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Abstract

Many quantum information processing tasks require the consumption of various types of

informational resource. Entanglement is a well-studied example of this type of resource;

frameness is another. Both types of resource may be quantified through the use of real-

valued functions known as monotones, a collection of which can fully characterize the

resourcefulness of a state. A complete characterization of the entanglement or frame-

ness of even a finite-dimensional quantum state might require an infinite collection of

monotones, despite finiteness of the descriptions of the states in question.

We propose a new framework of relative monotones. A relative monotone quantifies

the resourcefulness of a quantum state relative to another quantum state. We give an

example of the efficacy of relative monotones by characterizing a simple type of frameness

with a single relative monotone. This type of frameness is unlikely to yield to analysis

with ‘absolute’ monotones.
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Chapter 1

Introduction: quantifying resourcefulness

Many quantum information processing tasks require consumable resources. My thesis

studies the quantification of such quantum informational resources. In particular, I study

entanglement and frameness. The resourcefulness of entanglement is well-known, and

many famous quantum information processing tasks explicitly require the consumption

of entanglement [1, 2]. The resource theory of frameness has been developed more recently

for the theoretical analysis of certain practical implementations of quantum informational

protocols [3]. These resources can be quantified through the use of real-valued functions

known as monotones.

This first chapter of my thesis provides a non-technical introduction to both entangle-

ment and frameness. The second chapter presents these concepts in a technical fashion

and, in particular, defines entanglement monotones and frameness monotones. In the

third chapter, I present necessary conditions on states that can ‘catalyze’ a transfor-

mation of entangled states [4]. These conditions are expressed as bounds on the values

certain entanglement monotones can take for a catalyst state.

The characterization of resourcefulness with a collection of monotones can be difficult,

and may be unnecessarily prolix even if accomplished: sometimes infinitely many mono-

tones are required to characterize a resource. I give a new framework for the quantification

of resourcefulness in chapter four. This new framework quantifies the resourcefulness of a

state with respect to another state. Such ‘relative monotones’ are sometimes more easily

found than ‘absolute’ monotones, as I show for a simple type of frameness, and a single

relative monotone always suffices to characterize the ability to transform resources.
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1.1 Informational resources

Information is ideally transmitted through a noiseless communication channel [5]. As

the communication channel becomes noisier, the cost of transmission rises because some

method of error correction will be required to correctly interpret the message. For exam-

ple, if the message is encoded in a bit string, there may be a small probability p of a single

bit-flip error. Such an error can be partially corrected by implementing the repetition

code [6]: replace each bit 0 with the string 000 and each bit 1 with the string 111. The

message is then decoded by ‘majority vote’, where the repeated bit is chosen if there is

disagreement between the three bits representing one message bit. The probability of

error in the decoded message is approximately p2 for each message bit, thereby reducing

the error quadratically by increasing the size of the transmission.

The important point is that the degradation of information can be ameliorated at

the cost of a resource resource, namely message length. The goal of resource theory is to

identify an appropriate cost function for a resource and ultimately to minimize this cost.

This goal remains unchanged when considering information in a quantum framework

rather than classical, though many new subtleties arise.

There are a wide variety of consumable informational resources; transmission size is

just one example. Shared secret random bits are another informational resources and are

required for many cryptographic protocols [6]. Another example, which appears basic,

is the establishment of physical states corresponding to logical 0 and to logical 1. These

states may correspond to voltage pulses V1 and V2 transmitted over a wire, with V1

representing 0 and V2 representing 1 or vice versa. Each party agrees on such a choice,

which can be accomplished by having the sender transmit a 0 before transmitting her

message so each recipient knows which voltage corresponds to logical 0. Thus one bit is

consumed to initialize communication.
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Historically, information theory has focussed on the consumption of resources to com-

municate information through a noisy communication channel [5]. The subject has re-

cently been enriched by studying the transmission of quantum information through a

noisy quantum communication channel. Such transmission is required for the implemen-

tation of quantum cryptographic protocols [7] and of distributed quantum computing [8].

There are a variety of resources for alleviating the noise present in such channels, many

of which are analogous to resources for classical communication.

My thesis focusses on quantifying two types of resources useful for quantum commu-

nication. Entanglement can provide shared secret random bits between separate parties,

and tokens of a reference frame can initialize communication. In section 1.2 I will intro-

duce entanglement and discuss its ability to serve as a quantum informational resource.

I will discuss the ‘frameness’ of a quantum state in section 1.3 as a quantity indicating

the capacity of that state to transmit information about a choice of reference frame. The

quantification of resourcefulness is discussed in section 1.4, wherein I also present my

results.

1.2 Entanglement

Entanglement is a correlation that can exist between separate quantum systems that is

stronger than that which can exist between separate classical systems. Entanglement

is important because it can enable critical tasks such as the transmission of quantum

information through classical communication channels [1]. In order to understand en-

tanglement, we need to appreciate the nature of composite physical systems and the

correlations that can exist between them.

A physical system is a portion of the universe selected for analysis. The state of a

physical system is the best description of the properties of that system based on existing
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knowledge. Most simply, the state could be expressed as a string of bits (informationally

speaking). The state of a system can also be described by a probability distribution of bit

strings or by a quantum state representing superpositions of bit strings. The knowledge

of a system is obtained by performing measurements on that system. A measurement is

a physical process that distinguishes between different possible states of a system. The

outcome of such a process provides information about the properties of the system.

A physical system may comprise several disjoint subsystems. In this case, the system

is called ‘composite’. The state of a composite physical system comprising independent

disjoint subsystems is described by the concatenating the states of the subsystems. The

distinction between dependent and independent subsystems can be discerned by perform-

ing measurements on the subsystems and searching for correlations in the measurement

outcomes. Correlated systems are then described by joint states that are not merely

concatenated states of subsystems. If the states of the subsystems are correlated (clas-

sically), the state of the composite system can be described as a joint distribution of

states. Entangled systems cannot be described by such joint distributions.

A composite system is used for information processing and communication, either

classical or quantum. Information processing is achieved by applying operations to the

system. If the state of a system is given by a bit string, for example, we could transform

the string to a different one, measure part of the string, or add or remove bits from

the string. ‘Local’ operations are those performed on a single subsystem, while nonlocal

operations could be performed jointly on more than one subsystem.

Operations can be performed sequentially. After performing an operation with sev-

eral possible outcomes, such as measuring part of a system, the subsequent operations

(even on different systems) could be conditioned on knowledge of this outcome. This

is an example of a sequence of local operations with classical communication (LOCC).

LOCC corresponds to an important class of sequential operations wherein the result of
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an operation dictates the choice of subsequent operations. Classically, all sequences of

operations can be expressed as LOCC sequences. This is not true for quantum informa-

tion: correlations can exist between measurement results that could not be created via

LOCC sequences. An ‘entangled’ state is one that could not have been prepared by an

LOCC sequence of operations acting on initially independent subsystems.

These entangled states are resources for the communication of quantum information.

Consider the simple case of two systems holding one quantum bit (a ‘qubit’ [9]) of in-

formation; that is, each system has a subsystem whose state is a superposition of logical

0 and logical 1 (which may be represented by a unit vector in C2 if the state is ‘pure’).

If the systems are never measured to be in the joint state 01 or 10, the systems are

maximally correlated. Consider a light switch connected to a lightbulb: the state of the

light switch (on or off) is perfectly correlated with the state of the bulb (on or off). If the

same local measurement produces the same outcome when performed on either system,

the systems are maximally entangled. Such correlation between measurement outcomes

is central to many quantum information tasks such as quantum teleportation [1].

In its simplest form, the teleportation protocol allows a sender (whom the literature

usually calls ‘Alice’) to transmit one unknown qubit to a receiver (‘Bob’) through an

LOCC sequence of operations. Alice and Bob are assumed to share one maximally

entangled pair of qubits. Alice performs a local measurement on her system, which

contains two qubits: her half of the entangled pair and the unknown qubit she wishes

to transmit. This measurement has four possible outcomes. Alice informs Bob of the

outcome by transmitting at least two bits through a classical channel, whereupon Bob

performs one of four operations to his system depending on the message he received from

Alice. After performing this operation, Bob possesses the unknown qubit whereas Alice

does not. In fact, Alice gains no information about the state [10]. The unknown qubit

has been teleported.
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If Alice and Bob share entanglement not in the form of maximally entangled qubits,

they may wish to ascertain how many such pairs of qubits can be produced using only

LOCC sequences of operations. More generally, Alice and Bob may wish to ascertain

their ability to transform some given shared entangled state to another one. Nielsen’s

theorem [11] characterizes the ability to transform ‘pure’ entangled states under LOCC

sequences. This characterization is made with reference to a collection of quantifiers of

entanglement known as Vidal’s monotones [12].

The quantification of entanglement can be subtle because entanglement can be ‘bor-

rowed’. In a phenomenon known as entanglement catalysis [4], an entangled state (called

an ‘entanglement catalyst’) can be used to enact a previously prohibited state transfor-

mation under LOCC restrictions yet be returned intact at the end of the transformation.

The entanglement of the catalyst has thus been used without being consumed, because

the transformation was not possible without the catalyst.

1.3 Frameness

The frameness of a state is a resource for the communication of quantum information

and has become important for the analysis of certain practical implementations of quan-

tum information processing tasks [3]. A state with frameness has the ability to convey

information about a choice of reference frame. Some discussion of reference frames is

appropriate before explaining frameness.

A reference frame may be a choice between which of voltage pulses V1 and V2 should

represent 0 or 1. A more complex example is the choice of a Cartesian co-ordinate frame

for a laboratory. A choice of reference frame is often important because measurements

are usually made with respect to this choice. The choice of V1 = 0 or V2 = 0 is relatively

simple because only one bit is required to specify that choice. The additional resource
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cost for transmitting quantum information in the absence of a shared choice of Cartesian

co-ordinate frame is considerably larger.

Alleviating the lack of a shared reference frame is important if a transmitted message

is to be interpreted correctly. If Alice does not communicate her choice of V1 = 0 or

V2 = 0 to Bob, Bob simply measures a sequence of voltage pulses V1 and V2 and cannot

distinguish between the true message and the binary complement of that message. If

Alice has sent the string V1V2V1, for example, the message is equally likely to be 010

as 101. Thus Bob’s lack of knowledge of a reference frame has effectively degraded the

information he has received.

In quantum formalism, the lack of a reference frame can be treated as a form of

decoherence [13]. Decoherence can be regarded as correlation with an inaccessible en-

vironment, and in this case the environment is a reference system. Without access to

the reference system of Alice, Bob averages over all possible choices of reference frame to

describe his state. Such a state cannot exhibit coherence between quantum states whose

form is independent of the choice of reference frame. This lack of coherence can prevent

some practical implementations of quantum information processing protocols [3].

Reference frame information can be communicated by transmitting states with frame-

ness. The frameness of the state of a physical system is defined as its capacity for storing

a choice of reference frame [14]. For example, the axis of rotation of a spinning isotropic

ball stores a choice of direction in physical space, but the rotational symmetry of the

ball prevents it from storing any frame information when it is not spinning. Its capacity

for storing frame information is thus dependent on its state. This principle is also true

within a quantum information framework. If Alice provides Bob with a state that carries

information about her choice of a reference frame, Bob gains some ability to interpret

messages encoded with respect to that reference frame.

