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We investigate the quantum dynamics of a periodically kicked nonlinear spin system
which exhibits regular and chaotic dynamics in the classical regime. The quantum behav-
iour is characterised by the evolving eigenvalue distributions for the angular momentum
components and the features, including recurrences in the quantum means and the pres-
ence of quantum tunneling, are discussed. We employ the evolution operator eigenvalue
distribution to prove that coherent quantum tunneling occurs between the fixed points
in the regular regions of phase space. Continual quantum measurement is included in
the model: the classical dynamics are unchanged but a destruction of coherences occurs
in the quantum system. Recurrences in the means are destroyed and quantum tunneling

is suppressed by measurement, a manifestation of the quantum Zeno effect.

1. Introduction

In a series of recent papers the dynamics of a spin
system which, in its classical form, exhibits both regu-
lar and chaotic dynamics has been investigated [1-5].
The model describes the dynamics of an angular mo-
mentum vector J moving, with J? conservation, in
a linear precessional motion about one direction and
subjected to impulsive nonlinear precessional kicks
about an orthogonal direction. Quantum mechani-
cally the system is described in terms of a finite dimen-
sional Hilbert space of dimension 2j+ 1 where j(j+1)
is the J? eigenvalue, and thus no truncation scheme
is required. This is one of the most desirable aspects
of the model. The Hamiltonian was chosen so as to
allow for classically chaotic behaviour as j — .
Quantum mechanically the model is completely
integrable in the sense that the dynamics is completely
determined by the diagonalisation of a 2j+ 1 unitary
matrix which determines the evolution of the initial
quantum state. As the spectrum of the evolution ma-
trix is discrete all quantum expectation values behave
quasiperiodically [2]. The initial states chosen for the
Quantum analyses are the spin coherent states. As

* Present address: Department of Physics, University of Waikato,
Hamilton, New Zealand

these states are minimum uncertainty states well fo-
calised on the sphere as j — oo they provide an excel-
lent set of states for investigating the dynamics in
the semiclassical limit (j — c0).

Classically the dynamics may be reduced to an
effective two-dimensional nonlinear map of points on
the unit sphere. The model exhibits a fascinating set
of symmetries which greatly facilitate the search for
fixed points and the nature of periodic orbits. In the
parameter range of interest to us, hyperbolic fixed
points and elliptic fixed points of period one, two
and four coexist with regions of chaotic behaviour.

Haake et al. [2] showed that if the initial state
was chosen to be localised in the vicinity of the period
one fixed point, i.e. in the region of regular dynamics,
the mean of the y-component of angular momentum
initially exhibited damped oscillations. This corre-
sponds classically to the shearing of an initial density
of points about the period one fixed point, and for
short times ~Inj the classical and quantum moments
were indistinguishable. For longer times, (~j), how-
ever, the quantum means recur to values arbitrarily
close to the initial value. In fact in the regular region
these recurrences occur as well-defined * revivals.” of
the initial oscillations separated by quiescent periods
during which the quantum mean remains close to
the classical steady state value. The picture is quite
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different for an initial state localised in the chaotic
region of the classical map. Recurrences of the quan-
tum means still occur but are now irregular and do
not exhibit the well-defined collapse and revival se-
quence of the regular region. Thus recurrences, either
regular or irregular, are a characteristic quantum fea-
ture of this system and represent a dramatic departure
of the quantum dynamics from that expected classi-
cally. Collapse and revival sequences are characteris-
tic of the quantum dynamics of a number of nonlinear
systems [6]. Haake etal. conclude that “classical
chaos can therefore live in quantum expectation
values as a transient only ™.

In more recent work Grobe and Haake [4, 5] dis-
cuss another characteristic quantum feature of this
model which is manifest on much larger time scales
and can be described as coherent quantum tunneling
between fixed points. We believe this to be the first
identification of such a phenomenon. This effect is
completely analgous to the coherent oscillations be-
tween the two wells of a bistable potential for a state
initially localised in one well. However the structure
in the case of the dynamics of the kicked top is com-
plicated by the fact that it is two dimensional, the
motion around each “well” is highly nonlinear and
the “wells” or fixed points are separated by regions
of chaoticity.

Our first purpose in this paper is to give a more
complete characterisation of this complicated tunnel-
ing process and indeed to provide conclusive evidence
that it can be correctly viewed as coherent tunneling
between fixed points. We extend the discussion of
Grobe et al. which concerned only the period two
fixed point to include the period one fixed point and
a regular point near the period one fixed point.

As indicated above the model of Haake and co-
workers exhibits two characteristic quantum features,
recurrences and coherent tunneling, which cause a
departure of the quantum and classical dynamics. Our
second purpose i1s to determine the effect on these
quantum features of continual observation of the sys-
tem. A theory to describe the dynamics of a system
subject to continual (repeated) observation of one of
the system variables (say J, in our case) has been in
place for a number of years [7-9] and we will use
these results here. Essentially the effect of observation
is accounted for by including in the evolution of the
system an irreversible diffusive term proportional to
one parameter I'. This parameter is itself defined as
the quotient of the bandwidth of the continual obser-
vation and the accuracy of the observation.

