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Abstract

The border between classical physics and quantum mechanics has been puzzling physicists

since the early days of quantum mechanics. There are some approaches to explain the

Quantum-to-Classical transition e.g. the decoherence program. Here I stick to a recent

approach which places the emphasis on the precision of measurements. I use this approach

to explain why it is difficult to observe Schrödinger’s cat.

To do so, I focus on a physical realization of Schrödinger’s cat which was reported

in [4]. In this experiment, De Martini et al. amplify one photon of a singlet state to

a macroscopic beam of light. I compare this Schrödinger’s cat to a system with pure

classical correlation and show that if photon counting measurements on the amplified

beam are coarse-grained, then the statistics of the system in De Martini’s experiment

can be reproduced by a classical correlation.
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Chapter 1

Introduction

The question of why quantum effects are not present in our daily life, has been puzzling

physicists since the early days of quantum mechanics.This question was first formulated

by Schrödinger in 1935[5]. He proposed the idea of Schrödinger’s cat which is a thought

experiment that results in entanglement between a cat, as a macroscopic object, and the

state of an atom.

One answer to the question of Quantum-to-Classical transition is that macroscopic

systems do not evolve coherently: quantum mechanics transits to classical physics due to

the interaction with the environment. This approach is called the decoehrence program

[6, 7]. A famous example in this area is the cat-state. A cat state has the following form:

|cat-state⟩ = |α⟩+ | − α⟩, (1.1)

where |α⟩ is a coherent state. The Wigner function of a cat-state has some negative

contribution in phase space which is a signature of non-classicality. But decoherence

results in a diffusion process that makes positive and negative ripples interfere and cancel

out. Consequently, the Wigner function of the cat-state after decoherence is similar to

the classical picture.

Here I consider a complementary approach that puts the emphasise on the precision

of measurements. In this approach, one can describe the Quantum-to-Classical transition

for the cat-state above in terms of the precision of homodyne detection. Specifically, the

resolution of measurements should be good enough to demonstrate ripples in phase space

in order to manifest the non-classicality of cat-state. Note that this is not in contradiction

with the decoherence program but is an alternative way of answering the Quantum-to-
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Classical transition problem. In other words, this approach explains that even if one can

keep the evolution coherent, one still needs precise measurements to see non-classicality.

This approach was exploited in [8] to explain the Quantum-to-Classical transition

for spin dynamics. They showed that if measurements are strongly coarse-grained, the

dynamics of quantum spin looks exactly like the classical spin.

An important example of Quantum-to-Classical transition problem is the transition

from quantum entanglement to classical correlation. There have been attempts to bring

entanglement to the macroscopic level. For instance, in [4], De Martini et al. claimed

the generation of entanglement between a single photon and a macroscopic beam of light,

which is visible with the naked eye.

In this thesis, I make a statistical comparison between the entanglement in this system

and a classical correlation between the two parties involved. The result is that although

the quantum entanglement in De Martini’s experiment is different than a classical cor-

relation, an extremely sophisticated experiment would be needed to show this difference.

More specifically, one has to be able to count large number of photons with a resolu-

tion at the single photon level to demonstrate the entanglement. Otherwise quantum

entanglement after coarse-graining is not different than classical correlation. Therefore, I

report a Quantum-to-Classical transition for quantum entanglement that occurs under

the constraint of coarse-grained measurements.
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Chapter 2

Background

2.1 Entanglement

Entanglement is one of the key features of quantum mechanics that differentiate it from

classical physics and provides a really useful resource for both understanding the funda-

mentals of nature and utilizing different technologies. This property was first recognized

by Einstein, Podolsky, and Rosen (EPR) in their famous paper in 1935 [9]. It was also

the first time that the fundamental non-classical aspect of quantum entanglement was

identified. In the same year, Schrödinger did some further studies on the EPR state (the

two particle state which was used in the EPR paper) and realized that it does not allow

one to ascribe a state to individual particles.

In this section, I explain quantum entanglement and some criteria for its detection.

2.1.1 Definition

There is a fundamental difference between the description of physical systems in quantum

mechanics and classical physics. In classical physics systems are described by points in a

phase space, whereas in quantum mechanics systems correspond to vectors in a Hilbert

space. For composite systems, this results in a gap. In phase space, the state of a

composite system is described by the product of the states of individual components, but

in a Hilbert space this description could in general be more complicated, i.e. superposition

of product states. To clarify this point, consider the following quantum state:

|Ψ−⟩ = |1, 0⟩a,b − |0, 1⟩a,b√
2

. (2.1)
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This state is called a singlet state. It includes two sub-systems a and b and each of them

could be either in state 1 or 0. The subscript a, b indicates that the first number is the

state of system a and the second one is the state of system b, i.e. |1, 0⟩a,b = |1⟩a ⊗ |0⟩b .

One can easily see that there is no way to rewrite |Ψ−⟩ as a product state e.g. |Ψa⟩⊗|Ψ′
b⟩.

Such states are called entangled states. For pure quantum states, one can define an

entangled state as a state that could not be described as a product of states of individual

sub-systems.

For mixed states it is more complicated to define entangled states. In 1989 Werner

defined separable states as a convex combination of product states [10]:

ρ =
∑
i

piρ
i
1 ⊗ ρi2 · · · ⊗ ρin, (2.2)

where the system involves n subsystems. Werner defined a general entangled state as

a state that is not separable.

One of the main questions that the theory of entanglement is trying to answer is how

to detect entanglement. For different situations, different methods have been developed

to deal with this problem.

Detection of entanglement is one of the main topics in my project. Therefore, I will

explain the three methods for the detection of entanglement that are relevant for my

work.

2.1.2 Detection of entanglement

There are different methods for the theoretical detection of entanglement. Usually these

are based on necessary conditions for separability. For instance, if a state of a compound

system is separable, then the partial transpose of its density matrix is a positive matrix.

This was reported as a criterion for entanglement in 1996 by Peres [11].

Here I will introduce several criteria which are relevant to the context of micro-macro
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entanglement. These criteria distinguish multi-particle entangled states from separable

ones.

Criteria 1

In 2003 C. Simon and D. Bouwmeester proposed a method to establish multi-photon

entanglement. In the same paper, they derived a criterion for detection of entanglement

in multi-particle states[12].

This criterion was derived for spin-like systems and although the primary motivation

was for optical polarization qubits, there is an analogy between spin systems and polar-

ization in optical systems based on Stokes polarization vectors. Mathematically, for the

polarization of photons, spin is defined as:

Jx =
a†+a+ − a†−a−

2
, (2.3)

Jy =
a†lal − a†rar

2
, (2.4)

Jz =
a†hah − a†vav

2
. (2.5)

Here ah, av represent horizontal and vertical polarizations, a+, a− represent the ±45

polarizations and al, ar represent the left- and right-handed polarizations. These opera-

tors correspond to Stokes parameters of polarization. One can show that:

⟨Ĵ2⟩ = ⟨J2
x⟩+ ⟨J2

y ⟩+ ⟨J2
z ⟩ =

N

2
(
N

2
+ 1). (2.6)

The parameter N is the total number of the photons and equals a†hah + a†vav.

For a bipartite system with sub-systems A and B, the criterion is that for any sepa-

rable state, the following inequality holds:

⟨J2⟩
⟨N⟩

≥ 1

2
, (2.7)
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where J⃗ = J⃗A + J⃗B is the total angular momentum and N = NA + NB is the total

number of particles. To prove Eq. [2.7], they start with the expectation values on a

general separable state like Eq. [2.2]. That is ρ =
∑
i

pi ρ
i
A⊗ρiB. Their proof is as follows:

⟨J2⟩ = ⟨J2
A⟩+ ⟨J2

B⟩+ 2⟨JA. JB⟩

=
∑
i

pi
[
⟨J2

A⟩i + ⟨J2
B⟩i + 2⟨JA⟩i.⟨JB⟩i

]
≥
∑
i

pi
[
⟨J2

A⟩i + ⟨J2
B⟩i − 2 |⟨JB⟩i| |⟨JB⟩i|

]
, (2.8)

where ⟨JA⟩i = TrρAi J
A, etc. On the other hand, |⟨J⟩| ≤

√
⟨J2⟩+ 1

4
− 1

2
. They define

α =
√
⟨J2

A⟩+ 1
4
− 1

2
and β =

√
⟨J2

B⟩+ 1
4
− 1

2
. This simplifies the Eq. [2.8] to:

≥
∑
i

pi
[
α2
i + αi + β2

i + βi − 2αiβi
]
=
∑
i

pi
[
(αi − βi)

2 + αi + βi
]
≥
∑
i

pi [αi + βi]

(2.9)

On the other hand as J2 = N
2
(N
2
+ 1),

α =

√
⟨J2

A⟩+
1

4
− 1

2
=

√
NA

2
(
NA

2
+ 1) +

1

4
− 1

2
=

√
(
NA

2
+

1

2
)2 − 1

2
=
NA

2
. (2.10)

This completes the proof as:

⟨J2⟩ ≥
∑
i

pi [αi + βi] ≥
1

2
⟨NA +NB⟩ =

1

2
⟨N⟩ → ⟨J2⟩

⟨N⟩
≥ 1

2
. (2.11)

Later in [13, 14] P. Sekatski et al. built up on the Eq. [2.11] and derived the following

inequality for separable states.

|⟨JA. JB⟩| ≤ ⟨NANB⟩. (2.12)

For the proof see [14].
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Criteria 2

H. S. Eisenberg et al. in 2004 presented a criterion for separability[15]. This is a criterion

for bipartite systems with 2-dimensional Hilbert spaces.