The literature often assumes that the collection of possible reference frame choices is
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related by a group of operations. The possible choices of spatial direction, for example,

may be related by the group of 3×3 orthogonal matrices with determinant one. Suppose

Alice has an isotropic ball at rest (so its state carries no frameness), and she wishes to

encode a choice of direction ‘up’ in space. She may do so by spinning the ball counter-

clockwise about an axis aligned with her choice of up. The new state contains frame

information so her operation increases the frameness of the state of the ball and does so

by treating one direction preferentially. The preference for direction is evident: if Alice

alters her choice of ‘up’, she has enacted a different operation on the rest state since the

outcome is different. Mathematically, Alice’s preparation is altered by conjugating with

an element of the group of transitions between reference frame choices. Conversely, an

operation that is not altered by conjugation is one that cannot increase frameness.

1.4 The value of a resource

Up to this point, we have considered states that serve as resources so that tasks that

are impossible within the restricted set of operations become achievable. For example,

teleportation allows entanglement to be consumed to send quantum states down classical

channels. This could not have been achieved through LOCC sequences of operations

in the absence of entanglement. Similarly, a state with frameness is a resource when

restricted to operations invariant under change of reference frame.

In principle, the resourcefulness of a state cannot increase under application of a

restricted class of operations. If such operations could transform state ρ into state σ,

ρ must be considered at least as resourceful as σ for any task achievable with these

operations. Thus the state ρ is more entangled than σ when σ can be produced from ρ

by means of LOCC sequences of operations, and ρ has more frameness when ρ can be

converted to σ through frame-invariant operations.
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Entanglement can be quantified by entanglement monotones. An entanglement mono-

tone f assigns a real number (usually greater than or equal to zero) to each state ρ with

the property that f(ρ) ≥ f (ρ�) if ρ� can be obtained from ρ via LOCC sequences of oper-

ations. This is now regarded as the sole requirement of an entanglement monotone [15],

though further axioms were once required [16]. Frameness can be quantified similarly:

a frameness monotone is a real-valued function of a state whose value is non-increasing

when frame-invariant operations are applied to the state.

The collection of state mappings achievable with LOCC sequences of operations can

be characterized by producing a collection of entanglement monotones known as Vidal’s

monotones. This collection {fk}, k an index, has the property that fk(ρ) ≥ fk (ρ�) for

every k if and only if there is an LOCC sequence of operations transforming ρ into ρ� [11].

This result is known as Nielsen’s theorem. Strictly speaking, Nielsen’s theorem only holds

for a restricted class of states known as ‘pure’ states. I make this distinction clearer in

the next chapter.

Similar theorems have been produced for other collections of operations. Entangle-

ment catalysis, for example, can be viewed as a resource theory with a larger collection of

allowed sequences of operations called eLOCC, for entanglement-assisted LOCC. Turgut’s

theorem [17] characterizes pure-state transformations under eLOCC restrictions by pro-

viding a collection of entanglement monotones whose monotonic behaviour for states ρ

and ρ� is both necessary and sufficient for the existence of an eLOCC sequence of oper-

ations transforming ρ to ρ�. Finding such results for frameness theories is a subject of

current research [18].
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1.5 Results

My thesis presents new results for quantifying entanglement and frameness. The first

result is a procedure for bounding the entanglement of any state that catalyzes an LOCC-

restricted transformation. These bounds are expressed in terms of the generalized con-

currence monotones [19]. As an undergraduate researcher, I discovered the techniques

used to provide criteria on the entanglement of a catalyst state. As a graduate stu-

dent, I found an example of where the bound is nontrivial and prepared this work for

publication [20].

My main result, presented as Theorem 4.2, fully characterizes the frameness of a pure

state in the case that the group relating possible frame choices is finite and cyclic. This

result can be expressed in a new framework of ‘relative monotones’. Rather than defining

a collection of monotones to express the value of a resource, we present a single function

that characterizes the relative frameness of one state with respect to another.

The framework of relative monotones subsumes the common framework of mono-

tones. Precedent exists for rethinking this framework: the definition of an entanglement

monotone has previously been revised due to inadequacies discovered in the original def-

inition [15, 21]. In the final chapter of my thesis, I discuss the outlook for the ‘relative’

approach to resource quantification.
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Chapter 2

The formalism of quantum informational resource theories

In this chapter, I present much of the terminology that will be used throughout the thesis.

The central concept is that of a quantum state, which is a mathematical object that

represents all known information about a physical system. A quantum state then enables

computation of all possible outcomes for any measurements, as well as the likelihood of

each outcome. A quantum state may serve as a resource for the accomplishment of

various kinds of quantum information processing tasks.

A given quantum information processing task often requires a specific state as a re-

source. The processing of quantum states is modelled through the application of quantum

channels. Certain types of processing cannot increase the resourcefulness of a quantum

state. Entanglement, for example, cannot increase under application of LOCC sequences

of operations. Such sequences are modelled by LOCC channels. Similarly, frame-invariant

channels cannot increase the frameness of a state. LOCC channels or frame-invariant

channels cannot increase the entanglement or frameness, respectively, of a state. An

entanglement monotone is a real-valued function of states that is non-increasing under

the action of LOCC channels, and frameness monotones are non-increasing under the

action of frame-invariant channels. Monotones then exist for any resource theory that

presents such a well-defined collection of channels that do not increase the resourcefulness

of states.

I give a technical introduction to quantum states and quantum channels in section 2.1,

which culminates in a general definition of a monotone. Sections 2.2 and 2.3 present the

restrictions of LOCC and frame-invariance, respectively.
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2.1 States and measurements

A quantum mechanical experiment may be operationally described in two stages: prepa-

ration and measurement. A physical system is prepared in some state, and then various

possible outcomes are physically distinguished. This preparation can be described with

a mathematical object known as a quantum state.

Definition 2.1. A Hilbert space H is assigned to every quantum system. The collection

B(H ) of bounded linear operators B : H → H is known as the state space for that

system. A quantum state is a trace-one, positive-semidefinite, self-adjoint, bounded-

linear operator ρ : H → H . A rank-one quantum state is called pure; otherwise the

state is mixed. We assume dim(H ) < ∞ throughout.

Pure states are thus projectors onto one-dimensional subspaces of H . Each one-

dimensional subspace of H is the span of a unit vector, called a ‘ket’ and denoted |ψ� ∈

H . The dual of the subspace span{|ψ�} ⊂ H is then the span of the covector �ψ| ∈ H ∗,

or ‘bra’, of |ψ�. The inner product of |ψ� and |φ� is then denoted �φ|ψ� = �ψ|φ�∗, which

is called a ‘bracket’. We have �ψ|ψ� = 1 for every unit vector |ψ� ∈ H . The outer

product of |ψ� with |φ� is denoted |ψ��φ| = |ψ� ⊗ �φ|.

Every pure state can then be written |ψ��ψ| for some |ψ� ∈ H . When referring to

pure states, we will often refer only to the unit vector |ψ� ∈ H . Note that the choice

of |ψ� is unique up to a phase: |ψ���ψ�| = |ψ��ψ| iff |ψ�� = exp(ιθ) |ψ� for some θ ∈ R

(where ι =
√
−1). By the spectral theorem [22], every mixed state can be written as

ρ =
�

α pα |ψα��ψα| for some orthonormal set {|ψα�} ⊂ H indexed by α. Each pα ≥ 0

because ρ is positive-semidefinite, and
�

α pα = 1 because Tr(ρ) = 1.

A quantum mechanical measurement is a physical process yielding information about

the state of a system. Such a measurement takes place by distinguishing between pre-

viously indistinguishable aspects of a system; usually by disturbing the system. The
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outcome of a measurement will generally be indeterministic: many different possible out-

comes with corresponding probabilities are to be expected. Formally, a measurement is

a choice of operators {Ek} ⊂ B(H ) (for some state space B(H ) and some index k)

such that
�

k E
†
kEk ≤ I (that is,

�
k E

†
kEk is a positive-semidefinite operator with all

eigenvalues at most one). After the measurement is performed, the resulting state of the

system is

σk =
EkρE

†
k

Tr
�
E†

kEkρ
� (2.1)

and the probability of obtaining this outcome is Tr
�
E†

kEkρ
�
.

Processing of the physical system can take place between the preparation and mea-

surement stages of the system. The apparatus used in the experiment could be re-

calibrated, for example, or processing could occur between the preparation and measure-

ment stages. All such processing may be described through the use of quantum channels.

Definition 2.2. A bounded linear map E : B (Cn) → B (Cm) (for natural numbers n

and m) is positive if E(A) is a positive-semidefinite operator whenever A ∈ B(H ) is

positive-semidefinite. E is completely positive if Ik ⊗ E : B
�
Ck ⊗ Cn

�
→ B

�
Ck ⊗ Cm

�

is positive for each natural number k for Ik : B
�
Ck

�
→ B

�
Ck

�
the identity map. If

H1 and H2 are Hilbert spaces assigned to physical systems, a completely positive map

E : B (H1) → B (H2) is called a quantum channel.

Quantum channels are required to be completely positive rather than positive because

the physical process described by the channel E over a Hilbert space H can instead be

described as E⊗I over H ⊗H �, where H � is the Hilbert space representing any ancillary

physical system to which nothing is being done.

Definition 2.3. If E : B (Cn) → B (Cm) is a completely positive map and A ∈ B (Cn) is

any positive-semidefinite operator, there exists a collection of operators {Ek : Cn → Cm}
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(where k is an index) such that
�

k E
†
kEk ≤ I (that is, every eigenvalue of

�
k E

†
kEk is

no greater than one) and E(A) =
�

k EkAE
†
k [23]. Such a representation of a quantum

channel is called a Kraus representation, or operator-sum representation [24], of a channel.

The operators Ek are Kraus operators.

The Kraus representation of a quantum channel E is not unique [23]. Consider a Kraus

representation {Ak} of a channel E , where k ∈ K is an index. Choose any other index set

L with cardinality not less than that of K and define a collection {ulk ∈ C|k ∈ K, l ∈ L}

so that

�

l∈L

u∗
lkulk� =






1 if k = k�,

0 if k �= k�.
(2.2)

Define Bl =
�

k ulkAk for each l ∈ L. Then, for any ρ ∈ B(H ),

�

l∈L

BlρB
†
l =

�

k,k�∈K,l∈L

(ulkAk) ρ
�
u∗
lk�A

†
k�

�
=

�

k∈K

AkρA
†
k (2.3)

and
�

l B
†
lBl =

�
k A

†
kAk ≤ I. Thus {Bl} is another Kraus representation of E . This

fact is the ‘unitary freedom’ of Kraus operators [24]; notice that, if L and K have the

same cardinality, the matrix with entries ulk is a unitary matrix.

Many quantum channels are physically or practically impossible. A restricted col-

lection T of allowable channels imposes a pre-order on the collection of quantum states:

ρ
T�→ ρ� if there is an E ∈ T with E(ρ) = ρ� (otherwise ρ

T

��→ ρ�). If ρ
T�→ ρ� and ρ�

T�→ ρ, we

say that ρ
T∼ ρ� (otherwise ρ

T� ρ�). ρ is a ‘resource’ if there is a state σ such that σ
T

��→ ρ

(otherwise, ρ is a ‘non-resource’).