Grobe and Haake [4, 5] have considered the ef-
fects of weak dissipation on the quantum features of
this model and as we will show the effect of continual
observation is similar. The measurement does not

modify the classical dynamics but alters the quantum
behaviour. In particular quantum tunneling is sup-
pressed more effectively as j increases.

We also consider the so-called “quantum Zeno
effect” in the model. This refers to the considerable
disruption of the free dynamics of a system with a
discrete spectrum subject to combined repeated ob-
servation on a time scale much faster than the time
scales characterising the reversible dynamics.

In section two we briefly describe in more detail
the classical and quantum features of Haake’s model.
We discuss the features of quantum recurrence and,
more extensively, quantum tunneling in Sect. 3. As
we will show the picture of quantum tunneling is quite
complicated, but we provide conclusive evidence that
the phenomenon is correctly identified. In section four
we introduce the theory of continual observation and
determine its effect on the quantum features of our
nonlinear model.

2. The kicked nonlinear top

The states of a classical spinning top are represented
by the angular momentum variable J in three-dimen-
sional space. The dynamic evolution of the top corre-
sponds to the motion of the J vectors in the phase
space. The top which we consider undergoes a nonlin-
ear precession around the z-axis and is interrupted
by periodic linear impulses, or kicks, around the y-
axis. The classical Hamiltonian is

P
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+pJ, Z o(t—n1) (2.1)

for t the duration between kicks and j=(J-J)!'? a
constant. The phase space is restricted to the sphere
of radius j and the angular momentum vector can
be parametrized in polar coordinates as

J=(jsinfcos ¢, jsinfsin g, jcosh). (2.2)

The constants x and p in (2.1} are chosen to produce

the desired balance of regular and chaotic dynamics.
We investigate the stroboscopic evolution of the

top at the times immediately preceding the kicks. The

dynamics are identical to the stroboscopic evolution

of the model investigated by Haake et al. [1-3]

K
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at times immediately subsequent to the J? kick. The
model (2.1) is preferred here as a continuous measure-
ment of J, is included in Sect. 4 which is concurrent
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Fig. 1. The stroboscopic phase space dynamics of the classical
kicked nonlinear top for p=n/2 and x = 3. The trajectories are con-
strained to the unit sphere. The northern hemisphere (Y 20) and
the southern hemisphere (Y <0) are projected onto the X ~Z plane
and a right-handed orientation of the X, Y, Z axes is maintained.
Seventy-five initial points in the northern hemisphere and the 75
R,-image of the initial points have been randomly selected. The
stroboscopic trajectories of these 150 points have been plotted, each
for a duration of 133 kicks

with the nonlinear precession about the z-axis. A de-
tailed analysis of the nonlinear rotator without kicks,
which corresponds to the case where k=0, has been
performed [10] and provides insight into the dynam-
ics of the top between kicks.

We review the classical dynamics, as given by

Haake et al. [2], for the special case that p=%. The

classical stroboscopic dynamics of the normalized an-
gular momentum variable X=J/j are determined
from the recursive formula

> ZcoskX + YsinkX
X'=F(X)=|—-ZsinkX + YcoskX|. 2.4)
~-X

The map possesses the two important symmetries

FR,=R.FR, and FR,=R,F; (2.5)
here R, and R, define rotations of n about the x
and y axes, respectively. Thus, F is invariant under
R, and F? is invariant under R, .

Henceforth x =3 is assumed. The dynamics of the
top are shown in Fig. 1 where the two disks are pro-
Jections of the unit sphere onto the X —Z plane and
a right-handed orientation of the axes is maintained.
The points on the sphere are the values of X for nu-
merous trajectories of finite duration. The initial point
is then mapped by R, onto the other hemisphere and
the trajectory is plotted. Elliptic fixed points are evi-
dent in the northern hemisphere (Y 20) and a south-
ern two-cycle is apparent. Furthermore an equatorial
four-cycle and a large chaotic region exist. There are
unstable fixed points at the poles (Y= + 1) which are
not apparent in Fig. 1.
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The Hamiltonian for the quantum top is given
by (2.1) where J is the angular momentum operator
such that (h=1)

(5 J1=i ) ek (2.6)
k

The Casimir operator J-J commutes with H and jG
+1) is the eigenvalue for j an integer. For given j
the Hilbert space is (2j + 1)-dimensional and the orth-
onormal J-eigenstates {{jm): —j<mg j}, such that
J.ljm) =m|jm), are the standard basis.

The quantum analog to the iterative map (2.4)
is the evolution operator

- —iX iz
U—exp{ 12j.lz}exp{ 12Jy}. 2.7

The orthonormal eigenstates of U, denoted by
{l¢m>: —j=m<j}, which satisfy

Ul¢m> =exp(i )| $m>, (2.8)

provide a convenient basis for studying the strobo-
scopic evolution. An arbitrary state

W= % (82 <halv 29

evolves to

U lY) =3 exp(in $m) | $m) {Pml )

Just prior to the kick at time nt. The analogues of
the classical symmetries (2.5) are

(2.10)

UR,=R,UR, and UR,=R,U (2.11)
where R, and R, are unitary operators defining rota-
tions of = about the x and y axes, respectively. As
R, commutes with U and RZ=1, the states {|$,>}
are even or odd parity under R,:

R,[¢x>=11¢n>.

