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Abstract

Convexity arises naturally in the study of quantum information. As a result, many useful

tools from convex analysis can be used to give important results regarding aspects of quan-

tum information. This thesis builds up methods using core concepts from convex analysis,

including convex optimization problems, convex roof constructions, and conic programming,

to study mathematical problems related to quantum entanglement. In this thesis, I de-

velop a method for solving convex optimization problems that arise in quantum information

theory by analyzing the corresponding converse problem. That is, given an element in a

convex set, I determine a family of convex functions that are minimized at this point. This

method is used find explicit formulae for the relative entropy of entanglemnt, as well as other

important quantities used to quantify entanglement, and allows one to show important rela-

tionships between them. I also construct a practical algorithm that can be used to compute

these quantites. This thesis also presents a method to compute convex roofs of arbitrary

entanglement measures evaluated on highly symmetric bipartite states. I also establish a

framework for completely characterizing quantum resource theories that are convex. For

resource theories with a simple mathematical structure, this gives rise to a complete set of

resource monotones that can be computed in practice using semidefinite programs. This has

applications to the study of entanglement transformations.
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Chapter 1

Introduction

Quantum information theory is the study of how information can be stored, communicated,

and manipulated using the laws of quantum mechanics. While quantum information differs

from classical information in many ways, the two key components that lead to its most

interesting and useful properties are superpositions and entanglement. A superposition of

quantum states is, mathematically, just a linear combination of vectors and is thus very

well-understood. On the other hand, entanglement is a property of positive operators on the

tensors product of vector spaces and is much more difficult to analyze.

Although entanglement is one of the defining features of quantum physics, a complete

understanding of this phenomenon remains elusive. Entanglement was originally defined in

terms of correlations: a quantum system is said to be entangled if the results of measurements

performed on the separate subsystems exhibit correlations that are stronger than what could

possibly occur classically [SB35]. These correlations can exist even when the systems are far

apart from each other. Making use of these long-distance correlations constitutes the heart of

entanglement theory applications and understanding how entanglement can be manipulated

is one of the main problems in quantum information theory. The true value of entanglement

was first recognized in its power to help perform efficient simulations of quantum systems

[Fey82]. This ushered in an era of new developments in quantum computation with the
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prospect of constructing quantum computers that will one day be able to solve problems

much more quickly than is possible with the best-known classical algorithms [RB01]. It

was quickly recognized that many-body entanglement is a necessary resource for quantum

computers to have computational speedups over their classical counterparts [Vid03]. Fur-

thermore, entanglement has been discovered to be useful in quantum information processing

schemes involving the teleportation of quantum states [BBC+93], as well as secure quantum

communication and cryptography [BB84].

Entanglement is a necessary ingredient for many quantum information processing proto-

cols, but not all entanglement is equivalent [ES14, FG11, GMN+15a]. Only certain entangled

states are known to be useful for particular applications. Furthermore, typical experimental

realizations of quantum information processing are constrained in how the information of

the entangled particles can be manipulated [CLM+14]. It is therefore necessary for us to

understand the mathematical structure of entanglement imposed by this restriction and to

determine when it is possible to transform one entangled resource into another within this

hierarchy [VPRK97, Hor01, NV01].

Convexity naturally arises in many places in quantum information theory. The sets of

all possible states, processes and measurements for quantum systems are all convex sets.

Furthermore, many important quantities in quantum information are defined in terms of

convex optimization problems. In particular, entanglement is an important resource and

quantifying entanglement is a problem that is often cast in terms of convex optimization

problems. Entanglement, however, is not the only property of quantum systems that can

be studied as a resource. Many more quantum “resource theories” can be defined in terms

of convex sets of free states and free operations. As a result of this convexity, numerous

tools from convex analysis can be used to study the important questions that arise in these

resource theories. The primary tools from convex analysis that are utilized in this thesis

are those used to study convex optimization problems, convex roofs of functions, and conic

programming.
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Using techniques from convex analysis, for example, we can characterize the conditions

for when a particular density matrix is the optimal one for computing the minimum of given

convex function. This allows us to find closed-form solutions to many convex optimization

problems that would be otherwise unobtainable analytically. In particular, closed formula

for the relative entropy of entanglement as well as the Rains bound (an upper bound to

distillable entanglement) can be found using this method, and these quantities can be com-

pared. Making use of certain types of symmetry in bipartite quantum states, we can also use

methods from convex analysis to compute so-called convex roofs of entanglement measures on

many entangled states. This analysis can also be used to determine necessary and sufficient

conditions that determine when transformation between certain symmetric entangled states

is possible. Lastly, tools from conic programming can be used to study transformability of

resources in arbitrary resource theories in quantum information. Such results can be used

to study approximations to entanglement theory. These results listed above are the primary

ones that are presented in this thesis.

The main organization for the remainder of this thesis is as follows. Chapters 2 and 3

present the necessary background for quantum information theory and convex analysis. The

main new contributions of this thesis are contained in Chapters 4, 5, and 6. These chapters

are mostly independent of one another and can be read separately. A brief chapter-by-chapter

breakdown of the thesis is given below.

Chapter 2: Quantum information theory and quantum entanglement This

chapter introduces the mathematical basics necessary for dealing with quantum informa-

tion: state vectors, density operators, superoperators, and so on. A thorough overview of

quantum entanglement is also given. Finally, the definitions of a generalized resource theory

in quantum information are given and notions regarding convertibility of resources within a

resources within a resource theory are discussed.
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Chapter 3: Convex analysis This chapter discusses the main concepts from convex

analysis that will be used throughout the thesis. The main definitions needed to analyze

convex sets and convex functions are outlined. The Fréchet derivative is introduced which

is used to write down necessary and sufficient conditions for a point in a convex set to

minimize a convex function. Important definitions and facts for operator convex functions

(i.e., functions of matrices) will be introduced, and the separating hyperplane theorem will

be mentioned. Lastly, the study of cones and conic programming will be reviewed.

Chapter 4: Convex optimization problems in quantum information theory

This chapter consists largely of the work originally presented in [GGF14] and [GZFG15],

but many results are expanded upon and additional examples are provided. Results about

finding necessary and sufficient conditions for optimization of certain convex optimization

problems that arise in quantum information theory are presented. The case of trace-type

functionals is studied first in general manner, which gives rise to the specific results regarding

optimization criteria for studying the quantum relative entropies. Closed formulae for the

relative entropy of entanglement of certain states is given by solving the converse problem.

That is, given a state σ on the boundary of the separable states and a supporting hyperplane

of the separable states at that state, it is possible to find all entangled states ρ whose closest

separable state (with respect to the relative entropy) is σ. Similar results are used to study

the Rains bound and the Rényi relative entropies of entanglement. Additionaly, an algorithm

is presented that is used to numerically estimate these quantities. This algorithm uses the

cutting plane technique and implements numerical convex programming tools.

Chapter 5: Entanglement of bipartite symmetric states This chapter presents

the work of [GG17]. The concept of the convex roof of a function is discussed and techniques

for computing convex roofs of under symmetry are introduced. Certain classes of symmetric

bipartite entangled states are analyzed. Most importantly, methods for computing the con-
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vex roof of arbitrary entanglement measures for states with these types of symmetries are

provided. We also give necessary and sufficient conditions for conversion of a pure state to

a Werner state by LOCC.

Chapter 6: Conic resource theories This chapter presents new work that has not

yet been published. The main concepts of conic resource theories are first introduced. Nec-

essary and sufficient conditions for conversion among resources in different convex quantum

resource theories are given. These conditions are can be written purely in terms of the dual

cone of witnesses to the convex set of free operations. A complete family of computable

resource monotones are also be defined for these resource theories. Examples of convex

resource theories are presented, and applications involving approximations to the resource

theory of entanglement are discussed. In particular, a new class of PPT-monotones that can

be computed as semidefinite programs are introduced and analyzed.
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Chapter 2

Quantum information theory and
entanglement

This chapter is devoted to introducing the basic mathematical tools and framework that

will be used throughout this work. We first recall some basic notions from linear algebra

and use this to develop the necessary tools for analyzing quantum information theory for

finite-dimensional quantum systems. Then we will consider the notion of entanglement in

bipartite quantum systems and discuss some of its properties.

2.1 Linear algebra

2.1.1 Vectors and matrices

The n-dimensional complex Euclidean space will be denoted H = Cn. The ‘bra-ket’ notation

from quantum mechanics will be used as follows. Elements of Cn are column vectors and will

denoted by kets |v〉 ∈ Cn. The standard basis of Cn is typically denoted by the collection of

6



vectors {|1〉, |2〉, . . . , |n〉} defined by

|1〉 =


1
0
...
0

 , |2〉 =


0
1
...
0

 , . . . , |n〉 =


0
0
...
1

 .

Arbitrary elements can be expanded in this basis as |v〉 = α1|1〉 + · · · + αn|n〉 for some

complex numbers αi. The bras 〈v| := |v〉† represent the dual (row) vectors, where (·)† is the

conjugate transpose. The inner product of two vectors |v〉, |w〉 ∈ Cn is denoted by 〈v|w〉

which is conjugate-linear in the first argument and linear in the second.

The space of linear maps from HA to HB will be denoted by L(HA,HB). For HA = Cm

and HB = Cn, this space of linear operators is is identified with the space L(Cm,Cn) ' Mn,m

of n ×m matrices with complex entries. We use the shorthand Mn := Mn,n to denote the

space of n×n matrices. Both the operator notation L(HA) and the matrix notation Mn will

be used depending on convenience. The identity operator will be denoted 1n ∈ Mn or as

1A ∈ L(HA) depending on whether the size of the matrix or the name of the space that it

operates on is being emphasized.

The space of operators Mn = L(Cn) is itself a Euclidean space with inner product defined

by 〈X, Y 〉 = Tr(X†Y ), called the Hilbert-Schmidt inner product, for X, Y ∈ L(H). The

space Mn is n2-dimensional and is spanned by {|j〉〈k|} for 1 ≤ i, j ≤ n. Given an operator

X ∈ L(HA,HB), its adjointX† is the unique linear operator such that 〈w|X|v〉 = (X†|w〉)†|v〉

for all |v〉 ∈ HA and |w〉 ∈ HB. In matrix representation, X† is the conjugate transpose.

An operator X ∈ L(Cn) is called hermitian if X† = X. An hermitian operator X is called

positive semidefinite (or just positive for short) if 〈v|X|v〉 ≥ 0 for all |v〉 ∈ Cn and is called

positive definite if that inequality is strict. Positive semi-definiteness and positive definiteness

of a matrix X is denoted by X ≥ 0 and X > 0 respectively. Given hermitian matrices X and

Y , we will write X ≥ Y to mean X −Y ≥ 0. The set of hermitian n×n matrices is denoted

Hn and the set of positive semidefinite matrices is denoted Hn,+. When the dimension of the
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underlying space does not need to be emphasized, we will also use the notation H(HA) and

H(HA)+ to denote the space of hermitian operators and set of positive semidefinite operators

acting on HA.

The space H(Cn) = Hn of hermitian operators is itself an n2-dimensional real Euclidean

space with the same inner product. This space is spanned by the n2 hermitian matrices

{Hj,k | 1 ≤ j, k ≤ n} defined by

Hj,k =


|j〉〈j| if j = k

|j〉〈k|+|k〉〈j|√
2 if j < k

|j〉〈k|−i|k〉〈j|√
2 if k < j,

which are orthonormal with respect to the inner product defined above. We will now state

some useful characterizations of matrices using the Hilbert-Schmidt inner product. Let

X ∈ L(H). Then X ≥ 0 if and only if 〈X,P 〉 for all positive operators P ≥ 0. Similarly, it

holds that X = 0 if and only if 〈X, Y 〉 = 0 for all Y ∈ H(H). Lastly, for any vector |v〉 ∈ H

it holds that
〈
|v〉〈v|, X

〉
= 〈v|X|v〉.

Every hermitian operator X ∈ H(Cn) can be diagonalized into its spectral decomposition

X = ∑n
j=1 λj|uj〉〈uj| where λj are the real eigenvalues of X and |vj〉 are the normalized eigen-

vectors. A real-valued function f : Ω→ R from a subset Ω ⊆ R can be extended to functions

of hermitian matrices whose eigenvalues are contained in Ω by f(X) = ∑
j f(λj)|uj〉〈uj|. The

modulus of a matrix X is defined as |X| =
√
X†X, which is allowed since X†X ≥ 0 for any

matrix X. Every hermitian matrix X has a unique Jordan-Hahn decomposition given by

X = X+ − X−, where X+ ≥ 0 and X− ≥ 0 are the unique positive semidefinite matrices

satisfying X = X+ −X− and X+X− = 0. These matrices can be given by

X+ = |X|+X

2 and X− = |X| −X2 .
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2.1.2 The tensor product

The tensor product to two complex Euclidean spaces HA = Cm and HB = Cn, written

as HA ⊗ HB, is isomorphic to the mn-dimensional Euclidean space Cmn. Given bases

{|v1〉, . . . , |vm〉} and {|w1〉, . . . , |wn〉} of Cm and Cn, arbitrary elements of Cm ⊗ Cn can

be written as |v〉 = ∑m
i=1

∑n
j=1 αij|vi〉 ⊗ |wj〉. The tensor products of the standard basis

elements are denoted by |ij〉 = |i〉 ⊗ |j〉 for short. The tensor product of matrix spaces has

the isomorphism L(HA) ⊗ L(HB) ' L(HA ⊗ HB), and an arbitrary matrix X in this space

can be expanded in the standard bases as

X =
m∑

i,j=1

n∑
j,k=1

xijkl|i〉〈j| ⊗ |k〉〈l|.

Given a matrix X ∈ L(HA⊗HB), its partial trace TrB(X) obtained from tracing over system

B is given by

TrB(X) = =
∑
i,j,k,l

xijkl|i〉〈j|Tr(|k〉〈l|)

=
∑
i,j,k

xijkk|i〉〈j|.

Note that the partial trace is a linear map TrB : L(HA ⊗ HB) → L(HA). The partial trace

TrA is defined analogously.

When writing elements of and operators on Cm and Cn as vectors and matrices, the

tensor product is given by the Kronecker product. In particular, the tensor product of the

space of m × m matrices with the space of n × n matrices is isomorphic to the space of

mn ×mn matrices Mm ⊗Mn ' Mmn. Given X ∈ Mm and Y ∈ Mn their tensor product is
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written as

X ⊗ Y =


x11 · · · x1m
... . . . ...

xm1 · · · xmm

⊗

x11 · · · y1n
... . . . ...
yn1 · · · ynn

 =


x11Y · · · x1mY
... . . . ...

xm1Y · · · xmmY



=


x11y11 · · · x1my1n

... . . . ...
xm1yn1 · · · xmmynn

 .

We will now state a useful fact about vectors in tensor product spaces. This fact makes

use of the singular value decomposition. That is, for any matrix X ∈ Mm,n there exist

unitary matrices U ∈ Mm and V ∈ Mn and a pseudo-diagonal matrix D ∈ Mm,n such that

X = UDV †, where the diagonal entries of D are nonnegative. The diagonal entries of D are

unique and are called the singular values of X.

Theorem 2.1 (Schmidt decomposition). Let |x〉 ∈ HA⊗HB be a (not necessarily normalized)

vector and let d = min{dim(HA), dim(HB)}. Then there exist positive numbers λ1 ≥ . . . λd ≥

0 and orthonormal sets of vectors {|u1〉, . . . , |ud〉} and {|v1〉, . . . , |vd〉} such that

|x〉 =
d∑
j=1

√
λj|uj〉 ⊗ |vj〉.

Furthermore, if |x〉 = ∑
j,k xjk|j〉 ⊗ |k〉 then the λj are the eigenvalues of the positive matrix

XX† where X is the matrix whose entries are xjk.

Proof. We can assume without loss of generality that d = dim(HA) ≤ dim(HB). Consider the

singular value decomposition X = UDV † and note that the d× d matrix XX† = UDD†U †

has entries given by

xjk =
∑
l

√
λlujlvkl

10



where Ujl and vkl are the entries of U and V respectively. Then

|x〉 =
∑
j,k,l

√
λlujlvkl|j〉 ⊗ |k〉

=
∑
l

√
λl
(∑

j

ujl|j〉
)
⊗
(∑
k

vkl|k〉
)

=
d∑
l=1

√
λj|ul〉 ⊗ |vl〉,

where |ul〉 = ∑
j ujl|j〉 and |vl〉 = ∑

k vkl|k〉 are the lth columns of U and V respectively.

Since U and V are unitary matrices, the sets of vectors {|u1〉, . . . , |ud〉} and {|v1〉, . . . , |vd〉}

are orthonormal.

In the future, we will often assume without loss of generality that a normalized vector

|ψ〉 ∈ Cd⊗Cd is in Schmidt form |ψ〉 = ∑d
j=1

√
λj|jj〉 with Schmidt coefficients in decreasing

order λ1 ≥ · · · ≥ λd ≥ 0, and satisfying ∑d
j=1 λj = 1 since |ψ〉 is normalized. The vector

λ = (λ1, . . . , λd) of Schmidt coefficients of a normalized vector |ψ〉 is unique up to ordering.

We will later see that Schmidt coefficients are useful for characterizing entanglement of

bipartite pure states.

2.1.3 Superoperators

Linear maps of operators Φ: L(HA) → L(HB) are called superoperators. The identity map

on L(HA) will be denoted idA. The dual of a superoperator is the unique linear operator

Φ∗ : L(HB)→ L(HA) such that

〈Y,Φ(X)〉 = 〈Φ∗(Y ), X〉

for all matrices X ∈ L(HA) and all Y ∈ L(HB).

There are numerous useful definitions regarding superoperators that will be used in this

thesis that are stated below. Note that 〈X,1A〉 = Tr(X) for any matrix X ∈ L(HA).
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Definition 2.2. Let Φ: L(HA)→ L(HB) be a superoperator. Then Φ is said to be

1. trace preserving if Tr(Φ(X)) = Tr(X) for all X ∈ L(HA), X ∈ L(HA);

2. and unital if Φ(1A) = 1B.

Theorem 2.3. Let Φ: L(HA) → L(HB) be a superoperator. Then Φ is trace preserving if

and only if Φ∗ is unital.

Given two superoperators Φ: L(HA) → L(HB) and Ψ: L(HB) → L(HB′) we can define

their product superoperator Φ⊗Ψ: L(HA⊗HB)→ L(HB⊗HB′) that acts on tensor products

of operators by

Φ⊗Ψ(X ⊗ Y ) = Φ(X)⊗Ψ(Y )

and extends linearly to all operators in L(HA ⊗HB). The identity superoperator on L(Cm)

will be denoted idm : L(Cm)→ L(Cm). We now define the notions of positivity and complete

positivity of superoperators which will be important for applications in quantum information.

Definition 2.4. Let Φ: L(HA)→ L(HB) be a superoperator. Then Φ is said to be

1. positivity preserving (or just positive for short) if Tr(Φ(X)) ≥ 0 for all X ≥ 0;

2. k-positive if the map Φ⊗ idk is positive;

3. completely positive if Φ is k-positive for all integers k ≥ 1.

Example 2.5. An example of a linear map that is positive but not completely positive is

the transpose map. Let H = Cd and consider the transpose map T : Md → Md given by

T (X) = XT , where L(Cd) = Md is the space of d× d matrices. The transpose map is clearly

positive, since the transpose of a matrix has the same eigenvalues as the original matrix, so

positivity is indeed preserved under the transpose. However, the transpose is not completely

positive. Define the (unnormalized) vector |φ+
d 〉 ∈ Cd ⊗ Cd

|φ+
d 〉 =

d∑
j=1
|j〉 ⊗ |j〉.
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Applying the extended map idd ⊗ T to |φ+
d 〉〈φ+

d |, we find

T ⊗ idd(|φ+〉〈φ+|) =
d∑

j,k=1
|k〉〈j| ⊗ |j〉〈k|

=
d∑

j,k=1
|kj〉〈jk| = Wd,

where Wd is the swap operator on Cd⊗Cd having the property that Wd(|u〉⊗|v〉) = |v〉⊗|u〉

for all vectors |u〉, |v〉 ∈ Cd. We will make use of the swap operator later in this thesis, and we

will simply write W if the dimension d is implicit from context. The swap operator is both

unitary and Hermitian, having eigenvalues 1 and −1 and satisfies W 2 = 1. Using the Hahn

decomposition of W , the projection matrices onto the positive and negative eigenspaces of

W will be denoted W+ and W− respectively. The positive eigenspace of W is spanned by the(
d+1

2

)
vectors in

{|jj〉 | 1 ≤ j ≤ d} ∪
{
|ψ+
jk〉
∣∣∣ 1 ≤ j < k ≤ d

}
(2.1)

and the negative eigenspace of W is spanned by the
(
d
2

)
vectors in

{
|ψ−jk〉

∣∣∣ 1 ≤ j < k ≤ d
}

(2.2)

where |ψ+
jk〉 and |ψ−jk〉 are the unit vectors in Cd defined by

|ψ+
jk〉 = |jk〉+ |kj〉√

2
and |ψ−jk〉 = |jk〉 − |kj〉√

2
(2.3)

for 1 ≤ j < k ≤ d. In particular we see that idd ⊗ T (|φ+〉〈φ+|) is the swap operator, which

is not a positive matrix since it has negative eigenvalues even though |φ+〉〈φ+| is positive.

Hence T is not completely positive. For d = 2, the matrix form of the swap operator is

explicitly given by

T ⊗ id2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
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An important result regarding complete positivity of maps on finite-dimensional spaces

is that it suffices to check only that the map is m-positive, where m is the dimension of the

input space.

Theorem 2.6. Let HA and HB be finite-dimensional Hilbert spaces with m = dim(HA), and

let Φ: L(HA)→ L(HB) be a superoperator. It holds that Φ is completely positive if and only

if Φ is m-positive.

In this thesis, two well known representations of superoperators will be used. These

are the Choi representation and the Kraus representation. Here, we first introduce these

representations then state how these can be used to characterize quantum channels.

Choi representation

Let HA = Cd and let Φ: L(HA) → L(HB) be a linear map. The Choi matrix of Φ is the

operator J(Φ) ∈ L(HA ⊗HB) defined by

J(Φ) = Φ⊗ idA

 m∑
j,k=1
|j〉〈k| ⊗ |j〉〈k|


=

d∑
j,k=1

Φ(|j〉〈k|)⊗ |j〉〈k|. (2.4)

We can write the Choi matrix as J(Φ) = Φ⊗ idd(|φ+〉〈φ+|). Note that J is an isomorphism

from the space of linear maps from L(HA)→ L(HB) to the tensor product space of operators

L(HA ⊗HB). Indeed, the map Φ can be uniquely recovered from its Choi matrix by

Φ(X) = TrA
(
J(Φ)(1B ⊗XT )

)
(2.5)

for any X ∈ L(HA), and J is known as the Choi-Jamiolkowski isomorphism. Furthermore,

for any Y ∈ L(HB), it holds that

〈Φ(X), Y 〉 = 〈J(Φ), Y ⊗XT 〉.
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Kraus representation

Let HA and HB be finite dimensional Hilbert spaces, and let {K1, . . . , Kn} ⊆ L(HA,HB) and

{L1, . . . , Ln} ⊆ L(HA,HB) be collections of operators. These operators define a superopera-

tor Φ : L(HA)→ L(HB) by

Φ(X) =
n∑
j=1

KjXL
†
j,

and this representation is a Kraus representation of Φ. In fact, every superoperator Φ :

L(HA) → L(HB) has such a Kraus representation with at most n = mm′ operators, where

m = dim(HA) and m′ = dim(HB), although we will now prove this here.

Given an operator X ∈ L(H,H′), the adjoint mapping is the linear map AdX : L(H)→

L(H′) defined by

AdX(Y ) = XYX†. (2.6)

Clearly, AdX is completely positive for and X. With this notation, the Kraus representation

of a channel can be written as Φ(X) = ∑
j AdKj(X).

Characterizations of quantum channels

We now state the conditions for a superoperator Φ to be completely positive and trace

preserving in terms of the Choi and Kraus representations.

Theorem 2.7. Let HA = Cm and HB = Cm, and let Φ: L(HA)→ HB be a linear map. The

following are equivalent.

1. Φ is completely positive.

2. It holds that J(Φ) ≥ 0.

3. There exist operators {K1, . . . , Kmn} ∈ L(HA,HB) such that Φ(X) = ∑mn
l=1 KlXK

†
l .

A superoperator Φ : L(HA) → L(HB) is said to be hermiticity preserving if Φ(X) is

hermitian whenever X ∈ L(HA) is hermitian. It is clear that if Φ is positive then it is
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hermiticity preserving. Importantly, the Choi matrix J(Φ) is hermitian if and only if the

superoperator Φ is hermiticity preserving. We now state the conditions for a hermiticity

preserving map to be trace preserving.

Theorem 2.8. Let HA = Cm and HB = Cn, and let Φ : L(HA) → L(HB) be a hermiticity

preserving linear map. The following are equivalent.

1. Φ is trace preserving.

2. Φ∗ is unital.

3. The Choi matrix J(Φ) of Φ satisfies TrB(J(Φ)) = 1A.

4. There exist operators {K1, . . . , Kd} ⊆ L(HA,HB) and {L1, . . . , Ld} ⊆ L(HA,HB) such

that Φ(X) = ∑d
j=1 KjXL

†
j and

∑
j L
†
jKj = 1A.

Definition 2.9. A superoperator Φ: L(HA)→ L(HB) is said to be a quantum channel if it

is completely positive and trace preserving. The set of quantum channels from HA to HB

will be denoted C(HA,HB).

Quantum channels represent physical operations that act on quantum systems. This will

be discussed further in the next section. Putting together Theorems 2.3, 2.7 and 2.8 yields

the following characterization of quantum channels.

Theorem 2.10. Let HA = Cm and HB = Cn, and let Φ: L(HA)→ L(HB) be a linear map.

The following are equivalent.

1. Φ is a quantum channel.

2. Φ∗ is unital and trace preserving.

3. The Choi matrix J(Φ) is satisfies J(Φ) ≥ 0 and TrA(J(Φ)) = 1B.

4. There exist {Kj} ⊆ L(HA,HB) such that Φ(X) = ∑
jKjXK

†
j and ∑jK

†
jKj = 1A.
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2.2 Quantum states, measurements, and channels

In order to mathematically represent quantum systems, a finite dimensional Hilbert space

H is associated to each (finite dimensional) quantum system.

Definition 2.11. Let H be a finite dimensional Hilbert space. A quantum state (or a density

operator) is a positive operator ρ ∈ L(H) satisfying Tr(ρ) = 1. The set of density operators

on a system H will be denoted D(H).

The set of density operators on a system is convex and closed. The pure states of the

system are denoted by unit vectors |ψ〉 ∈ H, or equivalently by their density operator |ψ〉〈ψ|.

The density operators of pure states are rank one and are exactly the extreme points of the

set of density operators. In particular, the set of states is the convex hull of the pure states

D(H) = conv{|ψ〉〈ψ| | |ψ〉 ∈ H, 〈ψ|ψ〉 = 1},

and any density operator can be decomposed (non-uniquely) into a convex combination of

projectors onto pure states

ρ =
∑
i

pi|ψ〉〈ψ|

such that pi ≥ 0 and ∑i pi = 1.

Definition 2.12. An ensemble is a (countable) collection of pairs {(pi, ρi)} where the pi ≥ 0

are probabilities satisfying ∑i pi = 1 and the ρi are quantum states of a system H. An

ensemble {(pi, ρi)} is said to be a decomposition of another state ρ if ρ = ∑
i piρi.

As we will see later, the concept of decompositions of a quantum state is important for

analyzing entanglement of mixed states.
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2.2.1 Distance measures in quantum information

There are several measures that are used in quantum information for the difference between

two density operators ρ and σ on a system H. As requirements of such measures, we

impose the following properties for a function f(ρ, σ) of two operators to be a useful distance

measure.

Let H be a finite dimensional Hilbert spaces and f : H(H)+ ×H(H)+ → R a function of

positive operators onto nonnegative real numbers.

• f is unitary invariant if f(UρU †, UσU †) = f(ρ, σ) for all unitary operators U .

• f is said to be jointly convex if, for all ρ1, ρ2, σ1, σ2 ∈ H(H)+ and all t ∈ (0, 1) it holds

that

f(tρ1 + (1− t)ρ2), tσ1 + (1− t)σ2) ≤ tf(ρ1, σ1) + (1− t)f(ρ2, σ2). (2.7)

• f is said to be additive if f(ρ1 ⊗ ρ2, σ ⊗ σ2) = f(ρ1, σ1) + f(ρ2, σ2) for all ρ1, ρ2, σ1, σ2.

• f is monotonic (or said to satisfy the data processing inequality) if

f(Φ(ρ),Φ(σ)) ≤ f(ρ, σ) (2.8)

holds for all ρ, σ and all quantum channels Φ.

Additionally, we should require of any good distance measure that f(ρ, σ) = 0 if and only

if ρ = σ. Functions that satisfy the above properties are useful for constructing resource

measures in quantum resource theories, which will be discussed later. We now present a few

of the distance measures that will be employed in this thesis.

The most natural distance measure is given by the trace-norm distance ‖ρ − σ‖1 given

in terms of the trace norm ‖X‖1 =
√

Tr(X†X) = Tr|X|. Given a matrix X ∈ L(H), the

support of X will be denoted supp(X) = {|v〉 |X|v〉 6= 0}. Given ρ, σ ∈ H(H), the quantum
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relative entropy of ρ and σ is defined as

S(ρ‖σ) = Tr(ρ log ρ− ρ log σ) (2.9)

if supp(ρ) ⊆ supp(σ) and S(ρ‖σ) =∞ otherwise. The quantum relative entropy is additive,

monotonic under quantum channels, and is jointly convex in its arguments. It also satisfies

S(ρ‖σ) ≥ 0 for all ρ and σ with equality if and only if ρ = σ.

For real numbers α > 0 (with α 6= 1), it is also possible to define the relative Rényi

entropy of order α by

Sα(ρ‖σ) = 1
1− α log Tr(ρασ1−α). (2.10)

If ρ is a density operator, the standard relative entropy is recovered from the limit S(ρ‖σ) =

limα→1 Sα(ρ‖σ). The relative Rényi entropies are additive and strictly positive for all α > 0,

but are only monotonic under quantum channels for α ∈ [0, 2] and are jointly convex only

when α ∈ [0, 1] [MH11].

2.2.2 Quantum measurements and instruments

Ameasurement on a systemH is a collection of operators {K1, . . . , Kn} ⊆ L(H,H′) such that∑n
j=1 K

†
jKj = 1H. This has the following physical interpretation. The indices j ∈ {1, . . . , n}

indicate the possible outcomes of the measurement. If the system is initially prepared in the

state ρ ∈ D(H), outcome j will be observed with probability pj = Tr(K†jKjρ). If outcome

j is observed, the resulting system will be in the state ρj = 1
pj
KjρK

†
j . After performing the

measurement, the system can be seen to be in the ensemble {(pj, ρj)}.

This notion of a measurement is closely related to the Kraus representation of a quantum

channel. Indeed, any measurement {Kj} can be made into a channel E(ρ) = ∑
jKjρK

†
j which

is equivalent to performing the measurement and subsequently “forgetting” the outcome.

Equivalently, a Kraus representation of a channel can be interpreted as a measurement.

More generally, a quantum instrument I from H to H′ is a finite collection of superop-
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erators I = {Ej}j∈I for some finite set I, where each superoperator Ej : L(H) → L(H′) is

completely positive (but not necessarily trace-preserving), such that their sum E = ∑
j∈I Ej

is completely positive. With this definition, a measurement {Kj} is just a quantum in-

strument in which each of the superoperators is an adjoint map Ej = AdKj defined by

AdKj(X) = KjXK
†
j . Similarly, a quantum channel E is just a quantum instrument with one

superoperator I = {E}. Finally, any quantum instrument I = {Ej}j∈I can be made into a

quantum channel EI ∈ C(H,H′) defined by EI(X) = ∑
j∈I Ej(X).

Quantum instruments have a similar interpretation to quantum measurements. If a

system H in state ρ is measured using the instrument I = {Ej}j∈I , outcome j will be

observed with probability pj = Tr(Ej(ρ)). If outcome j is observed, the resulting system

will be in the state ρj = 1
pj
Ej(ρ). After performing a measurement corresponding to an

instrument I = {Ej}, the system can be considered to be in the ensemble {(pj, ρj)}.

A quantum instrument I′ from H to H′′ is said to be conditioned on another instrument

I = {Ej}j∈I from H to H′ if, for each j ∈ I there is an instrument I(j) = {Ek|j}k∈I(j) from

H′ to H′′ such that

I′ = {Ek|j ◦ Ej}j∈I,k∈I(j) .

Such an instrument has the following interpretation: After a measurement corresponding to

the instrument I is performed, a subsequent measurement is performed. The second instru-

ment used is conditioned on the outcome of the measurement from the initial instrument.

The resulting state ρj,k = 1
pj,k
Ek|j(Ej(ρ)) depends on the outcome of the two instruments.

This characterization of quantum instruments will be useful for defining the class of LOCC

operations.

2.3 Quantum entanglement

Within quantum information theory, the theory of entanglement [BŻ06, HHHH09] is one of

the most important and active areas of research. Entanglement is a necessary ingredient
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for many quantum information processing tasks, including the teleportation of quantum

states [BBC+93], superdense coding [BW92], and numerous uses in quantum cryptography

protocols [BB84]. Two principal features of entanglement are that it cannot be created

among distant parties when there is none to begin with, and that it is depleted in the

implementation of such protocols. Not all entanglement is created equal. Some entangled

states may be more useful for certain applications than other entangled states. It is therefore

of great interest to develop a detailed understanding of the properties of entanglement in

terms of its nature as a resource [PV07]. In this section we will introduce the mathematical

formulation of entanglement in bipartite quantum systems.

A pure state |ψ〉 ∈ HA ⊗HB is said to be separable if it can be written as an elementary

tensor |ψ〉 = |u〉⊗|v〉 for some |u〉 ∈ HA and |v〉 ∈ HB. Otherwise |ψ〉 is said to be entangled.

We have already seen that any bipartite pure state can be written in Schmidt form as

|ψ〉 =
d∑
j=1

√
λj|uj〉 ⊗ |vj〉,

where λ1 ≥ · · · ≥ λd are the Schmidt coefficients of |ψ〉, and {|uj〉} and {|vj〉} are orthonor-

mal. The number of non-zero Schmidt coefficients is known as the Schmidt rank of |ψ〉.

Clearly, a pure state is separable if and only if its Schmidt rank is 1.

In the case of mixed states, a density operator ρ ∈ D(HA ⊗HB) is said to be separable

if it can be written as a convex combination of separable pure states

ρ =
∑
j

pj|uj〉〈uj| ⊗ |vj〉〈vj|

for some unit vectors |uj〉 ∈ HA and |vj〉 ∈ HB and some probabilities pj ≥ 0 such that∑
j pj = 1. Otherwise ρ is said to be entangled. More generally, an operator X ∈ L(HA⊗HB)

is separable if it can be written in the form X = ∑
j Yj ⊗ Zj for some positive operators

Yj, Zj ≥ 0 on HA and HB respectively. The set of separable operators on HA ⊗ HB will

be denoted Sep(HA :HB), and we will write SepD(HA :HB) to denote the set of separable
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density operators on HA ⊗HB,

SepD(HA :HB) = D(HA ⊗HB) ∩ Sep(HA :HB).

2.3.1 Local Operations and Classical Communication

In the paradigmatic setting for the study of entanglement, distant parties (named Alice and

Bob) jointly share a state of a composite quantum system. The systems that each party has

access to are labeled HA and HB respectively. Procedures that can be performed in such a

setting are limited to those that can be implemented through local operations (LO) on the

subsystems and exchange of classical communication (CC) between the parties. The class of

operations that can be performed in this manner is known as LOCC. Here we will describe

this class of operations using the notion of quantum instruments defined earlier (see, e.g.,

[CLM+14] for more details regarding this constriction).

A quantum instrument I from HAB to HA′B′ is said to be one-way A-local if it is of the

form

I = {Ej ⊗ Φj}j∈I

for some completely positive (but not necessarily trace preserving) superoperators on Alice’s

system Ej : L(HA) → L(HA′) and some quantum channels Φj ∈ C(HB,HB′) on Bob’s, such

that the sum E = ∑
j∈I Ej is trace preserving. That is {Ej}j∈I is itself an instrument from

HA to HA′ . We give A-local instruments the following interpretation. Alice performs a

measurement on her system corresponding to the instrument {Ej}j∈I and she subsequently

communicates the outcome of the measurement to Bob, who then performs the channel Φj

on his system. The definition of a one-way B-local instrument is analogous, where Bob

performs a measurement corresponding to some quantum instrument and communicates the

result to Alice. A channel that is one-way A- or B-local is an LOCC channel that can be

implemented with one round of communication. To define the full set of LOCC instruments,
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we must define a notion of local conditioning.

An instrument I from HAB to HA′′B′′ is said to be A-locally conditioned on an instru-

ment I′ = {Ej}j∈I from HAB to HA′B′ if I is conditioned on I′ by A-local channels. More

specifically, for each j ∈ I there is a one-way A-local instrument I(j) = {Ek|j}k∈I(j) from

HA′B′ to HA′′B′′ such that I = {Ek|j ◦Ej}j∈I,k∈I(j) . We give A-local conditioning the following

interpretation. Alice performs a measurement conditioned on the result of the measurement

corresponding to I′ and communicates the final result to Bob. That is, if outcome j is ob-

tained from the first measurement, Alice performs measurement I(j) and obtains outcome k.

The definition of B-locally conditioning is analogous.

The full definition of LOCC instruments is now stated. A quantum instrument I from

HAB to HA′B′ is said to be

• in LOCC1 if it is one-way A- or B-local;

• in LOCCr for r > 1 if it is A- or B-locally conditioned on an instrument in LOCCr−1;

• and in LOCC if it is in LOCCr for some r ∈ N.

If I ∈ LOCCr for some r ∈ N, it can be performed by LOCC with r rounds of communication

between the parties.

A channel Λ ∈ C(HAB,HA′B′) is said to be LOCC if it is of the form Λ(X) = ∑
j∈I Λj(X)

for some LOCC instrument {Λj}j∈I . We write LOCC(HA,HA′ : HB,HB′) to denote the

set of all LOCC channels from HAB to HA′B′ . Given two bipartite states ρ ∈ D(HAB) and

ρ′ ∈ D(HA′B′), we say that ρ can be converted into ρ′ by LOCC operations if there exists an

LOCC channel Λ such that Λ(ρ) = ρ′. If this holds, then we write ρ LOCC−−−→ ρ′.

Given two states ρ and σ of a bipartite quantum system, the fundamental question that

we want to answer is the following: Can we obtain σ from ρ using only LOCC? The possible

transformations of resources establishes a partial order on the set of all possible states.
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2.3.2 Entanglement measures

Axioms for entanglement measures

In light of the view of entanglement as a resource that can be used up, it is important to

understand the resourcefulness of entanglement by quantifying it. The standard setting for

understanding entanglement is the LOCC paradigm, so we will require that any measure of

entanglement be in some sense monotonic with respect to local operations and classical com-

munication. There are two distinct ways of axiomatizing the definition of an entanglement

measure that we will list here. For the following definitions, let E be a function on bipartite

states.

(E1) Monotonicity under (deterministic) LOCC. For all bipartite states ρ and all

LOCC channels Λ it holds that E(ρ) ≥ E(Λ(ρ)).

(E2) Monotonicity under probabilistic LOCC. For all bipartite states ρ and all LOCC

instruments {Λj} it holds that E(ρ) ≥ ∑j pjE( 1
pj

Λj(ρ)), where pj = Tr(Λj(ρj)).

Both conditions imply that E cannot increase under LOCC operations. It is clear that

(E2) implies (E1), since any LOCC channel Λ can be represented by an LOCC instrument

with exactly one output {Λ}. Historically, axiom (E2) was originally used as the definition

for entanglement measures [HHHH09]. But the first axiom (E1) is more fundamental, since

it gives information about entanglement of the state ρ, while (E2) gives information about

the average entanglement of an ensemble {(pi, ρi)}, which is less operational than the notion

of a state. Furthermore, axiom (E1) is all that is needed when examining convertibility of

states in the single-shot setting, which is primarily the cases in this thesis.

Since any separable state can be obtained using LOCC from any other bipartite state,

both axioms (E1) and (E2) imply that any entanglement measure E must be constant on

the set of separable states. For convenience, we will require that this constant must be zero,

which we state as an additional axiom for entanglement measures.
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(E0) Vanishing on separable states. E(ρ) = 0 for all separable bipartite states ρ.

An entanglement measure is said to be faithful if E(ρ) = 0 implies that ρ is separable.

Faithful measures of entanglement give useful criteria for detecting when a state is entangled,

but faithfulness is not a requirement of entanglement measures.

An entanglement measure is said to be convex if E
(∑

j pjρj
)
≤ ∑

j pjE(ρj). Convex

measures of entanglement have the interpretation that entanglement should not increase

under mixing (or lack of knowledge). While we will not require all entanglement measures to

be convex, it will nevertheless be useful in some settings to restrict our attention to convex

measures.

Entanglement measures for pure states

Entanglement for pure states can be completely characterized by their Schmidt coefficients.

The mathematical tool of majorization is useful here. Let λ,λ′ ∈ Rd be vectors of real

numbers whose entries are in decreasing order. We say that λ′ majorizes λ if it holds that

k∑
j=1

λj ≤
k∑
j=1

λ′j for all k = 1, . . . , d,

and we write λ ≺ λ′. This gives a neat way to characterize the convertibility of pure states

under LOCC.

Theorem 2.13 (Nielsen, [Nie99]). Let |ψ〉 ∈ Cm⊗Cn and |ψ′〉 ∈ Cm′⊗Cn′ be bipartite pure

states. There exists an LOCC channel Λ such that Λ(|ψ〉〈ψ|) = |ψ′〉〈ψ′| if and only if it holds

that λ ≺ λ′, where λ and λ′ are the vectors of Schmidt coefficients of |ψ〉 and |ψ′〉.

A function f : Rd → R is said to be Schur concave if λ ≺ λ′ implies f(λ) ≥ f(λ′) for

all λ,λ′ ∈ Rd. If a function f is concave and symmetric then it is Schur concave, but the

converse does not hold. Since Schur concave functions are exactly the functions that are

monotonic under majorization, they can be used to quantify entanglement of pure states.
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Indeed, given a Schur concave function f , we can define a measure of entanglement on pure

states by Ef (ψ) = f(λ).

Some examples of entanglement measures for pure states include the well-known entropy

of entanglement, which is simply the Shannon entropy of the Schmidt coefficients

E(ψ) = H(λ) = −
∑
i

λi log λi

and the Rényi entropies of entanglement

Eα(ψ) = H(λ) = 1
1− α log

(∑
i

λαi
)

for α ∈ [0,+∞]. Another well-known family of entanglement measures that will be used in

this thesis are the Vidal measures [Vid00b], which are defined by

Ek(ψ) = 1−
k∑
i=1

λi (2.11)

=
d∑

i=k+1
λi (2.12)

where the Schmidt coefficients are assumed to be in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λd.

These are simply the sum of the (d− k)- smallest Schmidt coefficients of |ψ〉.

Examples of entanglement measures

A few common types of measures of entanglement will be introduced here. For a survey of

entanglement measures, see [Hor01, HHHH09].

Distillable entanglement and entanglement cost We will first define two funda-

mental measures of entanglement that have clear operational interpretation. The entangle-
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ment cost of a bipartite state ρ is defined as

EC(ρ) = inf
{
r ≥ 0

∣∣∣∃Λn ∈ LOCC s.t. lim
n→∞

∥∥∥Λn

(
|φ+〉〈φ+|⊗brnc

)
− ρ⊗n

∥∥∥
1

= 0
}

(2.13)

It is the smallest rate r at which n copies of ρ can be extracted from rn copies of the two-

qubit Bell state |φ+〉 = |00〉+|11〉√
2 in the limit of large n. The distillable entanglement of a

bipartite state ρ is defined as

ED(ρ) = sup
{
r ≥ 0

∣∣∣∃Λn ∈ LOCC s.t. lim
n→∞

∥∥∥Λn(ρ⊗n)− |φ+〉〈φ+|⊗brnc
∥∥∥

1
= 0

}
(2.14)

It is the largest rate r at which rn copies of the two-qubit Bell state can be extracted from

n copies of ρ in the limit of large n. A state is said to be distillable if ED(ρ) > 0. It is clear

that ED ≤ EC , and it is also known that ED(ψ) = EC(ψ) for all bipartite pure states. While

the entanglement cost and distillable entanglement have a clear operational interpretation,

they are difficult to compute.

Distance-based measures Given a suitable distance measure for quantum states (see

Section 2.2.1, one can define a measure of entanglement based on this distance. Indeed, if f

is a suitable distance measure, we can define

ESep
f (ρ) := inf

σ∈SepD
f(ρ, σ).

Indeed, if f is monotonic under completely positive and trace preserving maps, then Ef is

an entanglement measure satisfying (E1). For example, the relative entropy of entanglement

is defined by

ESep
R (ρ) := inf

σ∈SepD
S(ρ‖σ).
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This is known to be an upper bound to the distillable entanglement [Rai01]. Similarly, we

can define the Rényi α-relative entropies by using functions defined in (2.10). In Chapter

4, necessary and sufficient conditions will be given for when a state σ ∈ SepD satisfies

ESep
f (ρ) = f(ρ, σ) (i.e., when σ minimizes the distance of ρ to the set of separable states for

a distance function f). This will also be generalized to convex sets other than the set of

separable states.