Definition 2.4. Let T be a collection of quantum channels {E : B(H ) → B(H )} and

C ⊂ B(H ) be a collection of states. A T-monotone is a function f : C → R with the

property that f(ρ) ≥ f (ρ�) if ρ, ρ� ∈ C satisfy ρ
T�→ ρ�.

If f is a T-monotone and ρ and σ are two non-resource states, then f(ρ) = f(σ) be-

cause ρ
T∼ σ. Thus f is constant on the set of non-resource states. It is common to define
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our monotone such that f(ρ) = 0 for non-resource states ρ. Notice that our definition

allows a monotone to be defined only on a restricted collection of states. Throughout

this thesis, monotones are often defined only for pure states.

Entanglement monotones are the prototypical example of monotone. In the next

section we will define the collection L of quantum channels that can be achieved through

LOCC sequences of operations. Such operations cannot increase entanglement, and a

state σ is disentangled if for every ρ there is an LOCC channel E such that E(ρ) = σ.

An entanglement monotone is then an L-monotone. Frameness monotones are presented

in a similar fashion.

2.2 LOCC channels

In this section, I discuss LOCC channels. These are quantum channels achievable via

LOCC sequences of operations. The characterization of all such channels is difficult [21],

but characterizing the collection of pure-state transformations is made simpler by a result

of Lo and Popescu [25]. This work allows us to prove Nielsen’s theorem [11], which

gives a collection of necessary and sufficient conditions for the existence a transformation

|ψ� L�→ |φ�. I express these conditions in terms of a collection of L-monotones known as

Vidal’s monotones [12].

The Hilbert space associated to a composite physical system is the tensor product

of the Hilbert spaces of each component system. Consider the simple case of two sep-

arate physical systems with Hilbert spaces H A and H B. The minimal Hilbert space

H AB describing the joint physical system has a basis formed by choosing orthonor-

mal bases for H A and H B and concatenating them. Suppose
�
|i�A

�
and

�
|j�B

�
are

these respective bases. The state of physical system B can be prepared independently

of A, so |i�A |j�B is a pure state of the joint system, where i and j are chosen inde-
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pendently. The Hilbert space for the joint system is given by H AB = H A ⊗ H B =

span
�
|i�A ⊗ |j�B = |i�A |j�B = |ij�AB

�
, where ⊗ represents the Kronecker product.

Definition 2.5. A state ρ ∈ B
�
H A ⊗ H B

�
is called separable if ρ =

�
i piρ

A
i ⊗ ρBi for

some finite probability distribution pi and collections of states
�
ρAi ∈ H A

�
,
�
ρBi ∈ H B

�
.

A state that cannot be written in this way is called entangled.

Thus an entangled state cannot be written as a joint probability distribution of in-

dependent states of each subsystem. The correlations present in separable states could

have been introduced using LOCC sequences of operations because the choice of index

i may be transmitted classically. Note that I have defined entanglement over a ‘bipar-

tite’ Hilbert space H A ⊗ H B, which corresponds to a physical system with only two

subsystems. Multipartite separability and entanglement are defined over Hilbert spaces

composed of more tensor products. I discuss only bipartite entanglement in this thesis.

The most general class of channels that do not increase entanglement are those achiev-

able using only local operations (i.e. channels of the form EA⊗EB, where EA : B
�
H A

�
→

B
�
H A

�
and EB : B

�
H B

�
→ B

�
H B

�
) assisted by classical communication (meaning

Alice and Bob may communicate measurement outcomes). This choice of restriction is

justified because local operations can never create entanglement, as entanglement is a

global (with respect to a partition) property of a quantum system. Furthermore, en-

tanglement cannot be increased by classical communication because entanglement is a

purely quantum correlation.

Definition 2.6. A channel E : B
�
H A ⊗ H B

�
→ B

�
H A ⊗ H B

�
is called separable if

it has a Kraus decomposition
�
KA

i ⊗KB
i

�
, where

�
KA

i

�
and

�
KB

i

�
are Kraus operators

on H A and H B respectively. Every LOCC channel is separable, but not every separable

channel is LOCC [21].

Proposition 2.1 (Lo and Popescu [25]). If |ψ� ∈ H AB and |φ� ∈ H AB are pure
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states satisfying |ψ� L�→ |φ�, there exists a quantum channel E with Kraus decomposition

{Ki ⊗ Ui} such that E(|ψ��ψ|) = |φ��φ|, where {Ki} is a collection of Kraus operators

on H A and {Ui} is a collection of unitary operators on H B.

An entanglement monotone is a function f : C ⊂ B
�
H A ⊗ H B

�
→ R (where C is

some collection of states) such that f(ρ) ≥ f(Λ(ρ)) for any LOCC channel Λ and any

state ρ ∈ C such that Λ(ρ) ∈ C. One can fully characterize the entanglement of a state

by producing a (possibly infinite) collection of entanglement monotones {fα}, where α is

an index, such that ρ
L�→ σ if and only if fα(ρ) ≥ fα(σ) for each α. To know the value of

fα(ρ) for each α is to know the totality of possible transformations of ρ under LOCC and

therefore how much entanglement can be extracted from a bipartite state ρ in principle.

For pure states, such monotones can be defined in terms of the Schmidt coefficients [24].

Theorem 2.2. Suppose |ψ� ∈ H A ⊗ H B is a state vector. There exists a collection of

orthonormal vectors

�
|i�A

�
⊂ H A and

�
|i�B

�
⊂ H B and a probability distribution pi

such that

|ψ� =
�

i

√
pi |i�A |i�B . (2.4)

The numbers pi are called the Schmidt coefficients of the state |ψ�.

Thus two bipartite pure states |ψ� and |φ� are interconvertible via LOCC channels

(i.e. |ψ� L∼ |φ�) if and only if |ψ� and |φ� possess the same Schmidt coefficients. Moreover,

any conditions that determine whether |ψ� L�→ |φ� or |ψ�
L

��→ |φ� may be expressed in terms

of the Schmidt coefficients of these states. It is convenient to define a unique ‘Schmidt

vector’ for each bipartite pure state.

Definition 2.7. Suppose {pi} are the Schmidt coefficients of a bipartite pure state |ψ� ∈

H A ⊗ H B. The vector consisting of entries pi arranged in decreasing order is called

the Schmidt vector of |ψ� and is denoted ((ψ)). The number of non-zero entries in the

Schmidt vector is called the Schmidt number of the state |ψ�.
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Any conditions on the ability to enact |ψ� L�→ |φ� then depend only on ((ψ)) and

((φ)). Theorem 2.3 gives necessary and sufficient conditions for the existence of such a

transformation. These conditions are placed on the values of Vidal’s monotones for |ψ�

and |φ�.

Definition 2.8. Let |ψ� ∈ H A ⊗ H B be a pure state with Schmidt vector ((ψ)) =

(p1, p2, . . . , pn) (with Schmidt number less than or equal to n). Vidal’s monotones are

the functions

f1(|ψ�) = 1− p1

f2(|ψ�) = 1− (p1 + p2)

f3(|ψ�) = 1− (p1 + p2 + p3)

...

fn−1(|ψ�) = 1− (p1 + p2 + · · ·+ pn−1) = pn.

(2.5)

Theorem 2.3 (Nielsen [11]). |ψ� L�→ |φ� if and only if fk(|ψ�) ≥ fk(|φ�) for k = 1, . . . , n−

1, where n is the Schmidt number of |ψ�.

Given any two bipartite pure states |ψ� and |φ�, Nielsen’s theorem allows us to de-

termine whether |ψ� L�→ |φ� or not. This characterization of pure-state LOCC transfor-

mations is provided in terms of a collection of entanglement monotones. Throughout my

thesis, Nielsen’s theorem is considered a model for the results I wish to present. Theo-

rems 3.1 and 4.2 are direct analogues of Nielsen’s theorem for other resource theories.

2.3 Frame-invariant channels

The frameness of a quantum state is its capacity for storing reference frame information.

A simple case is the choice of |0� and |1� as logical 0 and 1 states for encoding quantum

information. Suppose a sender, Alice, has made such a choice and transmits a message

(say, |010�) to a receiver, Bob. Bob is aware of Alice’s choice of |0� and |1� but not of her
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labels: he has chosen the states |0�� and |1�� and is not sure if |0�� = |0� or |0�� = |1�. Bob

must describe the message state |010� according to his best knowledge of the preparation

of the state, which corresponds to an equal chance of having obtained |010�� or |101��.

His state will therefore be 1
2

�
|010��010|� + |101��101|�

�
.

Naturally, Alice may alleviate this restriction by initializing communication through

sending Bob the state |0�. Bob then performs the measurement
�
|0��0|� , |1��1|�

�
, yielding

outcome |0�� or |1�� depending on whether |0�� = |0� or |0�� = |1�. Bob then gains perfect

knowledge of Alice’s choice of reference frame.

Alice cannot communicate her choice of |0� by sending an eigenstate of the operator

X = |1��0| + |0��1|. For example, if Alice sends the state |ψ� = 1√
2
(|0� − |1�), Bob will

notice that |ψ��ψ| = X |ψ��ψ|X so he may not obtain any information about Alice’s

choice of reference frame.

The quality of a state |ψ� for transmitting a choice of b = 0, 1 in the above example

is known as the Z2-frameness of |ψ�, where Zn refers to the cyclic group on n letters

throughout my thesis. In general, it is assumed that all possible reference frame choices

are related by some group of automorphisms of the state space. This assumption was

defended in chapter 1. In the case we have just discussed, the group relating possible

basis choices was {I,X}, which is the image of a representation of Z2 on the Hilbert

space span {|0� , |1�}.

A frameness theory is then presented by defining a unitary representation T of a

group G on the automorphisms of the Hilbert space H associated to the physical system

being analyzed. This representation is chosen to relate all reference frame choices. For

convenience, G is assumed to be compact so that averages over all possible reference

frame choices may be computed using the Haar measure. Such averages are calculated

in the case of maximal ignorance of a choice of reference frame.

Suppose the measurement {Ek} is made with respect to reference frame A. If the
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outcome of this measurement is to be described with respect to a different reference frame

B, the measurement must be described by
�
T (g)EkT (g)†

�
, where g ∈ G represents the

translation from reference frame A to reference frame B. A measurement is then frame-

invariant when T (g)EkT (g)† = Ek for each g ∈ G.

The same principle applies when performing quantum channels. If {Ek} is the Kraus

decomposition of a quantum channel E , the Kraus decomposition of the translated chan-

nel E � should be
�
T (g)EkT (g)†

�
. Thus

E �(ρ) =
�

k

T (g)EkT (g)
†ρT (g)E†

kT (g)
† = T (g)E

�
T (g)†ρT (g)

�
T (g)†. (2.6)

This is not to say that each Kraus representation is invariant under the action of G:

in general, we expect that T (g)EkT (g)† �= Ek. By the unitary freedom of the Kraus

representation, there is a unitary operator U(g) for each g ∈ G over the linear span of

the collection {Ek} such that U(g) (Ek) = T (g)EkT (g)†. This collection {U(g)} forms a

unitary representation of G on span {Ek} which may therefore be block-diagonalized by

the Peter-Weyl theorem. This fact may be used to prove the following theorem.