As tr(R,)=(—1y and as the trace is invariant under
a change of basis it follows that, for j even, there
are j+1 even eigenstates and j odd states while, for
J odd, there are j even eigenstates of U and j+ 1 odd
states. It follows from (2.11) that

(2.12)

UR,|¢a>)= +exp(idm)(R,Ip2)). (2.13)
For the odd states,
Ri@n)>=*|¢, +1); (2.19)
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Fig. 2. A phasor diagram of the eigenphases for Jj=18. Each eigen-
vector of U, |¢,.D, is associated with an eigenvalue exp(i ¢,,), which
is plotted as a unit vector. If the eigenvector is even (odd) the unit
vector is a solid (dash) line. Some eigenphases are degenerate. For
each odd eigenphase ¢, there exists an odd eigenphase ¢ +n
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Fig.3. The quantum mean (X for the initial coherent state |F>
which has a mean at an elliptic fixed point

each odd state |¢. > is paired with an odd state [om
+n> with eigenvalue —e'¢~. Each odd pair is even
or odd under R,. For the even states either o>
and R,|¢, > are doubly degenerate or

LN AES J[-A0%

that is, linearly dependent.

The eigenphase distribution for j=18 is shown
in a phasor diagram (Fig. 2). Even and odd parity
eigenstates under R, are distinguished by solid and
dash lines, respectively, and the angle between the
vector and the real axis is the eigenphase ¢,. The
pairing of odd states which are separated by a phase
of m and the broad distribution of eigenphases for
J=18 are evident in Fig. 2.

(2.15)

As an initial condition we follow Haake et al. [2]
and take the top to be in a coherent state 1/, 6, 0>
[11]. These states, which are minimum uncertainty
states with respect to the angular momentum opera-
tors, are generated from the Dicke state |jj>

lJ: 6, 0> =R(8, 9} jj> (2.16)
by the unitary rotation operator
R(O,(p)=cxp{—iH[J,sin(p—JyCOS(p]}. (2.17

The mean of X=1J/j is

<J» 6, 01X}, 8, 9> =(sin 0 cos ¢, sin § sin @, cos ),
(2.18)

In Sect. 3 the quantum features of the model are dis-
cussed. For the state

|F>=|j=18,0=225,¢=0.63), (2.19)

which has a mean at an elliptic fixed point, long time-
scale oscillations in the mean (X are evident (Fig. 3).
As

Z=-U'XU, (2.20)

the mean {Z) also exhibits oscillations. Such oscilla-
tions are nonclassical, as are the quasiperiodic recur-
rences in {Y ), which are not shown here [2].

3. Quantum features

The tunneling of a state through a classically impen-
etrable barrier is a purely quantum phenomenon and
has generated much interest [12]. Of particular con-
cern is the case of two finite regions, or wells, of equal
energy separated by a finite potential barrier. The
state oscillates between the two wells via coherent
tunneling. The bistable well illustrates the case of co-
herent quantum tunneling, The Hamiltonian is given
by

H=p*+(q+a)*(q—a)? (3.0

for p the momentum, g the position and + a are
the positions of the potential energy lower bounds.
The Hamiltonian is invariant under the parity trans-
formation g — —g; thus, the energy eigenstates are
either even or odd with respect to q.

The ground state |¢,) and the first excited state
¥ 1> have even and odd parity, respectively. The sim-
plest pair of states localized in each well are given
by symmetric and antisymmetric combinations of
I¥o> and |, ). In the Schrédinger picture these states
evolve as

W+ (0>

=272 [exp{iEot/h} o) £ exp{iE, t/h} [/, ]
=2—l/zeim[eierlwo>ie‘iE‘ll/,l)] (32)




for Q the mean frequency

Q=[E,+E ]2k (3.3)
and ¢ the half-frequency difference

e=[E,—E,]/2h. (34)

After a time t=n/2¢ a system prepared in a state
[¥ ) evolves to [ _); ie. a state localized in one
well has tunneled through the barrier to be localized
in the other well. The distribution |{(g|¢ . J? at ¢
=n/2¢ is the mirror image of |{q|y , >|* at t=0.

The state oscillates coherently between the two
wells with a tunneling period 7/2 . At half the tunnel-
ing period the state formed is a coherent superposi-
tion of the two localised states. The position distribu-
tion at this time is double-peaked while the momen-
tum distribution exhibits interference fringes. A local-
ized state which consists of more than two energy-
eigenstates produces a more complex tunneling
behaviour. If the eigenphases are commensurate, the
state recurs over a finite time.

The example of the bistable well provides insight
for analyzing the kicked nonlinear top. The strobo-
scopic evolution precludes the use of energy eigen-
states; however, the U-eigenstates discussed in Sect. 2
can be used to study the evolution. A similar symme-
try argument can be used to estimate the tunneling
time as the U-cigenstates are partitioned into even
and odd parity states under R, just as the bistable
well states are partitioned under g-parity.

