discrepancy may be that we have neglected atomic 

diffusion into and out of the interaction region. Diffusion will appear several times later in the 

thesis, so it is prudent to pause here and elaborate further. 

The line narrowing mechanism of Ramsey-narrowing was proposed in Refs. [59, 60, 61] 
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as a way to describe observed EIT lineshapes when power broadening of the line is negligible. 

The idea is that atoms that are coherently prepared by the probe and the control fields can 

diffuse out of the two fields and evolve for a time “in the dark”. They can then diffuse back 

into the fields, although the phase that they will have accumulated during that time will be 

different for different detunings and different times spent in the dark. When the atoms return 

to the fields, their coherences can interfere and produce fringes analagous to Ramsey fringes. 

In a thermal vapour the fringes wash out and result in a lineshape where a sharp central feature 

sits on a broader pedestal. The resulting lineshape is very similar to what we observe in our 

system. In fact, it is so similar that one might be tempted to describe the lineshape as entirely 

being due to Ramsey-narrowing. This is likely not the case, although the reader will have to 

wait until a later section for the reason. That being said, there may be some contribution to the 

cusp due to the Ramsey-narrowing process. 

4.3 Lineshape characteristics 

In standard vapour cell EIT experiments the linewidth of the EIT transmission peak is often of 

great interest. For slow light and optical memories, the width, combined with the contrast and 

optical depth, determines the group velocity of a probe pulse propagating under EIT conditions 

as well as the lifetime of any stored excitation. Given a particular cell length, the group delay 

can be calculated and the feasibility of storage determined. For applications as a frequency 

standard, the width of the transmission line in addition to the contrast determine the frequency 

stability of the system. Finally, the behaviour of the linewidth of the peak as a function of 

different parameters of the system provides insight into the primary decoherence mechanisms. 

In this section, I will describe two different linewidth measurements that we performed and 

their consistency with our simple model. 

In many EIT experiments the lineshape is Lorentzian, and there is only one width to mea
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sure: the full-width at half-maximum (FWHM). If the lineshape is not a Lorentzian, as is the
 

case with our experiment, the notion of a single width becomes less useful. Non-Lorentzian 

lineshapes can arise when there are two or more different mechanisms that contribute in differ

ent ways to the ground-state decoherence, as opposed to the ideal case where all decoherence 

mechanisms – such as magnetic field inhomogeneities and power broadening – contribute in 

exactly the same manner. Such similarity preserves the Lorentzian lineshape. We characterize 

our EIT lineshapes using two widths: the width of the cusp and the width of the pedestal. We 

can measure the width of the pedestal in two different ways. The first is to record the reflectiv

ity and then directly measure the FWHM of the signal. The second method is to measure the 

phase shift of the probe field using the method described in Sec. 3.4. The width is then defined 

as the frequency difference between the maximum and minimum of the phase profile. For a 

Lorentzian, the FWHM as measured from the transmission is exactly the same as the width 

measured using the phase. We define the width of the cusp as being the frequency separation 

between the two inflection points of the reflectivity. We measure this by using an electronic 

differentiating circuit to differentiate the voltage from the photodiode: this results in a signal 

that is proportional to the derivative of the lineshape and hence the derivative of the effective 

susceptibility. The width is then defined in a similar fashion to that measured by the phase, ex
√ 

cept the width measured using the inflection points for a perfect Lorentzian is a factor of 1/ 3 

smaller than the FWHM. In order to make comparisons between the width of the pedestal mea

sured using the FWHM and the width of the cusp measured using the derivative, we multiply 
√ 

the derivative width by 3 to get an effective FWHM for the cusp. 