Convex roof measures Given an entanglement measure E on pure states, we can

also consider the following method of constructing an entanglement measure on all states

by extending it via the so-called convex roof [Uhl10, BL13]:

Ê(ρ) = inf
{(pj ,ψj)}

∑
j

pjE(ψj) (2.15)

where the infimum is taken over all pure state decompositions of ρ, i.e. ρ
∑
j pj|ψj〉〈ψj|

for some pure states |ψj〉 and probabilities pj ≥ 0 such that ∑j pj = 1. It is easy to see

that this function is convex. In fact, it is the largest convex function on D(HA ⊗HB) that

satisfies Ê(ψ) ≤ E(ψ) on all pure states. The following theorem of Vidal [Vid00a] states the

conditions on f for the convex roof of Ef to be an entanglement measure.

Theorem 2.14. Let f : Rd → R be a concave, symmetric function satisfying f(1, 0, . . . , 0) =

0 and define a function E on pure bipartite states as E(ψ) = f(λ), where λ is the vector of

Schmidt coefficients of |ψ〉. Then the convex roof of E

Ê(ρ) = inf
{(pi,ψi)}

∑
i

piE(ψi) (2.16)

is a full entanglement measure satisfying (E2).

In particular, the function f is Schur concave since it is concave and symmetric, but

not all Schur concave functions are of this form. Furthermore, all convex roof entanglement
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measures that are evaluated on pure states must be of the form in Theorem 2.14. While

entanglement measures for pure states can be computed easily, actually computing the value

of a convex roof measure on arbitrary mixed states is difficult in general. In Chapter 5, it will

be shown how to compute arbitrary convex roof monotones on certain classes of symmetric

states.

2.4 Approximations to LOCC and separability

LOCC channels are quite messy to represent mathematically, so it is common to work in-

stead with other sets of quantum channels that approximate the set of LOCC channels. In

particular, we will work with the sets of separable and PPT channels.

2.4.1 Separable channels

A superoperator Φ : L(HAB)→ L(HA′B′) is said to be separable if it has a Kraus representa-

tion {Kj} in which all of the Kraus operators are product operators Kj = Xj ⊗ Yj for some

Xj ∈ L(HA,HA′) and Yj ∈ L(HB,HB′). The superoperator can then be expressed as

Φ(ρ) =
∑
j

Xj ⊗ Yjρ(Xj ⊗ Yj)†

for all ρ ∈ L(HAB). Equivalently, a superoperator Φ is separable if its Choi matrix J(Φ) ∈

L(HA′B′⊗HAB) is separable operator with respect to the bipartite splitting HAA′ : HBB′ , i.e.,

J(Φ) ∈ Sep(HAA′ :HBB′).

Every LOCC channel is a separable channel, but the converse is not true. That is,

there are separable channels that cannot be implemented via the LOCC paradigm described

above [BDF+99, CLM+14]. The distinction between separable and LOCC channels is still

not particularly well-understood, but has been explored in [GG07, GG08, Ghe10]. The study

of separable maps are useful since their simple mathematical characterization makes working
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with them fairly straightforward, and anything that holds for separable channels necessarily

also holds for LOCC channels. However, determining the separability of an operator is known

to be NP-hard [Gur03], so it is still not computationally feasible to consider the class of all

separable superoperators.

2.4.2 PPT states and channels

Given a bipartite Hilbert space HA⊗HB, we define the partial transpose as the superoperator

TB = idA ⊗ T on L(HA ⊗HB), where T is the transposition map on HB. Given an operator

X ∈ L(HA ⊗ HB), we write XTB for its partial transpose. As seen in Example 2.5, the

transpose is not a completely positive map, so there are positive operators X ≥ 0 for which

XTB 6≥ 0. However, any separable operator X ∈ Sep(HA : HB) will have positive partial

transpose, since (Y ⊗Z)TB = Y ⊗ZT ≥ 0 for any Y, Z ≥ 0. A positive operatorX ∈ H(HAB)+

is said to be positive under partial transpose (or PPT ) if it holds that XTB ≥ 0. In particular,

if a state ρ ∈ D(HAB) is not PPT (ρTB 6≥ 0), then it is necessarily entangled.

A superoperator Φ : L(HAB) → L(HA′B′) is said to be PPT if its Choi matrix is PPT

with respect to the bipartite splitting AA′ : BB′. That is, if it holds that J(Φ)TBB′ ≥ 0.

It is clear that any separable superoperator will be PPT, and thus any LOCC channel is

PPT. However, unlike for separable superoperators, checking whether an operator is PPT is

computationally feasible, and optimizing over PPT operators can be done with a semidefinite

program. This makes the class of PPT channels very practical.

Furthermore, it is known that any state ρ ∈ D(HAB) that is PPT is not distillable

[Hor97, BDM+99], i.e., ED(ρ) = 0 if ρTB ≥ 0. It is also possible to define the PPT-distillable

entanglement analogously as

EPPT
D (ρ) = sup

{
r ≥ 0

∣∣∣∃Φn ∈ PPT s.t. lim
n→∞

∥∥∥Φn(ρ⊗n)− |φ+〉〈φ+|⊗brnc
∥∥∥

1
= 0

}
. (2.17)

Since all LOCC channels are PPT channels, it holds that ED(ρ) ≤ EPPT
D (ρ), so the PPT-
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distillable entanglement is an upper bound to the standard distillable entanglement. Fur-

thermore, all PPT states are non-distillable, a fact which can easily be shown as follows. If

ρ is PPT then ρ⊗n is PPT for any number of copies of the state n. Since every PPT channel

is PPT-preserving on states, Φ(ρ⊗n) will be a PPT state for all PPT channels Φ and all n.

The two-qubit Bell state |φ+〉〈φ+|, however, is bounded away from the set of PPT states, so

no PPT channels can ever bring a PPT state close to a Bell state. Hence EPPT
D (ρ) = 0 for

all PPT states ρ, and thus the LOCC-distillable entanglement vanishes for these states as

well. It remains an open problem as to whether there exist any non-distillable states that

are not PPT [PPHH10, Cla06].

Similarly, analogous to the relative entropy of entanglement for separable states, one can

also define the relative entropy with respect to the PPT states,

EPPT
R (ρ) = inf

σ∈PPTD
S(ρ‖σ). (2.18)

This is an upper bound to the PPT-distillable entanglement [Rai99b], so it is an upper

bound to the LOCC-distillable entanglement as well. Another improved upper bound to the

distillable entanglement, introduced in [Rai99a, Rai01], is known as the Rains bound and is

defined by

R(ρ) = inf
σ∈D

S(ρ‖σ) + log‖σTB‖1

where the infimum is taken over all density matrices, not just the PPT ones. Computing

EPPT
R (ρ) and R(ρ) for arbitrary states can be done in practice for states of small dimensions,

since they can be cast as convex optimization problems as shown in Chapter 4. Analytical

results regarding when a state σ minimizes the relative entropy of PPT entanglement and

the Rains bound will be studied in Chapter 4.
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2.5 Resource theories of states in quantum information

The study of resource theories originated from the observation that certain properties of

physical systems become valuable when the operations that can be performed are restricted

so that such properties are difficult to create. The prototypical example of such a property

is quantum entanglement, which becomes a key resource for many quantum information

processing tasks when one is restricted to only local operations and classical communication

(LOCC). In light of the view of quantum entanglement as a resource, much work has been

done to generalize the study of resource theories in quantum information. This framework

has been applied to various other concepts in quantum information, such as purity [HHO03],

coherence [BCP14, CG16, WY16], magic states (or non-stabilizer states) for quantum compu-

tation [VHGE14], asymmetry [MS14], and thermodynamics [BHO+13, GMN+15b]. Beyond

the quantum framework, resource theories can be studied as mathematical entities in their

own right [Fri13, CFS16]. For recent reviews of quantum resource theories, see [HO13, BG15].

In this section, we discuss the general notion of resource theories before giving the definition

for the structure of resource theories that will be studied in this theses.

Every resource theory has three main ingredients that define its structure: the resources

are the class of objects that are to be manipulated in some way, the free resources are the

resource objects that can be obtained for ‘free’, and the free operations are the allowable

ways of manipulating the resources. If one starts with a free object of a resource theory, it

is not possible to turn it into a non-free resource using only the allowable free operations.

Conversely, it should always be possible to produce a particular free object given any initial

starting resource (free or otherwise). The resources which cannot be created by means of the

set of free operations naturally acquire some value, and manipulating this resource consumes

the value of this resource in the process.

At the core of the study of any resource theory is the question of resource conversion.

That is, given two resources, we would like to know if it is possible to convert one into the

other using the allowable free operations. One method of determining transformability of
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resources is by quantifying the amount of resource in a state with resource monotones, which

are functions of resources that are non-increasing under application of free operations. Con-

vertibility of resources in resource theories can also be characterized by resource conversion

witnesses, which will be discussed in 2.5.1.

In quantum information, the mathematical structure of resource theories typically arise

from certain physical restrictions that allow experimenters only to implement a restricted

set of physical manipulations of quantum systems. In such resource theories, the collection

of resources consists of all of the possible quantum states on some quantum systems, and the

free operations comprise some subset of completely positive trace-preserving maps (quantum

channels) between the quantum systems. For example, entanglement of bipartite systems

can be considered as a resource theory in which the resources are entangled quantum states

and parties are only able to perform local operations and communicate classical information.

However resource theories can also be considered that do not represent physical constraints.

For example, we can consider the “resource theory of separable operations” in which only

separable channels (rather than LOCC channels) can be implemented, which do not nec-

essarily represent physical operations. Given a class of free resources, we can also analyze

a resource theory where the set of allowed operations is defined as the largest class of op-

erations that do not generate non-free resources from free ones. Such resource theories no

longer necessarily have a physical interpretation, but studying them can yield useful results

about resource theories of physical interest.

In this thesis, we will only be interested in resource theories within the framework of

quantum information, where the collection of resources consists of all quantum states on some

Hilbert spaces. Furthermore, all resource theories considered here will be finite-dimensional.

The resources of a quantum resource theory are all of the density operators on some family of

Hilbert spaces, and the free states will be some subset density operators. The free operations

will be some subset of completely positive trace preserving maps (i.e., quantum channels).

There are many notions of resource theories in quantum information that have been
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studied that will not be of interest in this paper. Quantum resource theories can also be

studied in the asymptotic limit of many copies of a single resource [BH15]. In a resource

theory where the set of free states is convex, and the allowed operations are the set of all

operations that do not asymptotically generate a resource, the asymptotic conversion rate

is given in terms of the regularized relative entropy of a resource. In this case, this the

unique resource measure in the asymptotic limit of many copies of the state. In this thesis,

however, we will only be concerned with the single-shot setting, in which we are interested

in convertibility of a single copy of a state. Other recent work examines the conditions for

the existence of resource destroying maps in quantum resource theories [LHL17].

For the purposes of this thesis, we will mathematically define resource theories in the

following manner. Recall that D(H) denotes the set of density operators on a (finite di-

mensional) Hilbert space H and C(H,H′) denotes the set of quantum channels from the

operators on system H to the operators on H′. A resource theory (F ,O) consists of a family

F = {F (H)} of free states and a family {O(H,H′)} of free operations:

• F (H) ⊆ D(H) for finite-dimensional Hilbert spaces H

• O(H,H′) ⊆ C(H,H′) for pairs of Hilbert spaces H and H′

that satisfy the following conditions:

1. If ρ ∈ F (H) and E ∈ O(H,H′), then E(ρ) ∈ F (H′). (“Free states remain free under

free operations.”)

2. It holds that idH ∈ O(H,H). (“The identity operation is free.”)

3. If E ∈ OH,H′ and E ∈ O(H′,H′′), then E ′ ◦ E ∈ O(H,H′′). (“Composition of free

operations is free.”)

4. If ρ ∈ F (H) then the channel defined by Eρ(X) = Tr(X)ρ is in O(H′,H). (“Any free

state is obtainable from any other state.”)
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There are numerous other aspects that general resource theories should have in quantum

information (for example, if ρ ∈ F (H) and ρ′ ∈ F (H′), then it should hold that ρ ⊗ ρ′ ∈

F (H ⊗ H′)). However, the conditions outlined above suffice for the treatment of resource

theories in this thesis, since we are primarily concerned with classifying existence of a free

operation that convert a single resource state to another .

Given a resource theory of quantum states (F ,O) and density operators ρ ∈ D(H)

and ρ′ ∈ D(H′), we write ρ O−→ ρ′ if there exists a free operation E ∈ O(H,H′) such that

E(ρ) = ρ′. That is, it denotes when “ρ can be converted into ρ′ under free operations. This

induces a pre-order on density operator. Indeed, since the identity channel is always free

in any resource theory, it holds that ρ O−→ ρ for any ρ ∈ D(H). Furthermore, if ρ O−→ ρ′

and ρ′
O−→ ρ′′ then ρ

O−→ ρ′′ since we can compose free operations. In any resource theory,

the primary problem in the single-shot setting is to find necessary and sufficient conditions

for the convertibility of two resource states. That is, given ρ and ρ′, we would like to find

convenient conditions to characterize when ρ O−→ ρ′.

The theory of entanglement under the restriction to LOCC channels can be viewed as a

quantum resource theory under this definition, where the Hilbert spaces are all bipartiteHA⊗

HB, the sets of free states are the separable states F (HAB) = SepD(HA :HB), and the free

operations are the LOCC channels. In fact, entanglement theory was the motivating example

for studying other resource theories in quantum information. In the bipartite setting, one

can also consider the resource theory of separable operations (in which the free states are

again the sets of separable states), and the theory of PPT operations (in which the free states

are the PPT states). The concept of convex resource theories will be studied in Chapter 6.

Finally, it must be noted that the definition of resource theories given here naturally

has the structure of a category. In fact, a complete formalism for resource theories using

category theory has been constructed, and such an approach may have useful applications

in analyzing resource theories [CFS16]. The categorical approach to resources, however, is

beyond the scope of this thesis and will not be used here.
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2.5.1 Resource monotones and conversion witnesses

This section reviews the concepts of resource monotones and resource conversion witnesses,

a generalization of resource monotones. The rich structure of these conversion witnesses is

also explored.

Given a resource theory (F ,O) of quantum states, a resource monotone is a function

M from states to real numbers that is non-increasing under free operations. That is, M is

a monotone if, for any free operation E ∈ O(H,H′) and any state ρ ∈ F (H), it holds that

M(E(ρ)) ≤ M(ρ). In any resource theory of quantum states, one resource monotone that

can be used is the relative entropy with respect to the free states. Analogous to the relative

entropy of entanglement, this is defined as

MF
R (ρ) := min

σ∈F (H)
S(ρ‖σ)

for any ρ ∈ D(H). A family of monotones {Mi}i∈I is said to be complete if it holds that

ρ
O−→ ρ′ if and only if Mi(ρ) ≥ Mi(ρ′) for all i ∈ I. In Chapter 6, it will be shown how to

construct a complete family of resource monotones for quantum resource theories where the

sets of free operations are convex.

The most general technique for characterizing the convertibility of states is through con-

version witnesses, a concept that was first introduced as relative monotones in [San10] and

further investigated in [GMN+15a, sec. II.A.] and [GG15]. Consider a resource theory (F ,O)

of quantum states, and let W be a real-valued function on pairs of quantum states. If

W (ρ, σ) ≥ 0 implies that ρ O−→ σ, then W is said to be a go witness. If W (ρ, σ) < 0 implies

that ρ 67→ σ, thenW is said to be a no-go witness. Finally, W is said to be a complete witness

if it is both a go and a no-go witness.

Given a monotoneM , we can define a no-go witness byWM(ρ, σ) = M(ρ)−M(σ). Indeed

WM(ρ, σ) < 0 implies M(ρ) < M(σ), and thus ρ 6 O−→ σ by the monotonicity of M . Hence

resource monotones can be considered as a special case of resource conversion witnesses.
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The set of all no-go witnesses in a resource theory is endowed with the structure of a

partially ordered set. Indeed, given two no-go witnesses W1 and W2, we say that W1 � W2

if

W2(ρ, σ) < 0 =⇒ W1(ρ, σ) < 0 for all ρ, σ. (2.19)

That is, W1 � W2 means that the witness W1 tells us more information about the convert-

ibility of states than W2 does. If W2 detects the inconvertibility ρ 6 O−→ σ for some states ρ and

σ, this same information can already be obtained by W1. But W1 might be able to detect

the inconvertibility of other pairs of states that W2 cannot.

The partial order structure of no-go witnesses is illuminated in the following example:

Given a family of no-go witnesses (Wi)i∈I , we can construct a new no-go witness WI by

minimizing over all witnesses in the family

WI(ρ, σ) := min
i∈I

Wi(ρ, σ).

This is indeed a witness, since WI(ρ, σ) < 0 implies that Wi(ρ, σ) < 0 for at least one i ∈ I

and thus ρ 67→ σ. Hence WI � Wi and the resulting witness WI is an improvement over

each of the conversion witnesses Wi. Similarly, given a family (Mi)i∈I of monotones, one can

define a witness

WI(ρ, σ) := min
i∈I
{Mi(ρ)−Mi(σ)} = min

i∈I
WMi

(ρ, σ).

If the family (Mi)i∈I is complete, then the resulting WI is a complete conversion witness.

Furthermore, if W is a complete witness, then W � W for any no-go witness W .

An example hierarchy of no-go conversion witnesses is depicted in Figure 2.1. Note that

two no-go conversion witnesses W1 and W2 may be incomparable in general. That is, it may

be that both W1 6� W2 and W2 6� W1.

An analogous partial order exists for go witnesses. If W1 and W2 are two go witnesses
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W{1,2,3}

W{1,3}W{1,2} W{2,3}

W1 W2 W3

Figure 2.1: An example hierarchy of no-go conversion witnesses in which an arrow between
witnesses X −→ Y denotes X � Y . Consider three no-go witnesses W1, W2 and W3, which
may be incomparable with respect to the partial order. The witnesses W{1,2}, W{1,3} and
W{2,3} are obtained by minimizing over the sub-witnesses W1, W2 and W3 respectively. At
the top of the partial order is the witness W{1,2,3} obtained by minimizing over all three.

andW1(ρ, σ) ≥ 0 implies thatW2(ρ, σ) ≥ 0 for all states ρ and σ, then we say thatW1 � W2.

Given a family of go witnesses (Wi)i∈I , a new go witness

WI(ρ, σ) := max
i∈I

Wi(ρ, σ)

can be constructed such that WI � Wi for each conversion witness. Additionally, we have

W � W for any complete witness W and any go witness W .
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Chapter 3

Convex analysis

This chapter presents the notions from convex analysis that will be used in the remainder of

the thesis. Only finite-dimensional analysis will be of interest, and all of the sets considered

here will be contained in finite-dimensional real inner product spaces.

3.1 Convex sets and functions

Consider a finite-dimensional real vector space V with an inner product 〈·, ·〉 that gives rise

to a norm ‖·‖ =
√
〈·, ·〉. We first present a few important definitions of sets that will be

used. For ε > 0 and a point x ∈ V , the ε-ball at x is denoted Bε(x) = {y ∈ V | ‖x− y‖ ≤ ε}.

Definition 3.1. Let V be a real euclidean space and let X ⊆ V be a set.

1. The affine hull of X , the set of all affine combinations of elements in X , is denoted

aff(X ) :=
{ n∑
i=1

tixi
∣∣∣n ∈ N, x1, . . . , xn ∈ X , ti ∈ R and

n∑
i=1

ti = 1
}
.
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2. The convex hull of X , the set of all convex combinations of elements in X , is denoted

conv(X ) :=
{ n∑
i=1

tixi
∣∣∣n ∈ N, x1, . . . , xn ∈ X , ti ≥ 0 and

n∑
i=1

ti = 1
}
.

3. The closure of X is

cl(X ) := {y ∈ V | ∀ε > 0, ∃x ∈ X such that y ∈ Bε(x)}

4. The relative interior of X is

relint(X ) := {x ∈ aff(X ) | ∃ε > 0 such that Bε(x) ∩ aff(X ) ⊆ X}.

5. The (relative) boundary of X is bd(X ) = cl(X ) \ relint(X ).

Note the distinction between the standard notions of the topological interior and bound-

ary of a set and the notions of relative interior and boundary. The concept of relative interior

is more useful for analyzing optimization problems over convex sets. It is the interior of X

regarded as a subset of aff(X ). The relative interior relint(X ) consists of the points in the

affine hull of X for which there exists an ε > 0 such that y ∈ X for all y ∈ aff(X ) and

‖x − y‖ ≤ ε. If aff(X ) = V , then the standard notion of the topological interior coincides

with the notion of the relative interior.

A set is X ⊂ V is convex if tx + (1 − t)y ∈ X for all x, y ∈ X and all t ∈ (0, 1), or

equivalently if conv(X ) = X . Given two subsets X ,Y ⊆ V , their Minkowski sum is the set

X + Y := {x+ y |x ∈ X and y ∈ Y}.

If X and Y are convex, then so is their sum. The orthogonal complement of X is the set

X⊥ := {y ∈ V | 〈y, x〉 = 0}.
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3.1.1 Convex functions

Let V be a real euclidean space and let C ⊆ V be a convex set. A function f : C → R is

convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (3.1)

holds for all x, y ∈ C and all real numbers t ∈ [0, 1], and is concave if the function −f is

convex. We define the set of extended real numbers as R = R∪{±∞} such that any function

f : C → R can be extended to a function f : V → R by defining f(x) = +∞ if x 6∈ C. The

domain of an extended real-valued function f : V → R is the set

dom(f) = {x ∈ V | f(x) 6= +∞}.

For the remainder of this thesis, by a “convex function” on a real euclidean space V we

shall always mean a “convex function with possibly infinite values which is defined on all of

V”. This approach has the advantage that technical nuisances about domains can be almost

entirely suppressed, and it is the approach taken by most textbooks on convex analysis

(see, e.g., [Roc70, BL06, BV04]). However, this approach leads to arithmetic calculations

involving +∞ for which new rules must be adopted. These rules are the obvious ones:

• For all x ∈ R, −∞ < x < +∞.

• x+ (+∞) = +∞ for all x ∈ R ∪ {+∞}.

• x+ (−∞) = −∞ for all x ∈ R ∪ {−∞}.

• x · (+∞) = +∞ for all x > 0, and x · (+∞) = −∞ for all x < 0.

• 0 · (+∞) = 0 and 0 · (−∞) = 0.

• −(−∞) = +∞ and −(+∞) = −∞.

41



Note that combinations of the form (+∞) + (−∞) are left undefined and will be avoided.

Then we can say that an extended function f : V → R is convex if dom(f) ⊆ V is a convex

set and (3.1) is satisfied for all x, y ∈ dom(f).

Finally, the epigraph of a function f : V → R is a subset epi(f) ⊆ V × R defined by

epi(f) = {(x, t) | f(x) ≤ t}.

The function f is convex if and only if its epigraph is convex as a subset of V × R.

3.1.2 Directional and Fréchet derivatives

Let V and W be real euclidean spaces, let C ⊂ V be a set, and let f : C → W be a function.

Given x, y ∈ C, the directional derivative of f at x in the direction of y will be denoted

f ′(x; y) := lim
t→0+

f(x+ ty)− f(x)
t

.

If C is convex and f is a convex function, then the directional derivatives always exist at

every x ∈ C and for every y ∈ V (although the value of the derivative might be ±∞).

The function f is said to be Fréchet differentiable at x ∈ C if there is a linear operator

Df,x : V → W such that

f ′(x; y) = Df,x(y)

for all y ∈ V . Equivalently, we say f is Fréchet differentiable at x if there is a linear operator

Df,x such that

lim
h→0

‖f(x+ h)− f(h)−Df,x(h)‖
‖h‖

= 0.

If f is Fréchet differentiable at x, the operator Df,x is called the Fréchet derivative of f at

x. In particular, if f is Fréchet differentiable at x then there must be an open set around

x on which f is finite, so x must be on the interior of dom(f). For x ∈ bd(dom(f)) on the
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boundary of the domain, the directional derivatives f ′(x; y) will all exist but f will not be

Fréchet differentiable. However in most cases we can still approximate the derivative with a

linear operator.

In the case where f : V → R is a functional from V to the real numbers, then the Fréchet

derivative of f coincides with the gradient (if it exists). In this case,

Df,x(y) = 〈∇f(x), y〉

where ∇f(x) is the standard notion of the gradient of f at x.

3.1.3 Conditions for optimization

In this section, we state the necessary and sufficient conditions for a convex function to be

minimized over a convex, compact subset.

Let V be a real euclidean space. A convex optimization problem is a pair (f, C), where

C ⊂ V is a (nonempty) convex, compact subset and f : V → R is a convex function with

dom(f) = C. The associated optimization problem is to compute

inf{f(x′) |x′ ∈ V}. (3.2)

Since the domain of f is convex and compact, a (not necessarily unique) optimal point

x ∈ dom(f) exists such that f(x) ≤ f(x′) for all x′ ∈ dom(f). Furthermore, since f is a

convex function, if a point x is a local minimum then it must also be a global minimum.

Theorem 3.2 formalizes this concept. See for example [BL06, Proposition 17.3] and [Roc70].

Theorem 3.2. Let V be a real euclidean space, let C ⊂ V a convex compact subset, and

let f : V → R be a convex function. An element x ∈ C minimizes f over C, i.e. f(x) =

minx′∈C f(x′), if and only if

f ′(x;x′ − x) ≥ 0 (3.3)
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holds for all x ∈ C.

In particular, Theorem 3.2 states that a point x ∈ C is a minimum if the directional

derivative along any direction in C is nonnegative (i.e., the point x is a local minimum). If

f is Fréchet differentiable, this directional derivative condition can be given in terms of the

Fréchet derivative operator, as shown in Corollary 3.3.

Corollary 3.3. Let V be a real euclidean space, let C ⊂ V a convex compact subset, and let

f : V → R be a convex function. If f is Fréchet differentiable at x ∈ C, then x minimizes f

over C if and only if

Df,x(x′) ≥ Df,x(x) (3.4)

holds for all x′ ∈ C, where Df,x is the Fréchet derivative of f at x.

This follows directly from Theorem 3.2 since f ′(x;x′ − x) = Df,x(x − x′) and Df,x is

linear. Indeed, if f is Fréchet differentiable at x then it is differentiable where the Fréchet

derivative coincides with the gradient Df,x(x′) = 〈∇f(x), x′〉. Hence (3.4) is equivalent to

〈∇f(x), x′〉 ≥ 〈∇f(x), x〉,

i.e., ∇f(x) defines a supporting hyperplane of C at x ∈ C.

3.2 Matrix-valued functions

Recall that Hd denotes the real euclidean space of d×d hermitian matrices. For real numbers

a < b, we let Hd(a, b) denote the subset of hermitian matrices whose eigenvalues are all

contained in the interval (a, b). For example, with this notation the cone of positive definite

matrices can be denoted Hd,++ = Hd(0,∞).

Recall that any function f : (a, b)→ R of real numbers can be extended to a function on

hermitian matrices Hd(a, b)→ Hd. We now discuss the notion of convexity that is important
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for real-valued functions that are extended to matrices.

Definition 3.4. A function f : (a, b)→ R is said to be operator monotone if, for all integers

d and all A,B ∈ Hd(a, b),

A ≥ B ⇒ f(A) ≥ f(B), (3.5)

and f is said to be operator convex if for all integers d, for all A,B ∈ Hd(a, b), and for all

t ∈ (0, 1) it holds that

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B). (3.6)

We say that f is operator concave if −f is operator convex.

Note that any operator monotonic function f : (a, b) → R must be monotonically in-

creasing as a function of real numbers under the standard definition of monotonicity. The

same holds for operator convexity and operator concavity. Most functions that will be con-

sidered here will be defined on the positive real numbers f : (0,∞)→ R. There are a great

many examples of operator convex functions functions that are useful for studying quantum

information. The following well known result lists the ones that are of predominant use.

Theorem 3.5 (Löwener-Heinz Theorem). Consider the following functions f : (0,∞)→ R.

i) For p ∈ [−1, 0], the function f(t) = tp is operator monotone and operator convex.

ii) For p ∈ [0, 1], the function f(t) = tp is operator monotone and operator concave.

iii) For p ∈ [1, 2], the function f(t) = tp is operator convex.

iv) The function f(t) = log t is operator concave while f(t) = t log t is operator convex.

For example, that log is operator concave can be derived from the operator concavity tp

for p ∈ [0, 1], since logA = limp→0+
Ap−I
p

and concavity is preserved in the limit. There are

also stronger notions of operator monotonicity and convexity that will also be considered in
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this thesis. We first introduce the following notation. For A ∈ Hd, we write A 
 0 whenever

A ≥ 0 and A 6= 0. Similarly, we write A 
 B if A−B 
 0.

Definition 3.6. Let f : (a, b)→ R. Then f is said to be

1. strict operator monotone if A > B implies f(A) > f(B) for all A,B ∈ Hd(a, b).

2. strong operator monotone if A 
 B implies f(A) 
 f(B) for all A,B ∈ Hd(a, b).

3. strict operator convex if, for all A,B ∈ Hd(a, b) with rank(A−B) = d and all t ∈ (0, 1),

it holds that

f(tA+ (1− t)B) < tf(A) + (1− t)f(B).

4. strong operator convex if, for all A,B ∈ Hd(a, b) with A 6= B and all t ∈ (0, 1), it holds

that

f(tA+ (1− t)B) � tf(A) + (1− t)f(B)

The functions f(t) = −tp for p ∈ (0, 1] and f(t) = − log t are not only strictly monotone

and strictly convex on the interval (0,+∞) [HJ94], but they are strongly convex as well

[FG11]. This fact is important for proving the strict convexity of the functions on positive

operators of the form X 7→ Tr(Af(X)) presented in Chapter 4, where A > 0 is a positive

operator and the function f : (0,+∞)→ R is strongly operator convex.

3.3 Separating and supporting hyperplanes

This section presents the version of the well known separating hyperplane theorem from

convex analysis that will be used in this thesis.

Theorem 3.7 (Hyperplane separation). Let C ⊆ V be a closed convex subset of a real

euclidean space V, and let b ∈ V such that b /∈ C. There exists a nonzero v ∈ V and a real

number c such that

〈v, b〉 < c ≤ 〈v, x〉
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for all x ∈ C. If C is also a cone, we may take c = 0.

A hyperplane in V is an affine set {x ∈ V | 〈v, x〉 = c} that is defined by some v ∈ V and

c ∈ R. The interpretation of Theorem 3.7 is that v defines a hyperplane that separates the

vector b from the set C. Hyperplanes can also be used to give a condition for when a point

is on the boundary of a convex set.

Corollary 3.8. Let C ⊆ V be a convex subset of a real euclidean space V, and let x ∈ C.

Then x is on the boundary of C if and only if there exists a nonzero v ∈ V such that

〈v, x′〉 ≥ 〈v, x〉 (3.7)

for all x′ ∈ C.

Given a point x on the boundary of a convex set C ⊂ V , a vector v ∈ V is said to

define a supporting hyperplane of C at x if it satisfies (3.7) for all x′ ∈ C. The corresponding

supporting hyperplane is the affine set {x′ ∈ V | 〈v, x′〉 = c}, where c = 〈v, x〉. That is, a

vector v defines a supporting hyperplane of C if there is a c ∈ R such that

〈v, x′〉 ≥ c for all x′ ∈ C

and there exists an x ∈ C such that 〈v, x〉 = c. In the special case when c = 0, we will say

that v is a witness for non-membership in C. If v is a witness for C and 〈v, y〉 < 0 for some

y ∈ V , then y 6∈ C.

3.4 Cones and conic programming

This section will introduce notation and states a few necessary definitions and properties

regarding cones in finite-dimensional real inner product spaces. The concept of general
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3.4.1 Cones

Definition 3.9. Let V be a real euclidean space.

(i) A subset K ⊂ V is said to be a cone if tx ∈ K for all x ∈ K and all real numbers t > 0.

(ii) Let X ⊆ V be any subset. The (convex) conical hull of X is the set

cone(X ) :=
{ n∑
i=1

pixi

∣∣∣∣n ∈ N, p1, . . . , pn ≥ 0, x1, . . . , xn ∈ X
}

(iii) Let X ⊆ V be any subset. The dual cone to X is the set

X ∗ := {y ∈ V | ∀x ∈ X , 〈y, x〉 ≥ 0},

and a cone is said to be self-dual if K∗ = K.

We now state a few useful facts about cones. Note that X ∗ is a closed convex cone for

any subset X ⊆ V . If K is a closed and convex cone, then K∗∗ = K. If K and K′ are closed

and convex cones in V , their Minkowski sum K+K′ is also a closed and convex cone. Given

two closed and convex cones K ⊆ V and K′ ⊆ V ′ in two real euclidean spaces, the direct sum

of the cones

K ⊕K′ ⊆ V ⊕ V ′

is also a closed and convex cone. The dual cone of the direct sum of cones is the direct sum

of the duals, i.e.,

(K ⊕K′)∗ = K∗ ⊕K′∗.

For any cones K and K′, if K ⊆ K′, then K′∗ ⊆ K∗. Finally, if K and K′ are closed and

convex, it holds that

(K +K′)∗ = K∗ ∩ K′∗ and (K ∩ K′)∗ = K∗ +K′∗.
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Given a cone K ⊆ V , its topological interior, denoted int(K), can be given as follows:

int(K) = {x ∈ V | 〈x, y〉 > 0, ∀y ∈ K∗ s.t. y 6= 0}. (3.8)

The notion of the interior of a cone will be important for exploring duality properties of

convex cones in the next section.

One of the most common cones studied in convex analysis is the cone of positive semidef-

inite operators H(H)+ on a finite-dimensional Hilbert space. As before, if H = Cd we can

identify this cone with the space of d×d positive semidefinite matrices H(Cd)+ ' Hd,+. This

cone is closed and convex, and is self-dual, i.e., (H(H)+)∗ = H(H)+. The interior of this

cone is the cone of positive definite operators, i.e.,

int(H(H)+) = H(H)++ = {X ∈ H(H) |X > 0}.

3.4.2 Conic programming

Conic programming is a useful tool in convex analysis. A conic program expresses the

optimization of a linear function over the intersection of an affine subspace and a closed

convex cone in a finite-dimensional real inner product space. For the purposes of this thesis, it

is sufficient to consider only cone programs defined over spaces of Hermitian operators. Given

a finite-dimensional Hilbert space H (with dimension d), the space of hermitian operators on

this space H(H) is a finite-dimensional real inner product space (with dimension d2) together

with the Hilbert-Schmidt inner product.

Let H and H′ be two finite dimensional Hilbert spaces, and let K ⊆ H(H) be a cone. A

conic program is an ordered set denoted (Φ, A,B,K), where A ∈ H(H) and B ∈ H(H′) are

operators, and Φ : L(H) → L(H′) is a hermiticity-preserving linear map. A conic program
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has the following associated pair of optimization problems:

Primal problem Dual problem

maximize: 〈A,X〉 minimize: 〈B, Y 〉

subject to: X ∈ K subject to: Φ∗(Y )− A ∈ K∗ (3.9)

Φ(X) = A Y ∈ H(H′),

These are the primal and dual problems respectively. The primal feasible set A ⊂ H(H) and

the dual feasible set B ⊂ H(H′) of the problem are defined as

A := {X ∈ K |Φ(X) = B}

B := {Y ∈ H(H′) |Φ∗(Y )− A ∈ K∗}.
(3.10)

Elements X ∈ A and Y ∈ B are said to be primal feasible and dual feasible respectively,

and the conic program is said to be (primal) feasible if A 6= ∅ and said to be dual feasible if

B 6= ∅. The primal optimal and dual optimal values are given by

α := sup{〈A,X〉 |X ∈ A}

β := inf{〈B, Y 〉 |Y ∈ B}.
(3.11)

For any conic program, weak duality always holds. That is, the primal optimal value and

the dual optimal value always satisfy α ≤ β. Indeed, if X and Y are primal feasible and

dual feasible respectively, then 〈A,X〉 ≤ 〈B, Y 〉 since

〈B, Y 〉 = 〈Φ(X), Y 〉 = 〈X,Φ∗(Y )〉

= 〈X,Φ∗(Y )− A〉︸ ︷︷ ︸
≥0

+〈X,A〉 ≥ 〈X,A〉,

where we use the fact that 〈X,Φ∗(Y ) − A〉 ≥ 0 since X ∈ K and Φ∗(Y ) − A ∈ K∗. The
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form of the conic programs stated in (3.9) are not in the standard form as it appears in most

literature on the subject, but this is nonetheless the most useful formation for applications

in quantum information (see, e.g., [Wat16]).

The primal optimum and dual optimum of a conic program do not always agree. But for

conic programs that arise naturally in most applications this will be true, in which case we

say that strong duality holds. The following theorem provides a set of conditions for which

strong duality is guaranteed to hold. Let (Φ, A,B,K) be a conic program. The associated

primal problem is said to be strongly feasible if there exists a primal feasible X in the interior

of the cone (i.e., if A ∩ int(K) 6= ∅). Analogously, the dual problem is strongly feasible if

there exists a dual feasible Y such that Φ∗(Y )−A is in the interior of the dual cone K∗ (i.e.,

if (Φ∗(B)− A) ∩ int(K∗) 6= ∅). (See also [LMT15].)

Theorem 3.10 (Slater [Sla50]). Let K ⊆ V be a cone and let (Φ, A,B,K) be a conic program.

Suppose that the primal problem and dual problems are both feasible. If either the primal or

dual problem is also strongly feasible, then α = β.

The most common type of conic program that appears while studying quantum informa-

tion theory are semidefinite programs, in which the cone of interest is the cone of positive

semidefinite operators K = H(H)+ ⊆ H(H) on a Hilbert space H. Analogous to the nota-

tion for conic programs, a semidefinite program will often be given as a triple (Φ, A,B) with

associated optimization problems

Primal problem Dual problem

maximize: 〈A,X〉 minimize: 〈B, Y 〉

subject to: X ∈ H(H)+ subject to: Φ∗(Y ) ≥ A (3.12)

Φ(X) = A Y ∈ H(H′), .

Semidefinite programs have the additional benefit that there are efficient algorithms for

solving typical semidefinite programs in both theory and practice [VB96]. The cvx package
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[GB14] for matlab, for example, allows small-scale semidefinite programs to be solved ef-

ficiently in most applications. More generally, any conic program can be solved efficiently

in practice (via interior-point methods) as long as an efficiently computable self-concordant

barrier function for the cone K is available [NN94].

3.4.3 Conic version of Farkas’ Lemma

Theorems of alternatives are common in convex analysis. Such theorems give conditions

on pairs of problems under which exactly one of the problems is feasible, but not both.

One such well known theorem of alternatives is Farkas’ Lemma for linear programming

[Far02, BV04, DJ14]. Here, we state the conic version of Farkas’ Lemma. This is a standard

result that can be found in many textbooks on convex analysis (see e.g. [LY08]), but because

of the nonstandard notation used in this thesis, a complete proof is provided in Appendix B

for completeness.

Theorem 3.11 (Farkas’ Lemma for conic programs). Let H and H′ be finite-dimensional

Hilbert spaces, let K ⊆ H(H) be a closed convex cone, let Φ : H(H) → H(H′) be a linear

map, and let B ∈ H(H′). Suppose further that Φ(K) is closed. Then exactly one of the

following statements holds:

(i) There exists X ∈ K such that Φ(X) = B.

(ii) There exists Y ∈ H(H′) such that Φ∗(Y ) ∈ K∗ and 〈Y,B〉 < 0.

That both statements (i) and (ii) of 3.11 cannot hold simultaneously is clear, since if

Φ(X) = B and Φ∗(Y ) ∈ K∗ both hold, then

〈Y,B〉 = 〈Y,Φ(X)〉

= 〈Φ∗(Y ), X〉 ≥ 0.
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The proof that at least one of them must always hold makes use of the separating hyperplane

theorem mentioned earlier and requires that Φ(K) be closed.

The conic version of Farkas’ Lemma is essentially the following statement: For a conic

program in which A = 0, if Φ(K) is closed, then the primal problem is feasible if and only

if β = 0. This only holds, however, if the image of the cone Φ(K) is a closed convex cone.

Since K is a convex cone and Φ is linear, its image will always be a convex cone. But

closedness is not guaranteed. Lemma 3.12 below provides give a useful sufficient condition

under which Φ(K) is closed. It is a standard result in convex analysis which can be found

in many textbooks, but its proof is included in Appendix B for completeness due to our use

of nonstandard notation. In particular, it states that if the dual problem is strictly feasible

(i.e. if Φ∗(H(H′)) ∩ int(K∗) 6= ∅), then Φ(K) is closed.

Lemma 3.12. Let H and H′ be finite-dimensional Hilbert spaces, let K ⊆ H(H) be a closed

convex cone and let Φ : H(H) → H(H′) be a linear map. Suppose there exists Z ∈ H(H′)

such that Φ∗(Z) ∈ int(K∗). Then Φ(K) is closed.

The result of Lemma 3.12 will be used to allow us to employ Theorem 3.11 in analyzing

convertibility of resources in convex resource theories in Chapter 6.
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Chapter 4

Convex optimization problems in
quantum information theory

There are numerous important quantities in quantum information are defined in terms of a

convex optimization problem. In particular, entanglement is an important resource in quan-

tum information [PV07, HHHH09] which can be quantified this way. Many other quantities

in quantum information can be considered in terms of convex optimization problems. Such

problems are usually given in terms of a convex function f : Hd → R (where R = R∪{+∞})

and some convex subset C ⊆ Hd,+ of positive semidefinite matrices. Given such a convex

optimization problem, we can ask the question, “when does a matrix σ ∈ C minimize f?”

That is, when does a matrix σ ∈ C satisfy

f(σ) = min
σ′∈C

f(σ′),

assuming that f(σ′) is finite for at least one σ′ ∈ C? We will be most interested in the case

when the optimal σ is on the boundary of C. Since f is a convex function, it is sufficient

to show that σ is a semi-local minimum of f . That is, all of the directional derivatives of

f at σ are nonnegative. Since the directional derivative is usually a linear map, denoted

by Df,σ : Hd → R, the condition in (3.4) reduces to the fact that Df,σ defines a supporting
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hyperplane of C at σ on the boundary of C.

In general, finding a closed analytic formula for an optimal σ is difficult, if not impossible.

From a computational point of view, however, the complexity of finding a good numerical

approximation to the optimal σ can be relatively easy (i.e. polynomial in terms of compu-

tation of the function f and the membership in C). Such numerical optimization for the

relative entropy of entanglement, for example, has been studied in [ZFG10]. Rather than

trying to directly solve these optimization problems, however, in this chapter, methods of

solving the converse problem are primarily emphasized. That is, given a matrix σ ∈ C, we

instead ask “which functions f achieve their minimum over C at σ?” Although this may

seem trivial at first, these kinds of results can yield meaningful statements about finding

closed formulas for certain quantities in quantum information [FG11].

Recent work has been done [Ish03, MI08, FG11] that employs similar methods to de-

termine an explicit expression for the relative entropy of entanglement for certain bipartite

quantum states. Given a separable state σ ∈ D(HA ⊗HB), one can find all of the entangled

states ρ for which σ is the closest separable state, thus minimizing the relative entropy of

entanglement. The work presented in this chapter is based on these previous analyses of the

relative entropy of entanglement.

Here, a general framework for finding minimization criteria for convex optimization prob-

lems that arise in quantum information theory will be constructed by studying the con-

verse problem. Previous results are extended to find an explicit expression for the Rains

bound [Rai99b] (a quantity related to the relative entropy of entanglement) and it will be

shown how these results can be generalized to other functions of interest in quantum infor-

mation theory. Among other results, these methods will be used to show that the Rains

bound is equal to the relative entropy of entanglement for states of bipartite systems for

which at least one subsystem is a qubit. In addition to the relative entropy, we can also

study other similar convex functions that arise in quantum information theory, including the

Rényi relative entropies. As an application, this method will be used to compute the Rényi
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α-relative entropies of entanglement for pure states for α ∈ [0, 2].

Lastly, a general algorithm for numerically estimating the solutions to some of these

convex optimization problems in quantum information theory will also be constructed. This

algorithm makes use of the “cutting plane” method for approximating the epigraph of a

convex function and is implemented using the CVX modeling system for convex programs

in matlab. The algorithm is based on the algorithm in [ZFG10] for estimating the relative

entropy of entanglement (with respect to the PPT states). The algorithm is improved

here and extended to compute Rényi relative entropies of entanglement as well as the Rains

bound. To showcase the algorithms efficacy, numerical results for computing these quantities

by implementing the algorithm are compared to states that have known values for the relative

entropies of entanglement and the Rains bound.

The remainder of this chapter is outlined as follows. In Section 4.1, necessary and suffi-

cient conditions needed for a matrix σ ∈ C to minimize a convex function f over an arbitrary

convex subset C ⊆ Hn are presented. The examples of this analysis applied to the relative

entropy of entanglement and the Rains bound are given in Sections 4.3 and 4.4, respectively.

In Section 4.4.3, these results are then used to prove some interesting facts about these two

quantities, such as the fact that the Rains bound and the relative entropy of entanglement

coincide for states in quantum systems in which at least one subsystem is a qubit. Analysis

of the Rényi α-relative entropies of entanglement is presented in Section 4.5. The cutting

plane method for numerical estimation and applications to the relative entropy of entangle-

ment and the Rains bound are discussed in Section 4.6. Further applications to other convex

functions are contained in Section 4.7.