" Coherent tunneling between fixed points is sug-
gested by the sinusoidal modulation of ¢(X in Fig. 3.
The long time scale oscillation observed here is simi-
lar to the two-cycle oscillation in the southern hemi-
sphere observed by Grobe and Haake [4] and is re-
viewed below. As an illustration of tunneling we con-
sider the bistable well for which the distribution
[<ql¥>|* tunnels from one well to the other in the
bistable well and fringe patterns arise in the conjugate
distribution |(p|y>|>. The analogue to the g- and
p-distributions for the top are the probability distri-
bution for the components of angular momentum in
the direction of the unit vector n=(sin#8 cos @, sin
6 sin ¢, cos §). That is, the probability distribution for
the operator J,=J-n and the state |y is laGmY)|?
where |jm), is an eigenstate of J, with eigenvalue
m. The important eigenvalue probability distributions
of the kicked nonlinear top correspond to the opera-
tors J, and

Jog=2"12 004 4] (3.6)

for J, the component of J in a direction perpendicular
to the line Z= — X and J, is the component parallel
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Fig. 5. The J, (solid line) and J, (dotted line) eigenvalue distribution
for the state U'S°|F)

to Z= —X. If tunneling does occur between the fixed
points on the line Z= — X, then the distribution for
Jy i1s analogous to the g-distribution in the double
well and J, is analogous to the p-distribution.

The J, and J, | eigenvalue distributions for the
state | F) are shown in Fig. 4. The means of the distri-
butions are localized about the fixed point (3.5). The
variances in the distributions satisfy the minimum un-
certainty equalities for the SU(2) algebra. The distri-
butions for U"|F), where n is small compared to the
tunneling time, distorts the J, and J,  distributions,
but the distributions remain localized about the fixed
point. The distortion of the distributions leads to the
small fluctuations observed for the time-dependent
means in Fig. 3. However, the distributions remain
localised about the fixed point for the short time scale.

The Jy , eigenvalue distributions for the state
U'*°{F are shown in Fig. 5. For n=150, (X>=0
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Fig. 6. The J) (solid line) and J, (dotted line) eigenvalue distribution
for the superposition state | F ™)
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Fig. 7. The J) (solid line) and J, (dash line) eigenvalue distribution
for the state U3°°|F)

and the bimodal J, eigenvalue distribution and the
interference fringes in the J, distribution in Fig. S sug-
gests that a superposition of the two fixed point states,
|F> and R,|F), has formed. This is confirmed by
an inspection of the same eigenvalue distributions for
the superposition state '

IF—>52-—1/2 [eix/4|F>_e—-ix/4Ry|F>]

shown in Fig. 6. Moreover the eigenvalue distribution
for J, displays “interference fringes” for both
U'3°|F) (Fig. 5) and the superposition state (Fig. 6).
This behaviour strongly suggests that quantum tun-
neling is occurring.

The J; , eigenvalue distributions for U3 |F are
shown in Fig. 7. The distributions are now localized
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Fig. 8. The probability distribution 1{@m|F>|? vs the eigenphase Do
Solid (dash) lines correspond to the probabilities of even (odd) eigen-
vectors

about the fixed point at —X=Z>0. We conclude
that at this time the state has completely tunneled
to the opposite fixed point. The J, eigenvalue distribu-
tions for U'3°|F) and U3°°|F) are not shown but
are localised in the northern hemisphere; thus the
tunneling is occurring between the two fixed points.

To further elucidate the nature of tunneling we
now consider the probability disttibution for the state
|F) in the U-eigenbasis. The probability associated
with the eigenstate |, is given by [(¢,|F>|%. The
probability distribution is plotted as a phasor dia-
gram by plotting the probabilities as vectors for which
the magnitude is |(¢,|F)|? and the phase of the ei-
genvector |¢,,> is ¢,,. Thus a probability distribution
of the various eigenphases is constructed. The proba-
bility vectors of even states under R, rotations are
represented as solid lines and dash lines are used to
represent the probability vectors for odd states under
R, rotations.

The probability distribution for |F) is presented
in Fig. 8. The probability distribution in Fig. 8 is
identical to the distribution for both R,|F) and
U"|F) as well. The state |F) is dominated by one
odd vector and two even vectors. The two even vec-
tors have a degenerate eigenphase and the probabili-
ties of the two even eigenvectors are equal for |F).
The magnitude of the even vector in Fig. 8 is equal
to the probability of each even vector. The eigen-
phases of the dominant odd eigenvector and the de-
generate even eigenvector pair are nearly degenerate.

