Quantum Information Processing with 10¹⁰ Electrons ?

René Stock

Institute for Quantum Information Science at the University of Calgary

IQIS Seminar, October 2005

People:

- Barry Sanders
- Peter Marzlin
- Jeremie Choquette

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

What are surface plasmons?

$$\mathbf{E}_{1} = \begin{pmatrix} E_{x1} \\ 0 \\ E_{z1} \end{pmatrix} \exp[i(k_{x1}x - k_{z1}z - \omega t)]$$
$$\mathbf{H}_{1} = \begin{pmatrix} 0 \\ E_{y1} \\ 0 \end{pmatrix} \exp[i(k_{x1}x - k_{z1}z - \omega t)]$$
$$\mathbf{E}_{x1} = \begin{pmatrix} E_{x2} \\ 0 \\ 0 \end{pmatrix} \exp[i(k_{x1}x + k_{x2}z - \omega t)]$$

$$\mathbf{E}_{2} = \begin{pmatrix} E_{x2} \\ 0 \\ E_{z2} \end{pmatrix} \exp\left[i\left(k_{x2}x + k_{z2}z - \omega t\right)\right]$$
$$\mathbf{H}_{2} = \begin{pmatrix} 0 \\ E_{y2} \\ 0 \end{pmatrix} \exp\left[i\left(k_{x2}x + k_{z2}z - \omega t\right)\right]$$

Maxwell Equations and continuity ۲ $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon \mathbf{E}$ (linear medium)

ullet

$$\operatorname{div} \mathbf{D} = 0 \qquad \longrightarrow \begin{array}{c} E_{x1} &= E_{x2} \\ \varepsilon_1 E_{z1} &= \varepsilon_2 E_{z2} \end{array}$$
$$\operatorname{rot} \mathbf{H} - \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} = 0 \qquad \qquad H_{y1} &= H_{y2} \\ \operatorname{div} \mathbf{B} = 0 \qquad \qquad \frac{k_{z1}}{\varepsilon_1} H_{y1} &= -\frac{k_{z2}}{\varepsilon_2} H_{y2} \end{array}$$

SP Dispersion relation

$$k_x = \frac{\omega}{c} \sqrt{\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}}$$

$$k_x^2 + k_{zi}^2 = \varepsilon_i \frac{\omega^2}{c^2}$$

Surface Plasmon Polariton: Polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation, in this case plasmons.

e.g. Ag $\varepsilon = -22.4 - 0.91i$ Au $\varepsilon = -23.0 - 0.77i$ [also $\varepsilon(\omega)$]

What are surface plasmons?

Extremely short lifetimes for surface plasmons (10^{-15} s to 10^{-12} s)

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

[other figures courtesy of R. Stock, Thesis, UNM (2001)]

• Periodic structure

$$\vec{k}_{sp} = \vec{k}_x \pm m \vec{G}_x \pm n \vec{G}_y$$

$$\rightarrow \sqrt{m^2 + n^2} \ \lambda = D_{\sqrt{\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}}}$$

• Periodic sub wavelength hole array

versatile wavevector matching using periodic structures

[Figures courtesy of Ghaemi et al., PRB 58, p6779 (1998) and Altewischer et al., Nature 418, p304 (2002)]

• Periodic sub wavelength hole array

Enhanced optical transmission through array of sub wavelength holes (compared to diffraction theory)

[Figures courtesy of Ghaemi et al., PRB 58, p6779 (1998) and Altewischer et al., Nature 418, p304 (2002)]

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

Implementations using Surface Plasmons

- Field enhancement effect
 - Surface enhanced spectroscopy
 - Strong coupling to waveguides
 - Biophotonics: Biological and chemical detectors (sensitivity to ε_2 at the surface)
- Nanoscale technology
 - Nano-optics and nano-circuitry on surfaces:
 - Mirrors (reflectivity>90%)
 - Nanowires (waveguides) for plasmons
 - "Plasmonic" computer chips and other nanoscale technology
 - Data storage
- Quantum nature of surface plasmons
 - SPASERS (surface plasmon amplification probe beam @ 633 nm
 by spontaneous emission of radiation)
 - Single photon light sources
 - Quantum information processing

Seidel et al., PRL 94, 177401 (2005)

• Polarization entangled photons

$$\left|\psi\right\rangle = \frac{1}{\sqrt{2}} \left(\left|X_{1}Y_{2}\right\rangle + e^{i\phi}\left|Y_{1}X_{2}\right\rangle\right)$$