Theorem 2.4 (Gour and Spekkens [18]). A G-invariant operation admits a Kraus de-

composition with Kraus operators {Kjmα} where j indexes the irreducible representations

of G, m indexes a basis for the irreducible representation j, and α is a multiplicity index

for m. This Kraus representation satisfies

T (g)KjmαT (g)
† =

�

m�

u(j)
mm�(g)Kjm�α, ∀g ∈ G, (2.7)

where u(j) is an irreducible unitary representation of G on the linear span of {Kjmα}.

In the particular case that G is an abelian group, Theorem 2.4 implies that there is a

Kraus representation {Kj,α} for anyG-invariant quantum channel such that T (g)Kj,αT (g)† =

exp (ιθg,j)Kj,α, where θg,j ∈ R is an angle depending on g and j. This fact is crucial to

the proof of Theorem 4.2.
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I have thus presented entanglement and frameness within a unified perspective and

given tools for the analysis of both types of resource. In the next chapter, I discuss an

extension of LOCC channels that includes the ability to ‘borrow’ entanglement to enact

otherwise prohibited pure-state LOCC transformations. I return to frameness in chapter

four.
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Chapter 3

Entanglement catalysis

This chapter presents results on the quantification of an entanglement catalyst. An

entanglement catalyst is an entangled state that can be used as a resource for enacting

some previously prevented state transformation. After the transformation is enacted,

however, the catalyst state is returned unharmed. Thus there are state transformations

of the form |ψ� |χ� L�→ |φ� |χ� even when |ψ�
L

��→ |φ�.

This is a consequence of Nielsen’s theorem. Suppose that ((ψ)) =
�
2
5 ,

2
5 ,

1
10 ,

1
10

�
and

((φ)) =
�
1
2 ,

1
4 ,

1
4 , 0

�
. Then |ψ�

L

��→ |φ� because

f2(|ψ�) = 1−
�
2

5
+

2

5

�
< 1−

�
1

2
+

1

4

�
= f2(|φ�). (3.1)

Now suppose ((χ)) =
�
3
5 ,

2
5

�
for some ancillary state |χ�. We can use Nielsen’s theorem

to find that |ψ� |χ� L�→ |φ� |χ�. Thus the state |χ� is used as a resource without being

consumed. Such states are known as entanglement catalysts [4].

We must be cautious to note that the ‘catalyzed’ transformation takes place over a

larger Hilbert space. Suppose |ψ� and |φ� were both state vectors in H AB = H A⊗H B,

while |χ� is an element of H A�B�
= H A� ⊗ H B�

. Then an LOCC channel E satisfying

E(|ψ��ψ| ⊗ |χ��χ|) = |φ��φ| ⊗ |χ��χ| is LOCC with respect to the bipartition H AA� ⊗

H BB�
, where H XX�

= H X ⊗ H X�
(X = A,B). Any state transformation that can be

accomplished in this fashion is said to be achievable by ‘entanglement-assisted’ LOCC

channels (eLOCC), the collection of which is denoted L�.

Turgut’s theorem [17] provides a collection of necessary and sufficient conditions for

the existence of a pure state transformation |ψ� L�
�→ |φ�. These necessary and sufficient

conditions presented in section 3.1 as a collection of L� monotones. Turgut’s theorem does
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not provide conditions on the catalyst itself. The purpose of this chapter is to present

my results on characterizing possible catalysts for a given eLOCC transformation of pure

states. These results are obtained through consideration of a collection of entanglement

monotones called the generalized concurrences [19]. I discuss the concurrences in sec-

tion 3.2 and, in particular, show that some of these entanglement monotones are not

L�-monotones. Analysis of the failure of certain concurrences to behave monotonically

under entanglement-assisted LOCC channels leads to various necessary conditions im-

posed on a potential catalyst state; most prominently, a lower bound on the Schmidt

number of a catalyst state. This result is presented in section 3.3.

3.1 The trumping relation

Nielsen’s theorem and Turgut’s theorem play similar roles in the characterization of L

pure-state transformations and L� pure-state transformations, respectively. Both theo-

rems present a collection of monotones that completely characterize the resourcefulness

of a pure state with respect to the relevant restricted collection of channels.

Nielsen’s theorem was originally presented in terms of a preorder ≺ on real vectors

called ‘majorization’ so that |ψ� L�→ |φ� if and only if ((ψ)) ≺ ((φ)). Entanglement-assisted

LOCC state transformations then exist if and only if there is a state |χ� such that

((ψ))⊗ ((χ)) ≺ ((φ))⊗ ((χ)). The ‘trumping’ preorder ≺T is then defined so that |ψ� L�
�→ |φ�

if and only if ((ψ)) ≺T ((φ)). Turgut’s theorem provides necessary and sufficient conditions

on x and y to determine if x ≺T y.

Definition 3.1. Suppose p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) are real vectors.

Define p↓ =
�
p↓1, p↓2, . . . , p↓n

�
such that p↓k ≥ p↓k+1 and there is a permutation σ so that

p↓k = pσ(k). Define q↓ similarly. Then p is majorized by q (p ≺ q) if, for each 1 ≤ k ≤ n,
�k

i=1 p
↓
i ≤

�k
i=1 q

↓
i .
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Thus majorization provides a preorder on the collection of real vectors and a partial

order on the collection of Schmidt vectors in particular. The language of majorization is

sometimes more convenient than that of monotones because the theory of majorization

is well-established [26]. The phenomenon of entanglement catalysis is a consequence of

the existence of vectors z ∈ Rm such that x⊗ z ≺ y ⊗ z for some vectors x ⊀ y ∈ Rn.

Definition 3.2. x ∈ Rn is trumped by y ∈ Rn (x ≺T y) if there exists z ∈ Rm for some

m such that x⊗ z ≺ y ⊗ z.

It is straightforward to determine if x ≺ y for some pair of vectors x,y ∈ Rn by

the definition of majorization, but deciding if x ≺T y when x ⊀ y requires a proof of

the existence of a vector z such that x ⊗ z ≺ y ⊗ z. There is, as yet, no constructive

method to obtain such a vector. The existence of z may be inferred by evaluating the

Rényi entropies [27] on x and y.

Definition 3.3. Let x ∈ Rn be entry-wise strictly positive with entries summing to one.

The Rényi entropy of order 0 ≤ ν ≤ ∞ of x is given by

Sν(x) =
1

1− ν
log

�
n�

i=1

xν
i

�
(3.2)

if ν �= 0, 1,∞. S0(x) = − log n, S1(x) = −
�

i xi log xi, and S∞(x) = maxi xi. No-

tice that equation 3.2 is well-defined for all real ν. This assumption will be made in

Theorem 3.1.

Theorem 3.1 (Turgut [17]). Suppose x, y ∈ Rn are entry-wise positive vectors such

that y ⊀ x. x ≺T y if and only if, for every ν ∈ R, 1
νSν(x) >

1
νSν(y).

Thus Turgut’s theorem fully characterizes the trumping relation by producing a collec-

tion of ‘catalytic monotones’, which are monotones under the collection of entanglement-

assisted LOCC channels. Explicitly, we may define ‘Turgut’s monotones’ by Tν(|ψ�) =
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1
νSν(((ψ))) for any ν ∈ R. Turgut’s theorem then tells us that |ψ� L�

�→ |φ� if and only if

Tν(|ψ�) > Tν(|φ�) (with the caveat that |φ�
L

��→ |ψ�).

In the next section, I provide tools to gain information about a z satisfying x⊗ z ≺

y ⊗ z when x ⊀ z. Such conditions then impose restrictions on the possible Schmidt

vectors for a catalyst state.

3.2 Factorizing concurrences

The generalized concurrences [19], as their name suggests, are generalizations of an en-

tanglement monotone called the ‘concurrence’, which is defined only for entangled pairs

of qubits. The original concurrence [28] is useful because it is easy to calculate and fully

characterizes the entanglement of a pure state of a qubit pair. There are multiple gener-

alizations of the concurrence when considering pairs of d-level quantum systems (d > 2).

The I-concurrence [29] and G-concurrence [19] are two examples of such generalizations.

Both the I-concurrence and G-concurrence are members of a family of monotones

known as the generalized concurrences. For a d-level quantum system, we may define

d − 1 concurrences. The first of these corresponds to the I-concurrence and the last

corresponds to the G-concurrence. The family of concurrences is most simply defined in

terms of the ‘elementary symmetric polynomials’.

Definition 3.4. Let x = (x1, x2, . . . , xn) be any n-tuple of real numbers. The elementary
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symmetric polynomials are given by

e0 (x) = 1,

e1 (x) = x1 + x2 + · · ·+ xn,

e2 (x) =
�

i<j xixj,

e3 (x) =
�

i<j<k xixjxk,

...

en (x) = x1x2 · · · xn.

(3.3)

The kth concurrence of a state vector |ψ� (with Schmidt vector ((ψ)) ∈ Rn) is then given

by

Ck(|ψ�) :=
�

ek(((ψ)))

ek
�
1
n ,

1
n , · · · ,

1
n

�
� 1

k

(3.4)

for k ≥ 2. We consider C0(|ψ�) = C1(|ψ�) = 1.

The second concurrence may be written as C2(|ψ�) = 1
2

�
1− p2(((ψ))), where pk

represents the kth ‘power-sum symmetric polynomial’. This definition corresponds more

directly to the literature [29].

Definition 3.5. Let x = (x1, x2, . . . , xn) be any n-tuple of real numbers. The power-sum

symmetric polynomials are given by

pk (x) = xk
1 + xk

2 + · · ·+ xk
n (3.5)

for k = 1 . . . n.

Suppose the Schmidt numbers of |ψ� and |φ� are equal (to n). If k �= 2 and k �= n, it is

possible that |ψ� L�
�→ |φ� but Ck(|ψ�) < Ck(|φ�). By contrast, if |χ� is a catalyst of Schmidt

number m, Ck(|ψ� |χ�) ≥ Ck(|φ� |χ�) for any k = 2, 3, . . . , nm. I now give expressions

for Ck(|ψ� |χ�) as a polynomial of the concurrences of |ψ� and |χ�. These expressions are

found by computing ek(x⊗z) in terms of the elementary symmetric functions of x and z.
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This computation requires the use of Newton’s Identities. In section 3.3, I demonstrate

how such expressions yield conditions on the values of the concurrences of |χ�.

Theorem 3.2 (Newton’s Identities). Let x = (x1, x2, . . . , xn) be any n-tuple of real

numbers and 1 ≤ k ≤ n be any integer. Then

kek (x) =
k�

�=1

(−1)�−1ek−� (x) p� (x) . (3.6)

We may use these identities to write the elementary symmetric polynomials in terms

of the power sum polynomials, and vice versa.

e1 = p1 p1 = e1

e2 = 1
2 (p

2
1 − p2) p2 = e21 − 2e2

e3 = 1
6 (p

3
1 − 3p1p2 + 2p3) p3 = e31 − 3e1e2 + 3e3

e4 = 1
24 (p

4
1 − 6p21p2 + 3p22 + 8p1p3 − 6p4) p4 = e41 − 4e21e2 + 2e22 + 4e1e3 − 4e4

...
...