4.3.1 Variation of width with control field power 

To start off, let us use the theory developed in Sec. 2.6 to determine how the two widths should 

vary with the control field power. I find the variation of the width of the cusp by taking two 

derivatives of Eq. 2.36, setting the imaginary part to zero and solving for the corresponding 
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detunings. In the limit of Δc = 0 and Γ � δ, γ the resulting effective FWHM WCusp is 

2 
c(1 + 2 Ω )


Γ�γ 
.
 (4.1)
WCusp = 2γ 

2 
c1 + 4

3 
Ω
Γ�γ 

In the regime of low power Ω2 
c /Γ

�γ � 1 the above expression reduces to 

8 Ω2 

WCusp ≈ 2γ + c (4.2)
3 Γ� 

which is linear in the control field power. The linearity of the width is expected based on 

the model of pure ground-state dephasing rather than population exchange [38], although in 

the evanescent case the width increases slower with power than in the case for pure travelling 

waves in regular EIT experiments. The reason is that the control field Rabi frequency here is 

measured at the interface, whereas the majority of atoms see a Rabi frequency that is smaller 

due to its decay into the vapour. Outside of the low power regime, the width of the cusp scales 

as the square root of the control field power. Since the cusp itself is due to atoms that see a 

very weak control field power (Ω2 
c /Γ

�γ � 1), it should be independent of Ωc. However, the 

atoms that are only a little bit closer to the interface will contribute a lineshape that has some 

variation with Ωc, and this will in turn affect the linewidth of the cusp. 

Since in our model the pedestal is due entirely to power broadening of the transmission line, 

we expect that its width should vary roughly linearly with an intercept at 2γ. To determine the 

variation of the pedestal width with Ωc, we have to solve for the locations of the half-maxima 

of Eq. 2.36. The maximum value of �(χeff) is approximately 2/Γ�, and the minimum value, 
2 
cγ 2Ωwhen δ = 0, is
 . The problem that we have to solve is then to find δFWHM suchlog 1 +
 2 

c Γ�γΩ

that 
1 γ 2Ω2 

c� (χeff(δFWHM)) = + log 1 + . (4.3)
Γ� 2Ω2 

c Γ�γ 

The above equation does not have an analytical solution, so instead I have plotted the widths 

of both the cusp and the pedestal in Fig. 4.5. As seen in the figure, the width of the pedestal is 

roughly linear with a slope of 1.984γ. This scaling is also less than what is found in regular EIT 
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Figure 4.5: Width of the evanescent EIT transmision peak as a function of Ω2 
c /Γ

�γ. The black 
solid line is the effective FWHM of the cusp, the blue circles are the FWHM of the pedestal as 
obtained from Eq. 4.3, and the red dashed line is a linear fit to the data for the FWHM of the 
pedestal. The parameters used in this plot are Γ = 2π × 500 MHz and γ = 2π × 0.5 MHz. 

experiments, and again this can be understood because Ωc in Eq. 2.36 is the control field Rabi 

frequency at the interface which is higher than its value in the atoms. Note that the scaling of 

the width with power is only roughly linear: there is a slight curvature to the theoretical values. 

The experimental data for the widths of the transmision line are shown in Fig. 4.6. The first 

thing to notice is that we can obtain a cusp linewidth that is smaller than the natural linewidth 

of the system which indicates that coherent effects are present rather than optical pumping. 

Both measured widths have linear scalings with the control field power (and hence Ω2 
c ), even 

though the width of the cusp should show a distinct sub-linear scaling. As can be clearly seen 

in Fig. 4.6, the fit to Eq. 4.1 poorly describes the data. The ground-state dephasing that the fit 

predicts is about 20 kHz which is much less than the lowest measured linewidth of the cusp. 

The linear fit to the cusp width predicts a ground-state dephasing rate of 1.3 MHz which is 

more consistent with the measured values. As a further issue, the intercepts of both linear fits 

are different. From the theory, one would expect that in the limit of low power both the cusp 

and pedestal widths should be the same. The fact that the pedestal intercept is 12.6 MHz rather 

than 1.3 MHz is concerning. Thus, we have a situation where we have a good theoretical fit to 
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Figure 4.6: Widths of the EIT transmission line as a function of control field power. The black 
crosses are the measured widths of the cusp with a linear fit (solid red line). The blue dashed 
line is a fit to Eq. 4.1. The blue circles are the measured widths of the pedestal, also with an 
associated linear fit. The dashed magenta line indicates the FWHM of the D1 transition in 87Rb 
. 

the spectra in Fig. 4.3, but the data do not vary with the control field power in the same way that 

we would expect. One resolution to this inconsistency is that because we independently fix the 

amplitude and Ωc in the fits, Ωc controls only the width of the transmission peak. Therefore, 

if we were to vary the control field power and then fit each spectrum, we would find that even 

at very low power there is an anomalously large value for Ωc which would account for the 

residual width. 