The state | ¢,,) is an eigenstate of U. More general-
ly the state exp(if,)|¢,,> is an eigenstate of U with
eigenphase ¢,,. For each eigenstate | $,,> we have the
freedom to choose 6,. For our analysis of |F) we
assume that 6, is chosen such that (¢, |F) is real
and nonnegative for all m and designate these U-ei-
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Fig. 9a and b. The complex matrix elements (¢, |U™|F) for a
n=150 and b n=300
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Fig. 10. The probability distribution [{¢,,|R,|F>)?vs the eigen-
phase ¢,,

genstates as | ¢,, ). Thus, the matrix elements for the
rotated coherent state R,|F), whose mean is at the
other period one fixed point, are also real. However,
the matrix element {¢,|R,|F) is nonnegative for
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|¢m)r even under an R, rotation and is nonpositive
for |¢,.>F odd. For the superposition state |F ), de-
fined in (3.6), the matrix elements are given by the
imaginary quantity

F<¢;1F_>=iF<¢;|F>

for even matrix elements and by the nonnegative real
quantity

FOm |F ) =pbm | F)

for odd matrix elements. The orientation of even and
odd matrix elements for |F), |F~) and R |F) are
important for the following analysis of tunneling.

In Fig. 9 the matrix elements (¢, |U"|F) are
shown for n=150 and n=300. The predominant odd
vector is separated from the predominant even pair
by n/2 and by n for n=300. If the matrix elements
{¢m|F~) and {¢,|R,|F) were plotted, one would
observe that even vectors are coaligned and odd vec-
tors are coaligned; the separation between the even
and odd vectors is /2 and r, respectively. Thus, the
similarity between U'%°|F) and |F~) and the simi-
larity between U3°°|F) and R,|F) is clear. Further-
more it is clear that the small phase difference between
the eigenphase of the dominant odd eigenstate and
the dominant doubly degenerate even eigenstate will
determine the tunneling frequency. If this phase differ-
ence is 2¢, the tunneling period is N=mn/2¢. The
smaller contributing matrix elements {¢,lU"|F)
are responsible for the differences between the Jy
eigenvalue distributions of U"| F) and a superposition
of |F) and R, |F).

The U-eigenstate probability distribution pro-
vides a valuable tool for determining the evolution
of a state. For example the probability distribution
for the coherent state R, |F), which has a mean at
a southern two-cycle, is presented in Fig. 10. The
dominant even and odd eigenphases are separated
by 2¢ in Fig. 8; in Fig. 10 we observe that the domi-
nant even and odd eigenphases for R |F) are sepa-
rated by n+2e. In addition to the tunneling period
of n/2 ¢, the state undergoes the two-cycle behaviour

U?**'[R, |FY]=R,[U*"*'R,|F)] (3.7a)
and
U?"[R,|F)]=R,[U*"|F)] (3.7b)

as required by (2.11).
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Fig. 11a and b. The quantum mean a {X) for the initial coherent
state | P) and b the probability distribution |{¢m|PY|? VS ¢,

In Fig. 11a we view the mean {X) for the state
[P>=|j=18,0=2.10,9=094) (3.8)

which has a mean in the stable region near an elliptic
fixed point. The mean {Z) can be determined from
<X by the relation (2.20) and is therefore not shown.
The oscillations in the means are evidence of tunnel-
ing. In Fig. 11b the U-eigenphase probability distri-
bution for the state | P) is shown. The state is domi-
nated by the same odd U-eigenstate and the doubly
degenerate even eigenstates which dominate the state
| F>. Hence the tunneling period for |P) is the same
as for |F). The state |P) is dominated by a second
trio of vectors, which produce a smaller but significant
effect on the evolution of the state. The second trio
of vectors consists of an odd state and a nearly degen-
erate pair of even states. The separation of the odd
eigenphase from the nearly degenerate even eigen-
phase determines the timescale for the secondary
sinusoidal modulation in (X). The classical point or-
bits the fixed point and the state oscillates around
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Fig. 12 a and b. The quantum mean a {X for the initial coherent
state |C) and b the probability distribution [{@n[C)|* VS Pm

U"|F). The mean <Y ), which is not shown, oscillates
around 0.5 and undergoes collapses and revivals [2]
similar to that observed in the Jaynes-Cummings
model [6] and in the nonlinear oscillator model [13].
In the classical model the recurrences are rapidly
damped for an initial distribution centred at the peri-
odic point [2].
The coherent state

[Cy=|j=18,0=1.64,p=1.50) 39

has a mean in the chaotic region. The mean <{X)
is presented in Fig. 12a and tunneling is absent. Fur-
thermore, as demonstrated by Haake et al. [2], there
are recurrences in the mean for a state in the chaotic
region, but the recurrences are aperiodic (in contrast
to the quasiperiodic recurrences for a state in the reg-
ular region). Recurrences are not observed for the
classical model for {(Y)>. Moreover (Y ) does not de-
viate greatly from 0.5, whereas a decay of (Y occurs
in the classical model. The U-eigenvalue distribution
in Fig. 12b reveals that the state has broadband exci-



tation. The aperiodic recurrences are similar to that
observed for the Jaynes-Cummings state inversion
which is subjected to thermal excitation [6]. Partial
rephasings of the dominate eigenvectors produce re-
currences, but the aperiodic nature is due to the domi-
nance of incommensurate eigenphases.

The discussion here has been restricted to the case
that j=18, k=3 and p=3%. Different values of j pro-
duce different behaviour including a more complex,
although coherent, tunneling. The dependency of the
model on j and « is currently being explored.