(3.7)

Now we can exploit the identity pk(x⊗z) = pk(x)pk(z) (where x ∈ Rn and z ∈ Rm)

to inductively derive what I call the ‘factoring identities’ for the elementary symmetric

polynomials. The first of Newton’s identities tells us that e1 = p1 (which was already

clear), so we can plainly see that

e1(x⊗ z) = p1(x⊗ z) = p1(x)p1(z) = e1(x)e1(z). (3.8)

The second identity is more complicated. Equation 3.7 implies

e2(x⊗ z) = 1
2 (p1(x⊗ z)2 − p2(x⊗ z))

= 1
2 (p1(x)

2p1(z)2 − p2(x)p2(z))

= 1
2 (e1(x)

2e1(z)2 − (e21(x)− 2e2(x)) (e21(z)− 2e2(z)))

= e1(x)2e2(z) + e2(x)e1(z)2 − 2e2(x)e2(z).

(3.9)
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A similar calculation gives

e3(x⊗ z) = e3(x)e1(z)3 + e31(x)e3(z) + e1(x)e2(x)e1(z)e2(z)− 2e1(x)e2(x)e3(z)

−2e3(x)e1(z)e2(z) + 3e3(x)e3(z).

(3.10)

The expressions for ek(x ⊗ z) become more complicated as k becomes larger. I am

presently unaware of a general formula giving these expressions. As k approaches nm,

however, the expressions become simpler. Indeed,

enm(x⊗ z) =
n�

i=1

m�

j=1

xizj =

�
n�

i=1

xi

�m �
m�

j=1

zj

�n

= en(x)
mem(z)

n. (3.11)

To calculate expressions for k close to nm, we make use of the following lemma.

Lemma 3.3. Suppose x = (x1, x2, . . . , xn) with xk �= 0 for each k. Define x−1 =
�

1
x1
, 1
x2
, · · · , 1

xn
,
�
. Then ek (x−1) = en−k(x)/en(x).

Proof.

en−k(x) =
�

i1<···<ik

x1 · · · xn

xi1 · · · xik

= ek
�
x−1

�
en(x). (3.12)

Thus,

enm−1(x⊗ z) = e1 (x−1 ⊗ z−1) emn(x⊗ z)

= e1 (x−1) e1 (z−1) en(x)mem(z)n

= en(x)m−1en−1(x)em(z)n−1em−1(z).

(3.13)

In the next section, these factoring identities are used to analyze the concurrences of

a potential catalyst state for a pure-state transformation |ψ� L�
�→ |φ�.

3.3 Bounding the dimension of a catalyst

We are now ready to analyze possible catalysts of a given entanglement-assisted LOCC

transformation. Given states |ψ� and |φ� with Schmidt number n and |χ� with Schmidt
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number m satisfying |ψ� |χ� L�→ |φ� |χ�, we must have Ck(|ψ� |χ�) ≥ Ck(|φ� |χ�) for each

2 ≤ k ≤ nm even if Ck(|ψ�) < Ck(|φ�). Nontrivial conditions may be obtained for the

values of the concurrences of |χ� when Ck(|ψ�) < Ck(|φ�) because only certain values will

allow this ‘reversal’ of inequalities.

This reversal cannot happen for k = 2: C2(|ψ� |χ�) ≥ C2(|φ� |χ�) implies C2(|ψ�) ≥

C2(|φ�). By equation 3.9, C2(|ψ� |χ�) ≥ C2(|φ� |χ�) if and only if

e2(((ψ))) + e2(((χ)))− 2e2(((ψ)))e2(((χ))) ≥ e2(((φ))) + e2(((χ)))− 2e2(((φ)))e2(((χ))), (3.14)

which implies e2(((ψ))) ≥ e2(((φ))) and thus C2(|ψ�) ≥ C2(|φ�). The I-concurrence is then

a catalytic monotone. So is the G-concurrence: Cnm(|ψ� |χ�) ≥ Cnm(|φ� |χ�) if and only

if Cn(|ψ�) ≥ Cn(|φ�).

The simplest condition on the entanglement of a potential catalyst state arises from

consideration of k = mn− 1. This condition is a lower bound on the Schmidt number m

of a potential catalyst state. The bound is non-trivial for the transformation |ψ� L�
�→ |φ�

only if Cn−1(|ψ�) < Cn−1(|φ�), where n is the Schmidt number of |ψ�.

Proposition 3.4. Suppose there is a state vector |χ� such that |ψ� |χ� L�→ |φ� |χ�, where

|ψ� and |φ� both have Schmidt number n and Cn(|ψ�) > Cn(|φ�). If the Schmidt number

of |χ� is m, then

m ≥ 1 +

�
n− 1

n

�
log[Cn−1(|φ�)]− log[Cn−1(|ψ�)]
log[Cn(|ψ�)]− log[Cn(|φ�)]

. (3.15)

Proof. If |ψ� |χ� L�→ |φ� |χ�, we must have that Cnm−1(|ψ� |χ�) ≥ Cnm−1(|ψ� |χ�). This is

true if and only if enm−1(((ψ))⊗ ((χ))) ≥ enm−1(((φ))⊗ ((χ))). According to equation 3.13,

this implies

en(((ψ)))
m−1en−1(((ψ))) ≥ en(((φ)))

m−1en−1(((φ))) (3.16)
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after cancelling the terms em(((χ))) and em−1(((χ))). Thus,

m− 1 ≥ log (en−1(((φ))))− log (en−1(((ψ))))

log (en(((ψ))))− log (en(((φ))))
=

�
n− 1

n

�
log[Cn−1(|φ�)]− log[Cn−1(|ψ�)]
log[Cn(|ψ�)]− log[Cn(|φ�)]

.

(3.17)

Notice that, if Cn(|ψ�) = Cn(|φ�), Cn−1(|ψ�) ≥ Cn−1(|φ�) by equation 3.16. Proposi-

tion 3.4 makes no claim about the existence of a catalyst state. To ascertain the existence

of a catalyst, we must make use of Turgut’s theorem. An example of the use of this bound

is presented in the next example.

Example 3.1. Consider state vectors |ψ� and |φ� with Schmidt vectors

((ψ)) =

�
89

351
,
3

13
,
71

351
,
64

351
,
1

13
,
19

351

�
and ((φ)) =

�
59

196
,
3

14
,
5

28
,
13

98
,
25

196
,

9

196

�
.

|ψ�
L

��→ |φ� because C5(|ψ�) = 0.8981 < 0.8994 = C5(|φ�). |ψ� L�
�→ |φ�, however (see

figure 3.1). According to Proposition 3.4, the Schmidt number of a catalyst must be

greater than or equal to 2.7077, so no catalyst of Schmidt number 2 exists.

Proposition 3.4 is not the only condition on possible catalysts. Further conditions

may be obtained by considering the behaviour of other concurrences. For example, k = 3

yields the following condition.

Proposition 3.5. Suppose |ψ� |χ� L�→ |φ� |χ�. Then

e2(((χ)))− 2e3(((χ)))

1− 2e2(((χ))) + 3e3(((χ)))
≥ −e3(((ψ)))− e3(((φ)))

e2(((ψ)))− e2(((φ)))
. (3.18)

The proof of this proposition is analogous to that of Proposition 3.4. The result

constitutes a complicated condition on the possible entanglement of |χ� as quantified

by the second and third concurrences. In example 3.1, Proposition 3.5 demands that

2e2(((χ))) < 1 + 3e3(((χ))) and 1 + 0.904e2(((χ))) ≥ 2.809e3(((χ))).
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Difference of Turgut's monotones

Figure 3.1: A plot of ∆Tν = Tν(|ψ�) − Tν(|φ�), where Tν represents Turgut’s monotone
of order ν ∈ R, and |ψ� and |φ� are defined in Example 3.1.
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Consideration of other concurrences yield even more complicated conditions. The

following proposition follows from the monotonicity of the (mn− 2)th concurrence.

Proposition 3.6. Suppose |ψ� |χ� L�→ |φ� |χ�. If the Schmidt number of |ψ� is equal to

the Schmidt number of |φ� (which is called n) and the Schmidt number of |χ� is m,

em−1(((χ)))2

em(((χ)))em−2(((χ)))
≥ Λ

en−2(((ψ)))en(((ψ)))m−1 − en−2(((φ)))en(((φ)))m−1
, (3.19)

where

Λ = 2en−2(((ψ)))en(((ψ)))m−1 − en−1(((ψ)))2en(((ψ)))m−2

−2en−2(((φ)))en(((φ)))m−1 − en−1(((φ)))2en(((φ)))m−2.
(3.20)

Notice that the condition of equation 3.19 depends explicitly on m, the Schmidt

number of the catalyst state. This limits the usefulness of this condition. Other necessary

conditions on a potential catalyst state may be derived through consideration of other

concurrences, but these conditions are even more difficult to apply in practice.

In conclusion, we have produced a lower bound on the Schmidt number of a catalyst

state allowing some given entanglement-assisted LOCC transformation of pure states

|ψ� L�
�→ |φ�. This lower bound is expressed in terms of the concurrences of |ψ� and

|φ�. The techniques used to produce this lower bound may be extended to produce

other necessary conditions on entanglement catalysts, though the conditions become

increasingly complicated.
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Chapter 4

Relative monotones

When a quantum state can be used to alleviate restrictions on achievable operations,

that state is called a resource. The resourcefulness of a quantum state is often quantified

with functions known as monotones. Entanglement monotones, for example, quantify the

ability of a state to alleviate LOCC restrictions [16]. Such characterizations are useful

for the comparison of different resource states that may be used to accomplish a given

quantum informational task [30].

The approach of quantifying resourcefulness with monotones is sometimes difficult.

The U(1)-frameness of a pure state, for example, has not been fully characterized with

a collection of monotones despite the discovery of a necessary and sufficient condition

for the existence of a U(1)-invariant pure-state transformation [18]. In contrast, other

characterizations of resourcefulness [11, 17] may be interpreted in terms of a collection

of monotones.

I introduce a new approach to the characterization of the resourcefulness of a quan-

tum state. Rather than quantifying resourcefulness in an absolute sense, I characterize

the Zn-frameness of a pure state relative to other states. A single relative measure of re-

sourcefulness suffices to characterize Zn-invariant pure-state transformations. I call such

measures ‘relative monotones’.

There is precedent for updating the notion of a monotone. The original entanglement

monotone was required to satisfy a convexity property [16] that was later deemed unneces-

sarily restrictive [15]. Monotones with such a convexity property (‘ensemble monotones’)

sometimes characterize resourcefulness with unnecessary prolixity [31]. Conversely, ‘ab-

solute monotones’ may provide more succinct characterizations of resourcefulness. Unfor-
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tunately, expressing results such as Turgut’s theorem [17] in terms of absolute monotones

can still be unacceptably prolix. Such results may be concisely expressed with a single

relative monotone.