The total spin-correlation ⟨−→σa .
−→
σb⟩ for a separable system should satisfy the following

inequality:

∣∣∣⟨−→σa .−→σb⟩∣∣∣ = ∣∣⟨σax . σbx⟩+ ⟨σay . σby⟩+ ⟨σaz . σbz⟩
∣∣ ≤ 1. (2.13)

This is because for separable states, the magnitude of the total spin-correlation is

maximum when the two spins are parallel or anti-parallel. One can simply rotate each

spin to the z-axis in which case the maximum total spin-correlation would be equal to

one. This introduces a condition on separable states. If this inequality is violated for

a state, that state is entangled. For instance consider the state in Eq. [2.1]: the spin-

correlation for that bipartite state is maximum in all directions, meaning that the total

correlation is three. This violates the inequality of Eq. [2.13], so the state should be

entangled.

Note that this criteria could be similarly used for polarization qubits.

Criteria 3

Recently N. Spagnolo et al. in [16] found a new separability criterion for multi-photon

entanglement. Their goal was to demonstrate the entanglement for the experiment in

[4] and they needed a criterion similar to the one introduced in Eq. [2.1.2] but for

multi-photon qubits.

In De Martini’s experiment they wanted to demonstrate the entanglement between

a single photon and a multi-photon beam of light. When loss is present, the macro-qubit

is not a perfect qubit and lives in a high-dimensional space rather than a 2-dimensional

Hilbert space. Therefore they can not use the criterion in Eq. [2.7] and they presented
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a new one.

The criterion is that:

S = ⟨σa1 ⊗ Db
1⟩+ ⟨σa2 ⊗ Db

2⟩+ ⟨σa3 ⊗ Db
3⟩ ≤

√
3, (2.14)

where Di is a set of diatomic operators and a and b represent the two sub-systems.

The proof is similar to the one for Section 2.1.2. For more information see [16].

These criteria are being used frequently in the context of micro-macro entanglement.

In Section 2.3.1 I will explain more about the applications.

The other concept which should be explained before I proceed to the micro-macro

entanglement is quantum cloning. My main focus here is, first, on the fundamental

limitations on quantum cloning and then on the physical realization of different cloning

methods. The next section will address these two subjects.

2.2 Quantum cloning

Quantum cloning was first explored in 1982, in the context of superluminal communica-

tion [17]. The idea is to share a pair of photons, which is in a singlet state, between Alice

and Bob. Alice performs a measurement in some basis on her pair. This projects Bob

system onto the state orthogonal to Alice’s state. If Bob could find out what state he

has, he could infer what measurements Alice performed. On the other hand, if he could

perfectly clone his state, he could do a tomography on his state and he would learn his

state. That means, with perfect cloning, Bob would be able to infer Alice’s measurement

and if this is being done fast enough, it could be used for superluminal communication

between Alice and Bob. Herbert proposed this idea in [17] and suggested a physical

realization of cloning based on stimulated emission.

This idea connected the two concepts of quantum cloning and quantum no-signaling.
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In fact, Herbert found that perfect cloning results in superluminal quantum signaling.

On the other hand, it was proved that superluminal communication is not possible

in quantum mechanics [18]. This apparent contradiction was resolved by the quantum

no-cloning theorem in 1982 by Wotters and Zurek. They proved that due to the linearity

of time evolution operators in quantum mechanics, perfect cloning is not possible[19]. It

also was proved that due to unavoidable spontaneous emissions, the stimulated emission

could not create perfect copies and it is impossible to realize the perfect-cloning with

stimulated emission[20, 21].

Then the idea of approximate cloning was introduced in [22] and the optimal bound

on that was found[23]. I will explain this concept in more detail in Section 2.2.2.

In my work, quantum cloning plays an important role. I exploit quantum cloners to

amplify the quantum effect of entanglement to a macroscopic level.

In this section, I will overview some basic elements of quantum cloning. I will start

with illustration of the quantum no-cloning theorem. Then I will explain the concept of

approximate cloning in Section 2.2.2 and at the end, in Section 2.2.3, I will introduce

some cloning methods that are relevant to my work.

2.2.1 No-cloning theorem

After Herbert published his paper, in the same year, Wootters and Zurek realized that

there was a problem with Herbert’s work[19]. In fact, the linearity of operations in

quantum mechanics does not allow for perfect coping. Mathematically, this cab be shown

in the following way. Let’s consider U as copying machine for a qubit system. That

means:

U |ψ⟩s|0⟩t|0⟩e = |ψ⟩s|ψ⟩t|fψ⟩e. (2.15)

The |ψ⟩s is the source state to be copied. The |0⟩t is the target which is initially
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in |0⟩ and after applying U , should transform to a copy of the source qubit. The |0⟩e

represents the state of the environment. Now let’s consider the action of copying machine

on |+⟩ = |0⟩+|1⟩√
2

. There are two ways to apply U on the state. One can first apply it on

the state itself which results in:

|+⟩s|0⟩t|0⟩e → |+⟩s|+⟩t|f+⟩e. (2.16)

On the other hand, as U is a quantum mechanical evolution, it should be unitary.

That means:

U |+⟩s|0⟩t|0⟩e = U(
|0⟩s + |1⟩s√

2
)|0⟩t|0⟩e

= (
U |0⟩s + U |1⟩s√

2
)|0⟩t|0⟩e =

|0⟩s|0⟩t|f 0⟩e + |1⟩s|1⟩t|f 1⟩e√
2

. (2.17)

One can easily see that Eq. [2.16] and Eq. [2.17] could not be identical which means

that copying are not be done unitarily.

2.2.2 Approximate cloning

In 1996, Bužek and Hillery came up with a different idea[22]. Instead of a perfect cloner,

they considered a cloning machine which produces approximate clones. One can quantify

this in terms of fidelity. Fidelity is a measure that quantifies closeness between two states.

For instance for the distance between two density matrices, σ and ρ, the fidelity is defined

as:

F (σ, ρ) =

(
Tr

√√
σρ

√
σ

)2

(2.18)

For more information see [24].

In this language, perfect cloning means that the fidelity between the source state and

targets is one. An approximate cloning machine produces clones which are not necessarily

as good and their fidelities are less than 1.
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In [22], Bužek and Hillery propose a 1 to 2 cloner. Their cloning transformation was:

|0⟩s|0⟩t|0⟩e →
√

2

3
|0⟩s|0⟩t|1⟩e +

√
1

6
(|1⟩s|0⟩t + |0⟩s|1⟩t)|0⟩e, (2.19)

|1⟩s|0⟩t|0⟩e →
√

2

3
|1⟩s|1⟩t|0⟩e +

√
1

6
(|1⟩s|0⟩t + |0⟩s|1⟩t)|1⟩e. (2.20)

The fidelity of the clones in this method is 5
6
which was proved to be optimal[23].

Gisin and Massar in [25] generalized the idea in [22] to cloning from N inputs to M

copies. They also proved that their cloning machine is optimal [23].

In 1998, Bruss et al. derived a general upper-bound for any type of approximate

cloning machine[23]. Their idea was based on the connection between quantum state

estimation and quantum cloning. One way to estimate a state is to clone it and then

do a tomography on clones. With this process, the optimal fidelity of clones could not

exceed the optimal upper bound for state estimation. These bounds are based on the

best possible estimation that could be achieved having M copies of the state.

On the other hand, state estimation could be exploited to make a cloning machine.

Specifically, one can estimate the state first and then produces copies of that state. In

this case, the optimal fidelity for state estimation could not be greater than the upper

bound on the optimal fidelity of state cloning. This means that the upper bound on the

optimal fidelity of quantum state estimation is the same as quantum cloning.

Using this idea, the optimal fidelity is:

F =
NM +M +N

M(N + 2)
. (2.21)

This upper-bound is saturated by Buže-Hillery and Gisin-Massar cloning machines.

Note that in the cloning methods introduced by Bužek-Hillery and Gisin-Massar, the

fidelity is the same for all inputs. These type of cloners are called universal cloners.

Not all cloners are universal. For instance, the phase covariant cloner which will be
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introduced in Section 2.2.3 is not universal and produces better clones for state on the

equator of Bloch sphere. Bloch sphere is a geometrical representation of Hilbert space

of 2-level quantum systems. See Figure [2.1].

In the next section, I will introduce three types of cloning methods that are relevant

to my work. I will also describe how they could be realized experimentally.