4. The effect of measurement

We now turn to a treatment of the continual measure-
ment of J,. Our method is similar to that used in
[8]. To model a continual measurement of J., we con-
sider a sequence of instantaneous imperfect measure-
ments of accuracy 4 repeated every T seconds. The
continual measurement is then defined by a limiting
procedure, in which T is made small and 4 is made
large such that the product 4T is kept constant. This
limiting procedure seems to reproduce results of more
realistic continual measurement models where the
output of the apparatus contains the signal together
with added white noise [14]. In that case 4 appears
as the total noise added by the apparatus while T
is defined by the inverse response bandwidth of the
apparatus. Our approach will be to determine the
evolution of the system between kicks including con-
tinual measurement of J, as described above. The evo-
lution is then suspended as a kick is applied, and
the evolution recommences following the kick.

The measurement is modelled by coupling the sys-
tem to a set of apparatuses between kicks. This cou-
pling is described by the Hamiltonian

Hsa=g Y J.Y,8(t—rT) (.1)

where the sum is over as many apparatuses as are
used and g is a coupling constant. The operator Y,
is one of a pair of canonically conjugate operators
(X,, Y,) for the r'* apparatus such that

[X,, Y, ]1=ihs,,. 4.2)

Simultaneous with the coupling a perfect readout of
X, is made and the result X, is recorded. Each appara-
tus is used only once and discarded. In this way we
model the more realistic situation in which a single
apparatus is always coupled to the system, but for
which correlations in the apparatus are rapidly
damped. The apparatus thus contains no information
on the history of the recordings.
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The apparatus states are assumed to be minimum
uncertainty states |y, > with wave functions

¥ =R2n4)" ' exp(—x2/4 4). (4.3)

After the interaction with the apparatus the state of

the system is transformed from the state P
=p,(ORIY,> WY, | to
p'(t)=exp(—igJ; Y;/h) p(t)exp(ig J, Y,/h) (4.42a)

and the probability of obtaining a result x, is given
by

P(xn t) = trS,A(p’(t) lxr> <xr |)

where we trace over both the system and the appara-
tus. Performing the trace over the apparatus we ob-
tain

(4.4b)

P(x,, )=tr,(ps(t) Y'(x,) Y(x,)) 4.5)
where

2
Y(x,)=(Q2n4)" exp(—(x'—;j'p—). (4.6)
This is a distribution with mean
x.()=g<JL(t)> 4.7
and variance
(Ax,(1))>=A4+g*(4J,(t)? (4.8)

where the variance of J, is

(AL, =<(LO)*> = L) (4.9)

In what follows we set the amplication g to unity
without loss of generality.

The parameter 4 is the resolution of the appara-
tus. If 4 is too large then no information is obtained
regarding the system state: a readout of the physical
quantity X, simply follows the statistics of the pre-
pared apparatus state. Conversely, when 4 — 0 we ob-
tain a perfect readout of J,. In this section we are
interested in the large j limit. If we took this limit
with 4 held fixed, we would be considering measure-
ment models which were increasingly accurate: the
relative width of the spectrum resolved by 4 is smaller
and smaller. To define a fixed class of measurement
models we need to scale 4 with j. We choose the
scaling
A=gj 4.10)

with ¢ fixed independently of j. This is expected to
define a ‘least disturbing’ class of measurements. To
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see this let us consider a system which is prepared
in the lowest eigenstate of J,. A perfect measurement
of J,(4 — 0) then completely destroys all the informa-
tion contained in the initial preparation but, of course,
maximises the information obtained regarding J,.
What we require is a 4 just large enough to resolve
the statistics of J;, but not so large as to destroy
all the information in the initial state. This is achieved
if A is roughly the variance of the J, distribution in
the initial state. Using the uncertainty relation for
angular momentum this gives 4 ~ .

Equation (4.5) determines the statistics of the read-
out. We need now to consider how the system state
changes conditioned on a particular result X,. The
new system state is given by
P ()=(P(x,, ) ™' Y(x,) p(t) Y'(x,). (4.11)
In this paper we are actually interested in the uncon-
ditional change in the system state subject to mea-

surement. This is given by summing over all the parti-
tions defined in (4.11):

p'M= [ dx Y(x)p(®) Y'(x,).

- x

4.12)

Following reference [8] we can now obtain an evolu-
tion equation for the unconditional state between
kicks. The evolution equation is

dp LK o r

syt — 4.1
o= —igs U2 Al =5 o)) (@.13)
where

F=@eT) " 4.14)

The constant T is the time between successive mea-
surements and we have taken ¢ - o0 and T— 0 such
that the product o T is constant. In a continual mea-
surement model of this sort, only the product ¢T
is significant. This measurement parameter I” defines
a particular class of measurements independent of j.
The double commutator in (4.13) completely spe-
cifies the effect of continual measurement on the sys-
tem evolution between kicks. The effect of the double
commutator term on the first-order moments is

d K r

— =——kLL+ Ly —— ]
dt<Jx> 2j< L+ Jy > T D (4.15a)
and

d K r

—_— =— _—— J

dt<1y> 27 L+ 2j<,> (4.15b)

while all moments of J, and J? remain unaffected by
measurements. In the semiclassical limit (j —o0) the
effect of the measurement on the first-order moments
vanishes. Thus we do not need to modify the classical
map to take account of the continual measurement
of J,. In contrast the dissipative mechanism of Grobe
and Haake [4] does modify the classical map.