4.1 Conditions for minimizing convex functions

In this chapter, we discuss minimizing convex functions over convex subsets of positive

matrices. Let C ⊆ Hd,+ be a convex set, let X ∈ C, and let f : C → R be a convex function.
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From the results in Section 3.1.3, conditions for when X minimizes f can be given in terms

of the directional derivatives of f . In particular, it holds that f(X) ≤ f(X ′) for all X ′ ∈ C

if and only if the directional derivatives satisfy f ′(X;X ′ −X) ≥ 0 for all X ′ ∈ C.

The analysis in this chapter will primarily be concerned with convex functions of positive

matrices f : Hd,+ → R that are of the form

f(X) = h(Tr(Ag(X))) (4.1)

for some differentiable functions g and h of real numbers and some positive semidefinite

matrix A ∈ Hd,+, where g is well-defined on the interval g : (0,+∞) → R. For example,

given a fixed density matrix ρ ∈ D(Cd), the relative entropy of ρ with respect to a positive

operator X is given by S(ρ‖X) = Tr(ρ log ρ) − Tr(ρ log(X)). In this section, we will show

how to compute directional derivatives of functions of the form defined in (4.1). Conditions

for minimization of convex functions can be given in terms of the directional derivatives (see

Section 3.1.3), and in this section it will be shown how these criteria can be given in terms of

supporting hyperplanes. This will allow us to analyze minimization criteria for the relative

entropy (as well the Rényi α-relative entropies) in addition to other similar quantities in

quantum information.

Given a positive matrix A ∈ Hd,+ and an analytic function f : (0,∞) → R, we can

consider the function on positive definite matrices fA : Hd,++ → R defined by

fA(X) = Tr(Af(X)). (4.2)

If A and X have spectral decompositions given by A =
d∑
i=1

ai|vi〉〈vi| and X =
d∑
j=1

xj|uj〉〈uj|,

we can write this as

fA(X) =
d∑

i,j=1
aif(xj)|〈vi|uj〉|2.

As long as the limit limt→0 f(t) exists (which could be ±∞), we can extend f to a function
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f : [0,+∞)→ R by defining f(0) as this limit. Then we can also extend fA to semidefinite

matrices in the following manner. If f(0) is finite then Tr(Af(X)) is always well defined and

finite for allX ≥ 0. If f(0) = ±∞, then Tr(Af(X)) is finite if and only if supp(A) ⊆ supp(X)

and is ±∞ otherwise. For example, we define Tr(A log(X)) = −∞ if supp(A) 6⊆ supp(X).

The functions f : (0,+∞) → R considered here will always be either concave or convex, so

the limiting value f(0) will always exist.

The functions as defined in (4.2) are convex (concave) on Hd,+ as long as f is operator

convex (concave) on (0,+∞). Indeed, if

f(tX + (1− t)Y ) ≤ tf(X) + (1− t)f(Y )

holds as an operator inequality for X, Y ∈ Hd,++ and t ∈ [0, 1], then

Tr(Af(tX + (1− t)Y )) ≤ tTr(Af(X)) + (1− t) Tr(Af(Y ))

holds for all A ≥ 0. This convexity is preserved for singular matrices X ∈ Hd,+ by continuity.

Many of these types of functions arise in quantum information theory, and finding conditions

for minimizing such functions over convex sets is important. For example, analysis of the

convex function X 7→ −Tr(ρ log(X)) for a fixed ρ will allow us to determine conditions for

when a state σ minimizes the relative entropy S(ρ‖σ) = Tr(ρ(log ρ − log σ)) over all states

in some convex set of density matrices C.

As shown in Section 3.1.3, necessary and sufficient conditions for finding minima of convex

functions can be given in terms of directional derivatives. Here, we show how to compute

directional derivatives for functions of the form fA. These functions are Fréchet differentiable

at any positive definite X, so the conditions for minimization can be given in terms of linear

functionals. Careful consideration must be taken in the case when X ≥ 0 but X 6> 0.
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4.1.1 Derivatives of matrix functions

The directional derivatives of fA are given by f ′A(X;Y ) = Tr(Af ′(X;Y )), as long as the

directional derivative of matrices f ′(X;Y ) exists. In particular if f : (0,+∞) → R and

X > 0, then f ′(X;Y ) is well-defined for any Y ∈ Hd. However, if A 6= 0 then the directional

derivative f ′A(X;Y ) can exist even if f ′(X;Y ) does not. Here we show how to compute the

directional derivatives f ′A(X;Y ) for all X ∈ Hd,+ and Y ∈ Hd. We first consider the case

when X > 0. To do so, we first introduce some notation for differentiating functions of

matrices. The case when X 6> 0 must be carefully considered separately.

Definition 4.1. Let f : (0,+∞)→ R be differentiable, and let x, y ∈ R with x, y > 0. The

divided differences of f are defined by

f [1](x, y) =


f(x)− f(y)

x− y
, x 6= y

f ′(x), x = y.

Given a diagonal matrix Λ ∈ Hd,++ with Λ = diag(λ1, . . . , λd), the matrix of divided differ-

ences of Λ is denoted as f [1](Λ) and has matrix elements given by

(f [1](Λ))i,j = f [1](λi, λj).

The matrix of divided differences f [1](Λ) is symmetric. We also make use of the Schur

(or entry-wise) product of two d × d matrices. Given two d × d matrices A,B ∈ Hd, this

Schur product is denoted by A ◦ B which has matrix elements (A ◦ B)i,j = Ai,jBi,j. For

a fixed matrix A ∈ Hd, Schur multiplication by A is a linear map that is self-adjoint with

respect to the Hilbert-Schmidt inner product. That is, for all X, Y ∈ Hd it holds that

〈X,A ◦ Y 〉 = Tr(X(A ◦ Y )) = Tr((A ◦X)Y ) = 〈A ◦X, Y 〉

and the map X 7→ A ◦X is linear in X.
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The following proposition tells us how to compute the derivatives of matrix functions.

Proposition 4.2 shows that matrix functions derived from real-analytic functions are Fréchet

differentiable, with the Fréchet derivative given in terms of the matrix of divided differences.

A proof of this fact can be found in many textbooks on matrix analysis (see e.g., Lemma

V.3.1 in [Bha97] or Theorem 6.6.3 in [HJ94]).

Proposition 4.2. Let f : (0,∞)→ R be analytic. For every diagonal matrix Λ ∈ Hd,+ and

every hermitian matrix Y ∈ Hd, it holds that

f ′(Λ;Y ) = f [1](Λ) ◦ Y.

For an arbitrary X ∈ Hd,++, let X = UΛU † be a spectral decomposition such that U is

unitary and Λ is diagonal. Then

f ′(X;Y ) = U
(
f [1](U †XU) ◦ (U †Y U)

)
U †.

We see that the directional derivative is linear in Y , so f is Fréchet differentiable at X

with its Fréchet derivative given by Df,X(Y ) = f [1](Λ) ◦ Y if X is diagonal and

Df,X(Y ) = U
(
f [1](U †XU) ◦ (U †Y U)

)
U †

= U
(
Df,U†XU(U †Y U)

)
U †

otherwise, where Df,X is a linear map of d × d matrices. For most of the remainder of this

chapter, we may assume for simplicity (and without loss of generality) that X diagonal, and

we may write the directional derivatives as f ′(X;Y ) = Df,X(Y ) = f [1](X)◦Y . The following

proposition shows how to use this fact to write the directional derivatives of functions of the

form fA for positive definite X. It was first considered in [FG11], where it was shown in the

case when f is the function f(x) = log(x).

Proposition 4.3. Let f : (0,∞)→ R be analytic, let A ∈ Hd,+, and let X ∈ Hd,++. For all
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Y ∈ Hd, it holds that

f ′A(X;Y ) = 〈Df,X(A), Y 〉,

where 〈·, ·〉 is the Hilbert-Schmidt inner product.

Proof. Since fA is defined as fA(X) = Tr(Af(X)), it is easy to see from the chain rule

that f ′A(X;Y ) = Tr(Af ′(X;Y )). Since we may assume without loss of generality that X is

diagonal, we have that f ′(X;Y ) = Df,X(Y ) = f [1](X) ◦ Y , and thus

f ′A(X;Y ) = Tr(ADf,X(Y ))

= 〈A,Df,X(Y )〉

= 〈Df,X(A), Y 〉,

as desired.

In particular, if X > 0 we see that fA is differentiable at X with the gradient given by

∇fA(X) = D̃f,X(A). We must carefully consider the case when X is not positive definite.

Even if Tr(Af(X)) is finite, the directional derivatives f ′(X;Y ) are not necessarily finite

if Y 6> 0. Let A ∈ Hd,+ and X ∈ Hd,+ such that Tr(Af(X)) is finite. The directional

derivatives f ′A(X;Y ) exists for any Y ∈ Hd, but the value is possibly infinite if X is on the

boundary of the domain of fA. When X > 0, the directional derivatives are always finite

since X is in the interior of the domain of fA. If X 6> 0, then A must be zero outside of the

support of X, i.e. supp(A) ⊆ supp(X). That is, it must be the case that A|v〉 = 0 for every

nonzero |v〉 such that 〈v|X|v〉 = 0. Since we can assume without loss of generality that X

is diagonal, this means that if Tr(Af(X)) is finite then A must have the block form

A =
(
Ã 0
0 0

)
where X =

(
X̃ 0
0 0

)
,

and X̃ = diag(x1, . . . , xr) is a diagonal matrix with eigenvalues x1, . . . , xr > 0.

Here, we give the conditions for which the directional derivative fA(X;Y ) exists and is
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finite. The definition of the Fréchet differential map Df,X can be extended to singular X as

follows: If X is diagonal with X = diag(x1, . . . , xd), we define the linear map D̃f,X on d× d

matrices where D̃f,X(Y ) has matrix elements given by

(
D̃f,X(Y )

)
i,j

=


f [1](xi, xj)Yi,j xi, xj 6= 0

0 xi = 0 or xj = 0.

If X is not diagonal, we may define D̃f,X analogously as D̃f,X(Y ) = UD̃f,U†XU(U †Y U)U †

where U is a unitary matrix such that U †XU is diagonal.

Lemma 4.4. Let f : (0,∞) → R be analytic. Let X ∈ Hd,+ be singular, let A ∈ Hd,+

with supp(A) ⊆ supp(X), and let Y ∈ Hd such that 〈v|Y |v〉 > 0 for every nonzero |v〉 with

〈v|X|v〉 = 0. Then the directional derivative f ′A(X;Y ) exists and is given by

f ′A(X;Y ) = 〈D̃f,X(A), Y 〉.

This is a generalization of Lemma 6 in [FG11], where it was proved for f(x) = log x. A

proof of this lemma may be found in the appendix. Lemma 4.4 leads to the following useful

corollary.

Corollary 4.5. Let f : (0,∞) → R be analytic, let X,X ′ ∈ Hd,+ such that X ′ > 0, and let

A ∈ Hd,+ such that supp(A) ⊆ supp(X). Then

f ′A(X;X ′ −X) = 〈D̃f,X(A), X ′ −X〉 (4.3)

and is finite.

Proof. This follows directly from Lemma 4.4. Indeed, the matrix X ′ −X ∈ Hd satisfies the

condition that 〈v|(X ′−X)|v〉 > 0 for all nonzero |v〉 such that 〈v|X|v〉 = 0, since X ′ > 0.

Note that, if X 6> 0 then fA is no longer differentiable at X and the gradient ∇fA does

not exist. Only if X > 0 can we replace D̃f,X(A) in (4.3) by the gradient ∇fA(X). In fact,
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fA is no longer Fréchet differentiable at X and the operator D̃f,X(A) can only be used to

compute the directional derivatives for certain directions. Nonetheless, it is still useful for

writing down necessary and sufficient conditions for minimization, as will be shown in the

next section.

Since D̃f,X = Df,X for positive definite X, for the rest of this thesis we will simply write

Df,X even if X is singular.

4.1.2 Necessary and sufficient conditions

We can now present necessary and sufficient conditions for a matrix X in a convex set

C ⊆ Hd,+ to minimize fA for a fixed analytic function f and a fixed A ∈ Hd,+. These

conditions are given in terms of the directional derivatives. We must assume that f is

operator convex so that the function fA is convex for any A ∈ Hd,+. If X > 0, this condition

is easy to verify. Otherwise, if X 6> 0, we must require that X ′ > 0 for all X ′ in the relative

interior of C.

Lemma 4.6. Let f : (0,+∞) → R be an analytic, operator convex function. Let C ⊆ Hd,+

be a convex subset, let A ∈ Hd,+, and let X ∈ C. Suppose one of the following holds:

1. X > 0, or

2. X 6> 0 but X ′ > 0 for all X ′ ∈ relint(C).

Then fA(X ′) ≥ fA(X) for all X ′ ∈ C if and only if

〈Df,X(A), X ′〉 ≥ 〈Df,X(A), X〉 (4.4)

for all X ′ ∈ C.

Proof. The function fA(X) = Tr(Af(X)) is convex since f is operator convex, so X ∈ C

minimizes fA over C if and only if f ′A(X;X ′−X) ≥ 0 for all X ′. The result follows in case 1,
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since the directional derivatives can be given by f ′A(X;X ′−X) = 〈Df,X(A), X ′−X〉 for all

X ′ ∈ C.

For case 2, suppose that f ′A(X;X ′ −X) ≥ 0 holds for all X ′ ∈ C, where the directional

derivative is possibly infinite if X ′ 6> 0. We have that (4.4) holds for all X ′ > 0 in the

relative interior of C, so by continuity it must hold for all X ′ on the boundary of C as well.

On the other hand, if (4.4) holds for all X ′ ∈ C, then fA(X ′) ≥ fA(X) for all X ′ > 0 in C.

By continuity, it must hold for all X ′ on the boundary of C as well.

Case 2 in Lemma 4.6 requires that the relative interior of C contains only positive definite

matrices. This requires that C cannot consist entirely of singular matrices. For all applica-

tions of this theorem, this will indeed be the case. For example, the sets of separable and

PPT operators on a bipartite Hilbert space satisfy this requirement, as do other sets of free

states in most quantum resource theories. We will therefore assume that this holds in the

remainder of this work.

Essentially, Lemma 4.6 shows that if X ∈ C minimizes the function fA(X ′) = Tr(Af(X ′))

over C, then the Fréchet derivative applied to A defines a supporting hyperplane of C at X.

As the following theorem shows, the reverse is also true. Characterizing the supporting

hyperplanes of a point X ∈ bd(C) on the boundary of a convex set allows us to find all

A 6= X such that the function fA is minimized at X. In Theorem 4.7, we will show necessary

and sufficient conditions for minimization given in terms of supporting hyperplanes.

Here we will work with functions f : (0,+∞) → R that are strictly monotone so that

the map Df,X is invertible if X > 0. Strict monotonicity of f means that f ′(t) 6= 0 for all

t > 0, and that f(t) 6= f(s) for all t 6= s. Thus all of the elements of the matrix f [1](X) are

nonzero. If X is full rank, then Df,X is fully invertible as a linear map on matrices. We may

assume without loss of generality that X is diagonal. Then the inverse is given by

D−1
f,X(Y ) =

(
f [1](X)

)−1
◦ Y,
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where (f [1](X))−1 is the entry-wise inverse of the matrix of divided differences with entries

((
f [1](X)

)−1
)
j,k

= 1(
f [1](X)

)
j,k

such that D−1
f,X(Df,X(Y )) = Df,X(D−1

f,X(Y )) = Y for all matrices Y ∈ Hd. In the case when

X is not full rank, the Fréchet derivative operator Df,X is only invertible on matrices Y with

supp(Y ) ⊆ supp(X). We can define the pseudoinverse of the map Df,X in this case by D‡f,X ,

which has matrix elements given by

(
D‡f,X(Y )

)
j,k

=
{

0, xj = 0 or xk = 0,

where we assume without loss of generality that X is diagonal with X = diag(x1, . . . , xd).

If X is not diagonal, then we define the pseudoinverse by D‡f,X(Y ) = UD‡f, U†XU(U †Y U)U †,

where U is a unitary matrix such that U †XU is diagonal. The pseudoinverse then satisfies

D‡f,X(Df,X(Y )) = Df,X(D‡f,X(Y )) = PXY PX

for all Y ∈ Hd, where PX denotes the projection matrix onto the image of X such that

PXX = XPX = X. Note that PXY PX = X for any Y such that supp(Y ) ⊆ supp(X). If

X > 0 then D‡f,X = D−1
f,X , and the projection matrix PX = 1d is the identity matrix.

We are now ready to state the main result of this section. Given a convex subset of

positive matrices C, Theorem 4.7 states the necessary sufficient conditions for a matrix

X ∈ C on the relative boundary to minimize functions of the form fA(X) = Tr(Af(X)).

These conditions are given in terms of supporting hyperplanes that are related to the matrix

A by the inverse of the Fréchet derivative operator.

Theorem 4.7. Let f : (0,∞) → R be analytic such that f is operator convex and strictly

monotonic. Let C ⊆ Hd,+ be convex such that X ′ > 0 for all X ′ ∈ relint(C), let X ∈ bd(C),

and let A ∈ Hd,+ such that A 6= X. The following are equivalent:
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(i) It holds that Tr(Af(X ′)) ≥ Tr(Af(X)) for all X ′ ∈ C (i.e., X minimizes fA over C).

(ii) There exists a nonzero matrix φ ∈ Hd, φ 6= PX , such that supp(φ) ⊆ supp(X) and

〈φ,X ′〉 ≥ 〈φ,X〉 for all X ′ ∈ C, and A = D‡f,X(φ).

Proof. First suppose that fA(X ′) ≥ fA(X) holds for all X ′ ∈ C. Then supp(A) ⊆ supp(X),

and Lemma 4.6 says that 〈Df,X(A), X ′〉 ≥ 〈Df,X(A), X〉 holds for all X ′ ∈ C. Hence, the

matrix φ = Df,X(A) satisfies the desired properties. Indeed, it holds that supp(φ) ⊆ supp(X)

by definition of pseudo-inverse of Df,X , and φ 6= PX since A 6= X.

On the other hand, suppose that φ is nonzero with φ 6= PX and supp(φ) ⊆ supp(X), and

suppose φ defines a supporting hyperplane of C such that 〈φ,X ′〉 ≥ 〈φ,X〉 for all X ′ ∈ C.

For A = D‡f,X(φ), we have that Df,X(A) = Df,X(D‡f,X(φ)) = PXφPX = φ, so by Lemma 4.6

we see that X does indeed minimize fA over C. Lastly, we see that A 6= X since φ 6= PX and

Df,X is invertible on all all operators whose support is contained in supp(X).

This theorem also allows us to examine the converse convex optimization problem. That

is, given a point X ∈ bd(C) on the boundary of a convex set, we can find all matrices

A ≥ 0 such that the function fA is minimized at X by characterizing all of the supporting

hyperplanes of C at X. Indeed, if a matrix φ defines a supporting hyperplane of C at X such

that 〈φ,X ′〉 ≥ 〈φ,X〉 for allX ′ ∈ C, thenX minimizes fA over C for the matrix A = D‡f,X(φ).

We will use the notation σ = X when X is a density matrix. For most applications of

Theorem 4.7 in this thesis, the convex set C will be a subset of density matrices σ′, and

Tr σ′ = 〈1d, σ′〉 = 1 for all σ′ ∈ C. Hence, if φ defines a supporting hyperplane of C ⊆ Hd,+,1

at some point σ ∈ C, then so does tφ + s1d for all t > 0 and s ∈ R. This allows us to state

the following corollary.

Corollary 4.8. Suppose that C ⊆ Hd,+,1 is a subset of density matrices and that A > 0. If

σ ∈ C minimizes fA over C, then σ also minimizes fA′ over C for all A′ ∈ Hd,+ of the form

A′ = tA+ sD−1
f,σ(1d)
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with t > 0 and s ∈ R.

Proof. Note that σ > 0, otherwise fA(σ) would not be finite since A > 0. From Theorem

4.7, there is a φ ∈ Hd defining a supporting hyperplane of C such that 〈φ, σ′〉 ≥ 〈φ, σ〉 for

all σ′ ∈ C. Let t > 0 and s ∈ R, in which case φ′ = tφ + s1d also defines a supporting

hyperplane of the desired form, since

〈φ′, σ′〉 = 〈tφ+ s1d, σ
′〉 = t〈φ, σ′〉+ s

≥ t〈φ, σ〉+ s

= 〈tφ+ s1d, σ〉

= 〈φ′, σ〉

for all σ′ ∈ C. By Theorem 4.7, the matrix σ also minimizes fA′ over C for

A′ = D−1
f,σ(φ′)

= tD−1
f,σ(φ) + sD−1

f,σ(1d)

= tA+ sD−1
f,σ(1d),

as desired.

Note that D−1
f,X(1d) = f ′(X)−1 for any X > 0. This will be most applicable in the case

when f(x) = − log x which has derivative given by f ′(x) = −x−1. In this case, we have

f ′(X) = −X−1, and thus D−1
f,X(1d) = −X and D−1

f,X(X) = −1d, two facts that will be very

useful for analyzing the relative entropy.

Lastly, for a given A > 0 we note that the matrix X ∈ C which minimizes fA over C will

be unique in most cases. This only happens if the function f is not only operator convex,

but also strongly operator convex, a notion that was discussed in Section 3.2. The functions

f(x) = −xp are strongly operator convex for p ∈ (0, 1
2 ], as is f(x) = − log x [FG11].
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Theorem 4.9. Let C ⊂ Hd,+ be convex, let A > 0, and let f : (0,+∞)→ R be analytic and

strongly operator convex. There exists a unique X ∈ C such that X minimizes fA over C.

Proof. Let X ′ ∈ C and suppose that fA(X ′) = fA(X), but X ′ 6= X. By strong operator

convexity of f , for all t ∈ (0, 1) it holds that (1− t)f(X) + tf(X ′)− f((1− t)X + tX ′) ≥ 0

and

(1− t)f(X) + tf(X ′)− f((1− t)X + tX ′) 6= 0,

and thus Tr
(
A
(
(1− t)f(X)+ tf(X ′)−f((1− t)X+ tX ′)

))
> 0 for all t ∈ (0, 1), since A > 0.

Hence fA((1− t)X + tX ′) < (1− t)fA(X) + tfA(X ′) = fA(X), which is a contradiction since

X no longer minimizes fA over C.

To summarize, we have given necessary and sufficient conditions for a matrix X ∈ Hd,+

on the boundary of some convex set C ⊆ Hd,+ to minimize a convex functional over C.

For analytic functions f : (0,+∞) → R , we may define the function fA : Hd,+ → R by

fA(X) = Tr(Af(X)). If f is operator convex, then fA is convex as a function of matrices.

Given a matrix X ∈ C on the boundary of a convex set C, Theorem 4.7 states that finding

all A ∈ Hd,+ such that fA is minimized at X is equivalent to finding all matrices φ ∈ Hd that

define supporting hyperplanes of C at X.

4.2 Relative entropy for convex sets

We can now use the analysis from the previous section to state necessary and sufficient

conditions for minimizing the relative entropy with respect to a convex set of positive ma-

trices. Recall that the relative entropy of two positive matrices ρ, σ ∈ Hd,+ is defined as

S(ρ‖σ) = Tr(ρ log ρ)−Tr(ρ log σ). This quantity is finite as long as supp(σ) ⊆ supp(ρ) (i.e.,

as long as ρ|v〉 = 0 for all |v〉 such that σ|v〉 = 0). Otherwise, we define S(ρ‖σ) = +∞. The

relative entropy is satisfies S(ρ‖σ) ≥ 0 with equality if and only if ρ = σ (This is known

as Klein’s inequality. See, e.g., [Car10]). It is also jointly convex. Convexity in the second
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argument is easy to see, since the function − log(x) is operator convex. The relative entropy

is therefore a useful quantity to define the ‘distance’ from a matrix ρ to a convex set C ⊆ Hd,+

of matrices.

Let ρ ∈ Hd,+, and let C ⊆ Hd,+ be convex and compact. We define the relative entropy

of ρ with respect to C as

S(ρ‖C) := min
σ∈C

S(ρ‖σ).

A matrix σ ∈ C is said to minimize the relative entropy of ρ with respect to C if it holds

that S(ρ‖C) = S(ρ‖σ), that is, if S(ρ‖σ) ≤ S(ρ‖σ′) holds for all other σ′ ∈ C. For example,

the relative entropy entanglement (with respect to the separable density matrices) for a

bipartite state ρ ∈ Hd,+,1 with d = dAdB can be written as ESep
R (ρ) = S(ρ‖SepD(CdA :CdB)).

The relative entropy also arises as an important resource measure in any other quantum

resource theory in which the set of free states is a convex set. It is therefore important to

find conditions for when a state σ ∈ C minimizes the relative entropy with respect to an

arbitrary convex set C.

Finding a matrix σ ∈ C that minimizes the relative entropy of ρ with respect to C is a

difficult problem, and no closed-form solution can be found in general. Here, however, we

will state useful conditions that determine when a matrix minimizes this relative entropy.

As we shall see, this will allow us to find expressions for the relative entropy with respect to

convex sets of density matrices.

The problem of computing S(ρ‖C) for an arbitrary fixed ρ ∈ Hd,+ and arbitrary convex

sets C ⊆ Hd,+ can be stated as follows: Find σ ∈ C such that

− Tr(ρ log σ) ≤ −Tr(ρ log σ′) for all σ′ ∈ C. (4.5)

Since − log is an operator convex function, we can use the analysis from the previous section

to restate this in terms of the directional derivatives. In particular, σ ∈ C satisfies (4.5) if
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and only if

f ′ρ(σ;σ′ − σ) ≥ 0 for all σ′ ∈ C,

where f is the function f(x) = − log x. This function is convex, analytic, and strictly

monotonic on the interval (0,∞).

We can now present useful necessary sufficient conditions for a matrix X on the boundary

of a convex set C of positive matrices to minimize the relative entropy of some matrix

ρ 6∈ C with respect to C. The cases when X is full-rank (positive definite) and singular

(not strictly positive definite) must be considered separately. The case when of full-rank

minimizers is considered in Section 4.2.1, while the case of singular minimizers is considered

in Section 4.2.2.

4.2.1 Full-rank minimizers of relative entropy

We first consider the simpler case of full-rank minimizers. We will state the conditions for a

matrix σ ∈ C to minimize S(ρ‖C) in the case when σ is full-rank. If σ ∈ Hd,++ is full rank,

for any X ∈ Hd it holds that σ + tX > 0 for t small enough. The directional derivatives

fρ(σ;X) exist and are finite for all X as long as σ is full rank.

Let σ ∈ Hd,++ be positive definite. For simplicity, the Fréchet derivative of the logarithm

function at a positive definite X will be denoted by LX , which we define as

LX = Dlog,X = −D− log,X ,

and is a linear map on Hd. We may assume without loss of generality that σ is diagonal with

σ = diag(λ1, . . . , λd) such that Lσ acts on any X ∈ Hd as

(Lσ(X))j,k =


1
λj
Xj,k λj = λk

log λj−log λk
λj−λk

Xj,k λj 6= λk.
(4.6)
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The Fréchet derivative of the logarithm function on matrices has the unique and useful

property that Lσ(σ) = 1d for any σ ∈ Hd that is positive definite. This property is very useful

for analyzing the relative entropy of entanglement. In Theorem 4.12, we state necessary and

sufficient conditions for a full-rank matrix σ on the boundary of a convex set C ⊆ Hd,+,1

of density operators to minimize S(ρ‖σ) over σ ∈ C. We first make use of Theorem 4.7

to state the following Lemma. This result was first used in the context of minimizing the

relative entropy of entanglement for states of two-qubit systems [Ish03], and generalized to

multipartite systems of any dimension [FG11]. Here the statement will be made in relation

to any convex subset positive matrices, not just in the context of entanglement theory.

Lemma 4.10. Let C ⊆ Hd,+ be a convex subset. Let σ ∈ C be full-rank and let ρ ∈ Hd,+.

Then σ minimizes the relative entropy of ρ with respect to C if and only if

〈Lσ(ρ), σ′〉 ≤ 〈Lσ(ρ), σ〉

for all σ′ ∈ C. Furthermore, 〈Lσ(ρ), σ〉 = Tr(ρ).

Proof. This follows from Theorem 4.7 and the fact that Lσ(σ) = 1d for all σ > 0.

For most of the applications of Lemma 4.10 in this thesis, the matrix ρ ∈ Hd,+ will be

a density matrix with Tr ρ = 1. Since the trace of ρ may be written as Tr ρ = 〈ρ,1d〉, and

Lσ(σ) = 1d when σ is full-rank, we have that 〈Lσ(ρ), σ〉 = 〈ρ, Lσ(σ)〉 = 1.

We will assume that S(ρ‖C) is finite for all convex sets C ⊆ Hd,+ considered here (i.e.,

there is at least one σ ∈ C such that S(ρ‖σ) < +∞). Otherwise, S(ρ‖σ) = +∞ for every

σ ∈ C and it does not make sense to discuss which σ ‘minimizes’ the relative entropy with ρ.

With this assumption, note that if ρ is full rank and σ ∈ C minimizes the relative entropy

of ρ with respect to C, then σ must also be full rank. Indeed if ρ is full rank then S(ρ‖σ) is

infinite for every σ that is not full rank.

A convex set C ⊆ Hd,+ is said to span all of Hd if any hermitian X ∈ Hd can be written as

a linear combination of elements in C. For example, the sets of separable and PPT density
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matrices on a bipartite system spans the space of all hermitian matrices. Lemma 4.10 leads to

the following intuitive corollary for such convex sets of density matrices. Suppose C ⊆ Hd,+,1

is a subset of density matrices that spans Hd. For full-rank matrices σ ∈ C, and a density

matrix ρ 6∈ C, if σ minimizes the relative entropy of ρ with C, then σ must be on the relative

boundary of C.

Corollary 4.11. Let C ⊆ Hd,+,1 be convex and spanning. Let σ, ρ ∈ Hd,+ with σ ∈ C and

ρ 6∈ C such that S(ρ‖C) = S(ρ‖σ). If σ > 0 then σ ∈ bd(C).

Proof. Suppose instead that σ is in the relative interior of C and let σ′ ∈ C. Since σ is in the

interior, there is an ε > 0 such that (1− t)σ + tσ′ ∈ C for all t ∈ (−ε, ε). From Lemma 4.10,

〈Lσ(ρ), (1− t)σ + tσ′〉 = 〈Lσ(ρ), σ〉+ t〈Lσ(ρ), σ′ − σ〉

≤ 〈Lσ(ρ), σ〉

holds for all t ∈ (−ε, ε), so 〈Lσ(ρ), σ′ − σ〉 = 0 and thus 〈Lσ(ρ), σ′〉 = 〈Lσ(ρ), σ〉 = 1. Note

that Tr σ′ = 〈1d, σ′〉 = 1. Hence we see that 〈Lσ(ρ), σ′〉 = 〈1d, σ′〉 for all σ′ ∈ C. Since C

spans all of Hd, it follows that Lσ(ρ) = 1d and thus ρ = σ, a contradiction since ρ 6∈ C.

Recall that a matrix φ ∈ Hd is said to define a supporting hyperplane of a convex set C

at a point σ on the boundary of C if φ 6= 0 and 〈φ, σ′〉 ≤ 〈φ, σ〉 for all σ′ ∈ C. We now state

the necessary and sufficient conditions for a full-rank state on the boundary of a convex set

to minimize the relative entropy of an operator ρ with respect to C. This is a generalization

of Theorem 3 in [FG11], where it was stated in the case where the convex set C is the set of

separable (or PPT) density operators on a bipartite space.

Theorem 4.12. Let C ⊆ Hd,+,1 be a closed, convex subset of density operators. Let σ be a

full-rank density operator on the boundary of C, and let ρ ∈ Hd,+,1 with ρ 6∈ C. The following

are equivalent:

(i) S(ρ‖σ) ≤ S(ρ‖σ′) for all σ′ ∈ C
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(ii) There exists φ ∈ Hd with ‖φ− 1d‖1 = 1 such that

〈φ, σ′〉 ≤ 〈φ, σ〉 = 1 for all σ′ ∈ C (4.7)

(i.e., φ defines a supporting hyperplane of C at σ), and ρ is of the form

ρ = (1− t)σ + tL−1
σ (φ) (4.8)

for t ∈ (0, tmax], where tmax > 0 is the largest value such that (1− t)σ + tL−1
σ (φ) ≥ 0.

For a fixed σ and φ, note that tmax can be computed as the solution to the following

semidefinite program:

maximize: t

subject to: t(L−1
σ (φ)− σ) ≥ −σ.

Proof. Suppose that S(ρ‖σ) ≤ S(ρ‖σ′) for all σ′ ∈ C. By Lemma 4.10 it holds that

〈Lσ(ρ), σ′〉 ≤ 〈Lσ(ρ), σ〉 for all σ′ ∈ C. For any t > 0, the operator φ = 1
t

(Lσ(ρ)− 1d) + 1d

defines a supporting hyperplane of the desired form, since for all σ′ ∈ C

〈φ, σ′〉 = 1
t

(〈Lσ(ρ), σ′〉 − 1〉) + 1 ≤ 1
t

(〈Lσ(ρ), σ〉 − 1〉) + 1

= 1
t

(〈ρ,1d〉 − 1〉)︸ ︷︷ ︸
=0

+1

= 1,

where we note that Lσ(σ) = 1d. Furthermore, we see that φ − 1d = 1
t
Lσ(ρ − σ) 6= 0 since

ρ 6= σ and Lσ is an invertible linear map. Hence we may choose t = ‖Lσ(ρ− σ)‖1 > 0 such

that ‖φ− 1d‖1 = 1. We see that Lσ(ρ) = (1− t)1d + tφ, and thus ρ = (1− t)σ + tL−1
σ (φ).

On the other hand, let φ ∈ Hd be an operator that defines a supporting hyperplane of
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the desired form and suppose that ρ = (1 − t)σ + tL−1
σ (φ) for some t ∈ (0, tmax]. To show

that σ minimizes the relative entropy with ρ, it suffices to check that 〈Lσ(ρ), σ′− σ〉 ≤ 0 for

all σ′ ∈ C. Let σ′ ∈ C. It follows that

〈Lσ(ρ), σ′ − σ〉 = 〈(1− t)1d + tφ, σ′ − σ〉

= (1− t) 〈1d, σ′ − σ〉︸ ︷︷ ︸
=Tr(σ′−σ)=0

+t〈φ, σ′ − σ〉

≤ 0.

This concludes the proof.

The proof of Theorem 4.12 relies on the fact that Lσ(σ) = 1d if σ is full-rank. If σ is not

full-rank, only a sufficient condition regarding when a state ρ has σ on the boundary on C

that minimizes the relative entropy with ρ can be given (see [FG11]). It is also important

that C be a subset of density matrices (or at least contains only matrices with constant

trace), otherwise the theorem no longer holds.

A depiction of the result of Theorem 4.12 can be seen in Figure 4.1. Given a convex

subset of density matrices C ⊆ Hd,+,1 and a point σ ∈ bd(C), we can characterize all states

ρ ∈ Hd,+,1 for which σ minimizes the relative entropy of entanglement of ρ to C by examining

the supporting hyperplanes of C at σ. If φ defines a supporting hyperplane, then states of

the form σ + tL−1
σ (φ) have relative entropy that is minimized at σ. A generic σ will have a

unique supporting hyperplane, but points on cusps of the boundary may have a family of

supporting hyperplanes.

4.2.2 Singular minimizers of relative entropy

The preceding section is concerned only with the case when ρ ∈ Hd,+ is full rank, in which

case the closest σ in C must also be full rank. If ρ ∈ Hd,+ is not full rank and σ ∈ C minimizes

the relative entropy of ρ with respect to C, then σ can also be singular. As before, we can
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Figure 4.1: Depiction of minimizers for relative entropy with respect to convex sets. For a
state σ ∈ bd(C) on the boundary of a convex set of density matrices C ⊆ Hd,+,1, consider the
matrices φ ∈ Hd that define supporting hyperplanes of C at σ. This allows us to find states
ρ that have σ as a closest state in C (where ‘closest’ means ‘minimizes the relative entropy’).
Some states σ′ on the boundary do not have a unique supporting hyperplane, but instead
have a continuous family of supporting hyperplanes. Each such hyperplane defines a family
of states for which σ′ is the closest.

extend the definition the Fréchet derivative map for singular σ ∈ Hd,+ as in the general case

as follows. If σ is singular and diagonal with σ = diag(λ1, . . . , λd), then Lσ(X) has matrix

elements given by

(
Lσ(X)

)
j,k

=



1
λj
Xj,k xj = xk and λj, λk 6= 0

log λj−log λk
λj−λk

Xj,k λj 6= xk and λj, λk 6= 0

0 λj = 0 or λk = 0.

As long as X is strictly positive on the null space of σ, the directional derivatives f ′ρ(σ;X)

are well defined and given by

f ′ρ(σ;X) = 〈Lσ(ρ), X〉.
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Since f(x) = − log(x) is strictly monotonically decreasing, this map has a pseudo-inverse

given by

(
L‡σ(X)

)
j,k

=


λj,jXj,k λj = λk and λj 6= 0

λj−λk
log λj−log λk

Xj,k λj 6= λk and λj, λk 6= 0

0 λj = 0 or λk = 0.

such that L‡σ(Lσ(X)) = Lσ(L‡σ(X)) = PσXPσ and L‡σ(1d) = L‡σ(Pσ) = σ, where Pσ is the

projection matrix onto the support of σ.

Similar to Lemma 4.10, we can state the necessary and sufficient conditions for a state

σ ∈ C to minimize the relative entropy of ρ with respect to C. However, as in Lemma 4.6,

we require that the interior of C contain only positive definite matrices.

Lemma 4.13. Let C ⊆ Hd,+ be a convex subset such that relint(C) ⊆ Hd,++. Let σ ∈ C

be singular and let ρ ∈ Hd,+ such that supp(ρ) ⊆ supp(σ). Then σ minimizes the relative

entropy of ρ with respect to C if and only if

〈Lσ(ρ), σ′〉 ≤ 〈Lσ(ρ), σ〉

for all σ′ ∈ C. Furthermore, 〈Lσ(ρ), σ〉 = Tr(ρ).

Proof. This follows directly from the general case of Lemma 4.6.

We may now make a similar statement to Theorem 4.12, except this time for singular

matrices σ ∈ Hd,+. However, since Lσ(σ) = Pσ 6= 1d, the statement we can make is slightly

weaker. In particular, we cannot guarantee that σ is minimizes the relative entropy for states

of the form ρ = (1− t)σ + tL‡σ(φ) with t > 1.

Theorem 4.14. Let C ⊆ Hd,+,1 be a closed, convex subset of density operators. Let σ be a

singular density operator on the boundary of C, and let ρ ∈ Hd,+,1 with ρ 6∈ C and ρ 6= 0.

The following are equivalent:

1. S(ρ‖σ) ≤ S(ρ‖σ′) for all σ′ ∈ C
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2. There exists a nonzero φ ∈ Hd with φ 6= Pσ and supp(φ) ⊆ supp(σ) such that φ defines

a supporting hyperplane of C at σ of the form

〈φ, σ′〉 ≤ 〈φ, σ〉 = 1 for all σ′ ∈ C, (4.9)

and ρ is of the form

ρ = (1− t)σ + tL‡σ(φ) (4.10)

for some t ∈ (0, tmax], where 0 < tmax ≤ 1 is the largest value not greater than 1 such

that (1− t)σ + tL‡σ(φ) ≥ 0.

Proof. Suppose that S(ρ‖σ) ≤ S(ρ‖σ′) for all σ′ ∈ C. Note that supp(ρ) ⊆ supp(σ) since we

can assume that S(ρ‖σ) 6= +∞. Then by Lemma 4.13, it holds that 〈Lσ(ρ), σ′〉 ≤ 〈Lσ(ρ), σ〉

for all σ′ ∈ C. Hence φ = Lσ(ρ) defines a supporting hyperplane of the desired form, and

φ 6= Pσ since σ 6= ρ and Lσ = Pσ, and Lσ is invertible on matrices with support contained

in supp(σ). Finally, we see that ρ = L‡σ(φ), so (4.10) holds with t = 1.

On the other hand, suppose that φ ∈ Hd defines a supporting hyperplane of C at σ of the

form in (4.9), and that ρ = (1−t)σ+tL‡σ(φ) for some t ∈ (0, 1]. Then Lσ(ρ) = tφ+(1−t)Pσ.

For any σ′ ∈ C we have

〈Lσ(ρ), σ′〉 = t〈φ, σ′〉+ (1− t)〈Pσ, σ′〉

≤ t〈φ, σ〉+ (1− t)〈Pσ, σ〉

= 〈Lσ(ρ), σ〉

= 1,

since 〈Pσ, σ′〉 ≤ 1 for all σ′ ∈ Hd,+,1 and 〈Pσ, σ〉 = 1.

The key difference between the singular case and the full-rank case can be seen in the
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following observation. Since C ⊆ Hd,+,1 is a subset of density matrices, we see that

tφ+ (1− t)1d

defines a supporting hyperplane for all positive t, while tφ+(1−t)Pσ only defines a supporting

hyperplane for 0 < t ≤ 1 if Pσ 6= 1d.

We also have the following natural corollary, which states that if ρ 6∈ C is any state for

which σ ∈ bd(C) minimizes S(ρ‖σ) over C, then σ also minimizes S(tρ+ (1− t)σ‖σ) for all

t ∈ (0, 1] as well. If σ is non-singular, then this holds for t > 1 as well. Previously [VP98],

it was only known that that this could be done if t ≤ 1.

Corollary 4.15. Let C ⊆ Hd,+,1 be a closed convex subset of density operators. Let σ ∈

bd(C), and let ρ ∈ Hd,+,1 with ρ 6∈ C and ρ 6= 0 such that S(ρ‖σ) ≤ S(ρ‖σ′) for all σ′ ∈ C

(i.e., σ minimizes the relative entropy of ρ with respect to C). The following statements hold.

1. If σ > 0 then σ also minimizes the relative entropy of all states of the form tρ+(1−t)σ

with respect to C for all t > 0.

2. If σ is singular, then σ also minimizes the relative entropy of all states of the form

tρ+ (1− t)σ with respect to C for all t ∈ (0, 1].

4.3 Application to Relative Entropy of Entanglement

We now consider a bipartite system CdA ⊗ CdB with d = dAdB and apply the previous

results to the relative entropy of entanglement (with respect to the PPT states). If we let

P = PPTD(CdA : CdB) denote the convex subset of PPT states, the relative entropy of

entanglement can be written as EPPT
R (ρ) = S(ρ‖P). Then all of the results in Section 4.2

apply to this circumstance. To make use of these results, it is useful to characterize the

supporting hyperplanes of P at a PPT state on the boundary. Here, we only consider the

case when σ is full rank.
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Suppose σ ∈ D(Cd) = Hd,+,1 is a full-rank bipartite density operator such that its partial

transpose σTB is positive but has at least one zero eigenvalue, (that is, σ > 0 and σTB ≥ 0, but

σTB 6> 0), then σ is on the boundary of P . Indeed, we can define a supporting hyperplane

P at σ as follows: Let |ψ〉 ∈ Cd be a unit vector such that 〈ψ|σTB |ψ〉 = 0 and define

φ = 1d − |ψ〉〈ψ|TB . Then 〈φ, σ〉 = 〈ψ|σTB |ψ〉 = 0 and

〈φ, σ′〉 = 1− 〈ψ|σ′TB|ψ〉 ≤ 1 (4.11)

for all σ′TB ≥ 0. We can use this result to find a ‘closed form’ expression for the relative

entropy of entanglement for certain states.

Corollary 4.16. Let σ ∈ D(CdAdB) be a full-rank PPT density operator on the boundary of

the PPT states (i.e., such that σ > 0 and σTB ≥ 0 but σTB 6> 0), and let |ψ〉 ∈ Cd be a unit

vector such that 〈ψ|σTB |ψ〉 = 0. For all density operators of the form ρ = σ− tL−1
σ (|ψ〉〈ψ|TB),

it holds that

EPPT
R (ρ) = S(σ)− S(ρ) + t〈ψ|(σ log σ)TB|ψ〉 (4.12)

where S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy.

Proof. By the previous explanation, for all ρ of this form we see that σ minimizes the relative

entropy of ρ with respect to the PPT states. Then

EPPT
R (ρ) = S(ρ‖σ) = Tr

(
ρ log ρ− ρ log σ

)
= −S(ρ)− Tr

((
σ − tL−1

σ (|ψ〉〈ψ|TB)
)

log σ
)

= S(σ)− S(ρ) + tTr
(
|ψ〉〈ψ|TBL−1

σ (log σ)
)

= S(σ)− S(ρ) + t〈ψ|(σ log σ)TB |ψ〉,

where L−1
σ (Y ) = σY for any Y ∈ Hd that is diagonal in the eigenbasis of σ.

We now use this method to explicitly compute the relative entropy of entanglement of
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some families of entangled states. We can generate states ρ with known value for the relative

entropy of entanglement by generating PPT states that are on the boundary of the set of

PPT states and finding supporting hyperplanes (i.e., witnesses) of the set of PPT states

at that point. While these states cannot be parameterized, we can generate them by the

following procedure. This will be done here for states on C2 ⊗ C2 (i.e., states of systems

of two qubits). For two-qubit states, the sets of PPT states and the set of separable states

coincide, and thus EPPT
R = ESep

R .