2.2.3 Physical realization of different cloning machines

Universal cloner

As mentioned before, a universal cloning machine (UCM) produces clones that are equally

good for any input qubit. More specifically, for any qubit on Bloch sphere, the fidelity

of clones that a universal cloning machine produces is the same.

The optimal asymptotic fidelity for such a cloning machine is 2
3
. An interesting

question is whether or not, one can achieve this optimal bound in experiment. In [26],

Simon et. al. proposed two methods based on the stimulated emission for this purpose; I

will describe the second method which is based on stimulated parametric down conversion

process. This is an optical process and qubits are defined as the polarization of photons.

This process could be realized using a non-linear crystal type II.

In this process, in addition to the source qubit, a pump laser is incident onto the

non-linear crystal. The effective Hamiltonian on the input qubit becomes:

H = iχ(a†hc
†
v − a†vc

†
h) +H.c. , (2.22)

where χ is proportional to non-linear susceptibility of the crystal and the intensity of

the laser pump, a is the input mode which is to be cloned and c is the environment mode.

The universal cloning machine produces some photons in the environment mode which

are traced out. These photons are called anti-clones. Therefore, the universal cloning is

not a unitary process if one just considers clones.
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One can show that this Hamiltonian is invariant under joint rotations of a and c which

is e−iθ̂Ĵ . Due to this symmetry, the fidelity of clones is independent of input photons.

Phase covariant cloner

This type of cloner produces clones that are equally good for states on the equator of

Bloch sphere. That means for equatorial qubits, fidelity is constant. This type of cloning

was first introduced in [27]. In the same paper, Bruß et al. found an upper-bound on the

fidelity for the optimal phase covariant cloners with a similar method to [23]. They also

show that the fidelity of phase covariant cloning is more than the fidelity for universal

cloning machine. For cloning one qubit into M clones, the asymptotic fidelity is 3/4.

This is reasonable as cloning a specific group of qubits from Bloch sphere is easier and

better than cloning for all qubits. In the extreme case, if one confines the cloner to just

clone a specific qubit |0⟩, then it can be cloned perfectly but at the cost of poor fidelity

for other states like |+⟩.

Optimal phase covariant cloner was first physically realized in [28] for 1 → 3. In that

paper, Sciarrino and De Martini exploited a 1 → 2 universal cloner, a not gate and a

projection onto the symmetric sub-space for this purpose.

Later a different method of phase covariant cloning was introduced for polarization

of photons in [29]. It was based on using an optical amplification. This method is similar

to the universal cloning machine. The source photon with a strong pump of a pulsed

Ultra Violet (UV) laser is fed into a non-linear crystal. The effective interaction between

the source photon and the optical amplifier is described by the following Hamiltonian:

H = iχa†ha
†
v +H.c. , (2.23)

where χ is proportional to non-linear susceptibility and the intensity of the pump of

laser. In this method there is no anti-clone and all the photons remain at the end. That



14

means if there is no loss, this process is a unitary evolution.

In order to see that this evolution is symmetric under rotations on the equator of

Bloch sphere, one can rewrite the Hamiltonian as:

H = iχ(
(
a†ϕ

)2
+
(
a†ϕ⊥

)2
) +H.c. , (2.24)

where a†ϕ and a†ϕ⊥ represent the creation operators for the photons on the equator at

angle ϕ and ϕ + π respectively. Figure [2.1] shows these polarization vectors on Bloch

sphere. The two points on poles indicates horizontally and vertically polarized photons.

A general state |ψ⟩ on Bloch sphere is represented by two angles, θ and ϕ as in Figure

[2.1]. I use the following notation for such a state:

|ψ⟩ = |θ, ϕ⟩. (2.25)

Occasionally if the state is on the equator, I drop the θ for simplicity. Similarly, |n⟩θ, ϕ

represents a multi-photon state with n photons in |θ, ϕ⟩. The state orthogonal to |ψ⟩ is

denoted by:

|ψ⊥⟩ = |θ, ϕ ⊥⟩. (2.26)

These two states make a basis. A general pure state with N photons in this basis is

represented by |j,N − j⟩θ, ϕ = |j⟩θ, ϕ ⊗ |N − j⟩θ, ϕ⊥ where j is the number of photons in

the state corresponding to |θ, ϕ⟩.

Eq. [2.24] holds for any angle ϕ and this means the Hamiltonian is symmetric for

all equatorial angles, ϕ. Due to this symmetry, the fidelity for all input states on the

equator is the same.

This cloner plays an important role for the amplification of entanglement in [4]. I will

discuss this in more detail in Section 2.3.1.



15

Figure 2.1: Schematic of Bloch sphere. Bloch sphere represents the Hilbert space of a
qubit which is parametrized by two angles.

Measure-and-Prepare cloner

As discussed before, an other way of cloning is to simply measure the state of the source

qubit and create copies of them. More specifically, a measure-and-prepare cloning ma-

chine measures the state of the input qubit in some random basis and produces M

photons in the state corresponding to the measurement outcome. Mathematically, the

density matrix after cloning with this method is:

ρmp =
1

π

∫
dϕmp(P

+(ϕmp) | Φϕmp⟩⟨Φϕmp | +P−(ϕmp) | Φϕmp⊥⟩⟨Φϕmp⊥ |), (2.27)

where P±(ϕmp) indicates the probability of getting ± outcome for the measurement

and the state | Φϕmp⟩ is the state, involving N photons, that the cloner generates if the

measurement outcome in {ϕmp, ϕmp ⊥} basis on the single photon is ϕmp.

For input state | ψin⟩ = |1, 0⟩π
2
,ϕin , probabilities are:
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P+ (ϕ) = cos

(
ϕ

2

)
, P− (ϕ) = sin

(
ϕ

2

)
. (2.28)

This introduce a class of cloners. One can adjust the measurement and the generated

state to design any arbitrary amplifier. For the purpose of this work, I need a phase

covariant cloner and I confine the generated state to:

| Φϕ⟩ = |N⟩ϕ =

(
a†ϕ

)N
√
N !

|0⟩. (2.29)

Due to the integration over all equatorial angles or more physically, because of random

measurements in all bases on the equator, this type of measure-and-prepare cloner is

phase covariant. One can simply show that for N → ∞, this cloner is also optimal for all

states on the equator. That means the fidelity of clones on the equator goes to 3
4
. This

cloner has been introduced before in [14]. Note that this is not the general measure-and-

prepare cloner, but is the cloner I will use in Chapter 3. Later in Chapter 4 I will modify

the state of Eq. [2.29].

It is known that the process of measurement breaks entanglement. That means if two

particles are entangled, a measurement on any of the two particles reduces the compound

state into a separable state. As there is a measurement in the measure-and-prepare

cloning process, any quantum correlation between the source qubit and other systems is

broken after the cloning. In other words, after the measure-and-prepare cloning, clones

could only be classically correlated with other systems. This provides me with a powerful

tool to generate micro-macro systems with pure classical correlation. Later in Section

3.2.1, I will exploit this cloner to produce some classical correlation that approximates

the quantum correlation in De Martini’s experiment.



17

2.3 Micro-Macro entanglement

Experimental establishment of entanglement has always been one of the most fascinating

problems in quantum physics. This becomes even more interesting when it gets to the

macroscopic level. Establishment of entanglement between macroscopic objects or even

micro- and macro- systems is of special interests in quantum physics[1, 2, 3]. Not only

it does improve our understanding of quantum physics, but it also provides us with a

powerful tool to study some fundamental aspects of nature e.g. macro realism[30].

In recent years there has been substantial effort for establishment of macro-entanglement,

and consequently there has been a significant progress in this area. Right now, there are

different proposals for producing macroscopic entanglement e.g. superconducting qubits

[1], opto-mechanical qubits [2] and combination of superconducting qubits and mechan-

ical systems[3]. One of the most promising ones is an experiment by De Martini et al.

in [4]. They used an optical set-up and they considered photons as their systems. They

have reported experimental establishment of entanglement between polarization of one

single photon and polarization of photons in a macro-beam of light, although the claim to

have demonstrated entanglement was subsequently challenged, see below. Here I explain

this experiment in detail.

2.3.1 Micro-Macro entanglement in optical systems

C. Simon et al. in [12] proposed the idea of using the parametric down conversion process

for creation of multi-photon entanglement in polarization of light. The following year,

this proposal was exploited by HS. Eisenberg et al. in [15] to establish bipartite multi-

photon entanglement. In their experiment, they used two criteria to demonstrate the

entanglement between up to 12 photons. This was the first time that entanglement was

established for such a relatively large large number of photons.

Recently, in 2008, De Martini et al. took the next step and for the first time, they
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Figure 2.2: The set-up of De martini’s proposal. A singlet state is produced in a spon-
taneous parametric down conversionprocess. One photon goes to channel A and the the
other photon is being amplified with the phase covariant cloner.

claimed establishment of entanglement between a single photon and a beam of light which

is visible to the naked eye[4]. P. Sekatski et al. in [13] showed that this beam of light

is in principle macroscopic enough to violate the Bell-inequality with naked eye. More

precisely, they showed that one can use the naked eye as a detector for the beam of light,

and correlations between measurement results on the single photon and measurement

results with the eye violate a Bell inequality.