4.3.2 Effects of diffusion 

The above comparison between experimental data and theory suggests that further effects in the 

system need to be considered. The most obvious effect that should be included is the motion 

of atoms into and out of the interaction region. In our system, which contains a significant 

vapour pressure of buffer gas, the rubidium atoms move diffusively in the cell. This raises the 

possibility of Ramsey narrowing, where the atomic coherence can evolve in the dark before 

returning to the probe field. The lineshape that is measured will also show a cusp feature 
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which is limited by the ground-state dephasing, and a broad pedestal which is a combination
 

of power broadening and transit time effects. The original treatment of Ramsey narrowing 

assumed top-hat beams, so that the effects of spatially varying EIT linewidths would not need 

to be considered [59]. In our case, the spatial variation of the EIT linewidth is very important, 

so a different model needs to be used. A more general model for the effect of diffusion on EIT 

is described by Firstenberg et al. [51], so I will not give a derivation here. I shall simply give 

the relevant result that the ground-state coherence should obey 

∂2Rcb(z)
D = (γ − iδ + K|Ωc(z)|2)Rcb(z) + NKΩ ∗ (z)Ωp(z) (4.4)

∂z2 c 

where D is the diffusion constant (approximately 3 cm2/s for a buffer gas pressure of 50 Torr 

[60]), K is the one-photon spectrum (in our case K = i[Γ�/2−i(Δc +δ)]
−1) and Rcb = Nρcb is 

the density corresponding to the ground-state coherence (see Fig. 2.1). The relevant boundary 

conditions in this case are that Rcb(0) = 0 due to wall collisions, and that Rcb(z → ∞) = 0 

due to the decaying fields. The ground-excited state coherence, which determines the probe 

spectrum, is then 

Rab(z) = iK(Ωc(z)Rcb(z) + NΩp(z)). (4.5) 

An instructive case is to solve Eq. 4.4 when the fields are uniform in order to see how 

the ground-state coherence changes as one gets farther from the interface. The boundary con

ditions are different in this case as compared to evanescent fields, in that we cannot require 

that Rcb(z → ∞) = 0, as the fields themselves are infinite. However, we can insist that the 

coherence does not blow up as z → ∞, and the solution is � � � � � 
NKΩ∗Ωp γ − iδ + K|Ωc|2 

Rcb(z) = c exp −z − 1 . (4.6)
γ − iδ + K|Ωc|2 D 

The important fact to notice is that the coherence starts from zero and then reaches its maximum 

value in a length scale given by z0 = D . Atoms within z0 of the interface do not 
γ+2Ω2/Γc 

contribute significantly to the coherence, and the size of that ‘null’ region is related to the 
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power-broadened EIT linewidth. As one drives the atoms harder with the control field, they 

relax to the dark state sooner after colliding with the interface, and this narrows the null region. 

Although one should be careful when extrapolating the spatially uniform field result to the 

spatially varying field problem, one can intuitively see that in the evanescent case the atoms 

that should nominally contribute the widest and highest contrast transmission line – those near 

the interface – will in fact contribute very little to the measured EIT profile. This will have the 

result of creating a narrower pedestal relative to the cusp than what we would predict when we 

ignore diffusion. 

In analogy to Ramsey narrowing, in evanescent EIT we will also have effects due to transit-

time broadening. In contrast to atoms that start off in the beam, diffuse out for a time, and then 

return, some atoms diffuse through the beams once and interact with the fields for only a 

short period of time. They will therefore contribute to a pedestal whose width is determined 

mainly by power broadening in the high-power regime and transit-time broadening in the low 

power regime. Therefore, the linewidth of the pedestal should still be roughly linear in Ω2 
c , 

but it should have an intercept that is larger than the ground-state dephasing rate. To make a 

d2Rab(z)comparison, I numerically solve Eq. 4.4 for Rcb, calculate the susceptibility as χ = ,��0Ωp 

and compute the effective susceptibility using Eq. 2.35. A plot of the two different widths of 

the EIT transmission line using the above theory is shown in Fig. 4.7. Here, we see that the 