1. Generate a random 4× 3 matrix X. Set Y = XX†

Tr(XX†) . Note that Y is a 4× 4 density

matrix with rank at most 3. If X is generated sufficiently randomly, the matrix Y will

have rank 3 with unit probability.

2. If Y TB ≥ 0 then set σ = Y TB . Otherwise repeat step 1 until σ is generated this way.

Note that σ generated this way lies on the boundary of the PPT states.

3. Let |ψ〉 be a normalized eigenvector of the null space of σTB = Y .

4. Consider the family of states

ρ(σ, ψ, t) = σ + tL−1
σ ((|ψ〉〈ψ|)TB)

for t ∈ (0, tmax], where tmax is the largest value of t such that ρ(σ, ψ, t) is positive

semidefinite. Then each ρ = ρ(σ, ψ, t) is an entangled two-qubit state whose closest

separable state is σ. The relative entropy of entanglement of each ρ is given by

ER(ρ) = Tr(ρ log ρ)− Tr(ρ log σ).

Using this procedure, we can now generate entangled two-qubit states with known values

of relative entropy of entanglement. For eight randomly generated separable states σ that

are on the boundary, the relative entropy of entanglement of ρ = σ + tL−1
σ ((|ψ〉〈ψ|)TB) is
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Figure 4.2: Relative entropy of entanglement (ER(ρ)) is plotted for two-qubit states of the
form ρ = σ + tL−1

σ ((|ψ〉〈ψ|)TB) for t ∈ (0, tmax]. This is shown for eight differently randomly
generated states σ on the boundary of the set of PPT states. Each curve depicts ER for a
different family of states derived from the different σ generated this way.

plotted for t ∈ (0, tmax] in Figure 4.2. Note that tmax is different for each of the different

randomly generated σ on the boundary of the PPT states.

4.3.1 Additivity of the relative entropy of entanglement

It is of great importance to determine conditions for when the relative entropy of entangle-

ment is weakly additive. These are states ρ for which the relative entropy of entanglement

is equal to its regularized version, EPPT
R (ρ) = EPPT

R,∞ (ρ). Indeed, the regularized version has

been shown to be the unique measure of entanglement in a reversible theory of entangle-

ment [BP10], although it is much more difficult to compute. Given a state ρ and a PPT

state σ ∈ bd(P) that minimizes the relative entropy of ρ, it has been shown [Rai99b, Rai00]

that EPPT
R (ρ) is weakly additive if

[ρ, σ] = 0 and
(
ρσ−1

)TB ≥ 1d. (4.13)
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However, we have shown that the state ρ may be given by ρ = (1− t)σ + tL−1
σ (φ) for some

matrix φ that defines a supporting hyperplane, so the condition in (4.13) is equivalent to

[L−1
σ (φ), σ] = 0 and

(
L−1
σ (φ)σ−1

)TB ≥ 1d.

But [L−1
σ (φ), σ] = 0 if and only if [φ, σ] = 0, so the conditions for weak additivity can be

stated as

[φ, σ] = 0 and
(
L−1
σ (φ)σ−1

)TB ≥ 1d. (4.14)

Hence, we have reduced the task of finding states ρ for which EP(ρ) is weakly additive to

finding states σ on the boundary of P and a corresponding supporting hyperplane of P at

σ defined by φ that satisfy the conditions in (4.14). In particular, it has been shown [MI08]

that EPPT
R (ρ) is weakly additive for all states ρ that commute with σ if σ minimizes the

relative entropy of entanglement for ρ.

4.3.2 Relative entropy of entanglement for pure states

Here we prove the well known fact [VP98] that, for bipartite pure states, the relative en-

tropy of entanglement (with respect to the separable states) reduces to the von Neumann

entanglement entropy. The method uses the conditions for minimization presented earlier in

this chapter and is similar to the one that we will use later to compute the Rényi relative

entropies of entanglement in Section 4.5. It is also slightly different than the original method

used in [VP98]. For these reasons, we will provide the full proof here. For simplicity, we can

write S(ψ‖σ) = S(ρ‖σ) in the case when ρ = |ψ〉〈ψ| is a pure state.

Theorem 4.17. Let |ψ〉 ∈ HA ⊗HB be a bipartite pure state. It holds that

ESep
R (ψ) = E(ψ),

where E(ψ) is the entropy of entanglement of |ψ〉.
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Without loss of generality the pure state may be considered to be in the form |ψ〉 =∑
i

√
λi|ii〉, and the entropy of entanglement can be given by E(ψ) = ∑

i λi log λi. We can

use the formalism presented in this chapter for giving minimization criteria. Lemma 4.18

presents the other main tool that will be used to prove Theorem 4.17.

Lemma 4.18. For all p, q > 0 it holds that 0 < √pq log[1](p, q) ≤ 1.

Proof. Since log is a strictly increasing function, it holds that 0 < log[1](p, q) for all p, q > 0.

To show the remaining inequality, note that we can write the divided differences of the

logarithm function using an integral representation as

log[1](p, q) =
∫ ∞

0

1
(p+ t)(q + t)dt.

Since p+ q ≥ 2√pq for any t ≥ 0, it holds that

(p+ t)(q + t) = pq + (p+ q)t+ t2

≥ pq + 2√pqt+ t2

= (√pq + t)2.

Hence, for any p, q > 0 we have

√
pq log[1](p, q) = √pq

∫ ∞
0

1
(p+ t)(q + t)dt

≤
∫ ∞

0

√
pq

(√pq + t)2dt

= 1,

as desired.

Proof (of Theorem 4.17). Without loss of generality we may consider |ψ〉 to be of the form
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|ψ〉 =
d∑
i=1

√
λi|ii〉, with all λi > 0 and ∑i λi = 1. Consider the following density matrix

σ =
d∑
i=1

λi|ii〉〈ii|,

which is clearly separable since it is a convex combination of separable states |ii〉〈ii|. For

ρ = |ψ〉〈ψ|, note that Tr(ρ log ρ) = 0 since the eigenvalues of ρ are all either 1 or 0. Thus

S(ψ‖σ) = −Tr(|ψ〉〈ψ| log σ)

= −
d∑
i=1

λi log λi

= E(ψ).

We now need to prove that σ minimizes the relative entropy of |ψ〉 with respect to the

separable states. By Theorem 4.7, this happens if and only if it holds that

〈Lσ(ρ), σ′〉 ≤ 1 for all σ′ ∈ SepD(HA : HB).

It suffices to consider only separable pure states of the form σ′ = |u〉〈u| ⊗ |v〉〈v| where

|u〉 =
d∑
i=1

ui|i〉 and |v〉 =
d∑
i=1

vi|i〉
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are pure state vectors with ∑i|ui|2 = ∑
i|vi|2 = 1. Now

〈Lσ(ρ), |u〉〈u| ⊗ |v〉〈v|〉 =
∑
i,j

√
λiλj log[1](λi, λj)uiviujvj

≤

∣∣∣∣∣∣
∑
i,j

√
λiλj log[1](λi, λj)uiviujvj

∣∣∣∣∣∣
≤
∑
i,j

√
λiλj log[1](λi, λj)︸ ︷︷ ︸
≤1 by Lemma 4.18

|ui||vi||uj||vj|

≤
(∑

i

|ui||vi|
)2

≤
∑
i

|ui|2
∑
i

|vi|2

= 1,

as desired.

4.4 The Rains bound

We may also use the results of Section 4.2 to analyze the Rains bound, whose value can be

cast as the solution to a convex optimization problem. In this section, we examine properties

of the Rains bound, show how it can be converted into a convex optimization problem, and

characterize the supporting hyperplanes of the corresponding convex set. The necessary and

sufficient conditions for minimizing the Rains bound is shown. This is used to prove the

main result in this chapter, which is that the Rains bound is equal to the relative entropy

of entanglement for states of systems that have at least one subsystem be C2 (i.e., one

subsystem is a qubit).

The Rains bound R(ρ) of a bipartite state ρ (see Section 2.4.2) is a quantity that is an

upper bound to the PPT-distillable entanglement and a lower bound to the relative entropy
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of entanglement. It can be defined similarly to the relative entropy of entanglement as

R(ρ) = min
σ
S(ρ‖σ) + log|σTB|, (4.15)

where the minimum is taken over all normalized density operators σ ∈ Hd,+,1 rather than just

the PPT states. However, the function in (4.15) is not convex as a function of σ. To make

use of the results from the previous section, we must first convert the problem of computing

the Rains bound into a convex optimization problem, which can be done as follows: Consider

the convex subset of bipartite positive operators R ⊆ Hd,+ defined by

R = {τ ∈ Hd,+ | ‖τTB‖1 ≤ 1} (4.16)

with d = dAdB. Note that τ ∈ R represent subnormalized states, since Tr τ ≤ 1 for any

τ ∈ R. Indeed,

Tr τ = Tr(τTB)

≤ ‖τTB‖1

≤ 1

and a matrix τ ∈ R has Tr τ = 1 if and only if τTB ≥ 0. Furthermore, the set R is convex.

Indeed, for any τ, τ ′ ∈ R and t ∈ [0, 1] it is clear that tτ + (1− t)τ ′ ≥ 0 and we have

‖(tτ + (1− t)τ ′)TB‖1 = ‖tτTB + (1− t)τ ′TB‖1

≤ t‖τTB‖1 + (1− t)‖τ ′TB‖1

≤ 1,

hence tτ + (1− t)τ ′ ∈ R.

As the following proposition shows, the value of the Rains bound of a bipartite state
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ρ ∈ Hd,+,1 = D(CdA⊗CdB) can be computed as a convex optimization problem by minimizing

the relative entropy of ρ with respect to this convex set R.

Proposition 4.19 ([ADVW02]). Let ρ ∈ Hd,+,1 be a bipartite density matrix. The Rains

bound can be given by the solution to the convex optimization problem

R(ρ) = min
τ∈R

S(ρ‖τ), (4.17)

where R ⊆ Hd,+ is the set of matrices defined in (4.16).

Proof. Let σ ∈ Hd,+,1 and suppose that σ minimizes the Rains bound defined in (4.15). Then
1

‖σTB‖1
σ ∈ R, since

∥∥∥( 1
‖σTB‖1

σ
)
TB
∥∥∥

1
= 1, and R(ρ) ≥ S(ρ‖R), as

R(ρ) = S(ρ‖σ) + log‖σTB‖1

= S
(
ρ
∥∥∥ 1
‖σTB‖1

σ
)

≥ min
τ∈R

S(ρ‖τ).

On the other hand, suppose that τ ∈ R satisfies S(ρ‖τ) ≤ S(ρ‖τ ′) for all other τ ′ ∈ R.

Then ‖τTB‖ = 1. Indeed, if it were the case that ‖τTB‖ < 1, then S(ρ‖τ) > S
(
ρ
∥∥∥ τ
‖τTB‖1

)
where τ

‖τTB‖1
∈ R, so τ would not be the minimum. Then 1

Tr τ τ ∈ Hd,+,1 and

S(ρ‖τ) = S
(
ρ
∥∥∥ τ

Tr(τ)

)
− log Tr(τ)

= S
(
ρ
∥∥∥ τ

Tr(τ)

)
+ log

∥∥∥∥( τ
Tr(τ)

)TB
∥∥∥∥

1

≥ R(ρ),

so S(ρ‖R) ≥ R(ρ). Hence R(ρ) = S(ρ‖R), as desired.

For a given bipartite density matrix ρ ∈ Hd,+,1, we can investigate the necessary and

sufficient conditions for a matrix τ ∈ R to minimize the Rains bound. If the state ρ itself

is PPT then ρ ∈ R. Thus the Rains bound vanishes on all PPT states since we may choose
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ρ ∈ R such that S(ρ‖R) = S(ρ‖ρ) = 0. The interesting cases will be for states ρ 6∈ R (i.e.,

states for which ρTB 6≥ 0).

From the proof of Proposition 4.19, we see that τ minimizes the Rains bound only if

‖τTB‖1 = 1, so τ must be on the boundary of R. We discussed in Section 4.2 a method

for determining the conditions for when a matrix σ on the boundary of a subset C ⊆ Hd,+,1

of density matrices minimizes some convex function. This is done by characterizing the

supporting hyperplanes of the convex set at σ. Similar conditions can be found for minimizing

the Rains bound, where the convex set that is minimized over R. The requirements for a

matrix in Hd to define a supporting hyperplane of R are given in 4.4.1, while the necessary

and sufficient conditions for a matrix τ ∈ R to minimize R(ρ) for a given state ρ ∈ Hd,+,1

are given in 4.4.2. We will use these results to compare the relative entropy of entanglement

and the Rains bound in Section 4.4.3.

4.4.1 Supporting hyperplanes of R

As in the case for arbitrary convex subsets C ⊆ Hd,+, for a matrix τ ∈ R on the boundary,

finding all ρ ∈ Hd,+ such that τ minimizes fρ(τ) = Tr(ρf(τ)) over τ is reduced to character-

izing the supporting hyperplanes of R at τ . These supporting hyperplanes are given by a

matrix φ ∈ Hd satisfying

〈φ, τ ′〉 ≤ 〈φ, τ〉 for all τ ′ ∈ R.

Note that the partial transpose of each τ ∈ R is in the unit ball with respect to the trace

norm B1
d ⊆ Hd, which is defined as

B1
d = {X ∈ Hd | ‖X‖1 ≤ 1}.

The unit ball is also a convex set and characterizing the supporting functionals of B1
d will

assist us in finding the supporting hyperplanes of R. The ‘dual norm’ to the trace norm is

the operator norm ‖·‖∞, which is equal to the largest singular value of a matrix. It satisfies
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‖XY ‖1 ≤ ‖X‖1‖Y ‖∞ for any X, Y ∈ Hd. The unit ball of the operator norm is

B∞d = {X ∈ Hd | ‖X‖∞ ≤ 1}.

It is clear that φ ∈ B∞d if and only if −1d ≤ φ ≤ 1d. Any matrix φ ∈ bd(B∞d ) on the

boundary of the ball in the operator norm defines a supporting hyperplane of B1
d , and vice

versa. Indeed, if φ ∈ bd(B∞d ), then ‖φ‖∞ = 1, and for any X ∈ B1
d it holds that

〈φ,X〉 = Tr(φX) ≤ ‖φX‖1

≤ ‖φ‖∞‖X‖1

= ‖X‖1

≤ 1,

with equality if and only if ‖X‖1 = 1 and φX = |X|. The following lemma shows what

form φ must have for equality to hold. For an operator X ∈ Hd, the projection operators

P+, P− ∈ Hd onto the positive and negative eigenspaces of X are defined as the unique

projection operators on the the supports of X+ and X−, respectively. These projections

satisfy P+XP+ = X+ and P−XP− = −X−.

Lemma 4.20. Let X ∈ Hd and let φ ∈ Hd such that −1d ≤ φ ≤ 1d. It holds that

〈φ,X〉 ≤ ‖X‖1 (4.18)

with equality if and only if φ = P+ − P− +Q, where P+ and P− are the projection operators

onto the positive and negative eigenspaces of X, and −1d ≤ Q ≤ 1d is an operator orthogonal

to both P+ and P− (i.e., QP+ = QP− = 0).

Proof. From the observations above, all that remains is to prove the conditions for equality.

If φ = P+−P−+Q then 〈φ,X〉 = Tr|X| = ‖X‖1. On the other hand, if equality holds then
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it must be the case that φX = |X|. It follows that (φ− 1d)X+ = 0 and (φ+ 1d)X− = 0, as

desired.

Theorem 4.21. Let X ∈ Hd such that ‖X‖1 = 1 (i.e., X is on the boundary of B1
d ⊆ Hd).

An operator φ ∈ Hd defines a supporting hyperplane of B1
d at X such that

〈φ, Y 〉 ≤ 〈φ,X〉 = 1 for all Y ∈ B1
d (4.19)

if and only if φ = P+ − P− + Q where P+ and P− are the projection operators onto the

positive and negative eigenspaces of X and −1d ≤ Q ≤ 1d is an operator orthogonal to both

P+ and P−. In particular, the supporting hyperplane of this form at X is unique if and only

if X has no zero eigenvalues.

Proof. This follows directly from Lemma 4.20. If X is non-singular, then P+ +P− = 1d, and

the only φ = P+ − P− + Q of this form has Q = 0; therefore the supporting hyperplane is

unique.

Let τ ∈ R be on the boundary with ‖τTB‖1 = 1. A matrix φ ∈ Hd defines a supporting

hyperplane of R at τ whenever φTB defines a supporting hyperplane of B1
d at τTB . Indeed,

suppose that 〈φTB , X〉 ≤ 〈φTB , τTB〉 for all X ∈ B1
d . For all τ ′ ∈ R, it holds that

〈φ, τ ′〉 = 〈φTB , τ ′TB〉

≤ 〈φTB , τTB〉,

since τ ′TB ∈ B1
d . The converse is not necessarily true, but it does hold if τ is full rank. In

the case when τ is full rank, a matrix φ ∈ Hd defines a supporting hyperplane of R at τ if

and only if φTB defines a supporting hyperplane of B1
d at τTB .

Depictions of the set P of PPT density matrices and the set R are shown in Figure 4.3.

Note that this set can be written as the intersection R = Hd,+ ∩ (B1
d)TB of the positive cone

and the partial transpose of the unit ball B1
d .
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(a) The convex subset P = PPTD(CdA :CdB) of
PPT density matrices as a subset of all density
matrices.

(b) Convex subset R = {τ ≥ 0 | ‖τTB‖1 ≤ 1} as
a subset of the positive cone. The intersection
of R with the density matrices is exactly P.

Figure 4.3: Depiction of P and R as convex subsets of positive matrices.

4.4.2 Criterion for minimization of the Rains bound

We can now state the necessary and sufficient conditions for a matrix τ ∈ R to minimize the

Rains bound of a state ρ. Let ρ ∈ D(CdA⊗CdB) be a bipartite state, and let τ ∈ R such that

R(ρ) = S(ρ‖τ) (i.e., τ minimizes the relative entropy of ρ with respect to R). The Rains

bound R(ρ) vanishes exactly for PPT states ρ (in which case the matrix that minimizes R(ρ)

is τ = ρ), so we only need to consider states ρ for which ρTB 6≥ 0. The following lemma

is simply an application of the general case in Lemma 4.10 to the specific convex subset R

used in the definition of the Rains bound.

Lemma 4.22. Let ρ ∈ Hd,+,1 be a non-PPT state and let τ ∈ R be on the boundary with

‖τTB‖1 = 1. Then R(ρ) = S(ρ‖τ) if and only if it holds that 〈Lτ (ρ), τ〉 = 1 and

〈Lτ (ρ), τ ′〉 ≤ 1

for all τ ′ ∈ R.

Proof. This follows directly from Lemma 4.10, since Tr ρ = 1.

Hence, as before, the conditions for minimizing the Rains bound are given in terms of

supporting hyperplanes of R. Given a matrix τ ∈ R with ‖τTB‖1 = 1, it is now possible to
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find all states ρ for which τ minimizes the Rains bound by finding all supporting hyperplanes

of R at τ . All supporting hyperplanes considered here will have the form

〈φ, τ ′〉 ≤ 〈φ, τ〉 = 1 for all τ ′ ∈ R. (4.20)

The main result of this section states the conditions for which a matrix τ ∈ R minimizes

the Rains bound for some density matrix ρ. The proof of Theorem 4.25 will rely on a few

facts about Schur products of matrices and monotone matrix functions, which are the Schur

product theorem (see e.g., Theorem 7.5.3 in [HJ13]) and the fact that the matrix of divided

differences f [1](Λ) is positive if f is a monotone matrix function.

Theorem 4.23 (Schur product theorem). For any two matrices X, Y ∈ Hd, if X, Y ≥ 0,

then X ◦ Y ≥ 0. Furthermore, if Y > 0 and X has no diagonal entry equal to 0, then

X ◦ Y > 0.

Theorem 4.24 (see, e.g., Theorem 6.6.36 in [HJ94]). Let a, b ∈ R and let f : (a, b)→ R be a

continuously differentiable function. Let Λ = diag(λ1, . . . , λd) with all eigenvalues λi ∈ (a, b).

If f is operator monotone, then f [1](Λ) ≥ 0.

The function log : (0,∞) → R is strictly operator monotone as a function on matrices.

For diagonal τ > 0, we have Lτ (X) = f [1](τ) ◦ X, where f is the function f(x) = log x.

Since f [1](τ) > 0 for any τ > 0 by Theorem 4.24, it follows that Lτ (X) > 0 for any X > 0.

This generalizes easily to non-diagonal τ as well. We can now state the main result of this

section:

Theorem 4.25. Let τ ∈ R with ‖τTB‖1 = 1. There exists a state ρ ∈ Hd,+,1 such that τ

minimizes the Rains bound for ρ if and only if there exists a φ ∈ Hd with supp(φ) ⊆ supp(τ)

that defines a supporting hyperplane of R at τ of the form in (4.20), such that

L‡τ (φ) ≥ 0
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and ρ = L‡τ (φ). Furthermore φ ≥ 0, and if ρ > 0 then τ > 0 and φ > 0.

Proof. First assume there exists a state ρ such that τ minimizes the Rains bound for ρ.

Define φ = Lτ (ρ). Then φ defines a supporting hyperplane of the form in (4.20) and satisfies

the desired conditions (i.e., supp(φ) ⊆ supp(τ) and L‡τ (φ) ≥ 0 since ρ = L‡τ (φ) and ρ is a

density matrix).

On the other hand, assume that there exists a matrix φ ∈ Hd that defines a supporting

hyperplane of R at τ of the form in (4.20) such that supp(φ) ⊆ supp(τ) and L‡τ (φ) ≥ 0. Let

ρ = L‡τ (φ). It follows that ρ is a valid density matrix, since ρ ≥ 0 and

Tr ρ = 〈ρ,1d〉

= 〈L‡τ (φ),1d〉

= 〈φ, τ〉 = 1

where L‡τ (1d) = τ . Therefore, τ minimizes the Rains bound for ρ since Lτ (ρ) defines a

supporting hyperplane of the necessary form.

We now check the positivity of φ = Lτ (ρ). We may assume without loss of generality

that τ is diagonal. Let f : (0,∞) → R be the function f(x) = log x. We first suppose that

τ > 0. Then Lτ (ρ) is given by

Lτ (ρ) = f [1](τ) ◦ ρ,

where f [1](τ) is the matrix of divided differences of the eigenvalues of τ . Then f [1](τ) ≥ 0 and

has no diagonal entry equal to 0, since f is strictly operator monotone, and thus f [1](τ)◦ρ > 0

by Theorem 4.23. Hence φ > 0, since φ = Lτ (ρ) = f [1](τ)◦ρ. If τ is singular, we may assume

τ and ρ have the form

τ =

τ̃ 0

0 0

 and ρ =

ρ̃ 0

0 0

 ,
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where τ̃ = diag(λ1, . . . , λr) is the upper block of τ such that τ̃ > 0, and ρ̃ ≥ 0. Then Lτ (ρ)

has the form

Lτ (ρ) =

Lτ̃ (ρ̃) 0

0 0

 =

f [1](τ̃) ◦ ρ̃ 0

0 0

 .
Note that Lτ̃ (ρ̃) ≥ 0, since ρ ≥ 0 and τ̃ > 0. It follows that φ = Lτ (ρ) ≥ 0 as desired.

Hence, for a given τ ∈ R with ‖τTB‖1, finding all density matrices ρ such that τ minimizes

the Rains bound for ρ amounts to finding all supporting hyperplanes φ of R at τ satisfying

〈φ, τ ′〉 ≤ 〈φ, τ〉 = 1 for all τ ′ ∈ R

and L‡τ (φ) ≥ 0. If φ is a supporting hyperplane of this form, ρ = L‡τ (φ) is a density matrix

and a closed formula for the Rains bound of this state can be given by R(ρ) = S(ρ‖τ), which

can be written as

R(ρ) = S(ρ‖τ) = S(L‡τ (φ)‖τ)

= Tr(ρ log ρ)− Tr(L‡τ (φ) log τ)

= Tr(ρ log ρ)− Tr(φL‡τ (log τ))

= Tr(ρ log ρ)− Tr(φτ log τ).

Conversely, if there are no supporting hyperplanes of R at τ such that L‡τ (φ) ≥ 0 then τ

cannot minimize the Rains bound for any state ρ. The following section applies this to states

of bipartite systems where one of the systems is a qubit.

4.4.3 Bipartite systems where one system is a qubit

It has been shown in [MI08] that for a state of two qubits, the Rains bound is equal to the

relative entropy of entanglement. This can be generalized to the bipartite case where at least

one of the subsystems is a qubit. Here, we may assume that ρ ∈ D(CdA ⊗ CdB) with dA = 2
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and dB ≥ 2. For all states of such systems, the Rains bound is equal to the relative entropy

of entanglement.

Theorem 4.26. For states ρ of bipartite systems where at least one of the subsystems is a

qubit, the Rains bound is equal to the relative entropy of entanglement (i.e., R(ρ) = EPPT
R (ρ)).

Proof. Let ρ be a bipartite state for which at least one of the subsystems is a qubit. Without

loss of generality, we may consider ρ to be of the form ρ ∈ D(C2⊗CdB) and we define d = 2dB

(where dA = 2). We may assume that ρ > 0. Indeed, since EPPT
R and R are continuous

[Rai01], it will be satisfied for all ρ ≥ 0 as well. Using an argument by contradiction, we will

show that, if τ ∈ R minimizes the Rains bound for ρ, then τTB ≥ 0. That is, τ is PPT and

thus EPPT
R (ρ) = R(ρ).

Suppose for the sake of obtaining a contradiction that there exists a τ ∈ R with τTB 6≥ 0

that minimizes the Rains bound for ρ. We will first consider the case where τTB has only

one negative eigenvalue and the remaining eigenvalues are positive. The more general case

(where τTB has non-trivial null space and at least one negative eigenvalue) will be considered

later and similar techniques will be used.

First suppose that τTB is full-rank and that the dimension of the negative eigenspace is

one. Let P+ and P− be the projection operators onto the positive and negative eigenspaces

of τ . Then P− is the rank-one projector onto the negative eigenspace of τTB and P++P− = 1d.

Thus φ = (P+−P−)TB = 1d− 2P TB
− is the unique operator defining a supporting hyperplane

of R at τ of the form

〈φ, τ ′〉 ≤ 〈φ, τ〉 = 1 for all τ ′ ∈ R. (4.21)

We now show that the largest eigenvalue of P TB
− is greater than 1

2 , and thus φ = 1d−2P TB
− 6> 0.

This is a contradiction to the last statement of the previous theorem (Theorem 4.25), namely

that φ > 0 whenever τ minimizes the Rains bound for ρ if ρ > 0.

Since P− has rank one, we can write this as P− = |ψ〉〈ψ|, where |ψ〉 is the eigenvector
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corresponding the negative eigenvalue of τTB and can be written as

|ψ〉 = |0〉 ⊗ |u〉+ |1〉 ⊗ |v〉,

where 〈ψ|ψ〉 = 〈u|u〉+ 〈v|v〉 = 1, and |u〉, |v〉 ∈ CdB are unnormalized vectors. We may write

P− and P TB
− in matrix form as

P− =

|u〉〈u| |u〉〈v|
|v〉〈u| |v〉〈v|

 and P TB
− =

|u〉〈u| |v〉〈u|
|u〉〈v| |v〉〈v|

 .

By Cauchy’s interlacing theorem (see e.g., Theorem 4.3.28 in [HJ13]), the maximal eigenvalue

of P TB
− is at least as great as the largest eigenvalue among the two submatrices |u〉〈u| and

|v〉〈v|. These are both rank-one positive matrices whose only nonzero eigenvalues are 〈u|u〉

and 〈v|v〉. Since these values must sum to unity, it holds that the largest eigenvalue of P TB
− is

at least as large as λmax(P TB
− ) ≥ max{〈u|u〉, 〈v|v〉} ≥ 1

2 , and thus 1d 6> 2P TB
− . It follows that

φ = 1d − 2P TB
− 6> 0, and thus τ does not minimize the Rains bound for ρ, a contradiction.

We now consider the general case when τTB has at least one negative eigenvalue. Again,

let P+ and P− be the projection matrices onto the positive and negative eigenspaces of τTB ,

but it is no longer necessarily the case that P+ +P− = 1d or that P− is rank one. By Lemma

4.20, any operator φ that defines a supporting hyperplane of R at τ of the form in (4.21)

must be of the form φ = (P+−P−+Q)TB for some −1d ≤ Q ≤ 1d that is orthogonal to both

P+ and P− (i.e., Q is supported on the null space of τTB). Define P0 as the projection matrix

onto the null space of τTB such that P0QP0 = Q, and P+, P−, and P0 form a complete set of

projectors such that P+ + P− + P0 = 1d. Then we may write φTB as

φTB = P+ − P− +Q

= P+ + P− + P0 − (2P− + P0 −Q)

= 1d −X,
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where we define X = 2P− + P0 − Q. Note that P0 ≥ Q and thus X ≥ 0 since P− ≥ 0. Let

|ψ〉 = |0〉 ⊗ |u〉 + |1〉 ⊗ |v〉 be a normalized eigenvector of τTB with negative eigenvalue. We

may write X and |ψ〉〈ψ| in matrix form as

X =

 Y W

W † Z

 and |ψ〉〈ψ| =

|u〉〈u| |u〉〈v|
|v〉〈u| |v〉〈v|



for some matrices W,Y, Z ∈ HdB . Note that P− ≥ |ψ〉〈ψ| since |ψ〉 is in the negative

eigenspace of τTB . Thus X ≥ 2|ψ〉〈ψ| since X ≥ 2P−. Hence it must hold that Y ≥ 2|u〉〈u|

and Z ≥ 2|v〉〈v|, and thus the largest eigenvalues of Y and Z are at least as large as 2〈u|u〉

and 2〈v|v〉 respectively. As in the previous case, we have 〈u|u〉 + 〈v|v〉 = 1 and thus the

largest eigenvalue among all of the eigenvalues of Y and Z must be at least 1. Since

XTB =

Y W †

W Z

 ,

by the Cauchy interlacing theorem, the largest eigenvalue of XTB is at least 1. It follows that

φ = 1d −XTB 6> 0, and thus τ cannot minimize the Rains bound for ρ, a contradiction.

Therefore any τ ∈ R that minimizes the Rains bound for ρ must satisfy τTB ≥ 0. This

completes the proof that R(ρ) = EPPT
R (ρ) for any bipartite state ρ for which at least one

subsystem is a qubit.

The statement and proof of Theorem 4.26 generalizes to the multipartite case where at

least one subsystem is a qubit.
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4.5 Rényi relative entropies

Let ρ, σ ∈ Hd,+ be positive semidefinite. For α ∈ (0,∞) with α 6= 1, recall the quantum

Rényi α-relative entropy (or Rényi α-divergence) of ρ with respect to σ is defined as

Sα(ρ‖σ) = 1
α− 1 log Tr(ρασ1−α). (4.22)

For α < 1, this is always well-defined for all ρ, σ ≥ 0 if supp(ρ) 6⊥ supp(σ). If α > 1, then

Tr(ρασ1−α) is finite as long as supp(ρ) ⊆ supp(σ). Otherwise we may define Sα(ρ‖σ) = +∞.

The standard relative entropy is recovered in the limit α→ 1, so we simply define S1(ρ‖σ) =

S(ρ‖σ). In the limit α→ 0, we have ρα → Pρ (where Pρ is just the projection operator onto

the support of ρ), and thus Tr(ρασ1−α) → 〈Pρ, σ〉 in this limit, which is just the trace of σ

projected onto the support of ρ. Hence the 0-Rényi divergence reduces to

S0(ρ‖σ) = − log〈Pρ, σ〉

which is finite as long as supp(ρ) 6⊥ supp(σ).

The α-relative entropies are convex in the second argument for all α ∈ [0, 2] [MD09],

but are jointly convex only for α ∈ [0, 1] [Pet86]. Furthermore, for α ∈ [0, 2] they are also

monotonic under completely positive and trace preserving maps [MD09], i.e.

S(E(ρ)‖E(σ)) ≤ S(ρ‖σ)

for any quantum channel E . If ρ and σ are density matrices, then it holds that Sα(ρ‖σ) ≥ 0

with equality if and only if ρ = σ. These pseudo-distance properties of the Rényi α-relative

entropies make it an interesting to study. In particular, it can be used to define a resource

monotone when the set of free states is convex. Furthermore, since Sα(ρ‖σ) is convex in σ as

long as α ∈ [0, 2], the methods presented in this chapter can be used for finding necessary and

sufficient conditions for minimizing Sα(ρ‖C) over convex sets C of density matrices, which
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will be done in this section.

Analogous to the relative entropy of entanglement, we can also define the α-relative

entropy of entanglement of a bipartite density matrix ρ as

ESep
R,α(ρ) := inf

σ∈SepD
Sα(ρ‖σ) = Sα(ρ‖SepD). (4.23)

For α ∈ [0, 2], this quantity is a faithful entanglement measure. In this section, it will be

shown that ESep
R,α(ψ) = E1/α(ψ) for all bipartite pure states, where Eα(ψ) = 1

α
log∑i λ

α
i is

the Rényi α-entropy measure of entanglement for pure states (and ~λ is the vector of Schmidt

coefficients of |ψ〉).

4.5.1 Conditions for minimizing α-relative entropy

We first analyze how the general case of Lemma 4.6 applies to the Rényi α-entropies. Given a

fixed density matrix ρ, the function σ 7→ Sα(ρ‖σ) is convex when α ∈ [0, 2]. We may use the

methods of the previous sections to derive the following necessary and sufficient conditions

for a matrix σ in a convex subset C of positive semidefinite matrices to minimize Sα(ρ‖C). In

all cases considered after this, C is a subset of density matrices, but Theorem 4.27 considers

the full generality.

Theorem 4.27. Let α ∈ [0, 2] with α 6= 1, let C ⊆ Hd,+ be convex, let σ ∈ C, and let ρ ∈ Hd,+

such that supp(ρ) ⊆ supp(σ). The following are equivalent.

1. It holds that Sα(ρ‖C) = Sα(ρ‖σ) (i.e., σ minimizes the α-relative entropy of ρ with

respect to C).

2. For all σ′ ∈ C it holds that

1
α− 1〈Dfα,σ(ρα), σ′〉 ≥ 1

α− 1〈Dfα,σ(ρα), σ〉. (4.24)

That is, the operator Dfα,σ(ρα) defines a supporting hyperplane of C at σ.
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Furthermore, it holds that 〈Dfα,σ(ρα), σ〉 = (1− α) Tr(ρασ1−α).

Proof. By convexity, it holds that Sα(ρ‖C) = Sα(ρ‖σ) if and only if

d

dt
Sα
(
ρ‖(1− t)σ + tσ′

)∣∣∣∣∣
t=0+
≥ 0

holds for all other σ′ ∈ C. For any σ′ ∈ Hd,+, we have

d

dt
Sα
(
ρ
∥∥∥(1− t)σ + tσ′

)∣∣∣∣∣
t=0+

= 1
α− 1

d

dt
log Tr

[
ρα
(
σ + t(σ′ − σ)

)1−α]∣∣∣∣∣
t=0+

= 1
α− 1

1
Tr(ρασ1−α)

d

dt
Tr
[
ρα
(
σ + t(σ′ − σ)

)1−α]∣∣∣∣∣
t=0+

= 1
α− 1

1
Tr(ρασ1−α) Tr [ραDfα,σ(σ′ − σ)]

= 1
α− 1

1
Tr(ρασ1−α)

(
〈Dfα,σ(ρα), σ′〉 − 〈Dfα,σ(ρα), σ〉

)
,

which yields the desired result. Finally, note that Dfα,σ(σ) = σf ′α(σ) = (1−α)σ1−α and thus

〈Dfα,σ(ρα), σ〉 = 〈ρα,Dfα,σ(σ)〉

= (1− α) Tr(ρασ1−α).

This completes the proof.

If C ⊆ Hd,+ is a convex subset of density matrices, then 〈1d, σ〉 = Tr(σ′) = 1 for all

σ′ ∈ C, and the condition in (4.24) is equivalent to the condition that 〈ξ, σ′〉 ≥ 0, where we

define the matrix ξ ∈ Hd as

ξ = 1d −
1

(1− α) Tr(ρασ1−α)Dfα,σ. (4.25)

This is equivalent to saying that C-witness. That is, if 〈ξ, σ′〉 < 0 for some σ′, then σ′ 6∈ C.
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Hence, the condition that Sα(ρ‖C) = Sα(ρ‖σ) is equivalent to the condition that

〈ξ, σ′〉 = 1− 1
1− α

1
Tr(ρασ1−α)〈Dfα,σ(ρα), σ′〉 ≥ 0 (4.26)

hold for all σ′ ∈ C. As we shall see, this will be particularly useful for computing the

α-relative entropy of entanglement of pure states.

4.5.2 Rényi relative entropy of entanglement for pure states

Here, we compute the Rényi relative entropy of entanglement ESep
R,α for pure states. The case

when α = 1 was shown earlier, so only the cases when α ∈ [0, 1) ∪ (1, 2] will be considered.

Note that |ψ〉〈ψ|α = |ψ〉〈ψ| for any α ≥ 0 and any pure state |ψ〉. Hence, for pure states

ρ = |ψ〉〈ψ| and α 6= 1 the divergence in (4.22) reduces to

Sα(ψ‖σ) = 1
α− 1 log〈ψ|σ1−α|ψ〉. (4.27)

For any α ∈ (0,∞), the Rényi α-entropy of entanglement of a pure state |ψ〉 = ∑
i

√
λi|ii〉 is

defined by

Eα(ψ) = 1
1− α log

(∑
i

λαi
)

= 1
1− α log‖~λ‖αα

where ~λ is the vector of Schmidt coefficients of |ψ〉 and ‖~λ‖α =
(∑

i λ
α
i

)1/α
. We may define

E∞(ψ) = − log(max(λi))

Theorem 4.28. Let α ∈ [0, 2]. For bipartite pure states |ψ〉 it holds that

ESep
R,α(ψ) = E1/α(ψ), (4.28)

101



where we define E1/0 = E∞.

Here, E1/α(ψ) is the α-entropy of entanglement of ψ of order 1/α. As before, it is

helpful to first state the following technical lemma. For any α ∈ R, define the function

fα : (0,+∞)→ R by

fα(x) = x1−α,

and we define 0r = 0 for any r ∈ R. The statement and proof of Lemma 4.29 are analogous

to the those of Lemma 4.18.

Lemma 4.29. Let α ∈ (0, 1) ∪ (1, 2].

(a) For all x, y > 0 with x 6= y, it holds that

0 < 1
1− α

x1−α − y1−α

x− y
≤ 1
√
xyα

. (4.29)

(b) For all p, q > 0, it holds that

0 <
√
pq

1− αf
[1]
α (p1/α, q1/α) ≤ 1. (4.30)

Proof. We first prove part (a). Positivity of the expression in (4.29) is clear, since fα is

strictly decreasing for α < 1 and strictly increasing for α > 1 on (0,+∞). In the case when

α ∈ (0, 1)∪ (1, 2), we may make use of the following integral representations. For r ∈ (−1, 1)

and any x, y > 0 with x 6= y, it holds that

rxr−1 = sin(rπ)
π

∫ ∞
0

tr

(x+ t)2dt (4.31)

and xr − yr

x− y
= sin(rπ)

π

∫ ∞
0

tr

(x+ t)(y + t)dt. (4.32)

For completeness, a proof of these integral representations is included in the appendix. Since
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α− 1 ∈ (−1, 1), we may use these integral representations to find that

1
1− α

x1−α − y1−α

x− y
= sin((1− α)π)

(1− α)π

∫ ∞
0

t1−α

(x+ t)(y + 1)dt

≤ sin((1− α)π)
(1− α)π

∫ ∞
0

t1−α

(√xy) + t)2dt

= 1
√
xyα

.

The inequality in (4.29) holds with equality in the case when α = 2, since in this case

1
1− α

x1−α − y1−α

x− y
= −

1
x
− 1

y

x− y

= 1
xy

= 1
√
xyα

,

which completes the proof of part (a).

To show (b), note that the divided differences of fα are given by

f [1]
α (x, y) =


x1−α−y1−α

x−y , x 6= y

(1− α)x−α, x = y.

As before, positivity of the expression in (4.30) is clear. To show that the expression in

(4.30) is at most 1, we consider the cases when p = q and p 6= q separately. If p = q, we have

f [1]
α (p1/α, p1/α) = (1− α)(p1/α)−α = 1−α

p
, and the expression in (4.30) reduces to

√
pq

1− αf
[1]
α (p1/α, q1/α) = p

1− α
1− α
p

= 1,

so the inequality holds with equality. In the case where p 6= q, the result follows directly

from part (a), where we let x = p1/α and y = q1/α. This completes the proof.

We now present the proof of Theorem 4.28. We first find a separable state σ such that

Sα(ψ‖σ) = E1/α(ψ), then show that Sα(ψ‖σ′) ≥ Sα(ψ‖σ) for every other separable state σ′.

The case α = 1 has already been proven in Theorem 4.17, so we may suppose that α 6= 1.
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Proof (of Theorem 4.28). We may suppose without loss of generality that the pure state in

Schmidt form. We first consider α in the range α ∈ (0, 1) ∪ (1, 2]. The case α = 0 will be

considered separately. For a given pure state |ψ〉 = ∑
i

√
λi|ii〉, define the following state

σ = 1
‖~λ‖1/α

1/α

∑
i

λ
1/α
i |ii〉〈ii|, (4.33)

where ‖~λ‖1/α
1/α = ∑

k λ
1/α
k . This state in (4.33) clearly separable, since it is a convex com-

bination of separable states |ii〉〈ii|. The fact that Sα(ψ‖σ) = E1/α(ψ) is straightforward,

since

〈ψ|σ1−α|ψ〉 =
∑
i

λi

 λ
1/α
i

‖~λ‖1/α
1/α

1−α

= ‖~λ‖1/α
1

‖~λ‖1/α
1/α

∑
i

λ
1/α
i

= ‖~λ‖1/α,

and thus

Sα(ψ‖σ) = 1
α− 1 log〈ψ|σ1−α|ψ〉

= 1
α− 1 log‖~λ‖1/α

= 1
1− 1

α

log‖~λ‖1/α
1/α

= E1/α(ψ).

To prove ESep
R,α(ψ) = Sα(ρ‖σ), we need to show that σ is in fact a closest separable state to

|ψ〉〈ψ| with respect the α-relative entropy for α ∈ (0, 1) ∪ (1, 2]. By Theorem 4.27 and the

condition in (4.26), it suffices to show that

1− 1
1− α

1
Tr(ρασ1−α)〈Dfα,σ(ρα), σ′〉 ≥ 0 (4.34)
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holds for all separable states σ′, where ρ = |ψ〉〈ψ| and σ is the state defined in (4.33). Note

that ρα = |ψ〉〈ψ| for any α ≥ 0 and thus

Dfα,σ(ρα) = Dfα,σ(|ψ〉〈ψ|)

=
∑
i,j

f [1]
α

 λ
1/α
i

‖~λ‖1/α
1/α

,
λ

1/α
j

‖~λ‖1/α
1/α

√λiλj|ii〉〈jj|
= ‖~λ‖1/α

∑
i,j

f [1]
α

(
λ

1/α
i , λ

1/α
j

)√
λiλj|ii〉〈jj|.

To prove that (4.34) holds for all separable states σ′, it will suffice to consider only pure

product states. Let σ′ = |u〉〈u| ⊗ |v〉〈v| be a pure product state where |u〉 = ∑
i ui|i〉 and

|v〉 = ∑
i vi|i〉 are pure states on the individual subsystems such that ∑i|ui|2 = ∑

i|vi|2 = 1.

Now

〈|ii〉〈jj|, σ′〉 = Tr(|ii〉〈jj||u〉〈u| ⊗ |v〉〈v|)

= uiviujvj

for each i and j. Thus

〈Dfα,σ(ρα), σ′〉 = ‖~λ‖1/α
∑
i,j

f [1]
α

(
λ

1/α
i , λ

1/α
j

)√
λiλjuiviujvj.

Furthermore, Tr(ρασ1−α) = 〈ψ|σ1−α|ψ〉 = ‖~λ‖1/α, and thus

1
1− α

1
Tr(ρασ1−α)〈Dfα,σ(ρα), σ′〉 =

∑
i,j

1
1− αf

[1]
α

(
λ

1/α
i , λ

1/α
j

)√
λiλj︸ ︷︷ ︸

≤1 by Lemma 4.29(b)

uiviujvj

≤
∑
i,j

uiviujvj

≤ ‖u‖2‖v‖2

= 1.
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Hence (4.34) holds for all separable states σ′. This completes the proof in the case α ∈ (0, 2].

The proof of the case α = 0 is proved in the following Lemma.

Lemma 4.30. For all bipartite pure states |ψ〉 it holds that ESep
R,0(ψ) = E∞(ψ).

Note that, for any σ ≥ 0, we have that

S0(ψ‖σ) = − log〈ψ|σ|ψ〉.