In this section, I explain their experiment in detail and then I describe the method

they use to demonstrate the entanglement. This method relies on strong assumptions

which were analysed later in [14] and [16] and will be discussed in more detail below.

De Martini’s experiment

They start with an entangled pair of photons in the singlet state, |Ψ−⟩ = 1/2(|R⟩A|L⟩B−

|L⟩A|R⟩B) which is produced in a spontaneous parametric down conversion process. Here

{ |R⟩ and |L⟩ } indicate right- and left-handed polarizations. See Figure [2.1] for more

detail.They implement this process using a non-linear crystal pumped by a pulsed UV

laser. One photon goes to channel A and is subsequently measured. The other photon

is being amplified through a phase covariant cloner to a macroscopic state. Figure [2.2]

shows a schematic of their experiment.

De Martini used the cloning method proposed in [29] which is based on a process called

quantum injected optical parametric amplification. This is a unitary transformation
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which takes a single photon and a pump beam to a macro-qubit which involves about

N ≈ 104 number of photons. They used a non-linear crystal with a laser pump to

implement it. The effective evolution on the input photon is a parametric down conversion

process with the Hamiltonian of Eq. [2.23] which is H = iχa†ha
†
v +H.c..

The singlet state can be rewritten as:

|Ψ−⟩ = 1/2(|ϕ⟩A|ϕ⊥⟩B − |ϕ⊥⟩A|ϕ⟩B), (2.30)

where |ϕ⟩ = |π
2
, ϕ⟩ represents the equatorial state at angle ϕ. Then the state after the

amplification on channel B can be written as:

|Σ⟩A,B = 2−1/2
(∣∣Φϕ

⟩
B

∣∣ϕ⊥⟩
A
−
∣∣Φϕ⊥⟩

B
|ϕ⟩A

)
, (2.31)

where {
∣∣Φϕ
⟩
,
∣∣Φϕ⊥⟩} are orthogonal macroscopic states after the amplification. As they

are orthogonal, the state |Σ⟩ is a macro singlet state. I will derive the explicit form of

this state in Section 3.2.2.

After the amplification they split the macro-beam into two orthogonal polarizations,

e.g. |R⟩&|L⟩. The number of counted photons is translated to two currents, {IR, IL}. If

the difference between the two currents exceeds some threshold, the measurement counts

as a conclusive one. Otherwise, it is ignored. For instance if IR− IL > k , where k is the

threshold, then it means that the output state was corresponding to |R⟩. If IL − IR > k

then the beam of light is in the state corresponding to |L⟩. But if |IR − IL| < k, this

is not a conclusive measurement and this would be ignored. Finally they study the

correlation between the measurement outcome on the single photon of channel A and the

macro-beam of light.

Those set of measurements for which |IR − IL| < k implies some post-selection on De

Martini’s measurements which opens up a loophole in their experiment[14, 16].
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Demonstration of entanglement

De Martini et al. in [4] used the criterion in Eq. [ 2.13] and reported the demonstra-

tion of entanglement for the extremely coarse grained measurement that was explained

above. Their demonstration of entanglement is based on the fact that the average num-

ber of photons for the polarization mode corresponding to ϕ is sinh2 g for |Φϕ⊥⟩B, and

(3 sinh2 g + 1) for |Φϕ⟩B and for the polarization mode ϕ ⊥ is sinh2 g for |Φϕ⟩B, and

(3 sinh2 g + 1) for |Φϕ⊥⟩B. Therefore if the difference between the counted number of

photons in the orthogonal basis is greater than some threshold, they can distinguish the

output state. But there also some cases where the outcome is not conclusive, result-

ing in some post-selection which, opens up the detection loophole. It is also extremely

coarse-grained because the resolution on photon-counting measurement does not really

matter.

In [13], P. Sekatski et al. used criterion 1 as in Eq. [2.7] and they showed that

theoretically there is entanglement between the single photon on channel A and the

beam of light on channel B even if the loss after amplification is taken into account.

They found that:

∣∣∣⟨−→Ja .−→J b⟩∣∣∣− ⟨Na⟩ = 2η, (2.32)

where η is the transmission rate of detection process. Even in the ideal case when

η = 1, the difference is no more than 2 which means almost perfect photon counting

measurements are required to demonstrate the entanglement experimentally using this

method. In other words, if counted number of photons is inaccurate by even 2 photons

out of 104 photons, then it is not likely to demonstrate entanglement. This motivated my

work, as I want to see if it is possible to demonstrate entanglement under coarse-grained

measurements.

According to Eq. [2.7] the state would be separable only when there is no transmission
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and even for high losses through the process, there still would be entanglement in the

system. Note that this is just the loss in the detection process and it does not include

losses in the amplification process. Losses in amplification process was considered in [14]

and it is more complicated. Currently there is no theoretical proof for entanglement if

there is loss in the amplification process.

In [14] P. Sekatski et al. showed that the demonstration method that De Martini

used fails for some separable states. In fact, the criterion that De Martini et al. used,

report some separable states as entangled [14, 16]. There are two issues with their

demonstration method: the criterion that they used, is designed for a bipartite system

with 2-dimensional Hilbert spaces where considering the loss, the macro-qubit lives in a

higher dimensional Hilbert space; as well, post-selections in their experiment opens up

the detection loophole.

Later, in 2010, Spagnolo et al. in [16] stated that with some supplementary assump-

tion it still is possible to infer the result of [4] as a demonstration of entanglement. Their

supplementary assumption was that if one knows that the micro-macro correlation is

produced with a quantum cloner e.g. parametric down conversion process, then the

demonstration method used in [4] is conclusive. This still is assuming that there is no

loss before and during the amplification process.

In the same paper, they propose a different method for demonstration of entangle-

ment which is based on attenuation. This method was exploited before in [15, 31]. They

consider a high loss channel such that most photons of the macro qubit on channel B

are lost. Then only a single photon is left and they can use their criterion safely for

that single photon, because after the loss, it would be a two-dimensional qubit system.

They demonstrate entanglement between two single photons. Demonstration of the en-

tanglement after attenuation means that there was entanglement before that, because

entanglement dose not increase under local operations [32] and attenuation is a local
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operation.

But the question is still open whether or not, one can demonstrate entanglement with

coarse-grained measurements. That is what my project is addressing. The following

section will explain in more detail what the idea beneath my project is.

2.3.2 My project

As explained above, there is a chance that the statistics of the micro-macro entanglement

in the set-up presented in [4] could be reproduced with classical correlation between a

single photon and a beam of light. I will show that, with even small inaccuracies in

photon counting measurements, the statistics of De Martini’s experiment could well be

approximated with a classical correlation. This means that with even small imperfection

in measurements, quantum correlation appears to be classical.

Here I consider the photon counting for the measurements as De Martini did in their

experiment. Then I model imperfections by coarse-graining the photon number and show

that coarse-graining results in a Quantum-to-Classical transition from entanglement to

classical correlation. . This is not the first time that coarse-graining results in Quantum-

to-Classical transition. Indeed, there is a proposal that explains Quantum-to-Classical

transition for spin system in terms of coarse-grained measurements. In the next section

I will explain more about this approach and one of the successful example in this picture.

2.4 Classical-to-Quantum transition and coarse-grained measurements

It has always been of special interest to understand the transition between classical and

quantum mechanical physics. Here I will explain a viewpoint which is conceptually

different than the decoherence program [6, 7] and collapse models[33, 34].

This approach is fully quantum mechanical which means it does not modify the theory

of quantum mechanics but still explains why it is so rare to see quantum phenomena at
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the macroscopic level. More specifically, this viewpoint explains that due to limited

precision of measurements in the lab, quantum effects transit to classical effects.

Currently there are some evidences which suggest that, this lack of precision for

measurements could be a fundamental limitation in nature[35]. In this section, I will

present a recent works which exploited the idea of coarse-graining for explanation of

Quantum-to-Classical transition in spin systems. Then I will describe how I will use this

idea in my own work.

2.4.1 Coarse-graining in spin system

In [8], J. Kofler and C. Brukner showed that for a spin system, coarse-graining could

result in Quantum-to-Classical transition. They first showed that Leggett-Garg[36, 30]

inequality, which is a macroscopic version of Bell inequality, is violated for even macro-

scopic systems if resolution for measurements of Jz is perfect. Then they show that in

macroscopic level, when the resolution of measurements is not perfect, one cannot violate

the macro-realism, i.e. Leggett-Garg inequality. Furthermore, they showed that in this

case, the dynamics of this system, emerges to follow classical dynamics. Here I explain

in more detail what they show.

They consider a system of spin j with an effective Hamiltonian like:

H = ωĴx. (2.33)

This is the interaction for spin precession with frequency ω. They calculate the tem-

poral correlation function of Q = eiπ(j−Jz), which is the parity operator. The parameter

j is the spin length. They define a macroscopic system as a system with large Hilbert

space dimension which in this case is 2j + 1.

