Electromagnetically induced transparency on an array of artificial atoms

Electromagnetically induced transparency (EIT) has recently been demonstrated in a one-dimensional superconducting artificial atom in the microwave regime [1] and it is of interest to build quantum information devices with artificial atoms. Since one can flexibly engineer the properties of artificial atoms and the spatial dimension is reduced from three to one, artificial atoms has the potential to become a useful test bed for photonics. For instance, it is in theory impossible to induce a phase shift large enough for useful quantum gates with single photons via cross-phase modulation [2], and one may test the validity of the theory with microwave photons and artificial atoms. Here we develop the theory of a one-dimensional array of superconducting artificial atoms with EIT. Our theory shows how the absorption of the field in a one-dimensional array of atoms behaves similar to Beer’s law and how the controlled field induces transparency in the array of atoms. Our theory also shows how EIT properties, such as the reduction of group-velocity, are achieved for microwave pulses in artificial atoms. [1] A.A. Abdumalikov Jr. et al, Phys. Rev. Lett., 104, 193601 (2010) [2] J. Gea-Banacloche, Phys. Rev. A, 81, 043823 (2010)