Section 4.1 introduces relative monotones and compares the characterization of re-

sourcefulness with relative monotones to that provided by ensemble and absolute mono-

tones. In section 4.2, I present my results on characterizing the Zn-frameness of a pure

state in terms of relative monotones. I argue that a characterization with relative mono-

tones is preferable to a characterization with absolute monotones in Z3-frameness because

a single relative monotone suffices to determine the existence of a Z3-invariant pure-state

transformation. This is in marked contrast to any characterization in terms of absolute

monotones, because such a characterization will require many absolute monotones. Anal-

ogous results hold when considering the more important example of U(1)-frameness of

finite-dimensional quantum states, though the paradigm of relative monotones is of less

use in this case. I discuss these results in section 4.3.

4.1 Relative monotones versus absolute monotones

I used absolute monotones to characterize the ability to transform states under restric-

tions on achievable operations. Indeed, absolute monotones are defined by this property:

a monotone is non-increasing under the action of achievable operations because such op-

erations cannot increase the resourcefulness of a state in alleviating these restrictions. I

then characterized the ability to perform state transformations under such restrictions

by producing some collection of monotones {fα} (where α is an index) with the property

that fα(ρ) ≥ fα(σ) for each α if and only if ρ can be transformed to σ with an achievable

quantum channel.

This approach is originally due to Vidal [16]. Vidal’s paper defines an entanglement
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monotone as “any magnitude µ(ρ) that does not increase, on average, under local trans-

formations”. Vidal captures the notion of non-increasing “on average” by demanding

that, for any collection of LOCC measurements on ρ that produce outcome σi with

probability pi, µ(ρ) ≥
�

i piµ (σi). Furthermore, Vidal requires that
�

j qjµ (ρj) for any

collection of states ρj such that
�

j qjρj = ρ for a probability vector q. These conditions

were later deemed too restrictive by Plenio [15].

Plenio’s argument for removing the requirement that monotones not increase on

average under LOCC measurements is as follows: the measurements on ρ yielding σi

with probability pi may be interpreted as LOCC processing of ρ to obtain the state
�

i piσi ⊗ |i��i|, where |i��i| is an orthonormal collection of states on an ancillary Hilbert

space and then performing the collection of measurements {|i��i|} on that ancillary space.

Physically, this may be interpreted as correlating the outcome of certain measurements

indexed by i to the state of an environment represented by the ancillary Hilbert space.

Measurements are then performed on the environment.

If an entanglement monotone f cannot increase under LOCC processing, f must

satisfy f(ρ) ≥ f (
�

i piσi ⊗ |i��i|) because this only requires a reasonable extension of f

to the larger Hilbert space obtained by including the measurement Hilbert space. Vidal’s

condition that f(ρ) ≥
�

i pif (σi) may then be viewed as a convexity requirement on f ;

that is,

f

�
�

i

piσi ⊗ |i��i|
�

≥
�

i

pif (σi) . (4.1)

Plenio then produces a function (the ‘logarithmic negativity’) that is an LOCC monotone

in our sense and yet do not satisfy such a convexity requirement. I distinguish Vidal’s

notion of a monotone from Plenio’s notion by referring to the former as an ‘ensemble

monotone’ and the latter as an ‘absolute monotone’.

Any resource theory may be characterized by a collection of ensemble monotones.

Define Pσ(ρ) to be the maximum probability of obtaining the state σ from the state ρ
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under a collection T of allowable operations. {Pσ|σ a state} is a collection of ensemble

monotones that completely characterizes all possible transformations under T.

Lemma 4.1. ρ
T�→ ρ� if and only if Pσ(ρ) ≥ Pσ (ρ�) for every state σ.

Proof. Pσ(ρ) is an ensemble T-monotone for every state σ because, if ρ
T�→ {pi, γi}, the

maximum probability of obtaining σ from ρ with T operations is at least that of obtaining

σ from the ensemble {pi, γi} (given by
�

i piPσ (γi)). Thus Pσ(ρ) ≥
�

i piPσ (γi), which

implies in particular that Pσ(ρ) ≥ Pσ (ρ�) if ρ
T�→ ρ�. Furthermore, if Pσ(ρ) ≥ Pσ (ρ�) for

every state σ, ρ
T�→ ρ� because Pρ�(ρ) ≥ Pρ� (ρ�) = 1, which implies Pρ�(ρ) = 1.

The difficulty with ensemble monotones is not their capability of characterizing state

transformations but rather the prolixity of such a description. Gour demonstrates that

a characterization of even a simple collection of LOCC state transformations cannot be

accomplished with finitely many ensemble entanglement monotones [31].

There are resource theories whose characterizations seem even to require an infi-

nite collection of absolute monotones. Turgut’s theorem, for example, provides an infi-

nite collection of monotones that characterize pure state transformations allowable with

entanglement-assisted LOCC channels. This is again too prolix: a quantum state over

a finite-dimensional Hilbert space can be specified with finitely many real numbers, so

a comparison between two such states should also require finitely many real numbers.

Such characterizations are possible with relative monotones.

Definition 4.1. Let T be a collection of quantum channels {E : B (H1) → B (H2)} and

let C1 ⊂ B (H1) and C2 ⊂ B (H2) be two collections of states. A relative T-monotone

is a function f : C1 × C2 → R with the property that f(ρ, σ) ≥ 0 whenever ρ
T�→ σ.

It is possible to characterize every resource theory with a single relative monotone.

Suppose T is the collection of allowable operations and Pσ(ρ) is the ensemble monotone
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defined above. Define R (ρ, ρ�) = infσ [Pσ(ρ)− Pσ (ρ�)]. Then R (ρ, ρ�) ≥ 0 if and only

if ρ
T�→ ρ�. Of course, R (ρ, ρ�) ≤ Pρ�(ρ) − Pρ� (ρ�) ≤ 0, so R (ρ, ρ�) = 0 when ρ

T�→

ρ�. Note that R cannot be expressed as the difference of absolute monotones, because

R (ρ, ρ�) +R (ρ�, ρ) �= 0 in general.

A more informative relative monotone is given as follows. Let D represent the Bures

metric [32] on a space of density matrices. The precise definition of D is not important

for our purposes; I require only the fact that D is a metric. For a given ρ and σ, the

maximum rate of distillation R of σ from ρ under a collection T of allowable operations

is given by [33]:

R = inf
�
E
���∀δ, � > 0, ∃E ∈ T, m, n ∈ N s.t.

���E − m

n

��� < δ and D
�
E
�
ρ⊗m

�
, σ⊗n

�
< �

�
.

(4.2)

Then, if ρ
T�→ σ, R(ρ, σ) := log (R) ≥ 0. This relative monotone R gives the logarithm

of the average distillation rate of σ from ρ given many copies of ρ. Of course, there is no

explicit algorithm for calculating R(ρ, σ) in this case.

In specific resource theories, there exist relative monotones that can be calculated

more explicitly. If Turgut’s monotones are labelled by Tν(|ψ�) = 1
νSν(((ψ))), where ν ∈ R

(see equation 3.2), we may define

R (|ψ� , |φ�) = inf
ν∈R

[Tν(|ψ�)− Tν(|φ�)] (4.3)

so that |ψ� L�
�→ |φ� if and only if R (|ψ� , |φ�) ≥ 0. This infimum, of course, is rather

difficult to compute.

The examples of relative monotones I have given in this section are rather artifi-

cial. In the next section, I present a relative monotone Rn with a simple formula that

characterizes the resource theory of Zn-frameness. Similar techniques may be applied to

U(1)-frameness also, though it is less profitable to interpret the resulting conditions as a

relative monotone. These techniques are discussed in section 4.3.
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4.2 Relative Zn-frameness

In this section, I characterize the Zn-frameness of a pure state. This characterization is

first provided by demanding the existence of a vector w with certain properties. Thus

|ψ� Zn�→ |φ� if and only if w exists. This result is analogous to a characterization of

the U(1)-frameness of a pure state [18]. I then present a relative monotone Rn such

that Rn(|ψ� , |φ�) ≥ 0 if and only if |ψ� Zn�→ |φ�. I will discuss this result for n = 3

in particular, as it is unlikely to have a concise characterization in terms of absolute

frameness monotones.

We consider a representation of Zn on any Hilbert space H . The image of this

representation is denoted
�
I, R,R2, . . . , Rn−1 = R†� for some unitary operator R. Since

R is normal, it is diagonalizable and has eigenvalues exp
�
ι2kπn

�
, k = 0, 1, . . . , n−1. Define

H
(n)
k to be the eigenspace of eigenvalue exp

�
ι2kπn

�
. If we define U = U0 ⊕ U1 ⊕ · · · ⊕

Un−1 for some collection of unitary operators
�
Uk : H

(n)
k → H

(n)
k |k = 0, 1, . . . , n− 1

�
,

we have RU = UR. Thus |ψ� Zn∼ U |ψ�. Define the projection operator Π(n)
k : H → H

(n)
k

for each k = 0, 1, . . . , n − 1 and p(n)k (|ψ�) = �ψ|Π(n)
k |ψ� ≥ 0. Note that p(n)k (|ψ�) =

p(n)k (U |ψ�).

In the case that n = 2, the function C(|ψ�) = min
�
p(2)0 (|ψ�), p(2)1 (|ψ�)

�
is a frameness

monotone. In fact, |ψ� Z2�→ |φ� if and only if C(|ψ�) ≥ C(|φ�) [18]. An analogous result

does not hold for n > 2, however. Both of these facts will be seen as consequences of

what follows.

Define
���ψ(n)

k

�
= 1�

p(n)
k (|ψ�)

Π(n)
k |ψ� for each k = 0, 1, . . . , n− 1, provided p(n)k (|ψ�) �= 0.

If p(n)k (|ψ�) = 0 for some value of k we will be able to choose any
���ψ(n)

k

�
∈ H

(n)
k in what

follows, provided dim
�
H

(n)
k

�
�= 0. We will assume dim

�
H

(n)
k

�
> 0 for each k; there is

no loss of generality because a representation of Zn that is ‘missing’ an eigenspace H
(n)
k

can be extended to one with such an eigenspace and restrict attention to the pure states
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|ψ� satisfying p(n)k (|ψ�) = 0. We can therefore write:

|ψ� =
n−1�

k=0

�
p(n)k (|ψ�)

���ψ(n)
k

�
. (4.4)

Define a collection of states
�
|k� ∈ H

(n)
k |k = 0, 1, . . . , n− 1

�
and, for any state |ψ� ∈

H , unitary operators Uk(|ψ�) : H
(n)
k → H

(n)
k such that Uk

����ψ(n)
k

��
= |k�. Define

U(|ψ�) = U0(|ψ�)⊕ U1(|ψ�)⊕ · · ·⊕ Un−1(|ψ�). Then

��ψ
�
:= U(|ψ�) |ψ� =

n−1�

k=0

�
p(n)k (|ψ�) |k� Zn∼ |ψ� . (4.5)

Thus |ψ� Zn�→ |φ� if and only if
��ψ

� Zn�→
��φ
�
.

Thus the Zn-frameness of a state |ψ� depends only on the vector

p(|ψ�) :=
�
p(n)0 (|ψ�), p(n)1 (|ψ�), . . . , p(n)n−1(|ψ�)

�
, (4.6)

in much the same way that the entanglement of a pure state depends only on its Schmidt

vector. An important difference is that the ordering of the Schmidt coefficients is irrele-

vant to the entanglement of the state. In contrast, if there is a permutation σ such that

p(|φ�) =
�
p(n)σ(0)(|ψ�), p

(n)
σ(1)(|ψ�), . . . , p

(n)
σ(n−1)(|ψ�)

�
for some pure state |φ�, it is possible

that |φ� Zn� |ψ�.