The temporal correlation is defined as:
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K = C12 + C23 + C34 − C14, (2.34)

where Cij = ⟨Q(ti)Q(tj)⟩ is the temporal correlation function of operator Q. Legget-

Garg inequality states that if macro-realism is true then:

K ≤ 2. (2.35)

They found that:

K ≈ 3 sin x

x
− sin 3x

3x
, (2.36)

where x = (2j + 1)ω∆t and ∆t is the time distance in calculation of the tempo-

ral correlation. For x=1.054 the Leggett-Garg inequality is violated. This violation is

independent of j which means no mater how macroscopic the system is, as far as the

experiment resolution for Q is perfect, the inequality is violated.

They also show that for large j, if the accuracy in the measurement is not enough to

resolve different eigenstate of jz, then the dynamics of the system is effectively similar to

the one for classical spin.

This suggests that classical dynamics could emerge from quantum dynamics when

measurements are not accurate enough and coarse-graining could result in a Quantum-

to-Classical transition. Later in 2010, Kofler et al. [35] provided some evidences that

coarse-graining could be a fundamental limitation for spin systems. Their statement is

based on the Heisenberg uncertainty principle combined with relativistic causality and

finiteness of resources to show that for the macroscopic spin system above, the precision

of measurements is fundamentally limited by laws of Nature.
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2.4.2 Coarse-graining in De Martini’s experiment

Precision for photon counting experiments is limited by current technology. Currently,

the resolution of large photon counting is limited. In this thesis, I present a result similar

to the one in [8] although there are some differences. For instance, the macroscopic system

that I consider here, is a macro-beam of light which is observable with naked eye [13],

where in [8] they define a macro-system as any system with a high dimensional Hilbert

space. The other difference is that my focus here is on emergence of classical correlation

out of quantum correlation, where in [8], they illustrated Quantum-to-Classical transition

for the dynamics of the spin. In other words, here I consider quantum correlation as a

quantum phenomena that has no classical analogue rather than the quantum dynamics

which was considered in [8]. Finally, the result is that for photon counting measurements,

coarse-graining results in a transition from quantum entanglement to classical correlation.

In the next Chapter I will explain in more detail how I study the correlation in De

Martini’s experiment, how I model the coarse-graining in photon counting measurements,

and how classical correlations can approximate quantum entanglement.
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Chapter 3

Micro-Macro Entanglement Under Equatorial Coarse-grained

Measurements

In this chapter, I will explain how micro-macro entanglement in De Martini’s experiment

may be demonstrated when measurements are perfectly precise. On the other hand, I

will show that demonstration of entanglement for De Martini’s experiment is impossible

without supplementary assumptions, if there are even small inaccuracies in the photon

counting measurements. In other words, considering the limited precision of experiments,

the entanglement between the single photon and the macro-beam of light becomes em-

pirically indistinguishable from classical correlations. This suggests that coarse-graining

may result in a Quantum-to-Classical transition.

In this chapter I focus on equatorial measurements for both the single photon and

the beam of light. That is because the demonstration in [4] was proposed for equatorial

measurements. Later in Chapter 4 I will extend this idea to general measurements.

In Section 3.1, I will explain the problem that I am considering. Then in Section 3.2,

I will describe the method I am using in this work. Finally my results are presented in

Section 3.3.

3.1 Problem

The system I am considering in this work was proposed by De Martini et al. in [4] and I

explained it in detail in Section 2.3.1. As in Figure [3.1], there are two parties involved in

this system. I am interested in the correlation between the two parties. More specifically,

I would like to know if there is entanglement between the single photon on channel A
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Figure 3.1: The figure on the left is the Schematics of De martini’s experiment with
quantum phase covariant cloner and the one on the right is the analugue set-up with
classical measure-and-prepare cloner.

and the beam of light on channel B and, if there is, whether one can demonstrate this

entanglement experimentally.

As discussed in Section 2.3.1, when there is no loss in the amplification process, there is

entanglement between the micro-macro parties[13]. However in a real experiment, there

are losses. In Section 2.3.1 I explained that when there is loss only after amplification,

there is a theoretical proof of entanglement which requires sophisticated measurements

for demonstration of entanglement . The number of photons must be counted almost

exactly and for technical reasons, this precision is limited in measurements. Now the

question is whether I can still demonstrate entanglement when there is inaccuracy in the

outcomes and measurements become coarse-grained. This leads me to the main question

of my work.

Problem 1: If photon counting measurements in De Martini’s experiment are not accu-

rate, assuming no other experimental imperfection, can one still demonstrate entangle-

ment experimentally?

Here I show that, with even small inaccuracies in the measurements , it is almost

impossible to observe the micro-macro entanglement. This could explain why it is hard

to see Schrödinger’s cat. Note that my goal here is not to do the experiment, but I

examine experimental outcomes and losses from a theoretical viewpoint.
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3.2 Method

To answer the question in Section 3.1, I propose an alternative question: How much

does the quantum entanglement in De Martini’s experiment differ from classical corre-

lation? In other words, how closely can one approximate the quantum entanglement in

De Martini’s experiment with classical correlations? If classical correlation can approxi-

mate the quantum entanglement in this system after coarse-graining, then experimental

demonstration of entanglement is impossible. For this approach, two ingredients must

be specified; first, what the classical correlation is and second, how to model the noise

and loss in the experiment.

For the classical correlation, I use the method introduced by P. Sekatski et al. in [14].

They simply replace the quantum cloner in De Martini’s experiment with a measure-

and-prepare cloner. I explained in Section 2.2.3 that as there is a measurement in the

measure-and-prepare amplification process, the entanglement between the two parties is

broken and they are only classically correlated after the amplification process.

The next step is to consider the inaccuracy in measurements. Clearly the probability

of getting each outcome is affected by getting other outcomes. That is because an outcome

after some noise or loss, may be interpreted as a different outcome. For instance, consider

the probability of detecting j photons in some basis when the state is |ψ⟩ = |j−1⟩+|j⟩+|j+1⟩√
3

.

If the measurement is perfect, the probability of getting |j⟩ is 1
3
. However if there is

noise in the measurement, the |j − 1⟩ part of the state may be measured as |j⟩. That

changes the probability of getting |j⟩. This change depends on the types of inaccuracy

in measurements. To account for these inaccuracies, I coarse-grain the measurement

outcomes. In this chapter, I stick to a simple coarse-graining method which is to average

over neighbouring probabilities. Mathematically, that is
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P̄ r(j) = P (j) + P (j + 1). (3.1)

This is the most basic way of coarse-graining the measurement outcomes. Indeed,

this is a non-overlapping binning with bins of size 2. I picked this model to show that

even for small inaccuracies in measurement, there is a classical correlation which could

approximate the micro-macro entanglement in De Martini’s experiment. In the next

chapter, I will replace this coarse-graining model with a more structured model with

larger bins but in this chapter, this model serves my purpose.

There are two bipartite systems, one with classical correlation and one with quantum

entanglement . First, I calculate the measurement outcomes for these two systems and

coarse-grain the result. Then I compare the two sets of coarse-grained outcomes. The

comparison in this chapter is an intuitive graphical comparison. I will quantify this

comparison in the next chapter.

In this section, I will explain all these steps in more detail. I will start with a

system with classical correlations. Then I will derive the probability distributions for the

measurement outcomes for the two systems and finally I will compare the coarse-grained

results.

3.2.1 Micro-Macro system with classical correlation

For the system with classical correlations, I consider a set-up similar to De Martini’s

experiment , but instead of sthe phase covariant cloner, I use a measure-and-prepare

cloner as introduced in Section 2.2.3. This means the photon in channel B is being

measured in some random basis on the equator and the cloner prepares N copies of the

measurement outcome. The measurement of the single photon on channel B breaks the

entanglement which means that the state after amplification is only classically correlated

with the single photon on channel A.
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This approach was introduced by P. Sekatski et al. in [14]. As I described the

measure-and-prepare cloner in Section 2.2.3, the state of the amplified qubit is

ρmp =
1

π

∫
dϕmp

(
P+(ϕmp) | Φϕmp⟩⟨Φϕmp | +P−(ϕmp) | Φϕmp⊥⟩⟨Φϕmp⊥ |

)
, (3.2)

where the state | Φϕmp⟩ is

| Φϕ⟩ = |N⟩ϕ =

(
a†ϕ

)N
√
N !

|0⟩. (3.3)

As already discussed in Section 2.2.3, this cloner is optimal and in the limit N → ∞, the

fidelity of the clones is 3
4
. .

I refer to the classical system as MP-cloner and to De Martini’s experiment as PC-

cloner. Now the question is whether or not MP-cloner can approximate the statistics of

PC-cloner.

3.2.2 Probability distributions

In this section I find the probability distributions for MP-cloner and PC-cloner. To com-

pare, I study possible measurements on them and compare the probability distribution

of outcomes. There are two measurements, one for the single photon on channel A and

one for the beam of light on channel B. The measurement of the single photon is a single

photon detection and determines the state of the photon in the measurement basis.The

measurement on the multi-photon state counts the number of photons in two orthogonal

mode of a given basis, e.g. j in the |R⟩ state and N − j photons in the |L⟩ state.