Proof. Without loss of generality we may suppose |ψ〉 is in Schmidt form with |ψ〉 =∑
i

√
λi|ii〉 where the Schmidt coefficients are in decreasing order λ1 ≥ · · · ≥ λd ≥ 0. Hence

E∞(ψ) = − log λ1. Let σ = |11〉〈11| which is separable. Then

S0(ψ‖σ) = − log〈ψ|σ|ψ〉 = − log λ1

as desired. As above, to show that S0(ψ‖σ′) ≥ − log λ1 for all other separable states σ′,

it will suffice to consider only pure product states of the form σ′ = |u〉〈u| ⊗ |v〉〈v|, where

|u〉 = ∑
i ui|i〉 and |v〉 = ∑

i vi|i〉 are arbitrary pure states. For any separable state of this

form, we have

〈ψ|σ′|ψ〉 = |〈ψ|(|u〉 ⊗ |v〉)|2

=
∣∣∣∑
i

√
λiuivi

∣∣∣2
≤
(∑

i

√
λi|ui||vi|

)2

≤ λ1
(∑

i

|ui||vi|
)2

≤ λ1

(∑
i

|ui|2
)(∑

i

|vi|2
)

= λ1,

since λi ≤ λ1 for all i. Thus S0(ψ‖σ′) ≥ − log λ1 for any separable pure state σ′. This
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completes the proof.

4.6 Cutting plane algorithm for convex optimization
problems in quantum information

The optimal values for many of the convex optimization problems discussed in this chapter

can be approximated using numerical methods for solving convex optimization problems.

This section outlines a practical algorithm that can be used for the calculation some of the

quantities discussed here, such as EPPT
R and EPPT

R,α (the standard and Rényi relative entropies

of entanglement with respect to the PPT states), as well as the Rains bound. In particular,

for low-dimensional examples, implementation of this algorithm in matlab will be shown

to provide an estimation for these quantities with an absolute error smaller than 10−3. This

algorithm is based on the one first introduced in [ZFG10] used to numerically estimate the

relative entropy of entanglement.

The main results of the previous sections of this chapter outline a method of solving

converse problems of convex optimization problems in quantum information theory. That

is, given a matrix σ on the boundary of a convex set C ⊆ Hd,+ of positive semidefinite ma-

trices, we can find all states ρ for which σ minimizes the ‘distance’ of ρ to C with respect to

some convex divergence measure. While this allows us to find closed-form solutions to the

minimization of these quantities for some states, a general closed-form solution for arbitrary

states remains elusive. This indicates that the solutions to these problems in general might

not be analytical. Hence the need for methods to numerically estimate these quantities.

While a similar algorithm has been previously implemented for computing the relative en-

tropy of entanglement [ZFG10], this section presents new algorithms for the calculation of

the Rains bound and the Rényi relative entropies of entanglement.

The algorithm presented here is based on a so-called “cutting plane” approach [Tuy08],

along with practical techniques for solving convex programs. Namely, we construct suc-

107



cessively refined approximations of the epigraph of the objective function using supporting

hyperplanes, and use implementable optimization techniques (such as semidefinite program-

ming) to characterize the convex set C. Efficient and practical methods exist [GB08] for

solving certain types of convex optimization problems. Here, we implement the algorithm

using CVX, a matlab-based modeling system for disciplined convex programming that can

be used to construct and solve solving convex programs numerically [GB14]. This method

cannot be used to directly solve the convex optimization problems that are of interest here,

but together with cutting plane method we can implement a sequence of convex optimization

problems that converge to the desired result.

This section first introduces the cutting plane method that will be used to implement the

main algorithm. This is followed by an explicit description of the algorithm for estimating the

optimal value of some of the convex optimization problems that have been introduced earlier

in this chapter. Finally, this algorithm is implemented to compute EPPT
R (ρ), EPPT

R,α (ρ), and

R(ρ) (the standard and Rényi relative entropies of entanglement and the Rains bound) for

bipartite states of low-dimensional systems. The closed-form expressions for these quantities

that can be obtained for some states using the methods of the previous sections are compared

to the numerical results here.

4.6.1 Cutting plane method

The cutting plane method [Tuy08] is a standard tool for solving convex optimization programs

by constructing a successively refined piecewise linear approximation to the epigraph of a

convex function in order to estimate the minimum value of some convex function over a

convex set. The core of this approach lies in the classical geometric idea that a convex set

may be approximated by supporting hyperplanes.

Given a convex function f on a convex set C, it is not always possible to implement nu-

merical methods for directly solving the convex optimization problem. In problems where the

usual methods for solving such problems fail, the cutting plane method can be implemented
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Figure 4.4: Example of an epigraph of a convex function in one dimension. The shaded
region is the epigraph. A supporting hyperplane of the epigraph can be given at any point
of C by the gradient of f .

to solve such problems if the convex objective function and its gradient can be evaluated

efficiently. For simplicity, only differentiable convex objective functions will be considered.

It will first be shown how to construct supporting hyperplanes of the epigraph of a

differentiable convex function by making use of the gradient. Let C be a convex set and let

f : C → R be a (differentiable) convex function. Recall that the epigraph of f is the set (see

Figure 4.4 for an example)

epi(f) = {(x, t) | f(x) ≤ t} ⊂ C × R.

Given a point x ∈ C, we can construct a linear approximation of f at x by examining the

supporting hyperplanes of the epigraph of f . Since f is differentiable at x, the function f

has a gradient ∇f(x) at x such that the directional derivatives of f at x are given by

f ′(x; y − x) = 〈∇f(x), y − x〉
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for all y ∈ C. By convexity of f , it holds that

f(y) ≥ f(x) + f ′(x; y − x) (4.35)

for all y ∈ C. Hence, for a fixed x ∈ C, it holds that

f(y)− 〈∇f(x), y〉 ≥ f(x)− 〈∇f(x), x〉 (4.36)

for all y ∈ C.

More generally, given a collection of points {x0, x1, . . . , xn} in C, any y ∈ C must satisfy

f(y)− 〈∇f(xi), y〉 ≥ f(xi)− 〈∇f(xi), xi〉 (4.37)

for all i = 0, . . . n. Hence, any point in the epigraph (y, t) ∈ epi(f) must satisfy

t− 〈Bi, y〉 ≥ ci for all i, (4.38)

where Bi = ∇f(xi) and ci = f(xi) − 〈Bi, xi〉. Hence, if the value of the function f and its

gradient can be computed at any points in the interior of C, given any collection of points

{x0, . . . , xn} ⊂ C we can construct a piecewise linear approximation of the epigraph that is

tangent to the epigraph at these points.

If minimization of f over C is impossible or impractical to perform directly, a this type

of approximation allows us to implement a cutting plane algorithm to approximate the

minimum value of f over C. This assumes that f is differentiable at each point x ∈ C, and

that the value of f and its gradient can be computed. We must also assume that membership

in C can be easily determined. Such an algorithm makes use of the constraints in (4.38) by

successively choosing the points x0, x1, . . . such that the constraints in (4.38) allow one to

approximate the minimum value of f over C more and more closely with each iteration.
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The implementation of the standard cutting-plane method that will be used here (which

is based on a method used in [ZFG10] and improved in [GZFG15] for computing the relative

entropy of entanglement) performs the following procedure(see Figure 4.5): Create succes-

sively improving piecewise-linear approximations to the epigraph of the function restricted

to C and construct a sequence of points {x0, x1, . . . } that converge to a point x? in C that

minimizes f over C. At each iteration, we perform the optimization

minimize: t (4.39)

subject to: y ∈ C

t− 〈Bi, y〉 ≥ ci for all i = 0, . . . , n,

where the minimization is performed over all (y, t) in the piecewise linear approximation to

the epigraph. The optimal point (yopt, topt) of this optimization problem is used to construct

the next xn that approximates the optimal point of the primary convex optimization problem

minx∈C f(x). Efficient implementation of this algorithm requires only that membership in C

be programmable as a constraint in the modeling system.

The main concepts of this type of algorithm are as follows (see Figure 4.5 for a visual-

ization). An initial point x0 ∈ C is chosen, then B0 = ∇f(x0) and c0 = f(x0)− 〈B0, x0〉 are

computed. The minimization in (4.39) with n = 0 is performed and the optimal (xopt, topt)

are found. The next point x1 is chosen to be the optimal point of this minimization, and

B1 and c1 are computed. The optimal value topt is the new lower bound to minx∈C f(x), and

f(x1) is a new upper bound. The minimization in (4.39) with n = 1 is now performed, and

so on until the resulting upper bound and lower bound differ by less than ε > 0, where ε is

the stopping criterion.

The resulting convex optimization relaxations in (4.39) may be efficiently solved with

freely available numerical software, assuming that membership in the convex set C can be

programmed as a constraint in the implementation. In the practical implementations of
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(a) Zero (b) One

(c) Two (d) Three (e) Four

Figure 4.5: Depiction of the cutting plane algorithm in one dimension. Each iteration
constructs a piecewise linear approximation of the epigraph that more and more closely
approximates the minimum of a convex function f over a convex set C.
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this algorithm presented in this section, the convex set will always either be the set of PPT

density matrices C = PPTD(CdA : CdB) (in which case the optimization in (4.39) can be

performed with semidefinite programming), or the set C = R defined in (4.16) that is used for

computing the Rains bound. No attempt to prove convergence of the proposed approach will

be done here, nor will the theoretical efficiency be discussed. Instead, numerical evidence of

its efficiency will be provided by applying it to compute these quantities for low-dimensional

states.

4.6.2 Cutting plane method for problems in quantum information

The types of convex optimization problems that we are concerned here with arise from

quantum information theory, where the convex set C is a subset of positive hermitian matrices

Hd,+ and the functions that we want to minimize are functions f : Hd,+ → R of matrices of

the form

f(X) = h(Tr(Ag(X))),

where g and h are differentiable functions of real numbers (so that g : (0,+∞)→ R can act

as a function on positive hermitian matrices) and A ∈ Hd,+ is a fixed positive matrix. As we

have seen, for most X ≥ 0 and Y ∈ Hd the directional derivatives of f can be computed as

f ′(X;Y ) = h′(Tr(Ag(X)))〈Dg,X(A), Y 〉. (4.40)

If X > 0 is positive definite then f is differentiable at X with gradient given by

∇f(X) = h′(Tr(Ag(X)))Dg,X(A)

and the directional derivatives can be written as f ′(X;Y ) = 〈∇f(X), Y 〉.

As long as membership σ ∈ C in the convex set of interest can be written as a constraint

that can be handled by the convex optimization modeling software, we can use the cutting
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plane method described earlier to numerically estimate the optimal value of these convex

optimization problems. The algorithm that is presented here closely follows this cutting plane

procedure. To improve efficiency of this algorithm, an extra step is added at each iteration

to select a the next point Xn+1 in the approximation of the epigraph. This step involves

performing a line search between the approximation pointXn from the previous iteration and

the point Yopt from the convex optimization problem at that iteration. Detailed pseudocode

for this algorithm is now presented. Explanations of some of the variables used in the code

follows below.
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Cutting plane algorithm (minimizes convex function f over convex set C)

requires Xinit ∈ C

requires nmax, ε, εline > 0

initialize X0 := Xinit, n := 0, bup = f(X0), blo = −∞

while (n ≤ nmax and bup − blo > ε)

Bn := ∇f(Xn)
cn := f(Xn)− 〈Bn, Xn〉
minimize: t
over (Y, t) subject to:

t ≥ blo

Y ∈ C
t+ 〈Bi, Y 〉 ≥ ci for all i ∈ {1, . . . , n}

(Yopt, topt) := (Y, t)
s0 := 0, s1 := 1
while |s1 − s0|‖Yopt −Xn‖ > εline

s := s1−s0
2

z := 〈∇f((1− s)Yopt + sXn), Xn − Yopt〉
if z ≤ 0

s1 := s

else if z > 0
s0 := s

end if
end while
Xn+1 := (1− s)Yopt + sXn

bup := f(Xn+1)
blo := topt

n := n+ 1

end while

return (bup, blo, Xn)

Some of the variables used in this pseudocode are explained below.
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• nmax is the maximum number of cutting plane iterations to perform before stopping.

• bup and blo are the upper and lower bounds for the estimation of the true minimum

value of f(X) over C. These values are updated at each iteration.

• ε is the desired accuracy for the estimation. The algorithm halts if bup − blo < ε.

• X0 = Xinit is the initial guess for the optimal minimum. In practical implementations

of this algorithm, the initial guess Xinit = 1
d
1d is always chosen.

• (Y, t) are the variables over which the internal convex program is performed at each

cutting-plane iteration, while (Yopt, topt) is the optimal output.

• s, s0, and s1 are the variables used in the line search used to find the next point Xn+1.

• z is the value of the directional derivative f ′((1− s)Yopt + sXn;Xn − Yopt) for a given

s used in the line search.

• εline denotes the stopping criterion for the line search. The line search at each iteration

halt when |s1 − s0|‖Yopt −Xn‖ > εline.

The code outputs the upper and lower bounds to the desired quantity (bup and blo) as well

as the estimate Xn to the closest point in C to the actual minimum.

4.6.3 Applications to relative entropies of entanglement and the
Rains bound

We can now implement the above algorithm in CVX to compute the relative entropy of

entanglement with respect to the PPT states as well as the Rains bound. Full code for these

algorithms can be found online at [Gir15], but is included in Appendix C for completeness.

The numerical results of each algorithm are compared for states that have known values of

these quantities.

116



Relative entropy of entanglement

The relative entropy of entanglement of a bipartite state ρ is computed by minimizing the

function

f(σ) = Tr(ρ log ρ)− Tr(ρ log σ)

over all PPT states σ. As before, the gradient of this function at a matrix σ > 0 is given by

∇f(σ) = −Lσ(ρ)

and membership in the set of PPT density matrices can be given by the constraints

Y ≥ 0, Y TB ≥ 0, and Tr(Y ) = 1.

These constraints can be directly coded into CVX as constraints in semidefinite programming

mode, and we can implement the cutting plane algorithm discussed earlier. The code for

this optimization program in CVX in matlab looks like this:

minimize t
subject to

t >= lBound;
Y >= 0;
PartialTranspose(Y,1,[dA,dB]) >= 0;
trace(Y) == 1;
t + trace(B{0}*Y) >= c{0};
t + trace(B{1}*Y) >= c{1};
.
.
.
t + trace(B{n}*Y) >= c{n};

where PartialTranspose is the routine for taking the partial transpose of a bipartite density

matrix and we have the following variables:

• dA and dB are the dimensions dA and dB.

• B{0}, . . . , B{n} are the gradients Bi = ∇f(Xi)
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• c{0}, . . . , c{n} are the constants ci = f(Xi)− 〈Bi, Xi〉.

The complete algorithm can be found in [Gir15].

To demonstrate the effectiveness this algorithm, we can compare its output for computing

EPPT
R (ρ) with states for which this value is known. Using the methods of Section 4.3,

we can generate random states ρ with known value of relative entropy of entanglement.

Figure 4.6a shows the actual values of the relative entropy of entanglement and estimated

values determined by the numerical estimation algorithm for 100 randomly generated density

matrices of two qubits where the matrices are generated according the procedure outlined

above. In all cases, the estimated value was found to be within 10−5 of the actual value.

Another way to check the validity of the numerical estimates for the relative entropy of

entanglement from this algorithm is to compare the computed value of ER to the negativity,

another well-known entanglement monotone. This is defined as

N(ρ) := Tr|ρTB| − 1
2 .

In Figure 4.6b, the values of the negativity and relative entropy of entanglement are com-

pared for 1000 randomly generated density matrices of two qubits. Here, the random density

matrices were generated according to the distribution induced by the Hilbert-Schmidt mea-

sure, as shown in [ZPNC11, Mis11]. The plot in Figure 4.6b is compatible with previous

works (such as in [MI08]).

The Rains bound

The Rains bound R(ρ) for a state ρ is also computed by minimizing the relative entropy of

ρ, but the minimization is performed over all σ ≥ 0 with σ ∈ R (i.e., ‖σTB‖1 ≤ 1). We can

use the same algorithm for computing EPPT
R (ρ) to compute R(ρ) by changing the constraints
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(a) Comparison of actual and estimated values
of the relative entropy of entanglement (REE)
for 100 randomly generated density matrices
of two qubits. Random density matrices with
known ER are generated according to the pro-
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mated using the algorithm presented here) for
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Figure 4.6: Comparison of numerical estimation of the relative entropy of entanglement
(REE) ER(ρ) for randomly generated states.

in the CVX optimization of the cutting plane algorithm to the constraint that Y ∈ R, i.e.,

Y ≥ 0 and ‖Y TB‖1 ≤ 1.

This constraint can be encoded as a constraint in the semidefinite programming mode of

CVX as follows:

Y >= 0;
TraceNorm(PartialTranspose(Y,1,[dA,dB])) <= 1;

where TraceNorm(X) = sum(svd(X)) is the sum of the singular values of a matrix X. The

algorithm for computing the Rains bound R(ρ) is otherwise identical to the algorithm for

computing the relative entropy of entanglement EPPT
R (ρ) for bipartite states ρ.

To show the effectiveness of this algorithm, we may use this algorithm to compute the

Rains bound for randomly generated states of bipartite systems for which at least one system

is a qubit. In particular, random states of systems C2⊗Cd for d = 2, 3, and 4 are generated
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and are examined here. The result for each randomly generated state was compared to

the output from the computation for the relative entropy of entanglement EPPT
R (ρ) using

the algorithm above. Since each state generated this way has at least one subsystem of

dimension 2, the result of Theorem 4.26 indicates that these values must coincide. Indeed,

we find that the estimated values for R(ρ) and EPPT
R (ρ) for these states were always between

10−5 of each other.

Rényi α-relative entropies of entanglement

This algorithm can also be used to numerically estimate the α-relative entropies of entan-

glement for α ∈ [0, 1) ∪ (1, 2]. For α in this range, the relative entropy of entanglement of a

bipartite state ρ is computed by minimizing the function

f(σ) = 1
α− 1 log Tr(ρασ1−α)

over all PPT states σ. The gradient of this function at a matrix σ > 0 is given by

∇f(σ) = 1
α− 1

1
Tr(ρασ1−α)Dfα,σ(ρα),

where fα is the function defined by fα(x) = x1−α, and membership in the set of PPT

density matrices can be given by the same semidefinite constraints as in the computation

of EPPT
R above. This gradient can be easily computed for any σ > 0, so the algorithm can

be implemented. The efficacy of this algorithm can be tested on pure states. Indeed, in

Section 4.5.2, a closed formula for the Rényi relative entropy of entanglement for pure states

was given. This analytical result can be compared to the numerical estimate for this value

provided by running this algorithm. For randomly generated pure states |ψ〉 ∈ Cd ⊗ Cd for

d = 2, 3, and 4, we find that the result from the numerical estimation to be within 10−5 of

the known value for variously chosen values of α.
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4.7 Other applications

Instead of using f(x) = − log(x) and only considering ρ to be an arbitrary quantum state

as we did for the relative entropy of entanglement and the Rains bound, we may analyze

other more general operator convex functions f and positive matrices ρ and analyze when

a matrix σ minimizes the function fρ(σ) = Tr(ρf(σ)). Since the criterion for optimality

in Theorem 4.7 only supposes an arbitrary convex function g : Hd → R, we may use this

analysis to produce similar hyperplane criteria for other quantities. In the following section,

we examine this criterion as it applies to other quantities of interest in quantum information,

such as hSep and entropy-like quantities, e.g. the relative Rényi entropies and arbitrary quasi-

entropies.

4.7.1 On hSep(M) and similar quantities

Let d = dAdB be the dimension of a bipartite system. Let M ∈ Hd,+ be some positive

semidefinite matrix satisfying 0 ≤ M ≤ 1d. Using the identity function f(x) = x, and

optimizing over the set of separable states, we arrive at the function f : Hd,+ → R defined

by fM(σ) = Tr(Mσ). Maximizing this function over all separable density matrices σ ∈

SepD(CdA : CdB), we define

hSep(M) = max
σ∈SepD

Tr(Mσ).

This quantity is related to the problem of finding the maximum output ∞-norm of a quan-

tum channel, which is important for proving additivity and multiplicativity for random

channels [HM13]. Any quantum channel from a d1-dimensional quantum system to an d2-

dimensional quantum system can be written as E(ρ) = Trenv(V ρV †) for some isometry

V : Cd1 → Cd2 ⊗ Cdenv [Cho75]. This quantum channel can be identified with the operator

M = V V †. The maximal output p-norm of the channel E is defined by

‖E‖1→p := max
ρ
‖E(ρ)‖p
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where ‖A‖p = (Tr|A|p)1/p is the Schatten p-norm and the minimization is taken over all

density matrices ρ ∈ D(Cd1). It turns out that the maximal output ∞-norm can be given

by ‖E‖1→∞ = hSep(M) [HM13]. In addition, hSep has a natural interpretation in terms of

determining the maximum probabilities of success in QMA(2) protocols [Mon13].

Whereas numerically calculating this quantity within an accuracy of 1/poly(n) is known

to be an NP-hard problem [Gur03], it is useful to study the converse problem. That is, given

a state σ on the boundary of SepD(CdA : CdB), characterizing all matrices 0 ≤ φ ≤ 1 that

define supporting functionals of the form

Tr(φσ) ≤ Tr(φσ) for all σ ∈ D

allows us to characterize all of the matrices M for which σ maximizes Tr[Mσ].

Since the set of PPT states is much easier to characterize than the set of separable states,

maximizing Tr[Mσ] over P instead gives an approachable upper bound to hSep(M). That

is, we may analyze the quantity

hPPT(M) = max
σ∈P

Tr(Mσ)

where P = PPT is the set of states with positive partial transpose. Using this as an upper

bound of ‖E‖1→∞ still gives meaningful useful results [HM13]. Furthermore, the supporting

functionals of P that are maximized by a state σ on the boundary are simple to find (see

(4.11) in Section 4.3).

4.7.2 Quasi f-relative entropies

Many important properties of the relative entropy (such as the convexity and monotonicity)

are only due to the convexity of the function f(x) = − log(x), so at first glance there is

nothing special about this choice in terms analyzing divergence of two quantum states. It

122



is important to understand more general entropy-like functions for quantum states to glean

a better understanding of generalized pseudo-distance measures on the space of quantum

states. Many such functions have already been introduced and analyzed [Pet86, OP93,

Pet10, SS10, Sha12, HMPB11].

The most general form of the so-called quasi f -relative entropies first appeared in [Pet86].

A more simplified form that we analyze here, supposing that ρ is a strictly positive matrix,

is given by [SS10, Sha12]

Sf (ρ‖σ) :=
∑
i

pi

〈
ψi

∣∣∣∣∣f
(
σ

pi

)∣∣∣∣∣ψi
〉
, (4.41)

where ρ = ∑
i pi|ψi〉〈ψi| is the spectral decomposition of ρ. As long as the function f :

(0,∞) → R is operator convex, the f -relative entropy Sf satisfies some very important

criteria that make it a useful quantity to study. For example, it has been shown [Pet86]

that Sf (ρ‖σ) is jointly convex and satisfies the data-processing inequality (i.e.

Sf (E(ρ)‖E(σ)) ≤ Sf (ρ‖σ)

for any completely positive trace-preserving map E). These quasi-entropies are generally not

additive or subadditive, however, so their physical significance is limited.

Although it may be possible to extend the definitions of the quasi-entropies to singular

matrices, for the time being we assume that f : (0,∞)→ R is is well-defined and that both

σ and ρ are strictly positive definite. Considering a convex subset C ⊆ Hd,+, we can define

quantities analogous to the relative entropy of of ρ with respect to the convex set C in the

following manner. The f -relative entropy with respect to C is defined as

Sf (ρ‖C) := min
σ∈C

Sf (ρ‖σ).

We may use our analysis from Section 4.1 to determine necessary and sufficient conditions
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for when a matrix σ ∈ C optimizes the f -relative entropy for a matrix ρ, i.e. when Sf (ρ‖C) =

Sf (ρ‖σ). According to Theorem 4.7, this occurs if and only if, for all σ′ ∈ C, the directional

derivatives satisfy d
dt
Sf (ρ‖σ + t(σ′ − σ))

∣∣∣
t=0+
≥ 0.

We can evaluate this derivative by making use of the Fréchet derivative of the function

f and find

d

dt
Sf (ρ‖σ + t(σ − σ))

∣∣∣∣∣
t=0+

=
∑
i

〈
ψi
∣∣∣Df, σ

pi
(σ − σ)

∣∣∣ψi〉
=
∑
i

〈
Df, σ

pi
(|ψi〉〈ψi|) , σ′ − σ

〉
.

Thus, a matrix σ ∈ C minimizes the f -relative entropy with respect to a matrix ρ if and only

if the matrix

φ = −
∑
i

Df, σ
pi

(|ψi〉〈ψi|) (4.42)

defines a supporting functional of C at σ ∈ C of the form

〈φ, σ′〉 ≤ 〈φ, σ〉 for all σ′ ∈ C.

This characterization of the supporting functionals of a convex set yields interesting infor-

mation about the original Sf (ρ‖σ) quantity, as our analysis of S(ρ‖σ) has shown.

Indeed, with the choice f(x) = − log(x) the standard definition of the relative entropy is

recovered. Furthermore, the desired supporting functionals in (4.42) reduce to

φ = −
∑
i

Df, σ
pi

(|ψi〉〈ψi|)

=
∑
i

L σ
pi

(|ψi〉〈ψi|)

= Lσ

(∑
i

pi|ψi〉〈ψi|
)

= Lσ(ρ),
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which is exactly the form of the hyperplanes found in the analysis of the relative entropy in

Section 4.2.

Other standard choices of f yield additional well-known entropy-like quantities. For

example, the choice fα(x) = xα produces a quantity that is related to the relative Rényi

entropy, which was studied in the previous section.

4.7.3 Sandwiched relative Rényi entropy

A generalization of the relative Rényi entropy that was recently proposed is another quantity

that can be studied. For α ∈ (0, 1) ∪ (1,∞) and matrices ρ, σ ∈ Hd,+, the order α quan-

tum Rényi divergence (or also called the “sandwiched” α-relative Rényi entropy) is defined

as [MLDS+13]

S̃α(ρ‖σ) = 1
α− 1 log

(
Tr
[(
σ

1−α
2α ρσ

1−α
2α
)α])

(4.43)

and reduces to the standard α-relative Rényi entropy S̃α(ρ‖σ) when ρ and σ commute.

This quantity has been shown to be jointly convex [FL13] when α ∈ [1
2 , 1) and when the

argument ρ is restricted to matrices with unit trace. It also satisfies the data processing

inequality for α ≥ 1
2 [Bei13]. In the limit α→ 1, it reduces to the standard quantum relative

entropy S(ρ‖σ). For α = 1
2 , the quantity S1/2(ρ‖σ) = −2 log‖√ρ

√
σ‖ is closely related to the

quantum fidelity [DL14]. It is also positive Sα(ρ‖σ) ≥ 0 for positive matrices ρ and σ and

vanishes if and only if ρ = σ.

As in the previous examples, we can use the conditions in Theorem 4.7 to determine

when a matrix σ minimizes the Rényi divergence of ρ over a convex set C. This occurs when

d

dt
Sα
(
ρ
∥∥∥σ + t(σ − σ)

)∣∣∣∣∣
t=0+
≥ 0 for all σ ∈ C.

Analogous to the many of the other cases studied here, this can be converted to a supporting

functional criterion of the form

〈φ, σ′〉 ≤ 〈φ, σ〉
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for all σ ∈ C. Here, φ is the matrix

φ = −Dfβ ,σ

({
σ−β,

(
σβρσβ

)α})
, (4.44)

where {A,B} = AB+BA is the anti-commutator and β = 1−α
2α . Thus, the Rényi divergence

of order α ∈ [1
2 , 1) of a matrix ρ ∈ Hd,+ with respect to C is minimized by σ on the boundary

of C,

min
σ∈C

Sα(ρ‖σ) = Sα(ρ‖σ),

if any only if the matrix φ in (4.44) defines a supporting hyperplane of C at σ.

4.8 Summary

For a convex function g : Hd → R and a convex subset C ⊆ Hd, we have found a criterion

to solve the converse convex optimization problem of determining when a matrix σ ∈ C

minimizes f over C (i.e. such that g(σ) = min
σ∈C

g(σ)). This criterion can usually be given in

terms of a supporting functional of C at σ. Given a convex analytic function f : (0,∞)→ R,

this approach allows us to determine all matrices ρ such that σ minimizes the function

fρ = Tr(ρf(σ)) over C by characterizing the supporting hyperplanes of C at σ. In particular,

given a matrix σ, we use this analysis to produce closed formulas for the relative entropy of

entanglement and the Rains bound for all states for which σ minimizes this quantity, which

hold regardless of the dimensionality of the system. Moreover, this allows us to show that

the Rains bound and the relative entropy of entanglement coincide for all states for which

at least one subsystem is a qubit. We also use this method to find a closed formula for the

Rényi α-relative entropy of entanglement for pure states when α ∈ [0, 2].

Using the Fréchet derivatives, we also make use of the cutting plane method for solving

convex optimization problems to create an algorithm for numerically estimating the quanti-

ties that arise here. Lastly, we also find supporting functional criteria to determine when a
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state σ minimizes other various important quantities in quantum information, such as the

generalized relative entropies.
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Chapter 5

Entanglement of bipartite symmetric
states

Entanglement monotones on pure states can be extended to arbitrary mixed states by a

convex roof construction [Vid00a, Uhl10, BL13]. Given an entanglement monotone E on

pure states, its convex roof on mixed states is defined as

Ê(ρ) = inf
{pi,|ψi〉}

∑
i

piE(ψi),

where the infimum is taken over all pure state decompositions of ρ = ∑
i pi|ψi〉〈ψi|. While

there are many known entanglement monotones for bipartite pure states, evaluating the

entanglement of arbitrary mixed states is in general not possible. This is due to the fact

that the weak membership problem for the set of separable states is known to be NP-hard

[Gur03]. Instead, this chapter investigates the computation of convex roof entanglement

monotones on certain restricted classes of symmetric entangled states, rather than on all

states. In particular, convex roofs of the Rényi entropies and the Vidal monotones are

computed on Werner and isotropic states [VW01, TV00].

Symmetry plays a very important role in many quantum information tasks. Restricting

our attention to highly symmetric states not only simplifies many computations, but yields
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valuable information about the structure of bipartite entanglement. There is strong evidence

that certain symmetric states may provide an example of bound entangled states that have

negative partial transposes [DSS+00]. We can restrict our attention only to states that are

symmetric in some manner, for example the well known Werner and isotropic states, and

exploit that symmetry to compute the convex roof of certain entanglement monotones on

those families of states. For example, the entanglement of formation has been computed for

Werner states [VW01] and isotropic states [TV00]. Convex roofs of some generalizations of

the concurrence [Gou05a] have been computed for isotropic states as well [ETS15, SES16].

This chapter expands on existing methods [VW01, TV00] to compute the convex roofs

of many more entanglement monotones for these classes of symmetric states and more. In

particular, it will be shown that this method can be used to compute the convex roof on

Werner states for all possible entanglement monotones on pure states. The convex roofs of

the Vidal monotones in (2.11) and certain other entanglement monotones for isotropic states

will also be computed. These methods can also be extended to compute the convex roof on

larger classes of symmetric states as well as on certain non-symmetric states.

While entanglement monotones are important for quantifying entanglement within states,

it is also important to characterize which transformations between states can be performed

via LOCC deterministically. For bipartite pure states, this is completely characterized by

majorization of the vectors of Schmidt coefficients [Nie99], or equivalently by the Vidal

monotones [Vid00b]. Only a finite number of entanglement measures are needed to determine

convertibility of bipartite pure states, but an infinite number of entanglement measures are

needed to completely determine convertibility of mixed states [Gou05b]. To characterize

convertibility of mixed states, we can instead make use of entanglement conversion witnesses

[GG15, GF13] (see also Section 2.5.1). An entanglement conversion witness is a function of

two bipartite quantum states whose value ‘detects’ when one state can be converted into

another. For example, a no-go entanglement conversion witness is a function W (ρ, σ) such

that W (ρ, σ) < 0 implies that ρ cannot be converted to σ with a deterministic LOCC
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operation. Similarly, a go entanglement conversion witness is a function W (ρ, σ) such that

W (ρ, σ) ≥ 0 implies the existence of a deterministic LOCC protocol that converts ρ into σ.

A witness is complete if it is both a go and a no-go witness.

In [GG08], it was shown that a bipartite pure state |ψ〉 can be converted into a bipartite

mixed state ρ if and only if

Ek(ψ) ≥
∑
i

piEk(ϕi)

holds for all k and all decompositions ρ = ∑
i pi|ϕi〉〈ϕi|. This necessary and sufficient con-

dition for LOCC transformation can be encoded into the following complete conversion

witness:

W (ψ, ρ) = max
{pi,ϕi}

min
k

(
Ek(ψ)−

∑
i

piEk(ϕi)
)
.

It holds that W (ψ, ρ) ≥ 0 if and only if |ψ〉 can be converted into ρ via LOCC. Although

this function cannot be computed for arbitrary mixed states, we can make extensive use of

symmetry to compute it in the case when ρ is highly symmetric (e.g. Werner or isotropic).

In the final section of this chapter, a class of entanglement conversion witnesses for pure to

mixed bipartite state conversion are computed in the case when the target mixed state is

symmetric.

The remainder of this chapter is structured as follows. The necessary background for

constructing convex roof functions, the definition of the Werner and isotropic states, and

other preliminary matter is presented in section 5.1. Convex roofs of certain entanglement

monotones are evaluated on Werner and isotropic states in section 5.3. An entanglement

conversion witness for pure to mixed state conversion is presented in section 5.4, where it

is also shown how to evaluate this conversion witness when the target state is Werner or

isotropic.
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5.1 Convex roofs and symmetry

In the following, we use the notation R = R ∪ {+∞}. Let K be a compact set. Consider a

subset M ⊂ K and let f : M → R. The convex roof of f over K is the function f̂ : K → R

defined as

f̂(x) = inf
{∑

i

pif(yi)
∣∣∣∣∣ yi ∈M,

∑
i

piyi = x

}
, (5.1)

for any x ∈ conv(M) in the convex hull of M . The infimum in (5.1) is taken over all convex

combinations with pi ≥ 0 and ∑i pi = 1. Note that f̂(x) =∞ if x /∈ conv(M).

Definition 5.1. Let G be a compact group with a G-action g ·x on K that preserves convex

combinations, i.e.,

g · (tx+ (1− t)y) = tg · x+ (1− t)g · y

for any x, y ∈ K and any t ∈ [0, 1]. Then the G-twirling operator TG : K → K is defined as

TG(x) =
∫
G
dg g · x, (5.2)

for all x ∈ K, where the integral is taken over the Haar measure of the group. If TG(y) = x

then we say that y twirls to x under G.

In our applications of this theory of convex roofs to computing convex roof entanglement

measures, the convex set in question will always be K = D(Cd ⊗ Cd) the density matrices

of a d× d bipartite quantum system, and M ⊆ K is always the extremal set of pure states

of the system. The groups will always be subgroups of the group of local unitaries, and the

functions f will always be entanglement measures on pure states. However, for full generality

we will only assume the necessary properties that must hold, rather than considering the

specific case for convex roofs of entanglement measures.

For a group G, the G-invariant elements x ∈ K are exactly those that satisfy TG(x) = x.

The subset of G-invariant elements of K will be denoted as TG(K). We will only consider

group actions such that TG(M) = M . This indeed holds when M is the set of all pure states

131



of a bipartite system and G is a group of local unitaries.

If f is G-invariant, i.e., f(g ·y) = f(y) for all y ∈M and g ∈ G, then its convex roof cannot

increase under G-twirling. This is indeed the case when f is an entanglement measure on

pure states and G is a subgroup of local unitaries. This statement is proved in the following

lemma.

Lemma 5.2. Let K be a convex set and let f : M → R be a function on a subset M ⊂ K.

Let G be a compact group and K be a compact convex set with a G-action that preserves

convex combinations and such that TG(M) ⊆M . If f is G-invariant then

f̂(TG(x)) ≤ f(x)

for all x ∈M .

Proof. We can consider the ensemble {(dg, g ·x)} such that
∫
G g ·x dg = TG(x). By definition

of the convex roof, it follows that

f̂(TG(x)) ≤
∫
G
f(g · x) dg

=
∫
G
f(x) dg

= f(x),

as desired.

Given any function f : M → R on a subset M ⊂ K, we define the function

fG : TG(K)→ R (5.3)

on the set of G-invariant elements of K as

fG(x) := inf {f(y) | y ∈M, TG(y) = x} (5.4)

132



for all x ∈ TG(K). As the following theorem shows, this definition allows us to find a different

expression for the convex roof of a function f : M → R evaluated on G-invariant elements of

K. This is the primary tool that we will use to compute convex roof entanglement monotones

on the Werner and isotropic states.

Here the function fG is defined only over the set of G-invariant elements TG(K), and the

its convex roof f̂G is defined by minimizing only over convex combinations of elements in the

domain TG(K). That is,

f̂G(x) := inf{
∑
i

tif(yi) | yi ∈ TG(K), ti ≥
∑
i

ti = 1,
∑
i

tiyi = x}.

Theorem 5.3 (Sec. IV.A in [VW01]). Let K be a convex set and let f : M → R be a function

on a subset M ⊂ K. Let G be a compact group and K be a compact convex set with a G-

action that preserves convex combinations and such that TG(M) ⊆ M . Suppose that f is

G-invariant. It holds that

f̂(x) = f̂G(x) (5.5)

for all x ∈ TG(K).

Proof. Let x ∈ TG(K) be a G invariant element and suppose that {(ti, yi)} is an ensemble

of elements yi ∈ M such that ti ≥ 0, ∑i ti = 1, and
∑
i

tiyi = x. Furthermore suppose that

{(ti, yi)} is the optimal convex combination of elements in M such that

f̂(x) =
∑
i

tif(yi).

Then TG(yi) is G-invariant for each yi and thus {(ti, TG(yi))} is also an ensemble for x, since

∑
i

tiTG(yi)) = TG
(
tiyi

)
= TG(x)

= x.
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It follows that f̂G(x) ≤ f̂(x). On the other hand, we have

f̂G(x) = inf
{∑

i

tifG(xi)
∣∣∣xi ∈ TG(K),

∑
i

tixi = x
}

= inf
{∑

i

tif(yi)
∣∣∣ yi ∈M,

∑
i

tiTG(yi) = x
}

≥ inf
{∑

i

tif(yi)
∣∣∣ yi ∈M,

∑
i

tiyi = x
}

= f̂(x).

The inequality arises due to the fact that ∑i tiyi = x implies that ∑i tiTG(yi) = x since x is

G-invariant, but not vice versa. Hence f̂(x) ≤ f̂G(x). This concludes the proof.

To compute the convex roof f̂ of a function f on the G-invariant elements of K, the

result of Theorem 5.3 implies that we can simplify the computation by first minimizing f

over all y ∈ M that twirl to x. Computing the convex roof of the resulting function yields

the desired result. This computation is simplified greatly if fG is already convex as a function

of G-invariant elements, in which case f̂(x) reduces to fG(x). Note that both fG and f̂G are

functions on the convex subset TG(K) ⊂ K of elements that are invariant under the action

of G.

One basic feature of convex roof functions is the existence of ‘linear sections’ in the roof

function whenever the infimum in (5.1) is found at a non-trivial convex combination. The

result of Lemma 5.4 (which is proven in [VW01]) allows us to compute convex roof functions

on some elements that are not necessarily symmetric with respect to the group action.

Lemma 5.4. Suppose x = ∑
i tixi ∈ K is a convex combination of elements xi ∈ M with

ti > 0 for each i such that f̂(x) = ∑
i tif(xi) is minimized. Then f̂ is linear on the convex

hull of {xi}. That is, it holds that

f̂
(∑

i

sixi

)
=
∑
i

sif(xi) (5.6)
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for all si ∈ [0, 1] satisfying ∑i si = 1.

Proof. Suppose that ∑i tixi (with each ti > 0 and xi ∈ M) is a convex decomposition of x

that minimizes f̂(x). That is,

∑
i

tixi = x and
∑
i

tif(xi) = f̂(x).

Let {si} be some other values such that si ≥ 0 and ∑i si = 1. Then y = ∑
i sixi is some

other convex combination of the points {xi}. We will show that

f̂(y) =
∑
i

sif(xi). (5.7)

That is, this is also an optimal decomposition for y. Let {(rj, yj)} be any other optimal

decomposition for y such that

∑
j

rjyj = s and
∑
j

rjf(yj) = f̂(y).

Then there is a small number ε > 0 such that ti − εri ≥ 0 for all i. Hence

x = x+ εy − εy

=
∑
i

(ti − εsi)xi + ε
∑
j

rjyj

is a convex combination of elements from M representing x. But we assumed that the

decomposition {(ti, xi)} is optimal for x, so

∑
i

tif(xi) ≤
∑
i

(ti − εsi)f(xi) + ε
∑
j

rjf(yj).
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Since ε > 0, this clearly implies that

∑
i

sif(xi) ≤
∑
j

rjf(yj). (5.8)

But {(rj, yj)} was assumed to be optimal, so {(si, xi)} must be optimal for f̂(y) as well.

In this chapter, we compute the convex roof of entanglement monotones on pure states

for Werner and isotropic states. The minimizing sets will usually be an entire orbit of some

pure state under the local-unitary group action. Every pure state in these orbits has the

same amount of entanglement under any entanglement monotone, since they differ only by

a local unitary. Hence the convex roof of any entanglement monotone will be constant on

the convex hull of these orbits. This gives a fairly large class of non-symmetric states for

which exact value of many different entanglement monotones can be computed.

5.2 Symmetric states

This section introduces some examples of groups that are used in the study of symmetric

bipartite quantum entanglement. Let d ≥ 2 be an integer and consider bipartite states

on Cd ⊗ Cd. The convex set of interest here is the set of normalized density operators

D(Cd ⊗ Cd) = {ρ | ρ ≥ 0, Tr ρ = 1}. We are interested in computing the convex roof of

entanglement monotones that are defined on the pure states

{
|ψ〉〈ψ|

∣∣∣ |ψ〉 ∈ Cd ⊗ Cd, ‖|ψ〉‖ = 1
}
⊂ D(Cd ⊗ Cd).

It is well known that any entanglement monotone on pure states must be a symmetric

concave function of the Schmidt coefficients of the pure states. The primary examples of

symmetric states that we will study in this paper are the well known Werner states [Wer89]

and isotropic states [HH99].
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For the remainder of this paper we assume that d ≥ 2 and we only consider bipartite

states on Cd⊗Cd. The symmetric states of interest are those that are symmetric with respect

to different subgroups of the group of d× d local unitaries LU ⊆ U(Cd ⊗ Cd) defined by

LU = {U ⊗ V |U, V ∈ U(d)}.

Given a subgroup G ⊂ LU, determining which states are invariant under G amounts to

computing the commutant of G,

comm(G) = {A ∈ L(Cd ⊗ Cd) | [A, g] = 0 for all g ∈ G},

where L(Cd ⊗ Cd) denotes the space of linear operators on the tensor product space (i.e.

the set of d2 × d2 matrices). The commutant comm(G) is the subspace of operators that

commute with every element of G. The twirling operator TG can be viewed as the projection

operator onto the commutant of G. To determine comm(G) ∩D(Cd ⊗Cd), i.e. the family of

states that are invariant under this action, it is useful to find an orthogonal basis of operators

for comm(G) and express the states as combinations of those basis elements. Finally, note

that for any G ⊆ LU the twirling operation TG is an LOCC operation, since it consists of a

convex mixture of local unitary channels.

5.2.1 Werner states

The d×dWerner states [Wer89] are those that commute with all unitaries of the form U⊗U

for some U ∈ U(d). That is, Werner states are those which are invariant under the subgroup

{U ⊗ U |U ∈ U(d)}. The corresponding twirling operator is

Twer(ρ) =
∫

U(d)
dU U ⊗ Uρ(U ⊗ U)†,
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where the integral is taken over the Haar measure of the group U(d) of d×d unitary matrices.

The commutant of this group is spanned by {1,W}, where 1 is the identity operator and

W is the swap operator defined by W = ∑d
i,j=1|ij〉〈ji|. The swap operator is both unitary

and Hermitian, having eigenvalues 1 and −1 and satisfying W 2 = 1. Let W+ and W− denote

the projectors onto the subspaces spanned by the positive and negative eigenvectors of W ,

respectively, such that W = W+ −W−. The Werner states can then be parameterized by

ρwer(a) = a 1
(d2)
W− + (1− a) 1

(d+1
2 )W+ (5.9)

for a ∈ [0, 1]. These states are entangled for a ∈ [1
2 , 1] and separable otherwise [VW01,

Wat16]. Furthermore, it holds that Twer(σ) = ρwer(〈σ,W−〉) for all states σ.

5.2.2 Isotropic states

The d×d isotropic states [HH99] are those invariant under the subgroup {U⊗U |U ∈ U(d)}.

The corresponding twirling operator is

Tiso(ρ) =
∫

U(d)
dU U ⊗ Uρ(U ⊗ U)†.

The commutant of this group is spanned by {1,Φd}, where Φd = 1
d

∑d
i,j=1|ii〉〈jj| is the

projection operator onto the maximally entangled pure state 1√
d

∑d
i=1|ii〉 of two qudits. This

commutant is exactly the partial transpose of the space from the Werner states [ADVW02].