width of the pedestal has a linear dependence on Ω2 
c with an intercept that is larger than the 

ground-state dephasing rate, as we see for experimental data in Fig. 4.6. However, the width of 

the cusp shows no variation with Ω2 
c . The physical reason for this is that the cusp is primarily 

due to Ramsey narrowing, and not due to power broadening, so it enjoys isolation from the 

pedestal. Of course, in Fig. 4.6 the width of the cusp does indeed vary. This discrepancy 

suggests that a more complicated mechanism than either diffusion-induced Ramsey narrowing 

or simple spatial variation of the EIT power broadening is responsible for the observed line 

shape and its behaviour. 
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Figure 4.7: Pedestal (blue circles) and cusp width (black crosses) of the EIT transmission line 
when diffusion is included. The angle (and hence the interaction region size) was chosen to be 
θc + 0.05◦ . 

4.3.3 Variation of width with incident angle 

The second investigation we performed on the widths of the EIT transmission line was to 

measure the widths as a function of the incident angle of the fields. Since the penetration depth 

(skin depth) of the fields is (k0η)−1, this measurement is equivalent to measuring the width as 

a function of the size of the interaction region. Our theory, neglecting diffusion, predicts that 

the widths of the pedestal and cusp should vary only slightly with the incident angle, and that 

variation should be due to variation in the control field transmission and Doppler broadening 

parallel to the interface. In the low-power regime, the width of the cusp should not vary at all 

because its width is determined by the ground-state dephasing rate. 

The results of our measurements are shown in Fig. 4.8. As is clearly seen, neither width 

varies significantly over a wide range of incident angles and therefore interaction region sizes. 

For the largest incident angle shown, the size of the interaction region is about 1 µm. There is 

substantial variation near the critical angle, but that is because the lineshape starts to take on a 

dispersive appearance as seen in Fig. 4.2. 

Contrast the negligible variation of either width with the variation predicted by a theory 
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Figure 4.8: Widths of both pedestal (blue circles) and cusp (black crosses) as a function of the 
incident angle with a control field power of approximately 70 mW. The steep rise in the width 
near the critical angle is due to the reflectivity no longer resembling a transmission window. 

that includes diffusion, as shown in Fig. 4.9. Again, the width of the cusp does not vary with 

Figure 4.9: Widths of cusp (black crosses) and pedestal (blue circles) as a function of incident 
angle for Ωc = 2π · 50 MHz s−1 when diffusion is included in the model. 

the angle. However, the width of the pedestal is significantly affected by the motion of atoms 

over the range of angles that we consider. In fact, the width of the pedestal appears to be linear 

in θ − θc; a fact we can deduce from simple arguments. If the size of the interaction region 

is (k0η)−1, then the broadening associated with the transit of the atoms is, within a constant 
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factor, Dk0
2η2 ≈ Dk0

2(θ − θc) near θc. 

The result that the widths of the EIT line are independent of the size of the interaction 

region is very surprising, as one would expect that in an interaction region this small the motion 

of atoms would play a major role. It apparently does not. This suggests a rather interesting 

application of this system as a compact optical frequency standard. Given that the size of the 

interaction region only needs to be a couple of microns, one could imagine creating a vapour 

cell that is only about 10 microns across and using the evanescent fields to generate an EIT 

signal with a cusp width less than the natural linewidth of the D1 transition. Suitable lock-in 

detection could be used to generate an error signal and the control and probe fields could be 

stabilized to one another. Similar compact frequency standards have been proposed based on 

micro-metric vapour cells, and in the majority of cases the narrowest linewidth that could be 

achieved was on the order of 10 MHz [31, 32, 33], although one study achieved a linewidth of 

175 kHz [34]. 