An important consequence of the double commu-
tator term appears when we consider the evolution
of the off-diagonal elements in the J,-eigenstate basis.
The solution of (4.13) is

an(t) =exp{ - [ix(nZ_mZ)_*_ r(n_m)Z] [/2_]} an(o)
(4.16)

where p,.(1)={jn|p()|jm). The effect of measure-
ment is to diagonalise the system in the basis of the
measured quantity J,. In the language of measure-
ment theory the J,-eigenstates form the pointer basis
[15].

As discussed in Sect. 3, quantum tunneling is due
to the coherence between different eigenstates of the
unitary evolution operator. It is thus instructive to
consider the effect of measurement in the eigenstate
basis of the evolution operator. Let us define the com-
plex constant

d
7= =g, <Ol p (D1 Bmd k=0 (4.17)

and the real part of (4.17) is the coherence damping
rate. By inserting the master equation (4.13) into (4.17)
we obtain the expression

2jy"m=—ix{ @l [J7, p(O)] | br>

As a particular example of coherence decay we con-
sider the superposition state

p(0)=31(1¢m> +100)bml +<{nl) (4.19)

and the real part of the parameter y"™ is given by

Re(y"™)
r
=5)— {2<Jzz> —<¢n|‘lzl¢n> <¢mlJz l¢m>

—(@ul L 180D +{ul L1 Dm>) Re((Pnl ;| o)

—Re({(¢,1 L1 6m>")} (4.20)




where the mean of J2 is
=T (p(0)J})
=} [KGul JZ @) + {Pml| I | >
+2Re({@al L7 | m)]-
Grobe and Haake [4] show that in a region of global

chaos (k2 6) the J,-eigenbasis matrix elements of the
evolution operator eigenstate | @, is

(4.21)

Gmlga>=@j+1)" 2 exp(ivn) (4.22)
where the y,, are uniformly distributed in the interval
0=y, <2n The phase randomness suggests that the
terms in (4.20) without phase information dominate
the sum. Thus, the coherence damping rate is approxi-
mated by

r
Re(?”"‘)ETJ. {$@ul J2 |90 + <Pl I | $m>
=24 @ul | $d (Dl [ D)}

r j
=4 2 Kulik> 1 [Pl il> P (k=17 (4.23)

kiI=-j
Inserting expression (4.22) into (4.23) produces

Re(y""‘);l I‘j(l +l) (4.24)
6 j

which is similar to the result obtained by Grobe and
Haake [4] for the dissipative model in the globally
chaotic case. We see that coherence decay between
eigenstates of the unitary evolution operator decay
more rapidly as j—oo. Although the result is valid
for k26 when global chaos exists in the classical re-
gime, we expect that, for a given parameter I', quan-
tum coherences will be more rapidly damped as j in-
creases for k <6 also.

In (4.23) it is apparent that damping is greatest
when the distribution |{jm|¢,>|* has broad support
on m; in that case large values contribute to the sum.
This is indeed the case in the chaotic region (x=6)
where the distribution is uniform. In the regular re-
gion (k<2) [{¢.ljk)>|* is more narrowly supported
on k and we thus expect the sum (4.23) to be smaller.
This leads us to conjecture that measurement-induced
coherence decay will proceed more rapidly in chaotic
systems than in regular systems. This requires further
investigation.

The effect of measurement on quantum tunneling
is particularly interesting as it provides a good exam-
ple of the quantum Zeno effect. It has been suggested
for some time that a system with a discrete spectrum
which is subjected to continual observation will have
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Fig. 13a and b. The quantum mean {X) for the initial coherent
state | F) for a I'=0.00072 and b I'=0.00144

dynamics quite different from free evolution. In the
extreme case of arbitrarily accurate, instantaneous
measurements, the free dynamics can be entirely fro-
zen [9].

In [9] a two-level system is subjected to continual
observation and the effects on the Rabi oscillations
between the two levels are analysed. When the mea-
surement parameter I exceeds the Rabi frequency,
the rate of change of the system from the initial state
decreases as I increases. That is, the Rabi oscillations
are overdamped. The oscillation in a two-level system
is an approximation to the tunneling in a bistable
well. The overdamping of Rabi oscillations and of
tunneling in the bistable well are dynamical manifes-
tations of the quantum Zeno effect.

Exactly the same behaviour is evident in the tun-
neling between fixed points for the kicked nonlinear
top considered here. In Fig. 13 we consider the fixed
point tunneling for j= 18 in the underdamped regime
(I'=0.00072) and near critical damping (I" =0.00144).
Thus, the tunneling oscillations are damped by the
effects of measurement. If no measurement occurs
then the state has tunneled to the other fixed point
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Fig. 14. The J; (solid line) and J, (dashed line) eigenvalue distribu-
tion for the state | F) at the time 300 ¢ for I'=0.00144
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Fig.15. The quantum mean {X ) for the initial coherent state | j= 35,
0=2.25, ¢=0.63) which has a mean at a fixed point, for '=0
(solid line) and I'=0.00072 (dashed line)

at n=300, as seen in Fig. 7. However, in Fig. 14, we
observe that, for I' chosen at the critical damping
level the state is now localized at the two fixed points
in the J eigenvalue distribution. Interference fringes
are not present in the J, eigenvalue distribution: the
coherence which is a signature of a superposition state
has been destroyed and the state at n=300 is now
similar to a mixture of the coherent states at the fixed
points. The coherence has been destroyed and the
dynamics is essentially frozen. Measurement destroys
the coherences between the dominant odd state and
the pair of dominant even eigenstates. The decay of
coherence between the even and odd states determines
the damping time of the oscillations in Fig. 13.