The isotropic states can be parameterized by

ρiso(b) = bΦd + (1− b)1− Φd

d2 − 1 (5.10)

for b ∈ [0, 1]. The isotropic states are entangled for b ∈ [ 1
d
, 1] and separable otherwise

[VW01, Wat16]. Furthermore, it holds that Tiso(σ) = ρiso(〈σ,Φd〉) for all states σ.
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5.2.3 OO-invariant states

One way to generalize the isotropic and Werner states to larger classes of symmetric states

is to consider the OO-invariant states [VW01]. These are the states that are invariant under

{U ⊗ U |U ∈ O(d)}, where O(d) ⊂ U(d) is the group of orthogonal operators. Since the

orthogonal matrices are the unitaries that satisfy U = U , this group is a subgroup of both

the isotropic and Werner group of local unitaries. The corresponding OO-twirling operator

is defined as

TOO(ρ) =
∫

O(d)
dU U ⊗ Uρ(U ⊗ U)†.

The commutant of this group is spanned by {1,W,Φd} [VW01, section II D]. The OO-

invariant states can be parameterized as

ρO(a, b) = a 1
(d2)
W− + bΦd + (1− a− b) 1

(d+1
2 )−1

(1− Φd −W−) (5.11)

for a, b ∈ [0, 1] satisfying a + b ≤ 1. The OO-invariant states that are separable (and also

positive under partial transposition) [VW01] are those in the rectangle (a, b) ∈ [0, 1
2 ]× [0, 1

d
].

The Werner states are OO-invariant states for which b = 2(1−a)
d(d+1) and the isotropic states are

those for which b = 1− 2(d+1)
d

a. A schematic of the OO-invariant states is shown in Fig 5.1.

The entanglement of formation and asymptotic relative entropy of entanglement of OO-

invariant states have been computed [VW01, ADVW02]. In section 5.3, it will be shown

how to compute almost any convex roof monotone on the OO-invariant states.

5.2.4 Phase-permutation-invariant states

Other subgroups of U(d) lead to further generalizations of the Werner and isotropic states.

One possible subgroup that leads to two-parameter families of symmetric states is the fol-

139



0 1

1

1
d

1
2

Sep

Werner states

Isotropic states

a

b

2
d(d+1)

d
2(d+1)

A

B

C

Figure 5.1: Schematic of the OO-invariant states ρO(a, b), as defined in (5.11). The shaded
region represents the separable (and PPT) states. The one-dimensional subfamilies of Werner
and isotropic states are also shown. Convex roof entanglement monotones can be computed
for states in regions A and B, as discussed in Section 5.3.4. It remains unknown how to
compute convex roofs on states in region C for an arbitrary entanglement monotone.

lowing. Consider the subgroup of ‘phase-permutation’ unitary matrices defined by

G = {PπU | π ∈ Sd, U ∈ U(d) is diagonal}, (5.12)

where Sd is the symmetric group and Pπ = ∑d
i=1|π(i)〉〈i| is the permutation matrix for

π ∈ Sd. If we denote the group of diagonal unitary matrices by N ' U(1)×d, we see that N

is a normal subgroup of G. The group G of phase-permutation unitaries can be viewed as

the semi-direct product G = N o Pd, where Pd = {Pπ | π ∈ Sd} denotes the group of d × d

permutation matrices. This is also the subgroup of unitaries that have exactly one nonzero

entry in each row and column.
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Phase-permutation Werner states

Consider the family of Werner-type states which are invariant under {U⊗U |U ∈ G}, where

G is the group of phase-permutation matrices defined in (5.12). Such states are referred to

in this thesis as phase-permutation Werner states. This class of states was first introduced

in [DSS+00] and was used in [GG15]. The corresponding twirling operation is

T Gwer(ρ) =
∫
G
dU U ⊗ Uρ(U ⊗ U)†.

The commutant of this group is spanned by {1,W,Q} [DSS+00, section II], where Q is the

projection operator

Q =
d∑
i=1
|ii〉〈ii| (5.13)

that satisfies QW− = W−Q = 0 and QW+ = W+Q = Q. This family of states can be

parameterized by

ρGwer(a, b) = a
1(
d
2

)W− + b
1(
d
2

)(W+ −Q) + (1− a− b)1
d
Q (5.14)

for a, b ∈ [0, 1] satisfying a+ b ≤ 1. For all states ρ, it holds that T Gwer(ρ) = ρGwer(a, b), where

a = 〈ρ,W−〉 and b = 〈ρ,W+ − Q〉. The Werner states form a subfamily of this class. A

schematic of the phase-permutation Werner states is depicted in Fig 5.2.

Phase-permutation isotropic states

Similarly, we can consider the family of isotropic-type states which are invariant under

{U ⊗ U |U ∈ G}. We refer to these as the phase-permutation isotropic states. These

states have been studied by others [ES13, ETS15, SES16], where they have been called the
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Figure 5.2: Schematic of the phase-permutation Werner states. The separable (PPT) region
is shown in gray. The one-dimensional family of states with b = d−1

d+1(1 − a) is the well
known family of Werner states. As shown in Sec. 5.3.4, the convex roof of any entanglement
monotone can be computed for any state in region A. It remains unknown how to compute
convex roofs on states in region B for an arbitrary entanglement monotone.

axisymmetric states. The corresponding twirling operation is

T Giso(ρ) =
∫
G
dU U ⊗ Uρ(U ⊗ U)†.

The commutant of this group is spanned by {1,Φd, Q}. The elements of this commutant are

exactly obtained from the partial transposes of the elements of the commutant of the phase-

permutation Werner group presented in (5.14). The family of phase-permutation isotropic

states can be parameterized as

ρGiso(a, b) = bΦd + a 1
d−1(Q− Φd) + (1− a− b) 1

d(d−1)(1−Q) (5.15)

for a, b ∈ [0, 1] satisfying a + b ≤ 1. For all states ρ, it holds that T Giso(ρ) = ρGiso(a, b), where

b = 〈ρ,Φd〉 and a = 〈ρ,Q − Φd〉. The isotropic states form a subfamily of this class. A

schematic of the phase-permutation isotropic states is depicted in Fig 5.3.
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Figure 5.3: Schematic of the phase-permutation isotropic states. The separable (PPT) region
is shown in gray. The one-dimensional family of states with b = 1− (d+ 1)a is the family of
isotropic states. As shown in Sec. 5.3.3, the convex roof of any entanglement monotone can
be computed for any state in region B. It remains unknown how to compute convex roofs on
states in region A for arbitrary entanglement monotones.

5.3 Convex roof entanglement monotones for symmet-
ric states

In this section, we compute the convex roofs of entanglement monotones evaluated on Werner

and isotropic states. For Werner states, we compute this for any monotone. For isotropic

states, we compute the convex roofs of the Vidal monotones and generalize the computation

to certain classes of other monotones.

5.3.1 Werner states

In this subsection we present a general method for computing convex roofs of entanglement

monotones evaluated on the Werner states of a d × d bipartite system. For any a ∈ [0, 1],

consider the minimum entanglement of all pure states that twirl to ρwer(a) under this action,

as in (5.4). Given an arbitrary entanglement monotone E on pure states, we define the
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function Ewer : [0, 1]→ R as

Ewer(a) = min{E(ψ) | 〈ψ|W−|ψ〉 = a}. (5.16)

If we can evaluate (5.16) for a given entanglement monotone E, then we may make use of

Theorem 5.3 to compute the convex roof of E on Werner states by computing Êwer. This

result is greatly simplified if Ewer is already convex as a function of a.

Theorem 5.5. Let E be an entanglement monotone on pure states. For all a ∈ [0, 1], it

holds that

Ewer(a) = E(ψa), (5.17)

where Ewer is the function as defined in (5.16), and |ψa〉 are the pure states defined by

|ψa〉 =
(√

1− 2a |1〉+
√

2a |2〉
)
⊗ |2〉 (5.18)

whenever a ∈ [0, 1
2 ], and

|ψa〉 =
√

1
2 +

√
a(1− a) |12〉 −

√
1
2 −

√
a(1− a) |21〉 (5.19)

whenever a ∈ [1
2 , 1].

Note that the pure states |ψa〉 twirl to the Werner state ρwer(a). Indeed, a straightforward

calculation shows that 〈ψa|W−|ψa〉 = a for all a. In particular, Theorem 5.5 states that

the pure states |ψa〉 are in fact optimal in the computation in (5.16) for every possible

entanglement monotone. This is a generalization of the statement in [VW01, Sec. IV.C],

where the convex roof of the entanglement of formation was computed for Werner states.

The proof of Theorem 5.5 follows the method used in [VW01].

Proof (of theorem 5.5). If a ∈ [0, 1
2 ] then E(ψa) = 0 since |ψa〉 is separable, so the conclu-

sion is trivially true. Suppose that a ∈ [1
2 , 1] and let |ψ〉 be another pure state satisfying
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〈ψ|W−|ψ〉 = a. Let λ,λa ∈ Rd denote the Schmidt vectors of |ψ〉 and |ψa〉 respectively. We

will show that λ ≺ λa. Since

λa =
(

1
2 +

√
a(1− a), 1

2 −
√
a(1− a), 0, . . . , 0

)

has only two nonzero elements, it suffices to show that max(λ) ≤ 1
2 +

√
a(1− a).

Without loss of generality we may suppose that |ψ〉 is of the form

|ψ〉 = U ⊗ I
d∑
i=1

√
λi |ii〉 (5.20)

for some unitary operator U . Then

a = 〈ψ|W−|ψ〉 = 1
2

(
1−

d∑
i,j=1

√
λiλj〈i|U |j〉〈i|U †|j〉

)

= 1
2

(
1−

d∑
i,j=1

√
λiλjUijU ji

)

= 1
4

d∑
i,j=1
|
√
λiUij −

√
λjUji|2,

where Uij = 〈i|U |j〉 are the matrix elements of U . Since U is unitary, it holds that∑j|Uij|2 =

1 for each i and thus ∑i,j λi|Uij|2 = 1. For each i, j ∈ {1, . . . , d}, define the probabilities

pij = λi|Uij|2 + λj|Uji|2

2

such that pij ≥ 0 and ∑i,j pij = 1. Note that pij = pji. For all i and j such that pij 6= 0,

define the quantities

zij =
√
λiUij√

λi|Uij|2 + λj|Uji|2
and aij = |zij − zji|

2

2
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such that |zij|2 + |zji|2 = 1 and aij ∈ [0, 1]. Define the Schmidt vectors

µ(ij) = |zij|2ei + |zji|2ej

where {e1, . . . , ed} are the standard basis vectors of Rd. It follows that

d∑
i,j=1

pijaij = a and
d∑

i,j=1
pijµ

(ij) = λ.

That is, the quantity a and the Schmidt vector λ can be written as convex combinations of

quantities aij ∈ [0, 1] and Schmidt vectors µ(ij) using the same weights pij. Since |zij|2 +

|zji|2 = 1 and ||zij|2 − |zji|2| ≤ |zij2 − zji2|, we see that

2 max(µ(ij)) = 2 max{|zij|2, |zji|2}

= |zij|2 + |zji|2 +
∣∣∣∣|zij|2 − |zji|2∣∣∣∣

≤ 1 + |zij2 − zji2|

= 1 + |zij − zji||zij + zji|. (5.21)

Furthermore note that 1− aij = 1
2 |zij + zji|2, and thus

|zij − zji||zij + zji| = 2
√
aij(1− aij).

From (5.21) it follows that max(µ(ij)) ≤ 1
2 +

√
aij(1− aij). Since max is a convex function
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on Rd, it follows that

max(λ) = max
(

d∑
i,j=1

pijµ
(ij)
)

≤
d∑

i,j=1
pij max(µ(ij))

≤
d∑

i,j=1
pij

(
1
2 +

√
aij(1− aij)

)

≤ 1
2 +

√
a(1− a), (5.22)

where the final inequality in (5.22) follows from concavity of the function f(t) =
√
t(1− t).

This yields the desired result that λ ≺ λa.

By Nielsen’s majorization theorem [Nie99], it follows that E(ψ) ≥ E(ψa).

From Theorems 5.3 and 5.5, it follows that Ê(ρwer(a)) = Êwer(a). The family of Werner

states is convex, and

tρwer(a1) + (1− t)ρwer(a2) = ρwer
(
ta1 + (1− t)a2

)
.

Hence the computation of Êwer(a) is greatly simplified if Ewer is already convex as a function

of a, as it is for the entanglement of formation. Otherwise, there are simple procedures

for computing the convex roof of a function of a single variable. Even if the convex roof

of Ewer as a function of a cannot be computed for a particular entanglement monotone E,

the formula in (5.17) still gives an upper bound for Ê on Werner states, since Ê(ρwer(a)) =

Êwer(a) ≤ Ewer(a) always holds.

Entanglement of formation

The entanglement of formation [BDSW96] is one well-known convex roof entanglement mono-

tone. This is defined as EF (ρ) = Ê(ρ) for mixed states ρ, where E is the entropy of en-

tanglement on pure states E(ψ) = H(λ), H is the Shannon entropy, and λ is the vector of
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Schmidt coefficients of |ψ〉. When a ∈ [1
2 , 1], the entropy of entanglement of |ψa〉 is given by

E(ψa) = h
(

1
2 −

√
a(1− a)

)
, (5.23)

where h(t) = −t log t−(1−t) log(1−t) is the binary entropy function. Note that the function

in (5.23) is convex as a function of a, so it follows that

EF (ρwer(a)) =


0, a ∈ [0, 1

2 ]

h
(

1
2 −

√
a(1− a)

)
, a ∈ [1

2 , 1].
(5.24)

This matches the result found in [VW01].

Vidal monotones

Consider now the Vidal monotones Ek on pure states. Evaluating the convex roof of these

monotones on the Werner states can be done easily, because Ek,wer(a) is already convex as a

function of a.

Theorem 5.6. Consider the convex roof of the Vidal monotones Ek on Werner states. The

first Vidal monotone reduces to

Ê1(ρwer(a)) =


0, a ∈ [0, 1

2 ]
1
2 −

√
a(1− a), a ∈ [1

2 , 1].
(5.25)

For k > 1, Êk(ρwer(a)) = 0 for all a.

In particular, the convex roof of the kth Vidal monotone vanishes for all Werner states

when k 6= 1. Indeed, it holds that Ek(ψa) = 0 for all a if k > 1, since the Schmidt vector of

|ψa〉 has at most two nonzero components. For a ∈ [1
2 , 1], note that

E1(ψa) = 1
2 −

√
a(1− a),
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which is already convex as a function of a.

Rényi entropies

The result of Theorem 5.5 can also be used to compute the convex roofs of Rényi entropies

[HGKM10] of entanglement evaluated on Werner states. For α > 0 with α 6= 1, the Rényi-α

entropy of entanglement is defined as Eα(λ) = 1
1−α log

(∑
i λ

α
i

)
for pure states with Schmidt

vector λ. These are valid entanglement monotones on pure states when α ∈ [0, 1] [Vid00a].

The form of (5.16) for these monotones reduces to Eα,wer(a) = 0 when a ∈ [0, 1
2 ], and

Eα,wer(a) = 1
1− α log

((
1
2 +

√
a(1− a)

)α
+
(

1
2 −

√
a(1− a)

)α)
(5.26)

when a ∈ [1
2 , 1]. Numerical evidence suggests that (5.26) is strictly convex whenever α >

1, and that (5.26) is strictly concave on the interval a ∈ [1
2 , 1] whenever α < 1

2 . Thus

Êα(ρwer(a)) = Eα,wer(a) for α > 1, and Êα(ρwer(a)) = max{0, (2a− 1) log 2} for α < 1
2 .

5.3.2 Isotropic states

In this section, we present a general method for computing convex roofs of entanglement

monotones evaluated on the isotropic states of a d × d bipartite system. In particular, we

show explicit formulas for the convex roofs of the Vidal monotones as we did for the Werner

states in Section 5.3.1. Using majorization, the result for the Vidal monotones is used to

find a simple lower bound for any entanglement monotone on isotropic states. An outline

for computing the convex roof of the Rényi entropies on isotropic states is also presented.

The isotropic states ρiso(b) defined in (5.10) are the states invariant under the action

U · ρ = U ⊗Uρ(U ⊗U)† from the d-dimensional unitary matrices U . Similar to our analysis

of Werner states, for any b ∈ [0, 1] we consider the minimum entanglement of all pure states

which twirl to ρiso(b) under this action as follows: Given an arbitrary entanglement monotone
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E on pure states, define the function Eiso : [0, 1]→ R as

Eiso(b) = min
{
E(ψ)

∣∣∣ 〈ψ|Φd|ψ〉 = b
}
. (5.27)

If we can determine a closed-form expression of (5.27) for a given entanglement monotone E,

we can make use of Theorem 5.3 to compute the convex roof of E on isotropic states by

computing Êiso. This result is greatly simplified if Eiso is already convex as a function of b.

We use the result of the following lemma to simplify computations.

Lemma 5.7. Let E be an entanglement monotone on pure states. For all b ∈ [ 1
d
, 1], it holds

that

Eiso(b) = min
{
E(λ)

∣∣∣∣∣
d∑
i=1

√
λi =

√
db

}
, (5.28)

where the infimum is taken over all Schmidt vectors satisfying the condition. Furthermore,

Eiso(b) = 0 whenever b ∈ [0, 1
d
].

A closed-form expression for Eiso in the right-hand side of (5.28) can be computed for

specific monotones E, which we show in the remainder of this section. In particular, we com-

pute Eiso in the cases when E is a Vidal monotone or an entropy-type monotone. Lemma 5.7

is a generalization of the result in [TV00], and the proof is similar. To prove Lemma 5.7, we

first provide the following lemma.

Lemma 5.8. Let b ∈ [ 1
d
, 1] and let |ψ〉 be a pure state with Schmidt vector λ satisfying

〈ψ|Φd|ψ〉 = b. There exists a pure state |ψ′〉 = ∑
i

√
λ′i|ii〉 such that

〈ψ′|Φd|ψ′〉 = 1
d

( d∑
i=1

√
λ′i

)2
= b

= 〈ψ|Φd|ψ〉

and λ′ � λ, where λ′ is the Schmidt vector for |ψ′〉.

Proof. We may suppose without loss of generality that |ψ〉 is of the same form as (5.20).
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Thus

b = 〈ψ|Φd|ψ〉 = 1
d

∣∣∣∣∣
d∑
i=1

√
λiUii

∣∣∣∣∣
2

≤ 1
d

( d∑
i=1

√
λi

)2
, (5.29)

where we note that |Uii| ≤ 1 for all i since U is unitary. If ∑i

√
λi =

√
db then we may set

λ′ = λ and we are done. Suppose instead that the inequality in (5.29) is strict. Define a

continuous function s : Rd → R,

s(λ) = 1
d

( d∑
i=1

√
λi

)2
. (5.30)

We may suppose that the entries of λ are decreasing. For all p ∈ [0, 1] define the Schmidt

vectors

λ′(p) = (1− p)λ+ p(1, 0, . . . , 0).

Note that s(λ′(p)) is continuous and strictly decreasing as a function of p and that

1
d

= s(λ′(1)) < b < s(λ′(0)) = s(λ).

By continuity of s, there exists a p ∈ (0, 1) such that s(λ′(p)) = b. Finally we note that

λ′(p) � λ for all p, which concludes the proof.

We now supply the proof of Lemma 5.7. For an entanglement monotone E, recall that

Eiso is defined as

Eiso(b) = min
{
E(ψ)

∣∣∣ 〈ψ|Φd|ψ〉 = b
}
.

Proof (of Lemma 5.7). First consider the case b ∈ [ 1
d
, 1]. For all pure states |ψ〉 satisfying

〈ψ|Φd|ψ〉 = b, from Lemma 5.8 we can find a pure state |ψ′〉 with Schmidt coefficients λ′

151



satisfying 〈ψ′|Φd|ψ′〉 = s(λ′) = b with λ ≺ λ′. It follows that E(λ′) = E(ψ′) ≤ E(ψ). Hence

we may restrict the minimization in (5.27) to states of the form |ψ〉 = ∑
i

√
λi|ii〉. This

implies that the computation of Eiso(b) may be simplified to

Eiso(b) = min
{
E(ψ)

∣∣∣ |ψ〉 =
d∑
i=1

√
λi|ii〉 and s(λ) = a

}

= min
{
E(λ)

∣∣∣∣ d∑
i=1

√
λi =

√
db
}

as desired.

Last we consider the case when b ∈ [0, 1
d
]. Consider the pure state

|ψ〉 =
√
db |11〉+

√
1− db |12〉.

Then 〈ψ|Φd|ψ〉 = b, but E(ψ) = 0 since |ψ〉 is separable. It follows that Eiso(b) = 0. This

concludes the proof.

Vidal monotones

Here, we present the results for evaluating the convex roofs of the Vidal monotones (2.11)

on isotropic states. The Schmidt vector that minimizes Ek,iso in (5.28) will be of the form.

λ =
(
t, . . . , t︸ ︷︷ ︸

k

, 1−kt
d−k , . . . ,

1−kt
d−k︸ ︷︷ ︸

d−k

)
, (5.31)

with t ≥ 1−kt
d−k . This allows us to compute the convex roofs of the Vidal monotones on

isotropic states.

Theorem 5.9. Consider the convex roof of the Vidal monotones Ek on the isotropic states
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of Cd ⊗ Cd. For k ∈ {1, . . . , d− 1} and b ∈ [0, 1], it holds that

Êk(ρiso(b)) =


0, b ∈ [0, k

d
]

1
d

(√
(1− b)k −

√
b(d− k)

)2
, b ∈ [k

d
, 1].

(5.32)

Before proving Theorem 5.9, we must first prove a few lemmas. The following lemma

shows that Ek vanishes on the isotropic states with b ∈ [0, k
d
].

Lemma 5.10. For any integer 1 ≤ k ≤ d, it holds that Ek,iso(b) = 0 for all b ∈ [0, k
d
].

Proof. Since Ek is an entanglement monotone on pure states, the result of Lemma 5.7 shows

that Ek,iso(b) = 0 whenever b ∈ [0, 1
d
]. So we may suppose that k ≥ 2 and b ∈ [ 1

d
, k
d
]. Consider

the function s defined in (5.30) restricted to the subset of Schmidt vectors λ that have at

most k nonzero entries. The function s achieves the values 1
d
and k

d
on this restriction, since

s
(
(1, 0, . . . , 0)

)
= 1

d
and s

((
1
k
, . . . , 1

k
, 0, . . . , 0)

)
= k

d
.

The subset of Schmidt vectors in Rd containing at most k nonzero elements is also connected.

By continuity of s, for any intermediate value b ∈ [ 1
d
, k
d
) there exists a Schmidt vector λ with

at most k nonzero entries satisfying s(λ) = b. Since Ek(λ) = 0 for all such λ, it follows that

Ek,iso(b) = 0 whenever 1
d
≤ b ≤ k

d
.

We now compute Ek,iso(b). Convexifying this function as a function of b yields the desired

result of Theorem 5.9.

Lemma 5.11. Let k ≥ 1 be an integer. It holds that

Ek,iso(b) =


0, b ∈ [0, k

d
]

1
d

(√
(1− b)k −

√
b(d− k)

)2
, b ∈ [k

d
, 1].

(5.33)

Proof. It was shown in Lemma 5.10 that Ek,iso(b) = 0 whenever b ∈ [0, k
d
], so it remains

to compute Ek,iso(b) when b ∈ [k
d
, 1]. Computing Ek,iso(b) may be restated as the following
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optimization problem:

maximize: λ1 + · · ·+ λk

subject to:
d∑
i=1

λi = 1 and
d∑
i=1

√
λi =

√
db.

It is not difficult to see (by using Lagrange multipliers) that the optimal λ must be of the

form

λ =
(
t, . . . , t︸ ︷︷ ︸

k

, 1−kt
d−k , . . . ,

1−kt
d−k︸ ︷︷ ︸

d−k

)
(5.34)

for some t ∈ [ 1
d
, 1
k
]. For λ of this form, we see that

d∑
i=1

√
λi = k

√
t+ (d− k)

√
1−kt
d−k

= k
√

(1− t) +
√

(d− k)(1− kt).

For b ∈ [k
d
, 1], the largest positive value of t that satisfies k

√
(1− t)+

√
(d− k)(1− kt) =

√
db

is given by

t = 1
k
− 1
kd

(√
(1− b)k −

√
b(d− k)

)2
. (5.35)

For λ as given in (5.34) with t as in (5.35), it follows that

Ek,iso(λ) = 1− (λ1 + · · ·+ λk)

= 1− kt

= 1
d

(√
(1− b)k −

√
b(d− k)

)2
,

as desired.

The proof of Theorem 5.9 now follows.

Proof (of Theorem 5.9). Note that Êk(ρiso(b)) = Êk,iso(b) by Theorem 5.3, where Ek,iso is
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Figure 5.4: The convex roof of the Vidal monotones E1, E2, E3, and E4 evaluated on isotropic
states with dimension d = 5.

the function defined in (5.27), and the entanglement monotone used is E = Ek. An explicit

form of (5.27) for the Vidal monotones is computed in (5.33) of Lemma 5.11. It is clear

that Ek,iso(b) in (5.33) is convex as a function of b, which may be confirmed by examining

its second derivative. Thus Ek,iso = Êk,iso, which concludes the proof.

The convex roofs of the Vidal monotones can be trivially computed for k ≥ d, in which

case Ek,iso(b) = 0 for all k ≥ d and any b. A plot of the Vidal monotones (5.32) evaluated

on isotropic states ρiso(b) with d = 5 is shown in Fig 5.4.

It is perhaps interesting to note that the equation

y =
(√

(1− x)k
d
−
√

(1− k
d
)x
)2

is part of the unique ellipse which is tangent to the x-axis at the point (k
d
, 0), is tangent to

the y-axis at the point (0, k
d
), and goes through the point (1, 1− k

d
).

The resulting computations of the Vidal monotones on isotropic states can be used to

construct a lower bound for any arbitrary entanglement monotone evaluated on isotropic

155



states. For any d ≥ 2 and any b ∈ [0, 1], define the following Schmidt vector:

λb =



1− E1,iso(b)

E1,iso(b)− E2,iso(b)
...

Ed−2,iso(b)− Ed−1,iso(b)

Ed−1,iso(b)


. (5.36)

For each k, it holds that Ek(λb) = Ek,iso(b). By construction, it holds that Ek(ψ) ≥ Ek(λb)

for any pure state |ψ〉 that twirls to ρiso(b) (i.e. satisfying 〈ψ|Φd|ψ〉 = b). Thus λ ≺ λb where

λ is a Schmidt vector of any pure state that twirls to ρiso(b). This implies that we can use λb

to construct a lower bound for any entanglement monotone E evaluated on isotropic states.

In particular, it holds that

Ê(ρiso(b)) ≥ E(λb) (5.37)

for the convex roof of any possible entanglement monotone E evaluated on isotropic states.

Generalized entropy measures

It is also possible to study the convex roof of generalized measures of entropy, as studied in

[BS03], rather than entanglement measures. Generalized entropy measures are functions of

the form Hf (λ) = ∑
i f(λi) for functions f that satisfy the following conditions:

(i) f(0) = 0;

(ii) f is either strictly concave or strictly convex on the interval [0, 1]; and

(iii) the first derivative f ′ exists and is continuous on the interval (0, 1).

This includes the entropy of entanglement when f(x) = −x log x, as well as quantities that

are related to the Rényi entropies when f(x) = xα. In [BS03], it is shown how to compute the

minimum and maximum values of one generalized entropy Hf (λ) for all Schmidt vectors λ
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with some other generalized entropy Hg(λ) = c held constant. It turns out that the Schmidt

vectors minimizing or maximizing these quantities are either of the form

λ =
(
t, 1−t
d−1 , . . . ,

1−t
d−1

)
, (5.38)

where t ≥ 1−t
d−1 , or

λ =
(
t, . . . , t, 1− kt, 0, . . . , 0

)
(5.39)

where t ≥ 1 − kt, and there are k = b1
t
c probabilities equal to t. We can then make use of

the following theorem from [BS03].

Theorem 5.12 (Theorem 1 in [BS03]). Let f : [0, 1] → R and g : [0, 1] → R both satisfy

conditions (i)-(iii) for generalized entropy measures listed above. The following statements

hold.

1. If f ′ ◦ (g′)−1 is strictly convex (concave), then the maximum (minimum) Hf that can

be achieved for fixed Hg is obtained by a probability distribution of the form in (5.38).

2. If f ′ ◦ (g′)−1 is strictly convex (concave), then the minimum (maximum) Hf that can

be achieved for fixed Hg is obtained by a probability distribution of the form in (5.39).

Note that g in Theorem 5.12 is either strictly concave or convex, so it must hold that g′

is invertible on the interval (0, 1).

Given a function f that satisfies the conditions above, we can define an entropy measure

on pure states by Sf (ψ) = Hf (λ), where λ here is the vector of Schmidt coefficients of

|ψ〉. This can be extended to mixed states via the convex roof construction. Evaluating the

convex roof of such an entropy measure on isotropic states ρiso(b) amounts to minimizing

Hf (λ), subject to the constraint ∑i

√
λi =

√
db. In particular, we can evaluate functions of

the form

Hf,iso(b) = inf
{
Hf (λ)

∣∣∣∣∣
d∑
i=1

√
λi =

√
db

}
(5.40)
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for b ∈ [ 1
d
, 1]. The constraint in (5.40) can be rewritten as

√
db = Hg(λ), where we choose

g(x) =
√
x. If f satisfies the conditions in Theorem 5.12, then we may use Theorem 5.12 to

compute the value in (5.40). Note that (g′)−1(x) = 1
4x2 , so it suffices to check if f ′( 1

4x2 ) is

either strictly concave or convex as a function of x.

Using λ of the form in (5.38), solving for t with respect to the constraint∑d
i=1
√
λi =

√
db

such that Hf (λ) is minimized yields

t = 1− 1
d

(√
1− b−

√
b(d− 1)

)2
. (5.41)

Therefore, if f ′( 1
4x2 ) is strictly concave, it follows that Hf,iso(b) = f(t)+(d−1)f( 1−t

d−1), where

the value of t is taken from (5.41).

Using λ of the form in (5.39), solving for t with respect to the constraint∑d
i=1
√
λi =

√
db

such that Hf (λ) is minimized yields

t =

(√
dbk +

√
k + 1− db

)2

k(k + 1)2 , (5.42)

where k = bdbc. It follows that if f ′( 1
4x2 ) is strictly convex then Hf,iso(b) = bdbcf(t) + f(1−

bdbct), where the value of t is taken from (5.42). Example values of t in Eqs. (5.41) and

(5.42) as functions of b for d = 5 are plotted in Fig 5.5.

Generalized concurrences

Using the methods above, it is also possible to compute convex roofs of some of the generalized

concurrence monotones [Gou05a]. These are defined as follows. For k = 1, 2, . . . , d, let Sk
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Figure 5.5: Example values of t from Eqs. (5.41) (solid line) and (5.42) (dashed line) as
functions of b for d = 5.

be the kth elementary symmetric polynomial of d variables. That is,

S1(λ) =
d∑
i=1

λi,

S2(λ) =
∑
i<j

λiλj,

...

Sd(λ) =
d∏
i=1

λi.

Note that Sk(1
d
, . . . , 1

d
) = 1

dk

(
d
k

)
. The generalized concurrence monotones are defined by

Ck(λ) = d

(dk)
1/kSk(λ)1/k.

These symmetric functions are also concave [Gou05a], and thus are valid entanglement mono-

tones on pure states. Each Ck achieves a maximum value of 1 on the maximally entangled

pure state of two qudits. Note that Cd is sometimes called the G-concurrence [Gou05a].
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Here, we compute the convex roofs of C2 and Cd on isotropic states. For b ∈ [ 1
d
, 1], we

minimize C2 and Cd over all Schmidt vectors that satisfy ∑d
i=1 λi = 1 and ∑d

i=1
√
λi =

√
db.

We first compute Ĉ2 for isotropic states. Note that

S2(λ) = 1
2

(
1−

d∑
i=1

λ2
i

)
.

Hence, minimizing S2(λ) is equivalent to maximizing ∑d
i=1 λ

2
i . By Theorem 5.12, the opti-

mal value of this is achieved by the Schmidt vector of the form in (5.38) with the value t

from (5.41). Thus,

C2,iso(b) =
√
d

d− 1
√

(1− t)(d(1 + t)− 2), (5.43)

with t from (5.41) and b ∈ [ 1
d
, 1]. The function in (5.43) is strictly concave as a function of

b, thus its convex roof is the linear function

Ĉ2,iso(b) =


0, 0 ≤ b ≤ 1

d

db−1
d−1 ,

1
d
≤ b ≤ 1.

(5.44)

The convex roof of the 2-concurrence on isotropic states reduces to Ĉ2(ρiso(b)) = Ĉ2,iso(b).

This agrees with the result from [ETS15].

To compute the convex roof of the G-concurrence Ĉd for isotropic states, note that

logSd(λ) =
d∑
i=1

log λi.

Thus minimizing Sd(λ) is equivalent to maximizing ∑d
i=1 log λi. By Theorem 5.12, the

optimal value will be achieved by the Schmidt vector of the form in (5.39) with the value t

from (5.42). Thus Cd,iso(b) = 0 for b ≤ 1− 1
d
, and

Cd,iso(b) = d
(
td−1 − (d− 1)td

)1/d
(5.45)
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for b > 1− 1
d
, where

t = 1
d(d− 1)

(√
(d− 1)b+

√
1− b

)2
.

The expression in (5.45) is strictly concave as a function of b; thus its convex roof is the

linear function

Ĉd,iso(b) =


0, 0 ≤ b ≤ 1− d

d

db− d+ 1, 1− 1
d
≤ b ≤ 1.

(5.46)

Hence, the convex roof of the G-concurrence on isotropic states reduces to Ĉd(ρiso(b)) =

Ĉd,iso(b). This agrees with the result from [SES16].

5.3.3 Extension to some non-symmetric states

Here we show how to use the results from the previous sections to compute convex roof

entanglement monotones for some states that are not necessarily symmetric.

For a subgroup G ⊂ LU of local unitaries and an entanglement monotone E on pure

states, recall that we can define the function

EG(ρ) := min{E(ψ) | TG(|ψ〉〈ψ|) = ρ}

on G-invariant states ρ, where the minimization is taken over all pure states that twirl to

ρ. A pure state |ψ〉 is said to minimize the entanglement of ρ (with respect to G and E)

if TG(|ψ〉〈ψ|) = ρ and E(ψ) = EG(ρ). We also consider the orbit of |ψ〉 under the group G,

which we denote as

orbG(ψ) =
{
g|ψ〉〈ψ|g† | g ∈ G

}
.

Theorem 5.13. Let G ⊂ LU be a subgroup of local unitaries, let ρ be a G-invariant state,

and let |ψ〉 be a pure state that minimizes the entanglement of ρ with respect to E and G. If
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ÊG(ρ) = EG(ρ), then

Ê(σ) = E(ψ) for all σ ∈ conv (orbG(ψ)) , (5.47)

where conv denotes the convex hull.

Proof. Suppose the conditions of the theorem are satisfied and let σ ∈ conv (orbG(ψ)). Since

G is a subgroup of local unitaries, it holds that E(g|ψ〉) = E(ψ) for all g ∈ G. It follows

that Ê(σ) ≤ E(ψ) from the definition of the convex roof. Furthermore, since TG is an LOCC

channel, it holds that Ê(TG(σ)) ≤ Ê(σ). Note that ρ = TG(σ) and Ê(ρ) = ÊG(ρ). The result

follows.

Theorem 5.13 allows us to compute the convex hull on a larger class of non-symmetric

states if we can find G-invariant states such that ÊG(ρ) = EG(ρ). On the other hand, if

ÊG(ρ) < EG(ρ), we can still compute Ê on a larger class of non-symmetric states under

certain conditions.

5.3.4 Convex roofs on other symmetries

In [VW01], it was shown how to extend the convex roof formula for the entanglement of

formation EF from the Werner and isotropic states to a larger family of OO-invariant states.

Here, we show that this can be done for any entanglement monotone. Furthermore, we

extend the convex roof formulas to the phase-permutation invariant states as well.

Let G and G ′ be subgroups of the local unitaries with G ′ ⊂ G. The commutants of G

and G ′ satisfy comm(G) ⊂ comm(G ′), so the family of G-invariant states forms a subset of

the G ′-invariant states. If it is known how to compute the convex roofs of entanglement

monotones on G-invariant states, then we can apply the result of Theorem 5.13 to compute

convex roofs on some G ′-invariant states that are also in the convex hull of the orbit of some

minimizing pure state. That is, if |ψ〉 is a minimizing pure state for some G-invariant state
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ρ, the convex roofs of entanglement monotones can be evaluated on all states that are in the

intersection

TG′(D(Cd ⊗ Cd)) ∩ conv (orbG(ψ))

The minimizing pure states for Werner states are always the states |ψa〉 as defined in

(5.19). We first show which of the phase-permutation Werner states ρGwer(a, b) and OO-

invariant states ρO(a, b) are in the orbits of these minimizing pure states. These are exactly

the states depicted in region A of both Fig. 5.1 and Fig. 5.2. This allows us to extend

the formulas for convex roof entanglement monotones from the Werner states to this larger

family of states.

Lemma 5.14. Let a ∈ [1
2 , 1]. Then

1. ρGwer(a, b) ∈ conv(orbwer(ψa)) for all b ∈ [0, 1− a]; and

2. ρO(a, b) ∈ conv(orbwer(ψa)) for all b ∈ [0, 2
d
(1− a)].

That is, all states in region A of Fig 5.1 and region A of Fig 5.2 are in the convex hulls of

the orbits of the corresponding minimizing pure states for ρwer(a).

Proof (of Lemma 5.14 part 1 ). By convexity, it suffices to check only the states on the

boundary. That is, we check ρGwer(a, b) with b = 0 and b = 1 − a. In both cases, we

find a pure state |ψ〉 ∈ orbwer(ψa) such that T Gwer(ψ) = ρGwer(a, b).

Note that 〈ψa|Q|ψa〉 = 0. Hence T Gwer(ψa) = ρGwer(a, 0) and it follows that

ρGwer(a, 0) ∈ conv(orbwer(ψa)).

For ρGwer(a, 1− a), consider the unitary block matrix

U =


1√
2

1√
2

i√
2

−i√
2

1

 (5.48)
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that acts non-trivially only on the span of {|1〉, |2〉}. Then

U ⊗ U |ψa〉 =
√

1− a
2 (|11〉+ |22〉)− i

√
a

2(|12〉 − |21〉).

It holds that 〈ψa|U †⊗U †QU ⊗U |ψa〉 = 1−a and thus T Gwer(U ⊗Uψa) = ρGwer(a, 1−a), which

completes the proof.

Proof (of Lemma 5.14 part 2 ). By convexity, it suffices to check only the states on the

boundary, i.e. ρGwer(a, b) with b = 0 and b = 2(1−a)
d

. In both cases, we will find a pure

state |ψ〉 ∈ orbwer(ψa) such that TO(ψ) = ρGO(a, b). Note that 〈ψa|Φd|ψa〉 = 0. Thus |ψa〉

twirls to T GO (ψa) = ρO(a, 0). With the same U as in (5.48), it holds that

〈ψa|U † ⊗ U †ΦdU ⊗ U |ψa〉 = 2(1− a)
d

.

This implies that TO(U ⊗ Uψa) = ρGwer(a,
2(1−a)
d

) which completes the proof.

A similar statement can be made for isotropic states. Here, however, the form of the

Schmidt coefficients of the minimizing pure state |φb〉 = ∑d
i=1
√
λi|ii〉 for the isotropic state

ρiso(b) will depend on which entanglement monotone E is being considered. As above, the

convex roof of E can be evaluated on any state in the convex hull of the orbit of |φb〉. In the

following lemma, we show which phase-permutation isotropic states and which OO-invariant

states are in the convex hulls of these orbits. For any E, all phase-permutation isotropic

states ρiso(a, b) in region B of Fig. 5.3 are in the convex hull of the orbit of the minimizing

pure state |φb〉. In most cases, all OO-invariant states ρO(a, b) in region B of Fig. 5.1 are

also in the convex hull of the orbit of |φb〉.

Lemma 5.15. Let E be an entanglement monotone on pure states and let b ∈ [ 1
d
, 1]. Let

|φb〉 = ∑d
i=1
√
λi|ii〉 be the pure state that minimizes E for ρiso(b). Then

1. ρGiso(a, b) ∈ conv(orbiso(φb)) for all a ∈ [0, 1− b], and
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2. If λ is of the form in either (5.31) or (5.39), then ρO(a, b) ∈ conv(orbiso(φb)) for all

a ∈ [0, d(1−b)
2(d−1) ].

That is, all states in region B of Fig 5.1 and region B of Fig 5.3 are in the convex hulls of

the orbits of the corresponding minimizing pure states for ρiso(b).

Recall that, for any entanglement monotone E and any b ∈ [ 1
d
, 1], the pure state that

minimizes (5.28) will be of the form

|φb〉 =
d∑
i=1

√
λi|ii〉 (5.49)

where the Schmidt coefficients satisfy ∑d
i=1
√
λ =
√
db.

Proof (of Lemma 5.15 part 1 ). As above, it suffices to check only the states on the bound-

ary. That is, we check ρGiso(a, b) with a = 0 and a = 1− b. In both cases, we will find a pure

state |ψ〉 ∈ orbiso(φb) such that T Giso(ψ) = ρGiso(a, b). Note that 〈φb|Q|φb〉 = 1 and thus

〈φb|(Q− Φd)|φb〉 = 1− b.

Hence T Giso(φb) = ρGiso(1− b, b) and thus ρGiso(1− b, b) ∈ conv(orbiso(φb)). For ρGiso(0, b), we use

the discrete Fourier transform unitary matrix

U = 1√
d

d∑
j,k=1

ωjk|j〉〈k|,

where ω = e
2iπ
d is the dth root of unity. It holds that

〈φb|U † ⊗ U
†
QU ⊗ U |φb〉 = 1

d2

d∑
k=1

( d∑
j=1

√
λj|ωjk|2

)2

= 1
d

( d∑
j=1

√
λj

)2

= b.
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Thus 〈φb|U † ⊗ U †(Q − Φd)U ⊗ U |φb〉 = 0. This implies that T Giso(U ⊗ U |φb〉) = ρGiso(0, b),

which completes the proof.

Proof (of Lemma 5.15 part 2 ). It suffices to check only the states on the boundary. That

is, we check ρGO(a, b) with a = 0 and a = d(1−b)
2(d−1) . Note that 〈φb|W−|φb〉 = 0 and thus

TO(φb) = ρO(0, b). Hence ρO(0, b) ∈ conv(orbiso(φb)). For ρO( d(1−b)
2(d−1) , b), it suffices to find a

unitary U such that

〈φb|(U ⊗ U)†W−(U ⊗ U)|φb〉 ≥
d(1− b)
2(d− 1) .

We split the proof into two parts. First suppose that λ is of the form

λ =
(
t, . . . , t, 1−kt

d−k , . . . ,
1−kt
d−k

)

with |φb〉 = ∑d
i=1
√
λi|ii〉 and

( d∑
i=1

√
λi

)2
=
(
k
√
t+

√
(d− k)(1− kt)

)2
= db.

For distinct indices j, k ∈ {1, 2, . . . , d} with j < k, define the unitary matrices

Uj,k =
∑
l 6=j,k
|l〉〈l|+ 1√

2
(
|j〉〈j|+ |j〉〈k|+ i|k〉〈j| − i|k〉〈k|

)

that act non-trivially only on the subspace spanned by {|j〉, |k〉} and trivially elsewhere.

Note that U in (5.48) is U1,2 in this notation. Furthermore note that

〈φb|(Uj,k ⊗ Uj,k)†W−(Uj,k ⊗ Uj,k)|φb〉 =

(√
λj −

√
λk
)2

2 .
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Let U = (U1,d)(U2,d−1) · · · (Um,d+1−m), where m = min{k, d− k}. Then

〈φb|(U ⊗ U)†W−(U ⊗ U)|φb〉 = (
√
λ1 −

√
λd)2

2 + · · ·+ (
√
λm −

√
λd−m+1)2

2

= m

2(d− k)

(√
(d− k)t−

√
1− kt

)2

= m

2(d− k)

(
d(1− b)

k

)

= d(1− b)
2

min{k, d− k}
k(d− k)

≥ d(1− b)
2

1
d− 1

with equality if and only if k = d− 1 or k = 1 (or b = 1). The result follows.

The proof of the other case is analogous. In this case, suppose that λ is of the form

λ =
(
t, . . . , t, 1− kt, 0, . . . , 0

)

with (∑d
i=1
√
λi)2 = (k

√
t+
√

1− kt)2 = db. Using the unitary

U = (U1,d)(U2,d−1) · · · (Ub d2 c,d−b d2 c+1),

it is not difficult to show that

〈φb|(U ⊗ U)†W−(U ⊗ U)|φb〉 ≥
d(1− b)
2(d− 1)

with equality if and only if k = d− 1 (or b = 1).

For every entanglement monotone considered in this chapter, the Schmidt coefficients of

the minimizing pure states have this desired form. This allows us to extend the convex roofs

of these entanglement monotones from the isotropic states to this larger family of states.

If Ewer(a) and Eiso(b) are already convex as functions of a and b, then Lemmas 5.14 and

5.15, together with Theorem 5.13, allow us to extend these convex roof formulas to any state
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Figure 5.6: Convex roofs of the Vidal monotones Ek (for d = 5 and k = 1, 2, 3, 4) evaluated
on regions A and B of the OO-invariant states. For the surfaces on the left-hand side, k varies
from 1 to 4 from the upper to the lower level. Only E1 is non-vanishing on the right-hand
side.

in regions A of Figs. 5.1 and 5.2 and regions B of Figs. 5.1 and 5.3. It is noteworthy that

the value of the convex roof for any entanglement monotone for these states depends only

on one of the expectations 〈ρ,W−〉 or 〈ρ,Φd〉. As an example, the convex roofs of the Vidal

monotones on the OO-invariant states with dimension d = 5 are shown in Fig 5.6.