The main problem with such an application is how to limit the ground-state dephasing rate 

which leads to a cusp width of about 1 MHz in our system. Since diffusion appears to play no 

significant role in the behaviour of the transmission lineshapes, we must look to other expla

nations. Suggestions have been made that the decoherence is due to Rb-Rb spin exchanging 

collisions, but a quick calculation shows that this is unlikely. The expected broadening associ

ated with such collisions is [62] 

γ = Nσex v̄rel (4.7) 

where σex is the spin exchanging cross-section and v̄rel is the average relative speed between 

the atoms. Using σex ≈ 10−14 cm2 [63], v̄rel ≈ 180 m/s and N = 6.0 × 1018 m−3 (given by 

our spectra), I find that γ/2π ≈ 200 Hz. This value is much less than the measured deco

herence rate, and therefore Rb-Rb spin exchanging collisions are not likely to be the cause of 

the observed decoherence. A more likely option is that the decoherence is due to spin-flipping 

collisions with the interface. We could imagine using a paraffin or alkene coating on the in
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terior of the cell in order to reduce the decoherence associated with wall collisions [64]. One 

problem with such coatings, however, is that they tend to degrade above about 100◦C, whereas 

we operate our oven at 170◦C. Using suitable lock-in detection methods, one might be able to 

detect an EIT signal at the lower temperature, but then the stability of a potential frequency 

reference might be compromised by the lower signal-to-noise [34]. 

4.4 Group Delay 

No discussion of EIT would ever be complete without some measurement of slow light; slow 

light, of course, being one of the main reasons people are interested in EIT. In most slow light 

experiments, one sends a pulse through an EIT medium and measures the delay of the pulse 

(the group delay), and from that and a measurement of the length of the medium one can infer 

the group velocity. In general, the group velocity is 

dω c 
vgr = = �

dχ � (4.8)
dk 1 + ω 

2 dω 

when the susceptibility is much less than unity. For the case of so-called normal dispersion 

dχ/dω is postive, and there is a reduction in the group velocity. One can also infer the group 

delay by measuring the phase shift φ of continuous-wave fields as a function of frequency. The 

group delay is then directly computed as 

∂φ 
τgr = , (4.9)

∂ω 

and the expression is evaluated at the two-photon resonance. 

The benefit of EIT is that one can achieve a narrow linewidth transparency window with a 

correspondingly large dχ/dω. For an EIT medium, the group velocity is given by 

c 
vgr = (4.10) 

c1 + Nd2ω 4Ω2 

2��0 Γ2(γ+2Ω2/Γ)2 
c 

so for large N and small γ one can achieve significant reduction in the group velocity. Typical 

group velocities in warm vapour cells are around tens of km/s, although some studies have 
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achieved group velocities on the order of 10 m/s [65]. The fact that the group velocity is
 

regulated by the control field leads to the application of EIT as a optical quantum memory: one 

can turn the control field off while the pulse is inside the medium, and the pulse will stop and 

be converted into an atomic excitation that can be retrieved later [9]. In order for this to work, 

the incident pulse must fit entirely inside the medium. The pulse is compressed since there is a 

significant reduction in the group velocity, and the condition for the pulse to fit inside the cell 

is that τ < L/vgr = τgr where τ is the temporal extent of the pulse and L is length of the EIT 

medium. This is equivalent to requiring that the pulse be delayed by at least a pulse length. 

Furthermore, one wants the pulse to fit entirely inside the transmission window: this means 

one would like τ > W −1 where W is the width of the transmission window. These are two 

important conditions for storage of light in EIT. 

Figure 4.10: Measured reflectivity (blue) and phase (green) of the glass-vapour interface. 

In our experiment the concept of a propagation length L is fuzzy, and so too is the idea of a 

group velocity. Exactly where is the pulse propagating? However, the notion of a group delay 

is still well-defined. The reflection coefficient for θ > θc, defined by Eqs. 2.34 and 2.36, is 

in1b 
r = r0 1 + χeff , (4.11)

η(n1
2 − 1) 
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so the probe field will experience a phase shift due to the atoms that is given by
 

in1b 
φ = � (χeff) (4.12)

η(n1
2 − 1) 

in the limit that χeff � 1. Using Eqs. (4.9) and (4.12) at δ = 0 and when the linewidth is much 

smaller than Γ�, we have that the group delay is 

√ � � � � 
in1b Nd2 π 1 Ω2 

c 2 
τgr = log 1 + 2 − . (4.13)

2 Ω2η(n1 − 1) ��0 c Γγ Γ(γ + 2Ω2 
c /Γ) 

We measure the phase profile of the reflected signal as a function of the detuning as de

scribed in Sec. 3.4; an example of a phase profile is shown in Fig. 4.10. We measure the slope 

(divided by 2π) at the center of phase profiles such as the one in Fig. 4.10, and this provides 

a reasonably robust method for inferring the group delay that a pulse would experience after 

being reflected from the interface. We also directly measure the group delay of pulses that are 

reflected from the interface, and both types of measurements are consistent with one another. 