Theorem 4.2. |ψ� Zn�→ |φ� if and only if there exists a vector w = (w0, w1, . . . , wn−1) such

that wk ≥ 0 for each k,
�

k wk = 1, and

p(n)� (|ψ�) =
n−1�

k=0

wkp
(n)
�−k(|φ�) (4.7)

for each � = 0, 1, . . . , n− 1, where the subscript addition �− k is performed modulo n.

Proof. Without loss of generality, we will assume |ψ� =
��ψ

�
and |φ� =

��φ
�
, which is to

say |ψ� =
�

k

�
p(n)k (|ψ�) |k� and |φ� =

�
k

�
p(n)k (|φ�) |k� for some fixed collection of

unit vectors
�
|k� ∈ H

(n)
k |k = 0, 1, . . . , n− 1

�
.
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Suppose |ψ� Zn�→ |φ�. By Theorem 2.4, any trace-preserving Zn-invariant quantum

channel E satisfying E(|ψ��ψ|) = |φ��φ| has a Kraus representation of the form {Ek,α},

where k = 0, 1, . . . , n− 1 and α is some multiplicity index depending on k, satisfying

Ek,α =
n−1�

�=0

�
c(k,α)� |�+ k���| , (4.8)

where c(k,α)� is a collection of positive real numbers and the addition � + k is performed

modulo n. Because E is trace-preserving,
�

k,αE
†
k,αEk,α = I, so

�
k,α c

(k,α)
� = 1 for each

� = 0, 1, . . . , n− 1. Furthermore,

Ek,α |ψ� =
n−1�

�=0

�
c(k,α)�

�
p(n)� (|ψ�) |�+ k� = √

wk,α

n−1�

�=0

�
p(n)� (|φ�) |�� (4.9)

for some positive real number wk,α (recall that the rank of E(|ψ��ψ|) would be greater

than one if this were not true). We have
�

k,α wk,α = 1 because E is trace-preserving.

Define wk =
�

α wk,α. We may then calculate

p(n)� (|ψ�) =
�

k,α

c(k,α)� p(n)� (|ψ�) =
n−1�

k=0

wkp
(n)
�−k(|φ�), (4.10)

where w := (w0, w1, . . . , wn−1) is a probability vector.

If we have such a vectorw, there exists a Zn invariant channel E such that E(|ψ��ψ|) =

|φ��φ|. Define the Kraus operators

Ek =
n−1�

�=0

�
c(k)� |�+ k���| (4.11)

for each k = 0, 1, . . . , n− 1, where

c(k)� =






wkp
(n)
�−k(|φ�)/p

(n)
� (|ψ�) if p(n)� (|ψ�) �= 0

1/n if p(n)� (|ψ�) = 0
(4.12)

Then define E(ρ) =
�

k EkρE
†
k.
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Consider the simple case of Z2-frameness. |ψ� Z2�→ |φ� if and only if there exists a

vector w = (w0, w1) consisting of positive real entries satisfying

p(2)0 (|ψ�) = w0p
(2)
0 (|φ�) + w1p

(2)
1 (|φ�)

p(2)1 (|ψ�) = w1p
(2)
0 (|φ�) + w0p

(2)
1 (|φ�)

(4.13)

Notice that |φ�� :=
�

p(2)1 (|φ�) |0�+
�
p(2)0 (|φ�) |1� Z2∼ |φ�. Thus we may assume p(2)0 (|φ�) ≥

p(2)1 (|φ�) (and p(2)0 (|ψ�) ≥ p(2)1 (|ψ�)) without loss of generality. Furthermore, if p(2)0 (|φ�) =

p(2)1 (|φ�) = 1/2, |ψ� Z2�→ |φ� if and only if p(2)0 (|ψ�) = p(2)1 (|ψ�) = 1/2. We then assume

p(2)0 (|φ�) > p(2)1 (|φ�) . In this case, equation 4.13 has a unique solution

w0 =
p(2)0 (|ψ�)p(2)0 (|φ�)− p(2)1 (|ψ�)p(2)1 (|φ�)

p(2)0 (|φ�)− p(2)1 (|φ�)
, w1 =

p(2)1 (|ψ�)p(2)0 (|φ�)− p(2)0 (|ψ�)p(2)1 (|φ�)
p(2)0 (|φ�)− p(2)1 (|φ�)

.

(4.14)

By Theorem 4.2, |ψ� Z2�→ |φ� if and only if w0 ≥ 0 and w1 ≥ 0, or

p(2)0 (|ψ�)p(2)0 (|φ�) ≥ p(2)1 (|ψ�)p(2)1 (|φ�) and p(2)1 (|ψ�)p(2)0 (|φ�) ≥ p(2)0 (|ψ�)p(2)1 (|φ�), (4.15)

which is true if and only if p(2)1 (|ψ�) ≥ p(2)1 (|φ�). We have thus reproduced the Z2-

frameness monotone of Gour and Spekkens [18] and shown that it fully characterizes the

Z2-frameness of a pure state.

A single absolute monotone cannot fully characterize the Z3-frameness of a pure state

because there exist states |ψ� and |φ� such that |ψ�
Z3

��→ |φ� and |φ�
Z3

��→ |ψ�, though this

does not prevent a single relative monotone from characterizing the relative Z3-frameness

of a pure state. |ψ� Z3�→ |φ� if and only if there exists a vector (w0, w1, w2) of positive real

numbers with the property that





p(3)0 (|ψ�)

p(3)1 (|ψ�)

p(3)2 (|ψ�)




=





p(3)0 (|φ�) p(3)2 (|φ�) p(3)1 (|φ�)

p(3)1 (|φ�) p(3)0 (|φ�) p(3)2 (|φ�)

p(3)2 (|φ�) p(3)1 (|φ�) p(3)0 (|φ�)









w0

w1

w2




(4.16)
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and w0 + w1 + w2 = 1. Equation 4.16 could also be written in the form p(|ψ�) =

P (|φ�) · w, where P (|φ�) is the 3 × 3 matrix. This collection of linear equations has a

unique solution whenever det(P (|φ�)) �= 0. By the arithmetic-geometric mean inequality,

1
3

��
p(3)0 (|φ�)

�3
+
�
p(3)1 (|φ�)

�3
+
�
p(3)2 (|φ�)

�3�
≥ 3

��
p(3)0 (|φ�)

�3 �
p(3)1 (|φ�)

�3 �
p(3)2 (|φ�)

�3
, so

det(P (|φ�)) =
�
p(3)0 (|φ�)

�3
+
�
p(3)1 (|φ�)

�3
+
�
p(3)2 (|φ�)

�3
− 3p(3)0 (|φ�)p(3)1 (|φ�)p(3)2 (|φ�) ≥ 0

(4.17)

with equality if and only if p(3)0 (|φ�) = p(3)1 (|φ�) = p(3)2 (|φ�) = 1
3 . If this is the case,

|ψ� Zn�→ |φ� if and only if p(3)0 (|ψ�) = p(3)1 (|ψ�) = p(3)2 (|ψ�) = 1
3 . Otherwise, equation 4.16

has a unique solution w given by

wk =

�2
�=0 p

(3)
k+�(|ψ�)

��
p(3)� (|φ�)

�2
− p(3)�+1(|φ�)p

(3)
�+2(|φ�)

�

�
p(3)0 (|φ�)

�3
+
�
p(3)1 (|φ�)

�3
+
�
p(3)2 (|φ�)

�3
− 3p(3)0 (|φ�)p(3)1 (|φ�)p(3)2 (|φ�)

(4.18)

(for k = 0, 1, 2), where, again, the subscript additions are performed modulo 3. By

Theorem 4.2, |ψ� Z3�→ |φ� if and only if mink wk ≥ 0.

Thus the relative Z3-frameness of a pure state |ψ� with respect to |φ� may be char-

acterized with a single relative frameness monotone. Define R3(|ψ� , |φ�) = mink wk

when p(|φ�) �=
�
1
3 ,

1
3 ,

1
3

�
, R3(|ψ� , |φ�) = 0 when p(|ψ�) = p(|φ�) =

�
1
3 ,

1
3 ,

1
3

�
, and

R3(|ψ� , |φ�) = −1 otherwise. Then R3(|ψ� , |φ�) ≥ 0 if and only if |ψ� Z3�→ |φ�. The

ability to transform one state to another with Z3-invariant operations is illustrated in

figure 4.1. It is clear that a single absolute monotone cannot characterize Z3-invariant

transformations because there exist pairs of states |ψ� and |φ� such that |ψ�
Z3

��→ |φ� and

|φ�
Z3

��→ |ψ�.

In general, equation 4.7 can be written in the form p(|ψ�) = P (|φ�) · w, so a

unique solution w exists whenever det(P (|φ�)) �= 0. In the case that det(P (|φ�)) = 0,

there may be no solutions or many. If there are no solutions, |ψ�
Zn

��→ |φ�. If there are

many solutions, we must check to see if there are any with all positive entries. Define
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(a) |η� =
�
1/11 |0�+

�
5/11 |1�+

�
5/11 |2� (b) |η� =

�
1/2 |0�+

�
2/5 |1�+

�
1/10 |2�

(c) |η� =
�
1/3 |0�+

�
10/27 |1�+

�
8/27 |2� (d) |η� =

�
1/10 |0�+

�
1/10 |1�+

�
4/5 |2�

Figure 4.1: Depiction of states in the form
√
x |0�+√

y |1�+
√
z |2� (where 0 ≤ x, y, z ≤ 1

and x+y+z = 1) that can be mapped to or from a specified state |η�. In each figure, the
vertical axis represents

√
3x, and the horizontal axis is z − y. The red dot in each figure

represents |η�, whereas the blue dots represent the non-resource states |0�, |1�, and |2�
that form the vertices of the region of all states. The interior red region represents the
states that can be mapped to |η� with Z3-invariant operations, whereas the exterior blue
region represents states to which |η� can be transformed using Z3-invariant operations.
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Rn(|ψ� , |φ�) = mink wk when a unique solutions w exists, Rn(|ψ� , |φ�) = maxw mink wk

when there are many solutions (where the maximum is taken over all possible solutions

w), and Rn(|ψ� , |φ�) = −1 when no solution w exists. Then |ψ� Zn�→ |φ� if and only if

Rn(|ψ� , |φ�) ≥ 0.

4.3 U(1)-frameness

In the previous section, I have presented necessary and sufficient conditions for the exis-

tence of a Zn-invariant pure-state transformation. These conditions could be expressed

in terms of the positivity of a single easily calculable relative monotone. Similar neces-

sary and sufficient conditions exist for U(1)-invariant pure-state transformations, but the

relative monotone interpretation is less valuable.