If Ewer(a) and Eiso(b) are not convex, e.g. if there is some value b so that Êiso(b) < Eiso(b),

then we may still extend the formula to all of these states as long as E is continuous.

5.4 Entanglement conversion witnesses for pure to mixed
states

It was shown in [GG08] that a pure state |ψ〉 ∈ Cd ⊗ Cd can be converted into an arbitrary

mixed state ρ ∈ D(Cd⊗Cd) if and only if there exists an pure state decomposition {pi, |ϕi〉}

of ρ that satisfies

Ek(ψ) ≥
∑
i

piEk(ϕi)
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for all positive integers k, where ρ = ∑
i pi|ϕi〉〈ϕi|. This necessary and sufficient condition

for LOCC transformation can be encoded into the following complete conversion witness:

W (ψ, ρ) = max
{pi,|ϕi〉}

min
k

(
Ek(ψ)−

∑
i

piEk(ϕi)
)
, (5.50)

where the maximum is taken over all pure state decompositions ρ = ∑
i pi|ϕi〉〈ϕi|. The

function W is a complete witness in the sense that W (ψ, ρ) ≥ 0 if and only if |ψ〉 can be

converted into ρ via LOCC. Although this function cannot be computed for arbitrary mixed

states, it can be simplified for certain classes of mixed states ρ. In particular, we compute

W (ψ, ρ) explicitly in the case when ρ is a state on C2 ⊗ Cd for any d (i.e. in the case when

at least one subsystem is a qubit). We can also make extensive use of symmetry to compute

W (ψ, ρ) in the case when ρ is highly symmetric (i.e. Werner or isotropic states).

The conversion witness in (5.50) simplifies to a known necessary and sufficient condition

for converting a pure state |ψ〉 to a mixed state ρ in the case when ρ is a state of a system

in which one subsystem is a qubit [Vid00b]. Indeed, for pure states |ϕ〉 ∈ C2 ⊗Cd with any

d ≥ 2, it holds that Ek(ϕ) = 0 whenever k ≥ 2 since |ϕ〉 can have at most two nonzero

Schmidt coefficients. If ρ is any mixed state on C2 ⊗ Cd, then the minimization over k in

(5.50) can be eliminated, since only E1 can be nonzero. In this case, the conversion witness

in (5.50) simplifies to W (ψ, ρ) = E1(ψ)− Ê1(ρ). This implies the following theorem.

Theorem 5.16. For any bipartite mixed state ρ on C2⊗Cd and for any bipartite pure state

|ψ〉 of systems of any size, it holds that |ψ〉 LOCC−−−→ ρ if and only if E1(ψ) ≥ Ê1(ρ).

Furthermore, it was shown in [Vid00b] that Ê1 for an arbitrary mixed state of two qubits

simplifies to

Ê1(ρ) =
1−

√
1− C(ρ)2

2 ,

where C(ρ) is the concurrence [Woo98] of ρ. Hence, a pure state |ψ〉 can be converted into

a mixed state ρ on C2 ⊗ C2 if and only if C(ψ) ≥ C(ρ).
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As the following theorem shows, the value of Ê1 gives a necessary and sufficient condition

for converting any pure states into Werner states of arbitrary dimension as well.

Theorem 5.17. For any bipartite pure state |ψ〉 and any a ∈ [1
2 , 1], it holds that |ψ〉 LOCC−−−→

ρwer(a) if and only if λ1 ≤ 1
2 +

√
a(1− a), where λ1 is the largest Schmidt coefficient of |ψ〉.

Note that if a ∈ [0, 1
2 ] then ρwer(a) is separable and thus |ψ〉 LOCC−−−→ ρwer(a) holds trivially.

The theorem states the conditions for conversion in the case when ρwer(a) is entangled.

Proof. Let a ∈ [1
2 , 1] and suppose that |ψ〉 LOCC−−−→ ρwer(a). Then it must be the case that

E1(ψ) ≥ Ê1(ρwer(a)) since E1 is an entanglement monotone. The result follows, since

E1(ψ) = 1− λ1 and Ê1(ρwer(a)) = 1
2 −

√
a(1− a). On the other hand, if λ1 ≤ 1

2 +
√
a(1− a)

then λ ≺ λa, where λ is the vector of Schmidt coefficients of |ψ〉 and λa is the vector of

Schmidt coefficients of |ψa〉 given in (5.19). It follows that |ψ〉 can be converted into |ψa〉 by

LOCC, but |ψa〉 can be converted into ρwer(a) via LOCC, since Twer(|ψa〉〈ψa|) = ρwer(a) and

the twirling operation Twer is LOCC. This concludes the proof.

We have shown that the conversion witness in (5.50) can be computed explicitly in the

cases when ρ is a Werner state or any state on a C2 ⊗ Cd system, but it remains unknown

if it can be computed explicitly for any other classes of states. However, it may still be

useful to consider upper and lower bounds of this quantity, since these would give either

necessary or sufficient conditions for LOCC conversion from |ψ〉 into ρ. In particular, in

the case when ρ = ρiso(b) is an isotropic state, a lower bound for (5.50) can be found. The

following theorem gives a no-go conversion witness for detecting when pure states cannot be

converted into isotropic states.

Theorem 5.18. Let |ψ〉 be a pure state and b ∈ [ 1
d
, 1]. If |ψ〉 LOCC−−−→ ρiso(b) thenWiso(λ, b) ≥ 0,

where

Wiso(λ, b) = max
µ

min
k

(
Ek(λ)− Ek(µ)

)
(5.51)

and the the maximum is taken over all Schmidt vectors µ that satisfy ∑i
√
µi =

√
db.
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Figure 5.7: An example of the witness in (5.51) computed for d = 3 and λ = ( 6
10 ,

3
10 ,

1
10). It

appears that W (λ, b) < 0 whenever b > 0.895.

Proof. In the case when ρ = ρiso(b), it is clear that a lower bound for the witnessW in (5.50)

can be given by

W (ψ, ρiso(b)) ≥ max
|ϕ〉

min
k

(
Ek(ψ)− Ek(ϕ)

)
, (5.52)

where the maximum is taken over all |ϕ〉 ∈ Cd ⊗ Cd such that 〈ϕ|Φd|ϕ〉 = b. The left-

hand side of the inequality in (5.52) can be further simplified to the desired expression in

(5.51).

In particular, if Wiso(ψ, b) < 0 then |ψ〉 6LOCC−−−→ ρiso(b). Although the formula for this

witness is now much simpler than the general one in (5.50), it still cannot be computed ana-

lytically for arbitrary Schmidt vectors λ. However, we present a way to numerically compute

these witnesses efficiently in Appendix A. An example of the witness in (5.51) with d = 3

and λ = ( 6
10 ,

3
10 ,

1
10) is shown in Fig 5.7. In this case, it appears that W (λ, b) < 0 whenever

b > 0.895. Hence the conversion |ψ〉 LOCC−−−→ ρiso(b) is not possible when b > 0.895, where |ψ〉

is the pure state with Schmidt coefficients λ.

171



5.5 Summary

We computed the convex roof of entanglement monotones on certain classes of symmetric

states. This generalized the work of Refs. [VW01] and [TV00], where the entanglement

of formation was computed for Werner and isotropic states. In particular, we computed

the convex roof for any entanglement monotone on Werner states. The convex roof of

certain types of monotones was also computed on isotropic states. We were able to extend

these formula for the convex roofs to many non-symmetric states as well. In particular, for

many states with other types of symmetries (i.e., for OO-invariant states as well as phase-

permutation Werner and isotropic type states), we were also able to compute the convex

roofs of these monotones.

We also constructed a necessary and sufficient condition in the form of a conversion

witness that determines when a bipartite pure state can be converted to any Werner state

by LOCC. A similar conversion witness was constructed for detecting when a pure state can

be converted into an isotropic state, but the condition was only necessary and not sufficient.

This work sheds light on the structure of bipartite entanglement of symmetric states,

an area of research that is still quite active. Recently, work has been done on computing

convex roofs of certain entanglement monotones on larger classes of symmetric states [SES16].

Investigations into further types of symmetries and other entanglement monotones will prove

fruitful in the complete characterization of the LOCC convertibility of bipartite quantum

entanglement.
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Chapter 6

Convex quantum resource theories

Recall that a resource theory in quantum information (F ,O) is defined in terms of its

free states F and the free operations O. In any resource theory, the main problem in the

single-shot setting is to determine necessary and sufficient conditions for the convertibility

of resource states. That is, given resources ρ and ρ′, we would like to have convenient

conditions for when there exists a free operation that converts ρ into ρ′. Finding a complete

set of resource monotones is one method of giving such conditions, but such monotones are

only useful if they can be computed in practice. This chapter introduces the study of convex

resource theories in quantum mechanics, in which the sets of free states and free operations

are both closed and convex. Using tools from convex analysis (in particular those of conic

programming), necessary and sufficient conditions for conversion of resources within these

resource theories.

We first recall some of the definitions of resource theories in quantum information that

were outlined in Section 2.5. Let (F ,O) be a resource theory where F and O are families of

density matrices and quantum channels respectively such that F (H) ⊂ D(H) denote subsets

of free density matrices on system H and O(H,H′) denote the subset of free operations from

states on system H to states on system H′. The resources in such a resource theory are all

density matrices. We write ρ O−→ ρ′ if there exists a free channel E ∈ O such that E(ρ) = ρ′.
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The resource theory is said to be closed if FH and OH,H′ are topologically closed as subsets

of states and channels for each H and H′, and is said to be convex if its sets of free states

and channels are convex.

The resource theory of bipartite entanglement under LOCC is an example of a resource

theory that is convex, but not closed [CLM+14]. Meanwhile, the resource theory of non-

Gaussianity is an example of a resource theory that is not convex [BESP03].

This chapter first develops the tools for studying convex resource theories in quantum

information and developing necessary and sufficient conditions for resource transformation

for general convex resource theories. These results will be used to study the resource theory

of PPT states and channels, in which the free states are the PPT density matrices of bipar-

tite quantum systems and the free operations are the channels whose Choi representation is

PPT (defined in Section 2.4.2). In particular, a complete set of resource monotones that can

be computed using semidefinite programming techniques are constructed for this resource

theory. The resource theory of separable states and channels will also be analyzed, but these

results are less practical since determining whether an operator is separable is difficult in

practice. Most notably, however, we will show that any resource theory where the set of

free operations consists of any finite polytope approximation to the set of separable chan-

nels will not lead to a resource theory with bound entanglement. In particular, any finite

approximation to the set of separable channels must contain an entangling operation, and

some two-qubit entangled state must be free in such a resource theory.

The remainder of this chapter will be dedicated to studying convertibility criteria in

closed, convex quantum resource theories. Section 6.1 introduces some necessary mathemat-

ical tools that will be needed to study convex resource theories. For such resource theories,

we can find a complete set of resource monotones that can be computed as the solution to

a conic program, which will be presented in Section 6.2. Applications of this result to some

resource theories will be presented in section 6.4.
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6.1 Tools for studying convex resource theories

The primary purpose of this section is to lay the mathematical groundwork for complete

characterization of convex quantum resource theories. Primarily, we will lay the groundwork

for determining when there exists a channel E in some restricted convex set of channels such

that E(ρ) = ρ′ for some given states ρ and ρ′. Rather than work with the channels directly, it

will be more convenient to work with the Choi representations of the channels J(E). When

E : L(H)→ L(H′) is a linear map of linear operators, its Choi representation is an operator

J(E) ∈ L(H′ ⊗ H). For much of this chapter, sets of quantum channels from H to H′ will

be identified with the set of Choi matrices of these channels.

Consider a resource theory (F ,O) of quantum states and operations. Given systems HA

and HA′ in the resource theory, the set of free operations from states on system A to system

A′ in this resource theory will be denoted OA,A′ . If OA,A′ is closed and convex, a channel E

from A to A′ is free if and only if it is in the conic hull cone(OA,A′). It is typically easier

to instead consider the Choi matrices of such channels, and consider the cone in the Choi

representation defined by K = cone(J(OA,A′)) as a subset K ⊆ H(HA′ ⊗HA), where J(OA,A′)

denotes the set of Choi matrices of channels in OA,A′ . The main idea of convex analysis that

is used in this chapter is that the dual cone K∗ = (J(OA,A′))∗ acts as the set of witnesses to

the set of free channels. That is, if E is a free channel, then 〈W,J(E)〉 ≥ 0 for all W ∈ K∗.

Furthermore, since OA,A′ is convex and closed, it holds that K∗∗ = K. This is an important

fact that will be utilized in this section.

The main result of this section is Theorem 6.1 which states the following. Given states

ρ1 ∈ D(HA1) and ρ2 ∈ D(HA2), and a closed convex cone K ⊆ H(HA2 ⊗HA1), there exists a

quantum channel E converting ρ1 to ρ2 such that J(E) ∈ K if and only if, for all σ ∈ D(HA2),

all W ∈ K∗, and all Y ∈ H(HA1), either

1A2 ⊗ Y 6≥ σ ⊗ ρT1 +W (6.1)
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or Tr(Y ) ≥ 〈σ, ρ2〉. In particular, if we can find operators σ ∈ D(HA2), W ∈ K∗, and

Y ∈ H(HA1) satisfying both 1A2 ⊗ Y ≥ σ ⊗ ρT1 + W and Tr(Y ) < 〈σ, ρ2〉, then it must be

the case that ρ1 cannot be converted to ρ2 with any quantum channel in the cone J(E) ∈ K.

This condition is a no-go conversion witness for convertibility.

The proof of this main result makes use of conic programming techniques introduced in

Section 3.4.2. In particular, the conic version of Farkas’ Lemma (Theorem 3.11), which gives

conditions for one or another systems of equations to have a solution (but not both), is used

to give the necessary and sufficient condition stated here.

As we shall see, this necessary and sufficient condition for convertibility can also be stated

in terms of computing the value of certain quantities, qc and MK,σ, which will be defined in

Section 6.1.1. The main result stating necessary and sufficient conditions for conversion are

stated in Section 6.1.2. Properties of the function MK,σ will be discussed in Section 6.1.3,

including conic program formulations.

6.1.1 A quantity related to Hmin

Let HA1 and HA2 be finite dimensional Hilbert spaces. A measure of “quantum correlations”

of density operators ρ ∈ D(HA2 ⊗HA1) is given by

qc(A2|A1)ρ := inf{Tr(Y ) |Y ∈ H(HB) s.t. 1A ⊗ Y ≥ ρ}. (6.2)

It is a measure of the amount of information that can be gained about system A2 by measuring

system A1. This quantity is related to the (conditional) quantum min-entropy [KRS09] of ρ

by

qc(A|B)ρ = 2−Hmin(A2|A1)ρ , (6.3)

which is a single-shot analog of the conditional quantum entropy [DMHB13]. The condi-

tional entropy measures the average uncertainty one has about system A2 after measuring

system A1, and it may be interpreted as the distance of ρ from a maximally entangled state
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[KRS09]. This concept is useful in quantum cryptography, for example in the context of

privacy amplification [VV14] and numerous other applications in single-shot quantum infor-

mation processing [Ren05, KRS09, TCR09].

If the systems A1 and A2 are clear from context, we simply write qc(ρ) for qc(A2|A1)ρ.

This function can also be extended to arbitrary operators Z ∈ H(HA2 ⊗ HA1) that are not

density operators,

qc(Z) := inf{Tr(Y ) |Y ∈ H(HA1) s.t. 1A2 ⊗ Y ≥ Z}, (6.4)

although it is unclear what the physical interpretation of qc(Z) is if Z 6≥ 0. Nonetheless, it

will play an important role in the analysis of convex resource theories in this chapter.

The function qc : H(HA2 ⊗ HA1) → R has the following useful properties. For a given

Z ∈ H(HA2 ⊗ HA1), the quantity qc(Z) can be computed from the following pair of dual

semidefinite programs:

maximize: 〈Z,X〉 minimize: Tr(Y )

subject to: TrA2(X) = 1A1 subject to: 1A2 ⊗ Y ≥ Z

X ∈ H(HA2 ⊗HA1), X ≥ 0 Y ∈ H(HA1)

(6.5)

Strict feasibility holds in both the primal and dual problems in (6.5), so strong duality follows

from Slater’s theorem (Theorem 3.10). Indeed, we may choose X = 1
Tr(1A2 )1A2 ⊗ 1A1 so that

X > 0 and TrA2(X) = 1A1 to see that the primal problem is strictly feasible, while we may

choose an operator Y > λmax(Z)1A1 such that 1A2 ⊗ Y > Z to see that the dual problem is

strictly feasible.

6.1.2 Condition for the existence of a channel in a cone

Let ρ ∈ D(H) and ρ′ ∈ D(H′) be states and let K ⊆ H(H′ ⊗ H) be a closed, convex cone.

In this section, we determine the necessary and sufficient conditions for the existence of a
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quantum channel E whose Choi matrix is in the cone J(E) ∈ K that converts ρ to ρ′.

The main result of this section is given in Theorem 6.1, which states useful necessary

and sufficient conditions for the existence of a channel in a cone K that converts one state

to another. Before stating the theorem, we must first define the following function. Given a

cone K ⊆ H(HA2 ⊗HA1) and a density operator, define the function MK,σ : D(HA1)→ R by

MK,σ(ρ) := inf
W∈K∗

qc(σ ⊗ ρT +W ). (6.6)

Further properties of this function, including a conic program formulation for its compu-

tation, will be explored in Section 6.1.3. Later, in Section 6.2, it will be shown that the

function MK,σ form a complete set of resource monotones in convex resource theories.

Theorem 6.1. Let HA1 and HA2 be Hilbert spaces, let K ⊆ H(HA2 ⊗ HA1)+ be a closed

convex cone, and let ρ1 ∈ D(HA1) and ρ2 ∈ D(HA2). The following are equivalent.

(i) There exists a quantum channel E such that J(E) ∈ K and E(ρ1) = ρ2.

(ii) For all σ ∈ D(HA2), all W ∈ K∗, and all Y ∈ H(HA1), if

1A2 ⊗ Y ≥ σ ⊗ ρT1 +W

then Tr(Y ) ≥ Tr(σρ2).

(iii) For all σ ∈ D(HA2) and all W ∈ K∗, it holds that

qc(σ ⊗ ρT1 +W ) ≥ Tr(σρ2). (6.7)

(iv) For all σ ∈ D(HA2), it holds that

MK,σ(ρ1) ≥ Tr(σρ2). (6.8)
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Here, qc and MK,σ are the functions defined in (6.4) and (6.6), respectively.

Proof. The proof of the equivalence of statements (i) and (ii) of Theorem 6.1 relies on conic

programming techniques, and follows directly from Lemma 6.2 (which is stated and proved

below).

The equivalence of statements (ii), (iii), and (iv) is straightforward from the definitions

of qc(·) and MK,σ(·). Indeed, consider an arbitrary density operator σ ∈ D(HA2). To prove

the equivalence of (ii) and (iii), let W ∈ K∗ be arbitrary. Then, by definition of qc(·) it

holds that qc(σ ⊗ ρT1 + W ) ≥ Tr(σρ2) for all Y if and only if Tr(Y ) ≥ Tr(σρ2) holds for all

Y satisfying 1A2 ⊗ Y ≥ σ ⊗ ρT1 + W . Analogously, by definition of MK,σ(·), it holds that

MK,σ(ρ1) ≥ Tr(σρ2) if and only if qc(σ ⊗ ρT1 +W ) ≥ Tr(σρ2) holds for all W ∈ K∗.

Lemma 6.2 provides the bulk of the proof of Theorem 6.1. Indeed, the equivalence of

statements (i) and (ii) of Theorem 6.1 follows directly from Lemma 6.2. A linear map

E : H(HA1)→ H(HA2) is a quantum channel if and only if its Choi representation X = J(E)

satisfies X ≥ 0 and TrA2(X) = 1A1 . Furthermore, it holds that E(ρ1) = ρ2 if and only if

TrA1(X(1A2⊗ρT1 )) = ρ2. Since we assume that K ⊆ H(HA2⊗HA1)+ (i..e, the cone is a subset

of the positive operators), any X ∈ K automatically satisfies X ≥ 0. The proof Lemma 6.2

of makes use of the conic version of Farkas’ Lemma (discussed in Section 3.4.3).

Lemma 6.2. Let HA1 and HA2 be Hilbert spaces, let K ⊆ H(HA2⊗HA1)+ be a closed convex

cone, and let ρ1 ∈ D(HA1) and ρ2 ∈ D(HA2). The following are equivalent.

(i) There exists X ∈ K so that TrA2(X) = 1A1 and TrA1(X(1A2 ⊗ ρT1 )) = ρ2.

(ii) For all Y1 ∈ H(HA1) and Y2 ∈ H(HA2), and all W ∈ K∗, if

1A2 ⊗ Y1 + Y2 ⊗ ρT1 ≥ W

then Tr(Y1) + Tr(Y2ρ2) ≥ 0.
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(iii) For all σ ∈ D(HA2), all W ∈ K∗, and all Y ∈ H(HA1), if

1A2 ⊗ Y ≥ σ ⊗ ρT1 +W

then Tr(Y ) ≥ Tr(σρ2).

Proof. The proof the equivalence of (i) and (ii) is an application of the conic version of

Farkas’ Lemma. Indeed, consider the linear map Φ : H(HA2 ⊗ HA1) → H(HA1) ⊕ H(HA2)

defined by

Φ(X) =

TrA2(X) 0

0 TrA1(X(1A2 ⊗ ρT1 ))

 .
Then an operator X ∈ H(HA2 ⊗HA1) satisfies TrA2(X) = 1A1 and TrA1(X(1A2 ⊗ ρT1 )) = ρ2

if and only if it satisfies

Φ(X) =

1A1 0

0 ρ2

 . (6.9)

The dual of this map is given by

Φ∗


Y1 ·

· Y2


 = 1A2 ⊗ Y1 + Y2 ⊗ ρT1 .

To make use of the conic version of Farkas’ Lemma, we first prove that Φ(K) is closed. Note

that

Φ∗


1A1 0

0 0


 = 1A2 ⊗ 1A1

and 1A2 ⊗ 1A1 ∈ int(H(H2 ⊗H1)) ⊆ int(K). Hence Φ(K) is closed by Lemma 3.12. By the

conic version of Farkas’ Lemma (Theorem 3.11), there exists an X ∈ K satisfying (6.9) if

and only if

Tr(Y1) + 〈Y2, ρ2〉 =
〈Y1 ·

· Y2

 ,
1A1 0

0 ρ2


〉
≥ 0
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holds for all Y1 ∈ H(HA1) and Y2 ∈ H(HA2) such that

Φ∗


Y1 0

0 Y2


 = 1A2 ⊗ Y1 + Y2 ⊗ ρT1 ∈ K∗. (6.10)

Since H(HA2⊗HA1)+ ⊆ K∗, the condition in (6.10) holds if and only if there exists aW ∈ K∗

such that

1A2 ⊗ Y1 + Y2 ⊗ ρT1 ≥ W.

Indeed, it holds that 1A2⊗Y1 +Y2⊗ρT1 ≥ W if and only if there is a positive operator P ≥ 0

such that 1A2 ⊗ Y1 + Y2 ⊗ ρT1 = P + W . Since P ∈ K∗ as well, it follows that P + W ∈ K∗

since K∗ is a cone. This completes the proof of the equivalence of (i) and (ii).

Note that the implication ¬(iii)⇒ ¬(ii) is clear, since any counter example to (iii) is also

a counter example to (ii). Indeed, if the operators W , σ, and Y provide a counterexample

to (iii), we may choose the operators Y1 = Y and Y2 = −σ to provide a counterexample to

(ii). So it remains to show that ¬(ii)⇒ ¬(iii). Suppose there exist operators Y1 ∈ H(HA1),

Y2 ∈ H(HA2), and W ∈ K∗ such that 1A2 ⊗ Y1 + Y2 ⊗ ρT1 ≥ W but Tr(Y1) + Tr(Y2ρ2) < 0.

We may choose a real number t > 0 such that

t

(
Y2 −

Tr(Y2)
Tr(1A2)1A2

)
≤ 1

Tr(1A2)1A2 .

Indeed, the value 1/t = dλmax(Y2)− Tr(Y2) suffices when Y 6∝ 1A2 . Then we may set

σ = 1
Tr(1A2)1A2 − t

(
Y2 −

Tr(Y2)
Tr(1A2)1A2

)

and Y = tY1 + 1 + tTr(Y2)
Tr(1A2) ρT1
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such that Tr(σρ2) = 1+tTr(Y2)
Tr(1A2 ) − tTr(Y2ρ2) and

Tr(Y ) = tTr(Y1) + 1 + tTr(Y2)
Tr(1A2)

< Tr(σρ2).

Note that t1A2 ⊗ Y1 ≥ t(−Y2 ⊗ ρT1 +W ) since t > 0, and thus

1A2 ⊗ Y = 1 + tTr(Y2)
Tr(1A2) 1A2 ⊗ ρT1 + t1A2 ⊗ Y1

≥ 1 + tTr(Y2)
Tr(1A2) 1A2 ⊗ ρT1 − tY2 ⊗ ρT1 + tW

= σ ⊗ ρT1 + tW,

where tW ∈ K∗, which yields a counterexample to (iii). This completes the proof.

Statements (ii) and (iii) of Theorem 6.1 are a sort of conversion witness since they give

simple conditions for when it is not possible to find a channel E in the cone K such that

E(ρ1) = ρ2. That is, if we can find a density operator σ ∈ D(HA′), along with a witness

W ∈ K∗ and an operator Y ∈ H(HA1), such that TrY < 〈ρ2, σ〉 but

1A2 ⊗X ≥ σ ⊗ ρT +W,

then it is not possible to find a channel in the cone that converts ρ1 to ρ2. This can be a useful

way to characterize when conversions between states in resource theories are not possible

without resorting to monotones. However, as we shall see in the next section, Theorem 6.1

can be used to construct a complete family of resource monotones for quantum resource

theories, which can be useful is certain cases.
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6.1.3 Properties of MK,σ

For a given cone K ⊆ H(HA2 ⊗ HA1)+, from the definition of MK,σ we see that the value

MK,σ(ρ) can be computed as the solution to the following optimization problem:

minimize: Tr(Y )

subject to: 1A2 ⊗ Y − σ ⊗ ρT1 ∈ K∗.
(6.11)

It is straightforward to see that (6.11) is the dual problem of a conic program whose primal

problem is:

maximize: Tr(X(σ ⊗ ρT ))

subject to: X ∈ K (6.12)

TrA2(X) = 1A1 .

We note that strong duality holds for the dual and primal problems given in (6.11) and

(6.12), respectively (as long as the cone K contains at least one quantum channel). Indeed,

the problem in (6.11) is always strongly feasible, since we may choose any Y > 1A1 such that

1A2 ⊗ Y − σ ⊗ ρ1 > 0. Then as long as the problem in (6.12) is feasible, the optimal values

of these two problems coincide. Thus the quantity Mσ(ρ) may be computed as the optimal

value of either problem.

There is another representation of the problem in (6.12) that is more natural from a

quantum informational perspective. The requirements that X ∈ K and TrA2(X) = 1A1

imply that X must be the Choi representation X = J(E) of some quantum channel E :

H(HA1)→ H(HA2) such that J(E) ∈ K. Furthermore, note that

〈J(E), σ ⊗ ρT 〉 = 〈σ, E(ρ)〉

183



for any quantum channel E . Hence the optimization problem in (6.12) may be written as

maximize: 〈σ, E(ρ)〉

subject to: J(E) ∈ K

E a quantum channel.

Hence, by strong duality, the quantities MK,σ(ρ) may be expressed as

MK,σ(ρ) = inf{〈σ, E(ρ)〉 | J(E) ∈ K}, (6.13)

where the infimum is taken over all quantum channels E .

For any σ, the fact that MK,σ(ρ) ≥ 〈σ, E(ρ)〉 holds for any channel E with J(E) ∈ K is

straightforward from the representation of MK,σ given in (6.13). Hence the condition that

MK,σ(ρ1) ≥ Tr(σρ2) for all σ ∈ D(HA2) (6.14)

is easily seen to be a necessary condition for the existence of a channel in the cone that

converts ρ1 to ρ2 (i.e., if there exists a E such that E(ρ1) = ρ2). However, the fact that the

condition in (6.14) is also a sufficient condition for the existence of a channel in the cone

is not straightforward, and application of the conic version of Farkas’ Lemma is required

to prove sufficiency. Finally, we state a few useful facts about MK,σ that will be used for

characterizing these functions as resource monotones in convex resource theories.

Proposition 6.3. Let HA1 and HA2 be finite-dimensional Hilbert spaces, let ρ ∈ D(HA1) and

σ ∈ D(HA2) be density operators, and let K ⊆ H(HA2 ⊗HA1)+ be a closed convex cone.

1. It holds that

0 ≤ λmin(σ) ≤MK,σ(ρ) ≤ λmax(σ) ≤ 1. (6.15)
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2. Suppose A1 = A2 = A. If J(idA) ∈ K then

MK,σ(ρ) ≥ 〈σ, ρ〉. (6.16)

Proof. To prove 1., let P ∈ H(HA2) be the projection operator onto the eigenvector of σ

with maximal eigenvalue such that Tr(σP ) = λmax(σ). Note that 0 ≤ λmax(σ) ≤ 1 since σ is

a density operator. Furthermore, computing the maximal eigenvalue of σ can be computed

from the semidefinite program

maximize: Tr(σX)

subject to: X ≥ 0 and Tr(X) = 1,

and E(ρ) satisfies both E(ρ) ≥ 0 and Tr E(ρ) = 1 since E is a quantum channel and ρ is a

density operator. It follows that MK,σ(ρ) ≤ 〈σ, P 〉 = λmax(σ).

Part 2. follows directly from the formulation of MK,σ given in (6.13), since

MK,σ(ρ) ≥ 〈σ, id(ρ)〉 = 〈σ, ρ〉

if the Choi representation of the identity channel resides in K.

6.2 Complete set of monotones for convex resource
theories

Theorem 6.1 of the previous section gives the main necessary and sufficient conditions for

conversion between resources in a resource theory that will be used in this thesis, but those

conditions are given only as conversion witnesses. This section outlines how resource mono-

tones can be constructed from these conditions using conic programs. The main result of

this section is Theorem 6.5, which states that, for a closed, convex quantum resource theory
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(F ,O), the family of functions {MO,σ}σ defined in (6.17) forms a complete set of resource

monotones. These monotones are indexed by all possible resource states σ in the resource

theory, and they can be computed as solutions to a conic programs.

Given a set of channels OA1,A2 from HA1 to HA2 , the set of Choi matrices of these channels

is J(OA1,A2) = {J(E) | E ∈ OA1,A2}. If OA1,A2 is closed and convex, then determining whether

a channel E is in OA1,A2 is equivalent to checking whether 〈W,J(E)〉 ≥ 0 for all witnesses in

the dual cone W ∈ (J(OA1,A2))∗. We now define the functions that will be used as resource

monotones in convex quantum resource theories.

Definition 6.4. Let (F ,O) be a quantum resource theory and let σ ∈ D(HA2) be any

density operator in the resource theory. The O-monotone with respect to σ is defined as

MO,σ(ρ) := inf
W∈J(OA1,A2 )∗

qc(σ ⊗ ρT +W ) (6.17)

for all states ρ ∈ D(HA1).

For convenience, it will often be useful to write the dual cone of the set of channels simply

as W = J(OA1,A2)∗. The remainder of this section is devoted to proving that the functions

{MO,σ}σ defined in (6.17) do in fact form a complete set of resource monotones. That is, we

will show that MO,σ(ρ) ≥MO,σ(E(ρ)) for any free operator E ∈ O and any resource states ρ

and σ, and that MO,σ(ρ) ≥MO,σ(ρ′) holds for all resource states σ if and only if ρ O−→ ρ′.

We first make a few useful remarks. In any resource theory (F ,O), note that ρ O−→ ρ

always holds for any resource state ρ since the identity map is always free. We now give

the main theorem of this section, which states that the functions MO,σ do in fact form a

complete set of monotones.

Theorem 6.5. Let (F ,O) be a closed and convex quantum resource theory. Let ρ1 ∈ D(HA1)

and ρ2 ∈ D(HA2) be density operators in the resource theory. The following are equivalent.

(i) It holds that ρ1
O−→ ρ2.
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(ii) For all σ ∈ D(HA2), all W ∈ (J(OA1,A2))∗, and all Y ∈ H(HA1), if

1A ⊗ Y ≥ σ ⊗ ρT +W (6.18)

then Tr(Y ) ≥ 〈σ, ρ2〉.

(iii) For all Hilbert spaces HA in the resource theory and all σ ∈ D(HA), it holds that

MO,σ(ρ1) ≥MO,σ(ρ2). (6.19)

Proof. The equivalence of (i) and (ii) has already been established in Theorem 6.1. To prove

that (i) implies (iii), suppose that ρ1
O−→ ρ2. Then there exists a free channel E ∈ OA1,A2 such

that E(ρ1) = ρ2. Note that E ′ ◦ E ∈ OA1,A for any free channel E ′ ∈ OA2,A, hence

MO,σ(ρ2) = MO,σ(E(ρ1))

= max{〈σ, E ′ ◦ E(ρ1)〉 | E ′ ∈ OA′,A′′}

≤ max{〈σ, E ′′(ρ1)〉 | E ′′ ∈ OA′,A′′}

= MO,σ(ρ1).

To prove the implication (iii)⇒(i), suppose that (6.19) holds for all σ. Note thatMO,σ(ρ2) ≥

〈σ, ρ2〉 holds for all σ ∈ D(HA2) since ρ2
O−→ ρ2 (since the identity channel idA2 is in OA2,A2).

Hence MO,σ(ρ1) ≥ 〈ρ2, σ〉 for all σ by assumption, which implies that ρ1
O−→ ρ2. This

concludes the proof.

As we have shown in Section 6.1.3, the monotones MO,σ can be computed as solutions

to conic programs. If the cone K = cone(J(OA1,A2)) can be defined in terms of semidefinite

constraints (that is, if the constraint that dictates when a channel E is in O can be written as

a semidefinite constraint), then these monotones can furthermore be computed as solutions

to semidefinite programs. This will be the case in many of the examples that are studied in
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the next section.

Note that any monotoneMO,σ defined this way is constant on all free states in the resource

theory. We can compare the resource monotones for different states σ. If σ is a pure free

state, i.e., σ = |ψ〉〈ψ| and σ ∈ F (H), then the monotone is constant Mσ(ρ) is constant for

all states ρ. Indeed, if σ is free then the completely positive trace-preserving map defined

by X 7→ Tr(X)σ must be a free operation. Hence

MO,σ(ρ) ≥ 〈σ, σ〉 = 1

for all resource states ρ. However, any such monotone must satisfy MO,σ(ρ) ≤ 1 for all ρ,

hence MO,σ(ρ) = 1 for all ρ if σ is pure and free. It remains unclear how to interpret the

monotonicity of MO,σ for different states σ that are not free.

6.3 Maximal quantum resource theories

We now consider resource theories in which the set of free operations is the maximal set of

resource non-generating quantum channels for a given family of convex sets of free states.

The structure of the dual cone of witnesses for detecting when a channel is free in these

resources has s simple structure. It is based on the cone of witnesses for the set of free states

in these resource theories. We then discuss some abstract mathematical examples of these

resource theories, such as affine resource theories (first introduced in [Gou16]) and polytopic

resource theories, in which the resource theories have a simple structure and semidefinite

programming can be exploited.

It must first be defined what we mean when the free operations of a resource theory are

maximal. Such a resource theory has the largest possible family of free operations given

a family of free states. In particular, the resource theory is completely determined by the

structure of its free states, and such a resource theory is constructed as follows. Consider

188



a family F = {F (H)}H of subsets of density matrices on finite-dimensional hilbert spaces,

such that F (H) ⊆ D(H) for each H in the family. Define the resource theory that has this

family of states as its free resources, and whose family of free operations consists exactly of

all of the quantum channels E ∈ C(H,H′) that are resource non-generating with respect to

this family of free states. Here, a quantum channel is said to be resource non-generating

with respect to a family of free states F if E(ρ) ∈ F (H′) for all ρ ∈ F (H). If O(H,H′) is

the set of all resource non-generating channels for each set of free states F (H) and F (H′),

the resulting resource theory (F ,O) is maximal.

In the case when the free states are the bipartite separable states, the corresponding max-

imal resource consists of the so-called non-entangling operations (or separability preserving

operations) [BP08, BP09, BD11]. This family of bipartite quantum channels consists of

all the operations that do not generate entanglement given a separable input. The family

of non-entangling operations is much larger than LOCC, but LOCC is much more diffi-

cult to describe mathematically. Studying the larger (but unphysical) resource theory of

non-entangling operations still allows us to make important statements about entanglement

theory.

We now study resource theories that are both convex whose family of free operations

is the maximal set of resource non-generating ones. We first examine the structure of the

dual cone of witnesses to the sets of free channels in such resource theories. Let F (H) and

F (H′) be closed convex sets of density operators on hilbert spaces H and H′, and consider

O(H,H) to be the maximal set of resource non-generating channels with respect to these

sets of free states. Then a channel E : L(H) → L(H) in this resource theory is free if and

only if E(ρ) ∈ F (H′) for all ρ ∈ H. The dual witness cone for the set of free states on H′ is

F (H′)∗ = {W ∈ L(H) | 〈W,σ〉 ≥ 0 ∀σ ∈ F (H′)}.

Since F (H′) is convex and closed, for a given σ ∈ D(H′) it holds that σ ∈ F (H′) if and
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only if 〈W,σ〉 ≥ 0 for all W ∈ F (H′)∗. Then E is a free channel if and only if

0 ≤ 〈W, E(ρ)〉

= 〈W ⊗ ρT , J(E)〉

for all W ∈ F (H′)∗ and all ρ ∈ F (H). Hence the dual witness cone for the maximal set of

resource non-generating channels is given by

W = J(O(H,H′))∗ = cone{W ⊗ ρT |W ∈ F (H′)∗, ρ ∈ F (H)} (6.20)

such that a channel E is free if and only if 〈W,J(E)〉 ≥ 0 for all W ∈ W .

6.3.1 Examples of quantum resource theories with maximal sets
of free operations

Affine resource theories

A quantum resource theory (F ,O) is said to be affine if any state ρ ∈ D(H) that is affine

combination of free states in F (H) is also free. That is, it holds that

aff(F (H)) ∩D(H) = F (H)

for all systems H in the resource theory. For example, the resource theories of coherence and

thermodynamics are affine. Any affine subset is closed and convex, and the set of density

operators on H is closed and convex, so F (H) must also be closed and convex since it is the

intersection of two closed, convex sets. Hence the free states of any affine resource theory

are also convex. If we consider the set of free operations to be maximal, we may therefore

apply the observations above. Affine resource theories have been studied in [Gou16].

Consider an affine resource theory (F ,O). Define the subspaces of hermitian operators
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V = spanR(F (HA)) and V ′ = spanR(F (HA′)). Then a channel E : L(HA)→ L(HA′) is “free”

in this resource theory if and only if E(V) ⊂ V ′. The Choi matrix of a free map must satisfy

〈J(E), Y ⊗XT 〉 = 0

for all X ∈ V and all Y ∈ V ′⊥. Define the set

W = cone({Y ⊗XT |X ∈ V , Y ∈ V ′⊥}) (6.21)

Note that W ⊆ H(HA′ ⊗ HA) is actually a subspace, and is defined such that J(E) is the

Choi matrix of a free map if and only if 〈J(E),W 〉 = 0 for all W ∈ W . Applying Theorem

6.5 to these resource theories, we have the following result.

Theorem 6.6. Consider an affine resource theory (F ,O) where the sets of free states are

affine and the family of free operations is maximal. Let ρ ∈ D(HA) and ρ′ ∈ D(HA′) be

density operators in this resource theory. The following are equivalent.

(i) There exists a affine resource non-generating channel E such that E(ρ) = ρ′.

(ii) For all σ ∈ D(HA′), all W ∈ W defined in (6.21), and all Y ∈ H(HA), if

1A′ ⊗ Y ≥ σ ⊗ ρT +W

then Tr(Y ) ≥ 〈σ, ρ′〉.

(iii) For all density operators σ ∈ D(HA′), it holds that

MO,σ(ρ) ≥MO,σ(ρ′)
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where MO,σ is defined by

MO,σ(ρ) = inf
W∈W

Y ∈H(HA)

{
Tr(Y )

∣∣∣1A′ ⊗ Y −W ≥ σ ⊗ ρT
}
. (6.22)

Since W is a subspace of H(HA′ ⊗HA), evaluation of the optimization in (6.22) can be

obtained as the solution to a semidefinite program. Indeed, given bases {V1, . . . , Vn} and

{V ′1 , . . . , V ′m} of V and V ′⊥ respectively, anyW ∈ W can be written asW = ∑
j,k wj,kV

′
j ⊗V T

k

for some real numbers wj,k ∈ R.

Polytopic resource theories

Here we consider quantum resource theories in which the set of free states F (H) ⊆ D(H) is

always a polytope. A polytope is the convex hull of finitely many points

F (H) = conv{P1, . . . , Pn}.

with P1, . . . , Pn ∈ D(H). Alternatively, this polytope can be described as the intersection of

a finite collection of half spaces

F (H) = {ρ | ρ ≥ 0, Tr(ρ) = 1, 〈ρ,Qj〉 ≥ 0 for all j = 1, . . . , N}

for some finite collection of operators {Qj} ⊆ H(H) which defines the faces of the polytope.

In such a resource theory, we can consider the set of free operations to be the maximal set

of quantum channels that bring free states to free states. That is, a channel E is free if

E(F (H′)) ⊆ F (H). Since the set of free states is a polytope, a operation is free if and only

if it maps all of the extreme points of the polytope into the polytope. These “polytope-

preserving” maps are exactly the resource non-generating operations in this resource theory.
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That is, a channel E is free if and only if

〈E(Pk), Qj〉 ≥ 0

for all j and k, where {Pk} are the vertices of the polytope and {Qj} are operators that

define the faces of the polytope. This is equivalent to the fact that the Choi matrix J(E)

must satisfy

〈J(E), Qj ⊗ P T
k 〉 ≥ 0

for all j and k. Consider the closed convex cone

W = cone({Qj ⊗ P T
k | j, k}) (6.23)

=
{∑
j,k

pjkQj ⊗ P T
k

∣∣∣∣ pjk ≥ 0
}
.

Then W is the dual cone of witnesses to the set of free channels that preserve the polytope.

That is, E is free if and only if 〈W,J(E)〉 ≥ 0 holds for all W ∈ W (i.e., if J(E) ∈ W∗). We

can now apply Theorem 6.5 to the polytopic resource theories to see that the functionsMO,σ

defined by the semidefinite program

MO,σ(ρ) = minimize: Tr(Y )

subject to: pjk ≥ 0

1A2 ⊗ Y −
∑
j,k

pjkQj ⊗ P T
k ≥ σ ⊗ ρT

form a complete set of resource monotones.

Theorem 6.7. Consider a polytopic resource theory as defined above, where the set of free

states is a polytope and the set of free operations consists all polytope-preserving channel.

Let ρ, ρ′ ∈ D(H) be density operators, and let K be the cone defined in (6.23). The following

are equivalent.
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(i) There exists a polytope-preserving channel E such that E(ρ) = ρ′.

(ii) For all σ ∈ D(H), all pjk ≥ 0, and all Y ∈ H(H), if

1⊗ Y ≥ σ ⊗ ρT +
∑
j,k

pjkQj ⊗ P T
k

then Tr(Y ) ≥ 〈σ, ρ′〉.

(iii) For all density operators σ ∈ D(H), it holds that MO,σ(ρ) ≥MO,σ(ρ′).

The resource monotones MO,σ(ρ) in this resource theory can be computed as solutions

to semidefinite programs. As an example of a polytopic resource theory that appears in

quantum information theory is the resource theory of magic states (or non-stabilizer states)

[DAGS17], which has useful applications in quantum computation. The free resources in

this resource theory are the stabilizer states.

6.4 Applications to entanglement theory

We now consider resource theories of states and operations on bipartite systems, which will

give interesting results relating to entanglement theory. In particular, the results from the

study of general convex resource theories discussed earlier in this chapter will be used to

study the resource theories of separable operations and of PPT operations.

Given two bipartite systems HA1⊗HB1 and HA2⊗HB2 , we use the shorthand A = (A1A2)

and B = (B1B2) to denote the systems corresponding to Alice and Bob separately, and we

write

HA2 ⊗HB2 ⊗HA1 ⊗HB1 = HA2B2 ⊗HA1B1

= HAB

for simplicity. The set of bipartite channels L(HA1B1)→ L(HA2B2) is denoted C(HA1B1 ,HA2B2).

194



Given a quantum channel E on these systems, its Choi representation is a operator on the

space J(E) ∈ H(HAB).

The framework of convex resource theories applied to separable operations is presented

in Section 6.4.1. It will be shown that any finite approximation to the set of separable

operations necessarily yields a resource theory with no bound entanglement. In particular,

there will be two-qubit entangled states that are free in such a resource theory. The study of

PPT states and operations as a resource theory is presented in Section 6.4.1. Convertibility

of resources in this resource theory, and the computation of the complete set of resource

monotones, can be cast as semidefinite programs in this case.