Inferring the group delay from the phase profile is preferable, however, because the group delay 

is very small compared to the duration of pulses that we can generate, and thus measuring the 

group delay with pulses is not very precise. The group delay as a function of power is shown 

in Fig. 4.11. We fit to Eq. 4.13 by changing only the x and y scales, and we see that the theory 

describes the data reasonably well. Note, however, that the scale of the group delay is on the 

order of 100 ps. The maximum group delay that we have ever achieved is around 500 ps at a 

control field power of about 100 mW and θ − θc ≈ 1 mrad. In regards to the storage criterion 

discussed above, any pulse that we wished to store would have to have a duration less than 500 

ps. At the same time, the pulse would have to have a bandwidth of less than about 10 MHz 

corresponding to a duration of about 160 ns. The two disparate time scales strongly imply that 

efficient storage is impossible with this system. A rough estimate of the expected efficiency 

yields 0.5/160 ≈ 0.3%, which explains why our attempts at showing storage have never shown 

recall of any fraction of light. 
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Figure 4.11: Group delay inferred from phase profiles as a function of the control field power 
(blue crosses) and a fit to Eq. 4.13. Error bars are estimates of the replicability of the data 
points. 

4.5 Measurement of the Goos-Hänchen shift 

As a final result, we made a very preliminary measurement of the contribution of EIT to the 

GHS using the measurement technique described in Sec. 3.5. Figure 4.12 shows the reflectivity 

spectrum and the lateral GHS for several angles near critical. For angles that are larger than 

the critical angle, we measure beam shifts that have dispersive appearances in accordance with 

the second term in Eq. 2.52. At the critical angle the GHS is distinctly peaked at the two-

photon resonance. Below the critical angle we find that the beam shift does not take on a 

peaked structure as would be expected, but it instead remains as a dispersive shape that looks 

suspiciously similar to the actual reflectivity. Recall from Sec. 3.5 that the signal measured 

by the balanced detector is proportional to the product of the power in the reflected beam and 

its position relative to center. If we do not correctly account for the reflectivity, then we do 

not expect a correct measure of the beam position. Incorrect balancing of the detector, for 

instance, would lead to us to measure a combination of the signal from the beam shift and from 

the reflectivity. In comparison, the beam shifts measured for angles above the critical angle 

do not strongly resemble their respective reflectivities, so we conclude that we are measuring 
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the actual beam shift. Note that for angles very far above the critical angle (not shown) the
 

measured beam shifts begin to resemble their reflectivities, so again the signal caused by the 

beam shift is simply far smaller than the changes in power. 

(a) Reflectivity of the interface as a function of detun
ing for several different angles near critical. Data 
is from the same set as shown in Fig. 4.3. 

(b) Measured beam shift as a function of detuning and 
angle. Curves with the same color between right 
and left figures correspond to the same angle. 

Figure 4.12: Reflectivity and GHS spectrum of the interface. 

In principle, one could attempt to fit the data in Fig. 4.12(b) to Eq. 2.52. In practice, it is 

not worth the effort. Only a few curves behave as one would expect if the signal was due to 

only a beam shift and not due to variations in reflectivity as well. Further, the GHS is really 

only significant near the critical angle where the theory that I have been using throughout this 

thesis fails. Only a couple of the beam shift curves are well described by the simple model, 

but the parameters that describe those curves in the context of the model are very different. 