As the initial state is a singlet state, measurement of the single photon determines

the state of the photon on channel B before the amplification and consequently the final

macro-state. For instance, suppose the measurement basis to be {|1, 0⟩θA,ϕA , |0, 1⟩θA,ϕA}.

If the outcome of the single photon measurement is |1, 0⟩θA,ϕA , then the state on channel

B is |0, 1⟩θA,ϕA . In other words, the measurement of the single photon in channel A deter-

mines the input state for the amplification process and introduces two new parameters,
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θA and ϕA. I call these two parameters θin and ϕin as they specify the input state for

the amplification process. For equatorial measurements, θin = π/2 and there is only one

parameter, ϕin. Therefore I drop the index for θin for simplicity and only keep ϕin in my

notation.

As mentioned before, measurements on the macro-state are photon-counting mea-

surements. In order to calculate the probability distribution for measurements on the

macro-state, I calculate the macro state first. Macro qubit is different in between PC-

cloner and MP-cloner.

Macro-state for PC-cloner

As explained in Section 2.2.3 the evolution in PC-cloner corresponds to the following

Hamiltonian:

H = iχa†ha
†
v +H.c. . (3.4)

Therefore the macro-state is:

|ψPC⟩ = e−itH |ψinput⟩. (3.5)

An arbitrary single-photon input state on the equator can be parametrized as:

| ψinput⟩ = cos(ϕ)|1, 0⟩π
2
,0 + sin(ϕ)|0, 1⟩π

2
,0. (3.6)

Here I follow a similar method as in [13] to calculate the macro state. Rewriting

the Hamiltonian in the form of Eq. [2.24], breaks the time evolution operator into two

unitaries:

e−itH = e
g
2
(a†2−a2)e

g
2
(a†⊥

2−a2⊥) = UU⊥. (3.7)

If one span the Hilbert space of the input photon in {|R⟩ = |1⟩0|0⟩0⊥, |L⟩ = |0⟩0|1⟩0⊥}

basis, the amplified basis is:

{|ΦR⟩ =UU⊥|1, 0⟩0 = |A1⟩|A0⟩⊥,

|ΦL
⊥⟩ =UU⊥|0, 1⟩0 = |A0⟩|A1⟩⊥}, (3.8)
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where |A1⟩ = U |1⟩, |A0⟩ = U |0⟩, and analogously for the perpendicular modes. The

explicit form of |Φϕ
B⟩ and |Φϕ⊥

B ⟩ for an arbitrary ϕ is:

∣∣Φϕ
⟩
B

=
∞∑

i,j=0

γij

√
(1 + 2i)!(2j)!

i!j!

∣∣(2i+ 1)ϕ; (2j)ϕ⊥⟩
B

(3.9)

∣∣Φϕ⊥⟩
B

=
∞∑

i,j=0

γij

√
(1 + 2i)!(2j)!

i!j!

∣∣(2j)ϕ; (2i+ 1)ϕ⊥⟩
B
, (3.10)

with γij ≡ C−2(−Γ
2
)i Γ

2
, C ≡ cosh g, Γ ≡ tanh g, and g the non-linear gain. The two

macro-states |Φϕ
B⟩ and |Φϕ⊥

B ⟩ are orthogonal which indicates the state |Σ⟩ in Eq. [ 2.31]

is still a singlet state. For more detail see [4].

The time evolution operator is linear, which means that a general input state is a

superposition of |Φϕ
B⟩ and |Φϕ⊥

B ⟩ as:

|ψPC⟩ = e−itH(cos(ϕ)|1, 0⟩π
2
,0 + sin(ϕ)|0, 1⟩π

2
,0) = cos(ϕ)|Φϕ

B⟩+ sin(ϕ)|Φϕ⊥
B ⟩. (3.11)

This is the macro-state that I study for measurements.

Macro-state for MP-cloner

As I am using the measure-and-prepare cloner for amplification in MP-cloner , the macro

state as in Eq. [2.27] is:

ρmp =
1

π

∫
dϕmp(P

+(ϕmp) | Φϕmp⟩⟨Φϕmp | +P−(ϕmp) | Φϕmp⊥⟩⟨Φϕmp⊥ |), (3.12)

For an input state on the equator, the probabilities P± (ϕ) are:

P+ (ϕ) = cos

(
ϕ

2

)
, P− (ϕ) = sin

(
ϕ

2

)
. (3.13)

The parameter ϕ denotes the polar angle on the equator. see Figure [2.1] for more

detail.

Measurements on macro-states and final probability distributions

Now that I have the macro-state for both PC-cloner and MP-cloner , I can apply projec-

tive measurements to them and calculate the probability distribution of outcomes.
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The measurement on the macro-state involves a phase rotator, a polarizing beam

splitter and two photon counting detectors. See Figure [2.2] for more detail. After the

amplification, the phase rotator and the beam splitter separates photons into an arbitrary

orthogonal polarizations basis e.g. |Φϕ⟩, |Φϕ⊥⟩. There are two photon detectors after the

beam splitter. One of them counts the number of photons in the state |Φϕ⟩ and the other

one those in the orthogonal state |Φϕ⊥⟩.

The polarization rotator determines the basis of measurement on the macro state

and introduces two new parameters θout and ϕout. As the amplification process for both

cloner is phase covariant, the parameter ϕin does not matter and I set it to zero without

loss of generality. In fact, only the difference between ϕin and ϕout is relevant, so I merge

them together to one parameter ∆ϕ = ϕin − ϕout for this study. As I am still working

with equatorial measurements in this chapter, I choose θout =
π
2
.

The projection operator corresponding to this photon counting measurement is:

Πj = |j,N − j⟩⟨j,N − j|π
2
,∆ϕ.

Then the probability distribution for PC-cloner is:

Prpc(j, ∆ϕ) = ∥⟨Ψpc|j,N − j⟩∆ϕ∥2 . (3.14)

Similarly the probability distribution for MP-cloner is:

Prmp(j, ∆ϕ) =
1

π

∫ π

0

dϕmpP
+(ϕmp)

∥∥
ϕmp⟨N |j,N − j⟩∆ϕ

∥∥2 . (3.15)

For the explicit form of the probability distribution in Eq. [3.14,3.15] see [Appendix

A].
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Figure 3.2: Probability distributions for classical and quantum mechanically amplified
states for ∆ϕ = 0. The x-axis indicates possible out comes on detector B1 as in Figure
[2.2] and the y-axis the probability of getting that outcome.

3.3 Results

Here I compare PC-cloner with MP-cloner. I will quantify this comparison in the next

chapter.

Figure [3.2] shows the probability distribution for the two macro-states when ∆ϕ = 0.

For perfect measurements, it is possible to distinguish these two macro-states, as

the macro-state for PC-cloner has zero probability for even terms, while MP-cloner has

non-zero probabilities.

On the other hand, from a realistic viewpoint, as measurement are not perfect, the

probability distribution in a real experiment would be coarse-grained. As I explained in

Section 3.2, for coarse-graining I start with the simple non-overlapping binning of Eq.

[3.1]. That is:

P̄ r(j) = P (j) + P (j + 1). (3.16)

Figure [3.3] shows the coarse-grained version of Figure [3.2]. If photon counting
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Figure 3.3: Coarse-Grained probability distributions. The x-axis indicates possible out-
comes after coarse-graining and the y-axis indicates the probability of getting coarse–
grained outcomes.

detectors cannot resolve neighbouring terms, i.e. |j,N − j⟩ from |j + 1, N − j − 1⟩, then

the final probability distribution looks like Figure [3.3].

Clearly, for even the most basic coarse-graining model that I considered here, the

quantum entanglement in De Martini’s experiment is not easily distinguishable from the

classical correlation in my separable micro-macro proposal. This is the core idea of my

work, that when measurement outcomes are coarse-grained, the quantum correlation can

be well approximated classically. Note that I took ∆ϕ = 0 but the result here holds for

any arbitrary ∆ϕ. For more detail, see Section A.3.

3.4 Summary

For the demonstration of entanglement that De Martini et al. presented in [4], even

small inaccuracies in measurements make it almost impossible to distinguish quantum

entanglement from classical correlations. In other words, if measurements are not per-

fect, the statistics of De Martini’s experiment can be approximated with a classically
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correlated system. This is an example that illustrates that coarse-graining can result in

the emergence of classical physics from quantum effects.

In the next chapter, I will extend my study to general measurements on Bloch sphere

for both the single photon and the beam of light. There I will generalize the two pa-

rameters θin and θout. I will modify the measure-and-prepare cloner in the classical

micro-macro proposal for comparison with general measurements. I will also present a

more general model for coarse-graining the measurement outcomes. Finally, I will quan-

tify the difference between measurements on PC-cloner and the new MP-cloner. This

will lead me to conclude that it is difficult to observe the micro-macro entanglement in

De Martini’s experiment when measurements are not exact, which is the central message

of this thesis.
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Chapter 4

Micro-Macro Entanglement Under General Coarse-grained

Measurements

In Chapter 3, I considered De Martini’s experiment with their equatorial measurements.