• Experimental setup

Plasmon-assisted transmission of entangled photons

E. Altewischer, M. P. van Exter & J. P. Woerdman Nature 418, p304 (2002)

Coincidence detection after transmission through hole array

• Experiment

Table 1 Biphoton fringe visibilities				
Experiment	<i>R</i> (s ⁻¹)	V _{0°} (%)	V _{45°} (%)	
No arrays	32 × 10 ³	99.3	97.0	
Both arrays	55	97.1	97.2	
Only array 1	1.6×10^{3}	99.4	97.1	
Only array 2	1.0×10^{3}	97.5	96.8	
Array 1, focussed	1.1×10^{3}	73	87	

R, measured coincidence count rate; $V_{0^{\circ}}$ and $V_{45^{\circ}}$, measured visibility for one of the polarizers fixed at 0° and 45°, respectively.

Reduced visibility due "which-path" information in solid?

 Which-path information: include state of solid
 E. Moreno, F.J. Garcia-Vidal, D. Erni, J. I. Cirac, L. Martin-Moreno PRL 92, 236801(2004)

$$|\Phi_{\rm in}\rangle = (|X_1Y_2\rangle - |Y_1X_2\rangle)/\sqrt{2} \otimes |S\rangle$$

 $t_{X_1X_1}|X_1Y_2\rangle \otimes |S_{xx}\rangle + t_{Y_1X_1}|Y_1Y_2\rangle \otimes |S_{yx}\rangle - t_{X_1Y_1}|X_1X_2\rangle \otimes |S_{xy}\rangle - t_{Y_1Y_1}|Y_1X_2\rangle \otimes |S_{yy}\rangle = t_{Y_1Y_1}|Y_1X_2\rangle \otimes |S_{yy}\rangle + t_{Y_1Y_1}|Y_1X_2\rangle \otimes |S_{yy}\rangle = t_{Y_1Y_1}|Y_1Y_2\rangle \otimes |S_{yy}$

• Interaction models?

a) all $|S_{ab}\rangle$ are orthogonal: solid and biphoton entangled

→ trace over solid: mixed state for biphoton, "which-polarization" information

b) all $|S_{ab}\rangle$ are equal: no entanglement between solid and photon states

- \rightarrow trace over solid: biphoton entangled depending on t_{ab}
 - Choose b): no which-path labels introduced in solid
 - Observed visibilities can be explained by polarization dependent transmission of hole array

Energy-time entanglement
 S. Fasel, N. Gisin, H. Zbinden, D. Erni, E. Moreno, F. Robin
 PRL 94, 110501(2005)
 Hole array U-bench

- → energy-time entanglement especially robust against environmental disturbance
- → telecom wavelength particularly interesting for quantum communication

• Energy-time entanglement S. Fasel, N. Gisin, H. Zbinden, D. Erni, E. Moreno, F. Robin PRL 94, 110501(2005)

 \rightarrow macroscopic cat states (surface plasmons) living at different "epochs" that differ by more than the cats (surface plasmon) lifetime

Experiment	Reference visibility	Plasmon-assisted visibility	Transmittance
extraordinary transmission at 810 nm	$93 \pm 3\%$	$93 \pm 3\%$	11%
extraordinary transmission at 1550 nm	$97 \pm 3\%$	$96 \pm 5\%$	6%

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

Surface Plasmons in Quantum Information

Proposal: Cavity QED with Surface Plasmons
 D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin quant-ph/0506117

- efficient coupling of emitter (quantum dot, atom) to plasmon mode of nanowire
- evanescent coupling of nanowire to dielectric waveguide
- plasmon cavity created by plasmon mirrors ($2k_{\parallel}$ grating on surface) with reflectivity > 0.9

 \rightarrow single photon source

field enhancement: stronger coupling and faster interaction timesone photon sources

Surface Plasmons in Quantum Information

Proposal: Cavity QED with Surface Plasmons
 D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin quant-ph/0506117

- fractional power emitted into fundamental plasmon mode
- one photon source efficiency: 0.7 (coupling to wire), 0.9 coupling to cavity

Summary

Summary

- Entanglement survives excitation and deexcitation of surface plasmons
- Applications for hybridization of different QIP implementations
- Problems:
 - Short Coherence time (usually $< 10^{-12}$ s)
 - Limited spatial propagation (usually < 1 mm)

References

- General review:
- Surface Plasmons:
- Entanglement experiments
 - Theoretical analysis
 - Time-energy entanglement
- Hybrid proposal

J. Opt. A 5, S16-S50 (2003) H. Raether: Surface Plasmons, Springer 1988 Nature 418, 304 (2002) PRL 92, 236801(2004) PRL 94, 110501(2005) quant-ph/0506117