In Fig. 15 the effect of measurement on tunneling
is presented. We observe that coherent tunneling be-
tween the fixed points for j=35 is similar to the tun-

- It 3
1

4 F—- 4 +
o 100 200 300 400 500 600 700

Fig. 16a and b. The quantum mean (Y) for the initial states a
{P) and b |C) for I'=0.0036 and j=18

neling which occurs for j=18. For some values of
j the tunneling oscillations are complicated by addi-
tional dominant eigenphases, but here we choose the
relatively simple cases of j=18 and j=35 to illustrate
the semiclassical limit of measurement. However,
when continual measurement is incorporated into the
dynamics and the measurement parameter
I'=0.00072 (which corresponds to the underdamped
tunneling case for j=18), overdamping occurs for
j=35. As we expect, the Zeno effect acts to suppress
the quantum tunneling in the semiclassical limit
(j = ). Grobe and Haake [4] observe a similar phe-
nomenon: the two-cycle tunneling is damped in the
dissipative model.

Measurement destroys the coherent tunneling
which is a quantum feature of the dynamics. The
other important quantum feature, recurrences, is also
affected by continual measurement. The recurrences
of the means for an initial distribution in the classical
kicked nonlinear top are rapidly damped. The recur-
rences of the quantum means, however, continue ad
infinitum, but the inclusion of a continual
J,-measurement into the dynamics damps the recur-
rences in both the regular region (Fig. 16a) and the
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Fig. 17a and b. The quantum mean (¥ for the state 1j=35,0=2.10,
¢=0.94> which has a mean at a periodic point, for a I'=0 and
b r'=0.0036

chaotic region (Fig. 16b). Moreover, for I' =0.0036,
which damps the recurrences in the regular region
prior to the first revival, the recurrences in the regular
and chaotic regions are damped over the same time
scale.

The damping of coherent tunneling is interpreted
as a destruction of the coherences between the domi-
nant odd state and the even eigenstate pair for the
coherent state with a mean at the fixed point. The
rapid decay of tunneling is readily observed. However,
the analysis of quantum recurrences and measure-
ment-induced coherence decay is more complicated.
Quantum recurrences are a consequence of the coher-
ences of a multitude of vectors. As we observed in
Fig. 16, measurement destroys the recurrences.

In the semiclassical limit we expect that all pair-
wise damping constants will be very large from (4.24).
However the semiclassical limit is difficult to illustrate
by comparing cases for two different j values as the
eigenphase spectrum and the damping constants are
very sensitive to the value of j. In Fig. 17a we observe
the behaviour of (Y) for the initial coherent state
with a mean in the periodic region of phase space.
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The oscillations resemble collapses and revivals, but
a complete dephasing, which is necessary for a col-
lapse, does not occur. Whereas for j=18 collapses
occur, the eigenphase spacing for j =35 prevents com-
plete collapses from occurring. Nevertheless the inclu-
sion of continual measurement destroys the recur-
rences as shown in Fig. 17b except for a persistent
oscillatory component which eventually damps out.
The persistence is a consequence of a small damping
constant for that particular coherence. It is difficuit
to observe if recurrences are damped more rapidly
by comparing Figs. 16 and 17, due to the complicated
dependence of the eigenphase spectrum and the co-
herence damping rates on j for k=3, but we expect
all coherence decays to become very rapid in the large
Jjlimit. We are investigating the j-dependence of recur-
rences and of damping rates and we will present our
results in a future publication.

5. Conclusions

The quantisation of the kicked nonlinear top dynam-
ics, which are classically chaotic, results in such non-
classical features as coherent tunneling between fixed
points and recurrences in the means. A continual
measurement scheme which provides a ‘least disturb-
ing’ class of measurements has been incorporated into
the dynamics. The classical dynamics are unchanged
by the continual measurement, but, in the semiclassi-
cal limit, coherent tunneling is suppressed and recur-
rences in the mean are expected to be suppressed also.
Continual measurement of the quantum system acts
to suppress the quantum feature.

We have concentrated on the cases where j=18
and j=35 which provide relatively simple behaviour,
but a careful analysis of the j-dependence of the model
is essential. We are currently pursuing this analysis.
Furthermore, coherences between the U-eigenvectors
are destroyed by the act of measurement. A better
understanding of the destruction of the coherences,
and the effects on tunneling and recurrences, would
be obtained by computing the pairwise damping con-
stants for the U-eigenvectors.
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This work has been supported by the Australian Research Council.
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