According to the Peter-Weyl theorem, any unitary representation T of U(1) on a

Hilbert space H may be decomposed into a direct sum of irreducible unitary represen-

tations. Write U(1) ∼= R/(2πZ), so that each element of U(1) is denoted by an angle

θ ∈ [0, 2π), and, for each h ∈ Z, denote by Hh the maximal subspace of H such that

T (θ) |ψ� = exp(ιhθ) |ψ�. Of course, H ∼=
�

h∈Z Hh. Define the projection operator

Πh : H → Hh for each h ∈ Z and define ph(|ψ�) = �ψ|Πh |ψ�. ph plays a similar role to

the functions p(n)k of the previous section.

Theorem 4.3 (Gour and Spekkens [18]). |ψ� U(1)�→ |φ� if and only if there exists a collection

of positive real numbers {wh|h ∈ Z} such that wh ≥ 0 for each k,
�

h wh = 1, and

p�(|ψ�) =
�

h∈Z

whp�−h(|φ�) (4.19)

for each � ∈ Z.

The similarity of Theorem 4.3 to Theorem 4.2 is quite clear, but it seems we must

solve an infinite collection of linear equations in order to extract relative monotones
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characterizing U(1)-invariant transformations. If H is finite-dimensional, however, this

is not true. Note that dim (Hh) = 0 ⇒ ph(|ψ�) = 0 and that dim (Hh) = 0 for almost all

h ∈ Z if dim(H ) < ∞. Furthermore, |ψ� U(1)∼ |φ� if ph(|ψ�) = ph−�(|φ�) for each h ∈ Z

and some fixed � ∈ Z. Without loss of generality, we may assume

|ψ� =
N−1�

h=0

�
ph(|ψ�) |h� and |φ� =

M−1�

h=0

�
ph(|φ�) |h� (4.20)

for some natural numbers N and M such that p0(|ψ�) �= 0, p0(|φ�) �= 0, pN−1(|ψ�) �= 0,

pM−1(|φ�) �= 0, ph(|ψ�) = 0 if h ≥ N , ph(|φ�) = 0 if h ≥ M , and ph(|ψ�) = ph(|φ�) = 0

if h < 0. For simplicity of notation, we will write nh = ph(|ψ�) for 0 ≤ h ≤ N − 1 and

nh = 0 for any other h ∈ Z. Similarly, mh = ph(|φ�) for 0 ≤ h ≤ M − 1 and mh = 0

otherwise. Thus

|ψ� =
�

h∈Z

√
nh |h� and |φ� =

�

h∈Z

√
mh |h� , (4.21)

and |ψ� U(1)�→ |φ� if and only if there is a collection {w�|� ∈ Z} such that w� ≥ 0 for each

� ∈ Z,
�

�w� = 1, and nh =
�

� w�qh−� for each h ∈ Z.

If h < 0, nh = whm0 + (other terms) = 0. Because each summand is positive, they

must all be zero for this equation to be satisfied. In particular, whm0 = 0 ⇒ wh = 0 for

each h < 0 becausem0 �= 0 by hypothesis. In addition, n0 = w0m0+w1m−1+. . . = w0m0,

so w0 = n0/m0 �= 0 by hypothesis. We have 1 − n0 ≥ 1 − m0 because w0 ≤ 1, so the

function 1− p0 is a U(1)-monotone.

If |ψ� U(1)�→ |φ�, we must have M ≤ N . If not, 0 = nM−1 = w0mM−1+(other terms) ⇒

mM−1 = 0, contradicting our choice of M . If M = N , 0 = nN−1+� = w�mN−1 +

(other terms) ⇒ w� = 0 for any � > 0. Thus, for any 0 �= � ∈ Z, w� = 0, so w0 = 1. This

implies mh = nh for each h ∈ Z, or that |ψ� = |φ�. Henceforth, I assume M < N .

In the case M = 2, a relative monotone will fully characterize pure-state transforma-

tions |ψ� U(1)�→ |φ�. Indeed, such a transformation exists if and only if there is a collection
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{w0, w1, . . . , wN1} of positive real numbers such that





n0

n1

...

nN−2

nN−1





=





m0 0 · · · 0 0

m1 m0 · · · 0 0

...
...

. . .
...

...

0 0 · · · m0 0

0 0 · · · m1 m0









w0

w1

...

wN−2

wN−1





, (4.22)

which has the unique solution





w0

w1

...

wN−2

wN−1





=





1
m0

0 · · · 0 0

−m1

m2
0

1
m0

· · · 0 0

...
...

. . .
...

...

(−m1)N−2

mN−1
0

(−m1)N−3

mN−2
0

· · · 1
m0

0

(−m1)N−1

mN
0

(−m1)N−2

mN−1
0

· · · −m1

m2
0

1
m0









p0

p1
...

pN−2

pN−1





. (4.23)

Thus, in the case M = 2, the relative monotone mink wk calculated from equation 4.23

fully characterizes the ability to enact |ψ� U(1)�→ |φ�.

For larger values of M , the matrix composed of values pk(|φ�) becomes non-square, so

there are many solutions to equation 4.19. One solution may be obtained through linear

regression: if equation 4.19 is written in the form p(|ψ�) = P (|φ�)w, a possible solution

is w =
�
P T (|φ�)P (|φ�)

�−1
P T (|φ�)p(|ψ�), where T represents the transpose of a matrix.

Extra conditions may be required on p(|ψ�) and p(|φ�) for there to exist solutions.

Consider the extremal case M = N − 1. In this situation, the existence of a solution

to equation 4.19 is highly nontrivial whereas the solution itself is trivial. Indeed, there

are only two nonzero values of wk, namely w0 and w1. Furthermore, w0 = n0/m0 and

w1 = nN−1/mN−2. So, should a solution exist to equation 4.19, that solution is already

known. The problem is then to find conditions on the existence of a solution.

In fact, the conditions are given by substituting our values of w0 and w1 into equa-
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tion 4.19. This yields:

nk =
n0

m0
mk +

nN−1

mN−2
mk−1 (4.24)

for each k = 0, 1, . . . , N − 1. Furthermore, n0/m0 + nN−1/mN−2 = 1. Rather than a

collection of inequalities, then, the existence of the transformation |ψ� U(1)�→ |φ� depends

on this collection of equalities being satisfied.

This behaviour can be captured with relative monotones, though such monotones

are artificial. For instance, the equality n0/m0 + nN−1/mN−2 = 1 may be captured by

demanding that the relative monotone

R(|ψ� , |φ�) = min {n0/m0 + nN−1/mN−2 − 1, 1− n0/m0 − nN−1/mN−2} (4.25)

be positive. All of the required equalities may be captured similarly, though there is little

meaning to such a description.

In conclusion, I have shown that it is possible to characterize the resourcefulness of a

state in a relative fashion even when absolute quantifiers of resourcefulness remain elusive.

I gave a relative monotone that completely characterized the ability to transform pure

states under Zn-invariant operations in section 4.2, and showed the similarity of such

techniques to characterizations of U(1)-frameness. More generally, I argue that relative

monotones may be of value in the study of other resource theories. Finding such relative

monotones can alleviate certain difficulties encountered when attempting to characterize

resources with the more common absolute monotones.
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Chapter 5

Conclusion

Certain properties of a quantum mechanical physical system may be exploited to commu-

nicate quantum information. My thesis focusses on two such properties: entanglement

and frameness. The resourcefulness of entanglement for the communication of quantum

information is well-known; for example, in the achievement of quantum teleportation [1].

The resource theory of frameness is a newer development and is useful for the theoretical

analysis of certain practical implementations of quantum information processing tasks [3].

In many cases, the resourcefulness of a quantum system is degraded after enacting a

protocol requiring that resource. The successful teleportation of a qubit, for example, can

be accomplished by reducing the entanglement between sender and receiver. Resources

such as entanglement are difficult to produce, so it is desirable to minimize the resource

cost of quantum information processing tasks. Such minimization is often accomplished

with respect to some cost function. One example of such a cost function is a monotone.

A monotone is a real-valued function of quantum states intended to characterize

the resourcefulness of that state in alleviating restrictions on achievable operations. An

important requirement of a monotone is then that it not increase when achievable oper-

ations are applied. Thus, if E is an achievable channel and f is a monotone, we require

f(ρ) ≥ f(E(ρ)) for any state ρ. This notion of monotone is a direct extension of entan-

glement monotones [21], which cannot increase under the application of LOCC channels

to the argument state. This is in fact the only requirement of an entanglement mono-

tone [15], though further conditions were once imposed [16].

Entanglement monotones are powerful for analyzing tasks requiring entanglement. In

Chapter 3, I present in some detail the phenomenon of entanglement catalysis [4], wherein
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entanglement may be used as a resource without being consumed. The ability of a given

entangled state to serve as a catalyst can be quantified with entanglement monotones. I

have given conditions on the values of a collection of entanglement monotones known as

the generalized concurrences [19] for a state to be able to catalyze a given entanglement-

assisted LOCC pure-state transformation.

The ability of the generalized concurrences to characterize the entanglement of a po-

tential catalyst is a consequence of their non-monotonic behaviour under the application

of entanglement-assisted LOCC channels. The concurrences are therefore not ‘catalytic’

monotones. A catalytic monotone is defined in the same way as an entanglement mono-

tone, except that it does not increase even under eLOCC channels. Monotones may in

fact be defined whenever the set of achievable quantum channels is restricted. In frame-

ness theory, the restriction is that every channel must commute with some given group

action.

There has been some uncertainty in the literature regarding the appropriate defi-

nition of an entanglement monotone, in particular with regard to the quantification of

the average entanglement output of a local measurement procedure. Vidal’s original

definition of an entanglement monotone required that the weighted average of the en-

tanglement of possible outcomes of a local measurement should not be greater than the

entanglement present before the measurement [16]. Plenio argued that this definition

excludes reasonable measures of entanglement and is therefore too restrictive [15]. It is

now accepted that the only requirement for an entanglement monotone is that it is a

real-valued function of states that does not increase under application of LOCC channels

to the argument [21]. The stronger ‘convexity’ requirement of Vidal leads to what we

call an ‘ensemble monotone’, and is distinct from the ‘absolute monotone’ of Plenio.

Even the notion of an absolute monotone can be inadequate for the characterization of

some types of resourcefulness. As evidence, I present a characterization of the frameness
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of a pure state in the case that reference choices are related by the action of a cyclic

group. In Chapter 4, I characterize this resource theory with a type of cost function

I call a ‘relative monotone’. This assigns a resource cost to a state defined relative to

another state, rather than in isolation.

I argue that relative monotones should be considered valid quantifiers of resource-

fulness for three reasons. First, any resourcefulness that may be described using abso-

lute monotones may also be described with relative monotones. Second, descriptions

of resourcefulness can be made more concise with relative monotones. Third, there are

resource theories whose description with absolute monotones remains elusive though a

description with relative monotones is readily available.

The relative approach could have wider consequences for the field of entanglement

theory. Bipartite entanglement has been studied for some time with entanglement mono-

tones, but this approach has limitations when applied to multipartite entanglement. For

example, there are two distinct classes of tripartite entanglement for three qubits [34].

The distinction between these classes is due to the inability to convert states in one class

to states in another via LOCC channels with any nonzero probability. When considering

four-party entanglement, the number of distinct classes becomes infinite. This suggests

that an ‘absolute’ characterization of multipartite entanglement will require an infinite

collection of monotones in most cases. A characterization in terms of relative monotones

will be far more concise.
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