The question I will be considering within this chapter is whether or not there is any basis

for photon counting measurement that distinguishes the micro-macro entanglement from

a classical correlation.

I follow a similar method as in Chapter 3. Concerning the proposals, there are

2 changes. First, measurements for both PC-cloner and MP-cloner is now extended to

measurements in an arbitrary basis on Bloch sphere. This generalizes the two parameters

θin and θout and changes the action of polarization rotators. The second change concerns

the MP-cloner only. As I will explain in Section 4.1.1, the primary measure-and-prepare

cloner should be modified to fit generalized measurements.

There are also some changes in mathematical details of coarse-graining and the com-

parison between two proposals. Here I will present a more general model for coarse-

graining. I also quantify the concept of comparison with a statistical distance. Finally I

will show that the statistical distance between PC-cloner and MP-cloner goes to zero as

the precision of measurements decreases.

The structure of this chapter is as follows: in the first section, I will explain why MP-

cloner I used in Chapter 3 is not good enough for measurements in all bases. Then in

Section 4.1.2 I will calculate the probability distribution for measurements in an arbitrary

basis. Finally in Section 4.2 I will compare the new class of MP-cloner with PC-cloner

for measurements in an arbitrary basis and present my results.
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4.1 Method

The method is similar to what I did in the previous chapter. Here I will go through what

is different. In the first part of this section, I will explain why the primary MP-cloner

proposal does not fit for general measurement and propose a new MP-cloner. The rest

is to calculate the probability distribution and to compare them. In Section 4.1.3 I will

present the new structured coarse-graining model and finally in Section 4.1.4 I introduce

a mathematical measure to quantify the difference between PC-cloner and MP-cloner.

4.1.1 New measure-and-prepare cloner

Although the measure-and-prepare cloner I exploited in previous chapter works very

well when measurements are equatorial, measurements on the pole of Bloch spherewould

differentiate it from PC-cloner. That is because the state amplified with the phase

covariant cloner is highly squeezed for measurements in Jz, introduced in Eq. [2.3]. To

see that, consider the amplification Hamiltonian in Eq. [2.23]:

H = iχ(
(
a†ϕ

)2
+
(
a†ϕ⊥

)2
) +H.c. ,

Clearly it generates the same number of photons in both |H⟩ and |V ⟩ polarizations

and the difference between the number of photons in |H⟩ and |V ⟩ for the input state is

close to one. When the cloner amplifies it to N ≈ 104 photons, the difference is still 1

which means that the state is highly squeezed.

On the other hand, the primary measure-and-prepare cloner involves production of

|N⟩ϕ on the equator. One can expand the state in the |H⟩ and |V ⟩ basis. In that basis,

the state has terms like |104, 0⟩h,v which is not squeezed at all.

That means to differentiate the two cloners, one can simply do measurements on

the pole of Bloch sphere namely in {|H⟩, |V ⟩}. Note that this difference could not be

demonstrated by equatorial measurements.
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The tricky point here is that, although my primary MP-cloner is distinguishable

from PC-cloner , it still does not mean that correlation in PC-cloner could not be

approximated classically. In other words, one may still find an other classical system that

works better and it could approximate the correlation of PC-cloner for measurements in

an arbitrary basis. That is what I will cover in this section.

I propose a new MP-cloner which is to approximate PC-cloner for photon counting

measurements in any arbitrary basis. Based on the problem I mentioned above, a natural

choice is to confine the measure-and-prepare cloner to generate squeezed states, states

with small ∆Jz. That means instead of |N⟩ϕ =
∑

i ci(ϕ)|i, N − i⟩h,v I only keep squeezed

terms of the decomposition which in the extreme case is:

|Φϕ⟩ =
eiϕ|n, n+ 1⟩+ e−iϕ|n+ 1, n⟩√

2
, (4.1)

where n = N−1
2

. This state is highly squeezed but it has the problem that equatorial mea-

surements distinguishes it from PC-cloner. Therefore, as a compromise, I can keep more

terms which are less squeezed but this improves MP-cloner for equatorial measurements.

I take the following state for MP-cloner:

|Φϕ⟩ =
1√

2(t+ 1)

t∑
j=0

(eiϕ(2i+1)|n− i, n+ i+ 1⟩+ e−iϕ(2i+1)|n+ i+ 1, n− i⟩), (4.2)

where t indicates how many less squeezed terms I am keeping. In fact t = 0 is the

most squeezed case and as t increases, the state becomes less squeezed. This introduces

a new parameter, t.

4.1.2 Probability distribution for measurements in an arbitrary basis

The next step is to calculate the probability distribution corresponding to measurement

outcomes. I follow the exact same procedure as I did in Section 3.2.2 with a different

state and different measurements. The probability for MP-cloner is:

Prmp(j, θout, θin, ∆ϕ) =
1

π

∫ π

0

dϕmpP
+(ϕmp, θin)

∥∥⟨Φϕmp|j,N − j⟩θout,∆ϕ
∥∥2 . (4.3)
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Clearly more parameters are involved in this probability distribution. That is because

θout, θin ̸= π/2 any more.

Similarly, the probability distribution for the measurement in an arbitrary basis on

macro-state of PC-cloner would change to:

Prpc(j, θout, θin, ∆ϕ) = ∥⟨Ψpc(θin)|j,N − j⟩θout,∆ϕ∥
2 . (4.4)

For the explicit form of probability distribution see [Appendix B].

4.1.3 Coarse-graining Model

The next step is to specify the coarse-graining method. I model the coarse-graining as a

symmetric overlapping binning with the following form:

P̄ r(j) =
Pr(j − σ) + ...+ Pr(j) + ...+ Pr(j + σ)

2σ + 1
, (4.5)

where the size of the bin is 2σ + 1. The parameter σ should be determined by the

amount of error that there exists in outcomes, i.e. if there is too much error that means

the inaccuracy in outcomes is large and each probability is affected by a larger bin,

therefore σ should be larger.

I have tried several different approaches for modelling coarse-graining and I strongly

expect that the results do not depend on the coarse-graining method.

4.1.4 Measure for comparison

In order to quantify the distance between the two types of correlation, I use the Man-

hattan norm which is defined as:

D =
∑
j

|Prpc(j)− Prmp(j)| . (4.6)

This is a global measure of statistical difference between the two probability distri-

butions. For more information see [37].
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4.2 Results

The result of this section is summarized in Figure [4.1]. It shows how the difference

changes as a function of the relative bin size, σ/N . As expected, the more coarse-

graining, the less distant they become. This implies that it would be more difficult to

distinguish the micro-macro entanglement from classical correlations.

For larger coarse-graining the distance become smaller and smaller. Note that D is

a function of all angles, as was discussed before. This means, one should make sure

that this behaviours hold for all different values of parameters. I did the same graph for

different values of parameters and results are similar. See [Appendix B] for more details.

There still might be a caveat here. In my simulation, the largest value of N is 91

which is fairly small in comparison to N ≃ 104 in the experiment. One might object

that although the difference between classical and quantum mechanical result is small

after coarse-graining for small values of N , this could be false when N is large. Figure

[4.1] fills this caveat. This graphs shows that as the parameter N increases, not only the

difference has the same behaviour, but it also decreases faster in terms of the relative

error, σ
N
.

This means that for the real experiment which has N ≃ 104, for a very small inaccu-

racy, the distance between classical and quantum mechanical outcome vanishes.

Figure [4.2] gives a clear picture for larger values of σ. When σ grows, the distance

becomes almost independent of N . On the other hand, for large values of N , the same σ

corresponds to a smaller relative error. In other words, large σ guarantees that distance

is small and does not depend on N . Therefore, for relatively small errors, the two types

of correlations become indistinguishable.

Figure [4.2] and Figure [4.1] are for θin = π
2
, θout =

π
12
,∆ϕ = 0. I found similar graphs

for other values of parameters. See [Appendix B]
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4.3 Summary

I showed that the statistical difference between De Martini’s experiment and my sepa-

rable micro-macro proposal becomes negligible for even small amount of inaccuracy in

photon counting measurements. Furthermore I showed that this result holds for photon

counting measurements in any arbitrary basis. This demonstrates why it is difficult to

observe the micro-macro entanglement in De Martini’s experiment.
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Chapter 5

Discussion and Conclusion

In this thesis, I studied De Martini’s experiment for generating entanglement between a

macroscopic and a microscopic object. I proposed a system with a purely classical correla-

tion and I showed that if measurement outcomes are coarse-grained, statistical properties

of De Martini’s experiment looks like statistical properties of my classical proposal. This

is a Quantum-to-Classical transition from the micro-macro entanglement to classical

correlation that occurs only due to the coarse-graining of measurement outcomes.

Note that this is not in contrast to decoherence program as one still needs coherent

evolution to see quantum effects. In other words, not only a coherent evolution is re-

quired to see quantum phenomena, but also precise measurements are needed. My result

states that even if the evolution is perfectly coherent but measurements are not accurate,

quantum entanglement vanishes and appears as a classical correlation.