Furthermore, the beam shift measurements show a linear variation with frequency that cannot 

be explained solely with the Doppler broadened absorption spectrum. I conclude from these 

observations that our model does not describe our data well. Several issues with the experiment 

could contribute to some of the observed problems. The pick-off mirror does not exactly split 

the beam fifty-fifty. Much of the beam power is lost at the edge of the mirror, and this is hard 
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to predict in advance, so that the calibration of how much power reaches the balanced detector
 

is very difficult. Use of a split photodiode and servo motor, as in Pfleghaar et al. [28], could 

reduce the uncertainty in the changing reflectivity of the interface. Also, leakage of the control 

field through the polarization filtration optics contaminates the measurement of the GHS by 

unbalancing the detector which contributes to our imperfect ability to account for the changes 

in reflectivity. Lastly, the hot oven creates air currents that significantly deflect the probe beam 

making measurements of beam shifts difficult to do. Even with a lens to nominally remove 

such angular deviations, a great deal of averaging has to be done to achieve good signal-to

noise. If the voltage in a specific waveform exceeds the oscilloscope’s range, then the averaged 

signal will be distorted and will not be a true measure of the beam shift. These problems would 

need to be addressed in further experiments. 
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Chapter 5 

Conclusion 

In this thesis, I have described our experiment to observe and characterize EIT using the tech

nique of selective reflection. I first developed a basic theory in Chapter 2 that describes how the 

presence of the non-linear EIT interaction modifies the reflectivity of a glass-vapour interface. 

For angles below the critical angle, the EIT lineshape mimicked the real part of the regular 

EIT susceptibility. For angles above the critical angle, the evanescent control field created a 

depth-dependent EIT linewidth which resulted in a non-Lorentzian transmission peak in the 

reflection spectra. This lineshape is characterized by a sharp cusp that sits on a much broader 

pedestal. The basic model developed in Chapter 2 agreed reasonably well with the lineshapes, 

although it failed near the critical angle and it also failed to completely describe the cusp fea

ture present in the transmission peaks. Measurements of the EIT linewidths as a function of 

power and angle showed partial agreement with the model. Attempts to better describe the 

data by including diffusion led to us excluding diffusion from playing a role. Surprisingly, we 

found that EIT persisted down to interaction region sizes of about 1 micron. We also measured 

frequency-dependent beam shifts that show the dependence of the GHS on EIT conditions. 

Several improvements could be made to the apparatus. Firstly, rather than creating a prism-

cell interface by using two separate elements and index-matching gel, we could instead have a 

single piece of glass manufactured that would consist of a standard vapour cell with a prism be

ing one of the windows. Furthermore, the cell would be custom made for the particular purpose 

of evanescent EIT, so we would not need anti-reflection coating and therefore the reflectivity 

of the interface would actually be known. Another improvement would be in the design of the 

oven. Currently, the interface sits slightly outside the oven making the interface colder than the 

rest of the cell. This design results in significant formation of rubidium condensation on the 
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interface which limits the contrast of the EIT signal. Ideally, one would have an oven where 

the entire cell is inside the oven and kept at a constant temperature with perhaps a cold finger 

to promote rubidium condensation away from the interface. 

The major application of this work is as a compact optical clock. We have demonstrated 

linewidths of less than the natural linewidth of the system, and those widths appear to be 

limited by collisional decoherence. The use of a paraffin coated cell may significantly decrease 

the decoherence rate, although we might need to work at lower temperatures and thus lower 

signal-to-noise. Thus, there is potential to create a compact clock that is comparable in stability 

to micro-metric thin cells but in an easier-to-manufacture system. 
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Gröblacher, Markus Aspelmeyer, and Oskar Painter. Laser cooling of a nanomechanical 

oscillator into its quantum ground state. Nature, 478(7367):89–92, October 2011. 

75
 



[9] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically induced
 

transparency. Phys. Rev. Lett., 84:5094–5097, May 2000. 

[10] A. I. Lvovsky, Barry C. Sanders, and Wolfgang Tittel. Optical quantum memory. Nature 

Photonics, 3(12):706–714, December 2009. 

[11] H. Schmidt and A. Imamoglu. Giant kerr nonlinearities obtained by electromagnetically 

induced transparency. Opt. Lett., 21(23):1936–1938, Dec 1996. 

[12] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge 

University Press, 2000. 

[13] Bing He, Andrew MacRae, Yang Han, A. I. Lvovsky, and Christoph Simon.	 Trans

verse multimode effects on the performance of photon-photon gates. Physical Review A, 

83(2):022312, February 2011. 
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