I would like to mention that this is not the first time that Quantum-to-Classical

transition under coarse-grained measurements has been studied. This approach was

previously exploited in [8] to show a Quantum-to-Classical transition for spin systems.

In that paper, Kofler et al. showed that the time evolution of a spin particles looks

exactly like a classical spin if measurements of Sz operator are coarse-grained. The

required resolution in order to distinguish non-classicality should be ∆m .
√
j where j

is the total angular momentum of the spin system. A similar result was reported before

in [38]. It states that for a specific class of states, all Bell inequalities will be satisfied if:

∆m≫
√
j. (5.1)

Here I showed that for the specific case of De Martini’s experiment, a resolution of
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∆m ≈ 1 is required to see the non-classicality. This suggests that for some states, a

higher resolution is required to demonstrate the non-classicality.

What I proved here is limited to De Martini’s experiment and it does not mean

that any micro-macro entanglement could be approximated with classical correlation

after coarse-graining. In other words, although I proved that Schrödinger’s cat that De

Martini proposed is difficult to demonstrate, there might still exist a micro-macro entan-

glement that has no classical analogue and could be demonstrated. Therefore, a natural

way to extend upon my work is to study other proposals for generating micro-macro

entanglement e.g. opto-mechanical qubits[2]. The long-term goal would be to either

prove that any micro-macro entanglement transits to classical correlation under the re-

striction of coarse-grained measurements or to find a feasible micro-macro entanglement

that could not be approximated classically after coarse-graining.

Another direction to build up on my project is to find the maximum sufficient reso-

lution to see non-classicality. This may depend on the state under study. Then it would

be interesting to understand what properties of the state affect the sufficient resolution

and how they affect it.
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Appendix A

Equatorial probability distributions

In this Appendix, I present the explicit form of the probability distribution for equatorial

measurements for PC-cloner and MP-cloner. I will also that as in Figure [3.3], for all

values of parameter ∆ϕ, the probability distribution for both classical and quantum

correlation look the same after coarse-graining. In part A I present the probability

distribution for PC-cloner, and in part B the probability distribution for MP-cloner.

A.1 Probability distribution for PC-cloner

I will start with the ∆ϕ = 0 and π. Explicit probability distributions for these two cases

are:

Prpc(j, 0) =
j!(n− j)!(
j
2
!n−j−1

2
!
)2

Prpc(j, π) =
t!(n− j)!(
j−1
2
!n−j

2
!
)2 , (A.1)

where n = N−1
2

. The general probability distribution in terms Prpc(j, 0) and Prpc(j, π)

is:

Prpc(j,∆ϕ) =Cos2(
∆ϕ

2
)Prpc(j, 0) + Sin2(

∆ϕ

2
)Prpc(j, π)

+2Sin(
∆ϕ

2
)Cos(

∆ϕ

2
)
√
Prpc(j, 0)Prpc(j, π) (A.2)
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A.2 Probability distribution for PC-cloner

It is similar to the previous section. I start with the Prmp(j, 0) and Prmp(j, 0) which are:

Prmp(j, 0) =
2 ∗ n!

π(n− j)!j!
Beta (j + 1/2, n− j + 3/2)

Prmp(j, π) =
2 ∗ n!

π(n− j)!j!
Beta (j + 3/2, n− j + 1/2) , (A.3)

where Beta(a, b) = Γ(a)Γ(b)
Γ(a+b)

gives the Euler beta function. Then the general probability

distribution is:

Prmp(j,∆ϕ) =Cos2(
∆ϕ

2
)Prmp(j, 0) + Sin2(

∆ϕ

2
)Prmp(j, π)

+2Sin(
∆ϕ

2
)Cos(

∆ϕ

2
)
√
Prmp(j, 0)Prmp(j, π) (A.4)

Both Prpc(j,∆ϕ) and Prmp(j,∆ϕ) are the same functions of Pr(j,∆ϕ = 0) and

Prmp(j,∆ϕ = π). Therefore, showing that under coarse-grained photon counting mea-

surements, {Prpc(j, 0), P rpc(j, π)} looks like {Prmp(j, 0), P rmp(j, π)}, is sufficient to prove

that for any ∆ϕ, after coarse-graining the two probability distributions look the same.

A.3 Measurements with non-zero ∆ϕ

In Figure [3.3], I showed that for equatorial measurements with ∆ϕ = 0, if the photon

counting outcomes are coarse-grained, the two graphs match each other. Figure [A.1]

shows the same result for ∆ϕ = π. As I explained above, this figure extends my statement

to any arbitrary ∆ϕ.
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Figure A.1: Coarse-grained probability distribution for ∆ϕ = π with equatorial mea-
surements
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Appendix B

General probability distributions

In this Appendix, I present the explicit form of the probability distribution for general

measurements for PC-cloner and MP-cloner. I will also show that for all angles the

statistical distance between PC-cloner and MP-clonervanishes. In part A I present the

probability distribution for PC-cloner and in part B the probability distribution for

MP-cloner.

B.1 Probability distribution for PC-cloner

I first define following functions:

fp (θin,∆ϕ) =
Cos

(
θin
2

)
ei∗∆ϕ + Sin (θin/2) e

−i∗∆ϕ
√
2

,

cfp (θin,∆ϕ) =
Cos

(
θin
2

)
e−i∗∆ϕ + Sin

(
θin
2

)
ei∗∆ϕ

√
2

,

fm (θin,∆ϕ) = −i
Cos

(
θin
2

)
ei∗∆ϕ − Sin

(
θin
2

)
e−i∗∆ϕ

√
2

,

cfm (θin,∆ϕ) = i
Cos

(
θin
2

)
e−i∗∆ϕ − Sin

(
θin
2

)
e+i∗∆ϕ

√
2

. (B.1)

A (j, θ out, θin,∆ϕ) =
√
j!(2n+ 1− j)!Cos

(
θout
2

− π

4

)2n+1−j

∗ Sin

(
θout
2

− π

4

)j
j∑

p1=0

2∗n+1−j∑
p2=0

(
(p1 + p2)!(2 ∗ n+ 1− p1 − p2)!

(j − p1)!p1!(2n+ 1− j − p2)!p2!
Cos

(
θout

2
-
π

4

)p1−p2
∗ Sin

(
θout

2
-
π

4

)p2−p1
∗(−i)p2−p1 ∗

(
fp (θin,∆ϕ) ∗ δ1,Mod(p1+p2,2)(

p1+p2−1
2

)
!
(
2n+1−p1−p2

2

)
!
+

fm (θin,∆ϕ) ∗ δ0,Mod(p1+p2,2)(
p1+p2

2

)
!
(
2n−p1−p2

2

)
!

))
.

(B.2)
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Then the probability distribution is:

Prpc (j, θ out, θin,∆ϕ) =| A (j, θ out, θin,∆ϕ) |2 . (B.3)

B.2 Probability distribution for MP-cloner

Similarly, I first define two following functions:

mpA(j, t, θout) = Re
(√

(2n+1−j)!j!(n− s)!(n+ s+ 1)!(−1)n−s

Min(j,n−s)∑
p1=Max(0,j−n−s−1)

(−1)p1

(j − p1)!p1!

Cos
(
θout
2

)2p1+n−j+s+1
Sin
(
θout
2

)n−s+j−2p1

(n+ s− j + p1 + 1)!(n− s− p1)!

 ,

mpB(j, t, θout) = Re
(√

(2n+1−j)!j!(n− s)!(n+ s+ 1)!(−1)n+s+1

Min(j,n+s+1)∑
p1=Max(0,j+s−n)

(−1)p1

(j − p1)!p1!

Cos
(
θout
2

)2p1+n−j−s Sin ( θout
2

)n+s+1+j−2p1

(n− s− j + p1)!(n+ s+ 1− p1)!

 (B.4)

Then the probability distribution is:

Prmp(j, s, θout, θin,∆ϕ) =

1

2(ts+ 1)

(
ts∑

i1=0

ts∑
i2=0

(
e2i∗∆ϕ(i1−i2)

2
mpA (j, i1, θout)mpA (j, i2, θout)

(Cos (2α) (δi1,i2+1 + δi1,i2−1) + 2δi1,i2)+

e−2i∗∆ϕ(i1−i2)

2
mpB (j, i1, θout)mpB (j, i2, θout)

(Cos (2α) (δi1,i2+1 + δi1,i2−1) + 2δi1,i2))+

Cos (2α) Cos (2∆ϕ)mpA (j, 0, θout)mpB (j, 0, θout)) (B.5)

where α= θin
2
− π

4
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B.3 Graphs for general measurements

This section is to show that the result of Section 4.2 holds for all different values of

parameters. Table B.1 shows how the difference between PC-cloner and MP-cloner

changes for different values of parameters, θout, θin, ∆ϕ

Table B.1: Statistical distance between PC-cloner and

MP-cloner as a function of error and bin size for different

angles.

Distance vs. relative error Distance vs. the size of the bin

Continued on Next Page. . .
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Table B.1 – Continued

Distance vs. relative error Distance vs. the size of the bin



58