6.4.1 Resource theory of separable operations

Recall that a bipartite quantum channel E : L(HA1B1)→ L(HA2B2) is said to be separable if its

Choi matrix J(H) ∈ H(HAB) is separable with respect to the A : B bipartition, i.e., if J(E) ∈

Sep(HA : HB). The resource theory of separable operations is the resource theory of bipartite

hilbert spaces in which the free states and free channels are the separable ones. Separable

operations were first studied in [Rai97, VP98], and the set of separable channels was shown

to be strictly larger than the set of LOCC channels in [BDF+99]. Transformations between

pure states using separable operations has been studied in [GG07, GG08, Ghe10], while

asymptotic distillation of entanglement using separable operations was studied in [Rai97].

The relationships between separable operations and LOCC have been studied in [SRBL17].

We now use the framework for studying convex resource theories to study the resource

theory of separable operations. Let WA:B = (Sep(HA : HB))∗ be the dual cone of entangle-

ment witnesses for the cone of separable operators on this space, such that 〈W,X〉 ≥ 0 for

all witnesses W ∈ WA:B and all separable positive operators X ∈ Sep(HA : HB). Then a

channel E ∈ C(HA1B1 ,HA2B2) is separable if and only if 〈W,J(E)〉 ≥ 0 holds for all elements

of the cone W ∈ WA:B. We may now apply Theorem 6.5 to the resource theory of separable

operations.
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Theorem 6.8. Let ρ1 ∈ D(HA1B1) and ρ2 ∈ D(HA2B2) be bipartite density operators. The

following are equivalent.

1. There exists a separable channel E such that E(ρ1) = ρ2.

2. For all σ ∈ D(HA2B2), all entanglement witnesses W ∈ WA:B, and all Y ∈ H(HA1B1), if

1A2B2 ⊗ Y ≥ σ ⊗ ρT1 +W

then Tr(Y ) ≥ 〈σ, ρ2〉.

3. For all σ ∈ D(HA2B2), it holds that MSep,σ(ρ1) ≥MSep,σ(ρ2),

where MSep,σ(ρ) is the separable resource monotone defined by

MSep,σ(ρ) = inf
W∈WA:B

Y ∈H(HA1B1 )

{TrY |1A2B2 ⊗ Y −W ≥ σ ⊗ ρT1 }.

The functions MSep,σ(ρ) form a complete set of resource monotones for the resource

theory of separable operations, and they can be computed as the solution to a conic program.

These monotones are not necessarily useful in practice, however, since the it cannot be cast

as a semidefinite program. Indeed, the cone of entanglement witnesses WA:B is difficult to

characterize computationally.

Finite approximations to separable operators

We can instead try to simplify this resource theory mathematically by considering a polytope

approximation to the set of separable operations. To do this, consider only a finite collection

of entanglement witnesses {Wi}ni=1 where each Wi ∈ WA:B is an entanglement witnesses, and

define

W̃A:B = cone({Wi}ni=1)
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as the conic closure of these witnesses. We see that W̃A:B ⊂ WA:B and this containment is

strict. Indeed, a finite collection of witnesses cannot be used to detect all entangled operators,

since that would contradict the hardness of the separability problem [Gur03]. Hence the dual

cone to W̃A:B is strictly larger than the cone of separable operators Sep(HA :HB). Define

K = (W̃A:B)∗ as this dual cone, then K ⊂ Sep(HA :HB) and this cone is also a polytope. We

can now consider a resource theory whose free operations are those that are contained in

K. It will be shown that any such resource theory must have some entangled states as free

resources. In particular, there cannot exist bound entanglement in such a resource theory.

Using Theorem 6.1, we can give necessary and sufficient conditions for conversion of

resources within this resource theory. Let ρ1 ∈ D(HA1B1) and ρ2 ∈ D(HA2B2) be bipartite

density operators. Then there exists a channel E ∈ K = (W̃A:B)∗ such that E(ρ1) = ρ2 if and

only if, for all σ ∈ D(HA2B3), all W ∈ W̃A:B, and all Y ∈ H(HA1B2),

1A2B2 ⊗X ≥ σ ⊗ ρT1 +W (6.24)

implies that Tr(Y ) ≥ 〈σ, ρ2〉.

Next note the following fact about entanglement witnesses on HAB = HA2B2A1B1 . Given

any W ∈ WA:B, the partial trace of W over A1B1, which we write as

W (A2B2) = TrA1B1(W ),

is an entanglement witness for operators on HA2B2 . Indeed, let ρ ∈ D(HA2B2) be a separable

density matrix. Then

〈W (A2B2), ρ〉 = 〈W, ρ⊗ 1A1B1〉

≥ 0

since ρ⊗1A1B1 ∈ H(HAB) is separable with respect to A : B. In fact, the operator ρ⊗1A1B1 is
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exactly the Choi representation of the constant channel that discards the input system and

produces ρ.

Consider now the entanglement witnesses {W (A2B2)
i }ni=1, where the Wi are the witnesses

given earlier. By the above observation, each W (A2B2)
i is an entanglement witness for states

on HA2B2 . Since {W
(A2B2)
i }ni=1 is only a finite collection of entanglement witnesses, there must

exist a two-qubit entangled state ρ2 that is not detected by these witnesses. That is, there

exists a ρ2 that is entangled but that 〈W (A2B2)
i , ρ2〉 ≥ 0 for each of these witnesses.

Let ρ1 ∈ D(HA1B1) be any density matrix. We will show that there exists a free channel

in this resource theory such that E(ρ1) = ρ2. Indeed, let σ ∈ D(HA2B2), W ∈ W̃A:B, and

Y ∈ H(HA1B1) be arbitrary such that TrY < 〈σ, ρ2〉. We will show that (6.24) does not hold.

Note that ρ2 ⊗ 1A1B1 ≥ 0, but

〈1A2B2 ⊗ Y − σ ⊗ ρT1 −W, ρ2 ⊗ 1A1B1〉 = Tr(Y )− 〈σ, ρ2〉︸ ︷︷ ︸
<0

−〈W (A2B2), ρ2〉︸ ︷︷ ︸
≥0

< 0.

So it must be the case that 1A2B2⊗X−σ⊗ρT1 −W 6≥ 0. This completes the proof that there

exists a free channel in this resource theory such that E(ρ1) = ρ2. Since ρ1 was arbitrary, yet

ρ1
W̃∗−−→ ρ2, it follows that ρ2 must be free in this resource theory (since ρ2 can be obtained

by every other resource state in the resource theory).

In particular, this implies that any polytope approximation to the set of separable chan-

nels must contain an entangling channel that maps a separable state to a two-qubit entangled

state. While only the single-shot case is considered here, this also has important implications

to the asymptotic case for this resource theory, in which the free operations are defined as

some polytope approximation to the separable channels. Every two-qubit entangled state

is distillable using separable operations, so any such state must also be distillable using the

operations in the cone K (the polytope approximation to the set of separable operations

used here). Hence, in this resource theory, arbitrary amounts of entanglement could be dis-

198



tilled out of any state (including any separable state). This is remarkable, since any finite

approximation to the set of separable channels leads to a resource theory in which arbitrary

amounts of entanglement are free.

Separable states are always obtainable via separable operations

We now show that transformations from any state ρ1 to any separable state ρ2 is always

possible in SEP. Indeed, we will show that if ρ1 → ρ2 is not possible via separable operations,

then it must be that ρ2 is entangled. This fact is already well known, and it is something

that we already implicit assumed in order to consider the separable operations as a resource

theory. However, it is important to prove this here using the formalism for convex resource

theories to show the effectiveness of this formalism.

Let ρ1 ∈ D(HA1B1) and ρ2 ∈ D(HA2B2) be any arbitrary bipartite density operators and

suppose ρ1 → ρ2 is not possible by separable operations. Then there must exist a density

operator σ ∈ D(HA2B2), an entanglement witness W ∈ WA:B ⊂ H(HA2B2A1B1), and some

Y ∈ H(HA1B1) such that

1A2B2 ⊗ Y − σ ⊗ ρT1 −W ≥ 0 (6.25)

but Tr(Y ) < 〈σ, ρ2〉. Since the operator in (6.25) is positive definite and the operator

ρ2 ⊗ 1A1B1 ≥ 0 is nonzero, it follows that

0 ≤ 〈1A2B2 ⊗ Y − σ ⊗ ρT1 −W, ρ2 ⊗ 1A1B1〉

= Tr(Y )− 〈σ, ρ2〉 − 〈W (A2B2), ρ2〉.

Then 〈W (A2B2), ρ2〉 < 0 since Tr(Y ) − 〈σ, ρ2〉 < 0. Hence W (A2B2) = TrA1B1(W ) is an entan-

glement witness for ρ2 and thus ρ2 must be entangled.
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6.4.2 Resource theory of PPT operations

Recall that a channel E ∈ C(HA1B1 ,HA2B2) is PPT if its Choi representation is PPT with

respect to the bipartite splitting A : B. That is, if its Choi matrix J(E) ∈ H(HAB) satisfies

J(E)TB ≥ 0, where TB = TB1B2 represents the operation that transposes Bob’s systems. Hence

a channel E is PPT if and only if

〈J(E), XTB〉 ≥ 0 and 〈J(E), X〉 ≥ 0

hold for all X ∈ H(HAB) with X ≥ 0. So we may take the W to be the set

W = {X + Y TB |X, Y ∈ H(HAB), X ≥ 0 and Y ≥ 0}

so that W is the dual cone of witnesses to the PPT channels. There is another useful

characterization of PPT channels that is presented in the following lemma.

Lemma 6.9. Let E ∈ C(HA1B1 ,HA2B2) be a bipartite quantum channel. Then E is a PPT

channel if and only if the map ETB : L(HA1B1)→ L(HA2B2) is completely positive, where ETB

is defined by

ETB(X) = E(XTB1 )TB2

for all X ∈ L(HA1B1).

Proof. It is straightforward to show that the Choi matrix of the map ETB is given by J(ETB) =

J(E)TB , and thus J(E)TB ≥ 0 if and only if J(ETB) ≥ 0.

The composition of PPT channels is a PPT channel. Indeed, if E and E ′ are PPT

channels, then

(E ′ ◦ E)TB = TB ◦ E ′ ◦ E ◦ TB

= E ′TB ◦ E ′TB ,
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which is completely positive since the composition of completely positive maps is completely

positive. Furthermore, the identity channel is PPT and a PPT channel applied to a PPT

state always yields another PPT state. Hence we may consider the resource theory of PPT

states and channels, where the free states are PPT states and the free operations are the

PPT channels. Furthermore, the sets of PPT states and channels are closed and convex,

so we may apply the formalism of convex quantum resource theories to the PPT resource

theory.

Theorem 6.10. Let ρ1 and ρ2 be bipartite states. The following are equivalent.

(i) There exists a PPT channel E such that E(ρ1) = ρ2.

(ii) For all σ ∈ D(HA2B2), all Z ∈ H(HAB) with Z ≥ 0, and all Y ∈ H(HA1B1), if

1A2B2 ⊗X ≥ σ ⊗ ρT + ZTB

then Tr(Y ) ≥ 〈σ, ρ2〉.

(iii) For all σ ∈ D(HA2B2), it holds that

MPPT,σ(ρ1) ≥MPPT,σ(ρ2)

where MPPT,σ can be computed from the following semidefinite program:

minimize: Tr(Y )

subject to: Y ∈ H(HA1B1), Z ∈ H(HAB)+

1A2B2 ⊗ Y − ZTB ≥ σ ⊗ ρT

In particular, we see that we can characterize conversion of bipartite states in the resource

theory of PPT operations by means of a complete set of SDP-computable monotones. The
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following matlab code can be used to compute the value of the PPT monotone MPPT,σ(ρ)

using cvx for semidefinite programming. In the code, we use dA1, dB1, dA2, and dB2 to

denote the dimensions of HA1 , HB1 , HA2 , and HB2 .

d1 = dA1*dB1;
d2 = dA2*dB2;
cvx_begin sdp

variable Z(d1*d2,d1*d2) hermitian
variable Y(d1,d1) hermitian
minimize trace(Y)
subject to

Z >=0;
kron(eye(d2),Y) - PartialTranspose(Z,[2,4],[dA2,dB2,dA1,dB1])

>= kron(sigma,transpose(rho));
cvx_end

Note that the monotones MPPT,σ must necessarily be constant on all PPT states. To

make the monotones also faithful (i.e., so that MPPT,σ(ρ) = 0 for all “free” PPT states ρ),

we can define M̃PPT,σ(ρ) := MPPTσ(ρ) −MPPTσ(1A1B1/d1) such that M̃PPT,σ(ρ) = 0 for all

PPT states. Examples of the results from computing monotones of this form are displayed

in Figure 6.1. For two different two-qubit states (one randomly generated entangled state

σ1 and the maximally entangled state σ2 = |φ+〉〈φ+|), the monotones M̃PPT,σ1 and M̃PPT,σ2

have been computed for 100 randomly generated two-qubit states ρ. The negativity, another

monotone under PPT operations that is well known, is compared to both monotones. The

behaviors and physical interpretations of these monotones are not yet understood, but it

is clear that they are distinctly different from the negativity and from each other. All

computations were performed using matlab, and evaluations of the monotones M̃PPT,σ

were performed using the code displayed above.
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(a) Comparison of the monotone M̃PPT,σ1(ρ)
to the negativity for randomly generated two-
qubit states, where σ1 is a fixed random two-
qubit state.
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(b) Comparison of the monotone M̃PPT,σ2(ρ)
to the negativity for randomly generated two-
qubit states, where σ2 = |φ+〉〈φ+| is the maxi-
mally entangled state of two qubits.

Figure 6.1: Comparison of different PPT monotones to the negativity for 100 randomly
generated states of two qubits.

6.5 Conclusion

Resource theories of quantum states are frameworks within the formalism of quantum infor-

mation theory in which the allowed transformations that may be performed on the states of

systems interest are restricted. Such a restriction induces a hierarchy among states where

more “resourceful” states can be mapped to less resourceful ones via the allowed trans-

formations. For example, in the well-studied theory of entanglement, the set of allowable

transformations of bipartite states is restricted to only the ones that can be implemented

with LOCC. Significant progress has been made toward the construction and classification

of quantum resource theories in general [HO13, CFS16], but most work in this area concerns

quantum resource theories in the asymptotic regime, where rates of conversion are considered

in the limit of a large number of identical systems [GS08, BH15]. In practical applications

where the resources available are only finite, different tools must be used.

This chapter presented a framework for conversion among resources in convex resource

theories in the single-shot regime in quantum information. The question of convertibility of

states can, in many resource theories, be cast in terms of a feasibility semidefinite program
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[Gou16], or more generally as a conic program. This representation of the question of

convertibility makes use of the Choi matrix representation of a quantum operation. While

this formulation is useful in its own right, making use of duality relations for conic programs

allowed us to find tractable necessary and sufficient conditions for convertibility of resources

within certain quantum resource theories. These conditions can be given as a complete

family of resource monotones, and these monotones can be computed in practice by means

of a semidefinite program in cases where the resource theory has a simple mathematical

structure. In particular, we investigated a complete family of monotones for affine and

polytopic resource theories, as well as for the resource theory of PPT operations, where the

semidefinite program falls out of the mathematical structure of the theory.

So far, this method of using duality properties of conic programs has been used to char-

acterize when exact transformations are possible within a resource theory. In physical im-

plementations of quantum information, however, exact copies of desired resources are not

necessary, and only an approximation of the target state is necessary. It may be possible to

explore convertibility in resource theories for the case when only approximate transforma-

tions are desired. That is, using this formalism of conic programs one may be able to find

necessary and sufficient conditions that determine when a transformation exists that yields

the desired outcome state up to some approximation. This question can also be cast in terms

a semidefinite program in some cases. This might also be able to produce new monotones

that can be used to test for convertibility up to some approximation.

Some of the results in this chapter yield interesting implications regarding the resource

theory of entanglement. In particular, we showed that any finite approximation to the set

of separable operations leads to a resource theory in which arbitrary amounts of entangle-

ment can be extracted asymptotically from any state. This highlights the fine structure of

entanglement, since the resource theory of separable operations alone leads to bound entan-

glement. It may also be possible to apply this formalism of convex resource theories to other

approximations to the set of channels that can be implemented by LOCC. We may consider,
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for example, the set k-extendible maps [PBHS11], defined as the set of channels whose Choi

representation is k-extendible. The class of k-extendible maps are directly related to the

criteria of entanglement based on k-extendability of states, an important method in the de-

tection of entanglement [DPS05, BD11, NOP09]. This class of maps can be described easily

mathematically, and the question of convertibility can be cast as a semidefinite program.
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Appendix A

Pure to isotropic conversion witness

For a fixed Schmidt vector λ we define

fk(µ) = Ek(λ)− Ek(µ),

and write this as fk(µ) = µ1 + · · ·+ µk − (λ1 + · · ·+ λk). The goal is to compute

Wiso(λ,µ) = max
µ

min
k
fk(µ).

This can be split into d−1 separate optimization problems as follows. For each k ∈ {1, . . . , d−

1}, we maximize fk(µ) over all µ for which k yields the minimum. That is, maximize over

all µ for which fk(µ) ≤ f`(µ) for all ` ∈ {1, . . . , d− 1}. Minimizing this over all k yields the

desired result

Wiso(λ,µ) = min
k

[
max
µ
{fk(µ)|fk(µ) ≤ f`(µ) for all `}

]

where the maximizations are taken over all Schmidt vectors satisfying ∑d
i=1
√
µi =

√
db.
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For each k, these suboptimization problems can be rewritten as follows:

maximize:
k∑
i=1

µi

subject to:
d∑
i=1

µi = 1

d∑
i=1

√
µi =

√
db

∑̀
i=2

µi ≤
∑̀
i=2

λi for all ` ∈ {1, . . . , k − 1}

`+1∑
i=k+1

λi ≤
`+1∑
i=k+1

µi for all ` ∈ {k + 1, . . . , d− 1}.

There are d constraints for these d-dimensional optimization problems, so we may use the

method of Lagrange multipliers to find optimal solutions.
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Appendix B

Proofs for the conic version of Farkas’
Lemma

This appendix supplies proofs of Theorem 3.11 and Lemma 3.12 for the conic version of

Farkas’ Lemma. Proofs of these results can be found in many textbooks on convex analysis.

However, for completeness and because of our use of nonstandard notation, we include proofs

of the main results from the theory of conic programs here.

Proof (of Theorem 3.11). It is easy to see that both statements cannot hold simultaneously.

Indeed, suppose (i) holds and let Y ∈ H(H) such that Φ∗(Y ) ∈ K∗. Then

〈Y,B〉 = 〈Y,Φ(X)〉 = 〈Φ∗(Y ), X〉 ≥ 0

since Φ∗(Y ) ∈ K∗ and X ∈ K, and thus (ii) does not hold. Suppose instead that (i) does not

hold. Since Φ(K) is a closed and convex cone, and B 6∈ Φ(K), by the hyperplane separation

theorem there exists Y ∈ W with Y 6= 0 such that

〈Y,Φ(X)〉 ≥ 0 > 〈Y,B〉

for all X ∈ K. Thus 〈Y,B〉 < 0 and 〈Φ∗(Y ), X〉 ≥ 0, so Φ∗(Y ) ∈ K∗. This completes the
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proof.

Proof (of Lemma 3.12). Let {Yi} be a Cauchy sequence in Φ(K). Then this sequence con-

verges to some Y ∈ H(H′). We will show that Y ∈ Φ(K). Since {Yi} is bounded, there is a

real number c > 0 such that

〈Yi, Z〉 ≤ c

for all i. Since Yi ∈ Φ(K), there exists Xi ∈ K such that Yi = Φ(Xi) for all i. If Y = 0 then

Y ∈ Φ(K), so we may suppose without loss of generality that Yi 6= 0, and thus Xi 6= 0 for

all i. Hence

〈Yi, Z〉 = 〈Xi,Φ∗(Z)〉 > 0

for all i since Φ∗(Z) ∈ int(K∗).

Define the sequence {X̃i} by X̃i = Xi/‖Xi‖. Clearly {X̃i} is bounded and X̃i ∈ K. Since

K is closed, the sequence has at least one accumulation point in K which we denote X̃. Note

X̃ ∈ K and X̃ 6= 0, hence 〈X̃, Z〉 > 0. Furthermore, for each i it holds that

0 < 〈X̃i, Z〉 ≤
1
‖Xi‖

c.

Suppose now that {Xi} were unbounded, then 〈X̃i, Z〉 → 0 since ‖Xi‖ → ∞. But this is

a contradiction, since limi→∞〈X̃i, Z〉 = 〈X̃, Z〉 > 0. Hence {Xi} must be bounded and the

sequence must have at least one accumulation point X ∈ K such that Φ(X) = Y . This

completes the proof.
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Appendix C

Code for convex optimization
problems

This appendix shows the matlab code for implementing the algorithms presented in 4.6 for

computing the relative entropy of entanglement, the Rains bound, and the Rényi relative

entropies of entanglement. This code can be found online at [Gir15].

C.1 Relative entropy of entanglement

1 function [Xopt,uBound,lBound,outerCount] = ...

relEntropy(m,n,A,eps,maxIter,lineSearchEps)

2 %

3 % relEntropy

4 %--------------------

5 % Approximates the relative entropy of entanglement (REE) of a density

6 % matrix of an mxn bipartite system (relative to PPT states).

7 % -Uses CVX solver for semidefinite programming (http://cvxr.com/cvx/).

8 % -Uses PartialTranspose from QETLAB (http://www.qetlab.com) to compute

9 % partial transposes of matrices.
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10 % ...

(https://github.com/nathanieljohnston/QETLAB/blob/master/PartialTranspose.m)

11 %

12 % Standard usage: [Xopt,relEntr]=relEntropy(m,n,A)

13 % Variables:

14 % m,n - dimensions of the subsystems

15 % A - density matrix whose REE we are trying to compute

16 % Xopt - optimal PPT matrix that minimizes the relative entropy

17 % relEnt - output upper bound of relative entropy of entanglement

18 %

19 % Optional inputs with defaults:

20 % relEntropy(m,n,A,eps,maxIter,lineSearchEps)

21 % eps - precision such that |uBound-lBound|<eps (default: ...

eps = 1e-5)

22 % maxIter - max number of iterations (default: maxIter = 200)

23 % lineSearchEps - precision of intermediate line search (default: ...

lineSearchEps = 1e-10;)

24 %

25 % We define a function traceAlogmA to compute trace(A*logm(A))to accept

26 % rank-defficnent matrices.

27

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29 %%%%%% Check the input arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%

30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

31 if nargin<3

32 error('Not enough arguments; input m,n,A')

33 end

34 % check if A is indeed positive semi-definite

35 if min(eig(A))<-1e-12 || max(max(abs(A-A')))>1e-12 || ...

max(size(A) 6=[m*n,m*n])

36 error('A must be positive semi-definite (mn x mn)-matrix');

37 end

38 % check if A is trace-1 (within some numerical tolerance level)
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39 if abs(1-trace(A))>1e-12

40 error('A must be trace-1; |1-trace(A)| exceeds the allowed ...

1e-12-tolerance');

41 end

42 %%%%%%%

43 % Set the parameters if not specified

44 %

45 % If not specified, set the default precision.

46 if nargin<4

47 eps=1e-5;

48 end

49 % if not specified, set the default maximum number of outer iterations.

50 if nargin<5

51 maxIter=200;

52 end

53 % If not specified, set the default line-search precision.

54 % This appears to impact our ability to find an eps-approximate solution.

55 % Fixed lineSearchEps=1e-10 seems to work better than the adaptive

56 % choice of eps^(3/2)

57 if nargin<6

58 lineSearchEps=1e-10;

59 end

60

61

62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

63 %%%%%% Check if input state is PPT %%%%%%%%%%%%%%%%%%%%%%%%%%

64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

65 if (min(real(eig(PartialTranspose(A,1,[m,n])))))≥0

66 lBound=0;

67 uBound=0;

68 Xopt=A;

69 disp('A is PPT, thus Xopt=A and relEntropy=0');

70 return;
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71 end

72

73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

74 %%%%%% Initialize search %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

76

77 % set blank output

78 lBound=-Inf;

79 uBound=Inf;

80 Xopt=[];

81 % set outer iteration counter

82 outerCount=0;

83 % set initial numerical status

84 status=0;

85 % initialze N

86 N=0;

87 outerCount=0;

88

89 % Initialize list of X.

90 % This is the list of points in the interior of

91 % the PPT states. We construct the tangent planes at each of these

92 % points to create a polytope approximation of the epigraph.

93 X{N+1}=eye(m*n)/(m*n);

94

95 % Generate list of E.

96 % Used for the approximate epigraph of the objective. These generate the

97 % 'Gateaux derivatives' of the tr(A*logm(X)) function at each X.

98 % (Here we provide a generic script that would work for any N,

99 % although for now we always start with N=0)

100 for i=0:N

101 % build E^{(i)} from X^{(i)}

102 [U,L]=eig(X{i+1});

103 for j=1:m*n
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104 for k=1:m*n

105 if L(j,j)==L(k,k) D(j,k)=1/L(j,j);

106 else D(j,k)=(log(L(j,j))-log(L(k,k)))/(L(j,j)-L(k,k));

107 end

108 end

109 end

110 E{i+1}=U*(D.*(U'*A*U))*U';

111 end

112

113 % symmetrize E

114 for i=1:N+1

115 E{i}=(E{i}+E{i}')/2;

116 end

117

118 % Define list of b's.

119 % These are the values b{i}=-trace(A*logm(X))+trace(E*X) for each X ...

and E.

120 for i=1:N+1

121 b{i}=-trace(A*logm(X{i}))+trace(E{i}*X{i});

122 end

123 % Make into a vector so it can be used in cvx

124 bvect=zeros([N+1,1]);

125 for i=1:N+1

126 bvect(i)=b{i};

127 end

128

129 % Start iterating until we reach the prescribed precision eps

130 % or unitl we exceed maximum number of iterations, i.e., outerCount>maxIter

131

132 % Set bestN index to point to the best upper bound out of X{i}, i=0,...,N

133 bestN=N;

134 % Re-initialize the bounds (we know something already)

135 lBound=-real(traceAlogmA(A));
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136 uBound=-trace(A*logm(eye(m*n)/(m*n)));

137 % Set probSolved_flag to indicate wether the problem is solved yet

138 probSolved_flag=0;

139

140 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

141 %%%%%% Start optimization program %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

142 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

143

144 while ¬probSolved_flag && outerCount<maxIter %&& ¬status

145 % Formulate and solve the approximation SDP problem.

146 % Variables are for SDP are:

147 % (Y,t) - where Y is positve n*m by n*m definite PPT matrix ...

with trace(Y)=1

148 % and (Y,t) is in approximation to epigraph of ...

-trace(A*log(Y))

149 % so that t≥lBound.

150 % s - s>0

151 % Main constraint is

152 % -trace(A*logm(X{i}))+trace(E{i}*X{i})-trace(E{i}*Y) ≤ t

153

154 % Use CVX to solve SDP problem

155 cvx_begin sdp quiet

156 %cvx_precision high;

157 variable t

158 variable s(N+1)

159 variable Y(m*n,m*n) hermitian

160 expression V(N+1)

161 for i=1:N+1

162 V(i)=trace(E{i}*Y);

163 end

164 minimize t

165 subject to

166 t≥lBound;
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167 s≥0;

168 PartialTranspose(Y,1,[m,n])≥0;

169 trace(Y) == 1;

170 Y ≥ 0;

171 s+bvect-V==t*ones([N+1,1]);

172 cvx_end

173

174 % After SDP, use line search to find better optimal.

175 Ystart=X{bestN+1};

176 Yend=Y;

177 % set the search ray direction

178 dY=Yend-Ystart;

179 % set the mid point and the objective derivative

180 Ynext=(Ystart+Yend)/2;

181 [U,L]=eig(Ynext);

182 for j=1:m*n

183 for k=1:m*n

184 if L(j,j)==L(k,k) D(j,k)=1/L(j,j);

185 else D(j,k)=(log(L(j,j))-log(L(k,k)))/(L(j,j)-L(k,k));

186 end

187 end

188 end

189 Enext=U*(D.*(U'*A*U))*U';

190 df=-trace(Enext*dY);

191 % iterate (with 'cheap' norm)

192 while (norm(Yend(:)-Ystart(:))>lineSearchEps)

193 if df<0 Ystart=Ynext;

194 else Yend=Ynext;

195 end

196 % recompute the mid point and the objective derivative

197 Ynext=(Ystart+Yend)/2;

198 [U,L]=eig(Ynext);

199 for j=1:m*n
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200 for k=1:m*n

201 if L(j,j)==L(k,k) D(j,k)=1/L(j,j);

202 else D(j,k)=(log(L(j,j))-log(L(k,k)))/(L(j,j)-L(k,k));

203 end

204 end

205 end

206 Enext=U*(D.*(U'*A*U))*U';

207 df=-trace(Enext*dY);

208 end

209 %Use Xnext for next point in list of P

210 Y=Ynext;

211 N=N+1;

212 X{N+1}=Y;

213 lBound=max(lBound,t);

214 if uBound>-trace(A*logm(Y))

215 uBound=-trace(A*logm(Y));

216 bestN=N;

217 end

218

219 s=sprintf(' [%d] lower bound: %e, upper bound: %e, gap: %e, ...

relGap: ...

%d%%',outerCount,lBound,uBound,uBound-lBound,round(100*(uBound-lBound)/uBound));

220 disp(s);

221

222 [U,L]=eig(X{N+1});

223 for j=1:m*n

224 for k=1:m*n

225 if L(j,j)==L(k,k) D(j,k)=1/L(j,j);

226 else D(j,k)=(log(L(j,j))-log(L(k,k)))/(L(j,j)-L(k,k));

227 end

228 end

229 end

230 E{N+1}=U*(D.*(U'*A*U))*U';
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231

232 % Symmetrize E

233 E{N+1}=(E{N+1}+E{N+1}')/2;

234

235

236 % Define vector of b's

237 b{N+1}=real(-trace(A*logm(X{N+1}))+trace(E{N+1}*X{N+1}));

238 bvect=zeros([N+1,1]);

239 for i=1:N+1

240 bvect(i)=b{i};

241 end

242

243 % Verify if we found a solution

244 if (uBound-lBound)<eps

245 probSolved_flag=1;

246 end

247

248 % Increment outer iteration counter

249 outerCount=outerCount+1;

250 end

251

252 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

253 %%%%%% Output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

254 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

255 % Set the output

256 lBound=lBound+traceAlogmA(A);%trace(A*logm(A));

257 uBound=real(uBound+traceAlogmA(A));%trace(A*logm(A));

258 Xopt=X{bestN+1};

259

260

261

262 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

263
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264 function [val] = traceAlogmA(A)

265 % overloads MATLAB's trace(A*logm(A)) to accept

266 % rank-defficient positive semi-definite A

267 % by computing the limiting value

268 D=eig(A);

269 idx=find(D);

270 val=sum(D(idx).*log(D(idx)));

C.2 Rains bound

1 function [Xopt,uBound,lBound,outerCount] = ...

Rains(m,n,A,eps,maxIter,lineSearchEps)

2 %

3 % Rains

4 %--------------------

5 % Approximates the Rains bound of a bipartite density matrix of an

6 % mxn bipartite system.

7 % -Uses CVX solver for semidefinite programming (http://cvxr.com/cvx/).

8 %

9 % -Uses TraceNorm and PartialTranspose from QETLAB (http://www.qetlab.com)

10 % to compute partial transposes and trace norm of matrices.

11 % ...

(https://github.com/nathanieljohnston/QETLAB/blob/master/PartialTranspose.m)

12 %

13 % Standard usage: [Xopt,urains]=Rains(m,n,A)

14 % Variables:

15 % m,n - dimensions of the subsystems

16 % A - density matrix whose Rains bound we are trying to compute

17 % Xopt - optimal matrix that minimizes the Rains bound

18 % rains - output upper bound of Rains bound

232



19 %

20 % Optional inputs with defaults:

21 % Rains(m,n,A,eps,maxIter,lineSearchEps)

22 % eps - precision such that |uBound-lBound|<eps (default: ...

eps = 1e-5)

23 % maxIter - max number of iterations (default: maxIter = 200)

24 % lineSearchEps - precision of intermediate line search (default: ...

lineSearchEps = 1e-10;)

25 %

26 % We define a function traceAlogmA to compute trace(A*logm(A))to accept

27 % rank-defficnent matrices.

28

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

30 %%%%%% Check the input arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 if nargin<3

33 error('Not enough arguments; input m,n,A')

34 end

35 % check if A is indeed positive semi-definite

36 if min(eig(A))<0 || max(max(abs(A-A')))>1e-12 || max(size(A) 6=[m*n,m*n])

37 error('A must be positive semi-definite (mn x mn)-matrix');

38 end

39 % check if A is trace-1 (within some numerical tolerance level)

40 if abs(1-trace(A))>1e-12

41 error('A must be trace-1; |1-trace(A)| exceeds the allowed ...

1e-12-tolerance');

42 end

43 %%%%%%%

44 % Set the parameters if not specified

45 %

46 % If not specified, set the default precision.

47 if nargin<4

48 eps=1e-5;
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49 end

50 % if not specified, set the default maximum number of outer iterations.

51 if nargin<5

52 maxIter=200;

53 end

54 % If not specified, set the default line-search precision.

55 % This appears to impact our ability to find an eps-approximate solution.

56 % Fixed lineSearchEps=1e-10 seems to work better than the adaptive

57 % choice of eps^(3/2)

58 if nargin<6

59 lineSearchEps=1e-10;

60 end

61

62

63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

64 %%%%%% Check if input state is PPT %%%%%%%%%%%%%%%%%%%%%%%%%%

65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

66 if (min(real(eig(PartialTranspose(A,1,[m,n])))))≥0

67 lBound=0;

68 uBound=0;

69 Xopt=A;

70 disp('A is PPT, thus Xopt=A and Rains=0');

71 return;

72 end

73

74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75 %%%%%% Initialize search %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

77

78 % set blank output

79 lBound=-Inf;

80 uBound=Inf;

81 Xopt=[];
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82 % set outer iteration counter

83 outerCount=0;

84 % set initial numerical status

85 status=0;

86 % initialze N

87 N=0;

88 outerCount=0;

89

90 % Initialize list of X.

91 % This is the list of points in the interior of

92 % the PPT states. We construct the tangent planes at each of these

93 % points to create a polytope approximation of the epigraph.

94 X{N+1}=eye(m*n)/(m*n);

95

96 % Generate list of E.

97 % Used for the approximate epigraph of the objective. These generate the

98 % 'Gateaux derivatives' of the tr(A*logm(X)) function at each X.

99 % (Here we provide a generic script that would work for any N,

100 % although for now we always start with N=0)

101 for i=0:N

102 % build E^{(i)} from X^{(i)}

103 [U,L]=eig(X{i+1});

104 for j=1:m*n

105 for k=1:m*n

106 if L(j,j)==L(k,k) D(j,k)=1/L(j,j);

107 else D(j,k)=(log(L(j,j))-log(L(k,k)))/(L(j,j)-L(k,k));

108 end

109 end

110 end

111 E{i+1}=U*(D.*(U'*A*U))*U';

112 end

113

114 % symmetrize E
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115 for i=1:N+1

116 E{i}=(E{i}+E{i}')/2;

117 end

118

119 % Define list of b's.

120 % These are the values b{i}=-trace(A*logm(X))+trace(E*X) for each X ...

and E.

121 for i=1:N+1

122 b{i}=-trace(A*logm(X{i}))+trace(E{i}*X{i});

123 end

124 % Make into a vector so it can be used in cvx

125 bvect=zeros([N+1,1]);

126 for i=1:N+1

127 bvect(i)=b{i};

128 end

129

130 % Start iterating until we reach the prescribed precision eps

131 % or unitl we exceed maximum number of iterations, i.e., outerCount>maxIter

132

133 % Set bestN index to point to the best upper bound out of X{i}, i=0,...,N

134 bestN=N;

135 % Re-initialize the bounds (we know something already)

136 lBound=-real(traceAlogmA(A));

137 uBound=-trace(A*logm(eye(m*n)/(m*n)));

138 % Set probSolved_flag to indicate wether the problem is solved yet

139 probSolved_flag=0;

140

141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

142 %%%%%% Start optimization program %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

143 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

144

145 while ¬probSolved_flag && outerCount<maxIter %&& ¬status

146 % Formulate and solve the approximation SDP problem.
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147 % Variables are for SDP are:

148 % (Y,t) - where Y is positve n*m by n*m definite PPT matrix ...

with trace(Y)=1

149 % and (Y,t) is in approximation to epigraph of ...

-trace(A*log(Y))

150 % so that t≥lBound.

151 % s - s>0

152 % Main constraint is

153 % -trace(A*logm(X{i}))+trace(E{i}*X{i})-trace(E{i}*Y) ≤ t

154

155 % Use CVX to solve SDP problem

156 cvx_begin sdp quiet

157 %cvx_precision high;

158 variable t

159 variable s(N+1)

160 variable Y(m*n,m*n) hermitian

161 expression V(N+1)

162 for i=1:N+1

163 V(i)=trace(E{i}*Y);

164 end

165 minimize t

166 subject to

167 t≥lBound;

168 s≥0;

169 TraceNorm(PartialTranspose(Y,1,[m,n]))≤1;

170 Y ≥ 0;

171 s+bvect-V==t*ones([N+1,1]);

172 cvx_end

173

174 % After SDP, use line search to find better optimal.

175 Ystart=X{bestN+1};

176 Yend=Y;

177 % set the search ray direction
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178 dY=Yend-Ystart;

179 % set the mid point and the objective derivative

180 Ynext=(Ystart+Yend)/2;

181 [U,L]=eig(Ynext);

182 for j=1:m*n

183 for k=1:m*n

184 if L(j,j)==L(k,k) D(j,k)=1/L(j,j);

185 else D(j,k)=(log(L(j,j))-log(L(k,k)))/(L(j,j)-L(k,k));

186 end

187 end

188 end

189 Enext=U*(D.*(U'*A*U))*U';

190 df=-trace(Enext*dY);

191 % iterate (with 'cheap' norm)

192 while (norm(Yend(:)-Ystart(:))>lineSearchEps)

193 if df<0 Ystart=Ynext;

194 else Yend=Ynext;

195 end

196 % recompute the mid point and the objective derivative

197 Ynext=(Ystart+Yend)/2;

198 [U,L]=eig(Ynext);

199 for j=1:m*n

200 for k=1:m*n

201 if L(j,j)==L(k,k) D(j,k)=1/L(j,j);

202 else D(j,k)=(log(L(j,j))-log(L(k,k)))/(L(j,j)-L(k,k));

203 end

204 end

205 end

206 Enext=U*(D.*(U'*A*U))*U';

207 df=-trace(Enext*dY);

208 end

209 %Use Xnext for next point in list of P

210 Y=Ynext;
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211 N=N+1;

212 X{N+1}=Y;

213 lBound=max(lBound,t);

214 if uBound>-trace(A*logm(Y))

215 uBound=-trace(A*logm(Y));

216 bestN=N;

217 end

218

219 s=sprintf(' [%d] lower bound: %e, upper bound: %e, gap: %e, ...

relGap: ...

%d%%',outerCount,lBound,uBound,uBound-lBound,round(100*(uBound-lBound)/uBound));

220 disp(s);

221

222 [U,L]=eig(X{N+1});

223 for j=1:m*n

224 for k=1:m*n

225 if L(j,j)==L(k,k) D(j,k)=1/L(j,j);

226 else D(j,k)=(log(L(j,j))-log(L(k,k)))/(L(j,j)-L(k,k));

227 end

228 end

229 end

230 E{N+1}=U*(D.*(U'*A*U))*U';

231

232 % Symmetrize E

233 E{N+1}=(E{N+1}+E{N+1}')/2;

234

235

236 % Define vector of b's

237 b{N+1}=real(-trace(A*logm(X{N+1}))+trace(E{N+1}*X{N+1}));

238 bvect=zeros([N+1,1]);

239 for i=1:N+1

240 bvect(i)=b{i};

241 end
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242

243 % Verify if we found a solution

244 if (uBound-lBound)<eps

245 probSolved_flag=1;

246 end

247

248 % Increment outer iteration counter

249 outerCount=outerCount+1;

250 end

251

252 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

253 %%%%%% Output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

254 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

255 % Set the output

256 lBound=lBound+traceAlogmA(A);%trace(A*logm(A));

257 uBound=real(uBound+traceAlogmA(A));%trace(A*logm(A));

258 Xopt=X{bestN+1};

259

260

261 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

262 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

263 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

264

265 function [val] = traceAlogmA(A)

266 % overloads MATLAB's trace(A*logm(A)) to accept

267 % rank-defficient positive semi-definite A

268 % by computing the limiting value

269 D=eig(A);

270 idx=find(D);

271 val=sum(D(idx).*log(D(idx)));

272

273 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

274 function [ D ] = FrechetLog(L)
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275 %FrechetLog

276 % constructs the Frechet differential matrix for logarithm

277 d = length(L);

278 for j=1:d

279 for k=1:d

280 if L(j,j)==L(k,k)

281 D(j,k)=1/(L(j,j),alph);

282 else

283 D(j,k)=(log(L(j,j))-log(L(k,k)))/(L(j,j)-L(k,k));

284 end

285 end

286 end

287

288 end

289

290

291 function [val] = Srelentropy(X,Y)

292 % Computes alpha-relative entropy of two states X and Y

293

294 D=eig(A);

295 idx=find(D);

296 val=sum(D(idx).*log(D(idx)));

C.3 Rényi α-relative entropy of entanglement

1 function [Xopt,uBound,lBound,outerCount] = ...

relRenyiEntropy(m,n,A,alph,eps,maxIter,lineSearchEps)

2 %

3 % relRenyiEntropy

4 %--------------------
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5 % Approximates the Renyi relative entropy of entanglement (RREE) of a ...

density

6 % matrix of an mxn bipartite system (relative to PPT states) of order ...

alpha.

7 % -Uses CVX solver for semidefinite programming (http://cvxr.com/cvx/).

8 % -Uses PartialTranspose from QETLAB (http://www.qetlab.com) to compute

9 % partial transposes of matrices.

10 % ...

(https://github.com/nathanieljohnston/QETLAB/blob/master/PartialTranspose.m)

11 %

12 % Standard usage: [Xopt,relEntr]=relEntropy(m,n,A)

13 % Variables:

14 % m,n - dimensions of the subsystems

15 % A - density matrix whose RREE we are trying to compute

16 % Xopt - optimal PPT matrix that minimizes the relative entropy

17 % relRenEn - output upper bound of relative entropy of entanglement

18 %

19 % Optional inputs with defaults:

20 % relEntropy(m,n,A,eps,maxIter,lineSearchEps)

21 % eps - precision such that |uBound-lBound|<eps (default: ...

eps = 1e-5)

22 % maxIter - max number of iterations (default: maxIter = 200)

23 % lineSearchEps - precision of intermediate line search (default: ...

lineSearchEps = 1e-10;)

24 %

25

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27 %%%%%% Check the input arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29 if nargin<3

30 error('Not enough arguments; input m,n,A')

31 end

32 % check if A is indeed positive semi-definite
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33 if min(eig(A))<0 || max(max(abs(A-A')))>1e-12 || max(size(A) 6=[m*n,m*n])

34 error('A must be positive semi-definite (mn x mn)-matrix');

35 end

36 % check if A is trace-1 (within some numerical tolerance level)

37 if abs(1-trace(A))>1e-12

38 error('A must be trace-1; |1-trace(A)| exceeds the allowed ...

1e-12-tolerance');

39 end

40 %%%%%%%

41 % Set the parameters if not specified

42 %

43 % If not specified, set the default precision.

44 if nargin<4

45 eps=1e-5;

46 end

47 % if not specified, set the default maximum number of outer iterations.

48 if nargin<5

49 maxIter=200;

50 end

51 % If not specified, set the default line-search precision.

52 % This appears to impact our ability to find an eps-approximate solution.

53 % Fixed lineSearchEps=1e-10 seems to work better than the adaptive

54 % choice of eps^(3/2)

55 if nargin<6

56 lineSearchEps=1e-10;

57 end

58

59

60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 %%%%%% Check if alpha is in (0,2] and not 1 %%%%%%%%%%%%%%%%%%

62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

63 if alpha==1 || alpha≤0 || alpha >2

64 lBound=0;
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65 uBound=0;

66 Xopt=A;

67 disp('alpha is not in the correct range');

68 return;

69 end

70

71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

72 %%%%%% Check if input state is PPT %%%%%%%%%%%%%%%%%%%%%%%%%%

73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

74 if (min(real(eig(PartialTranspose(A,1,[m,n])))))≥0

75 lBound=0;

76 uBound=0;

77 Xopt=A;

78 disp('A is PPT, thus Xopt=A and relRenyiEntropy=0');

79 return;

80 end

81

82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

83 %%%%%% Initialize search %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

85

86 % set Z = A^alpha

87 Z = mpower(A,alpha);

88

89 % set blank output

90 lBound=-Inf;

91 uBound=Inf;

92 Xopt=[];

93 % set outer iteration counter

94 outerCount=0;

95 % set initial numerical status

96 status=0;

97 % initialze N
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98 N=0;

99 outerCount=0;

100

101 % Initialize list of X.

102 % This is the list of points in the interior of

103 % the PPT states. We construct the tangent planes at each of these

104 % points to create a polytope approximation of the epigraph.

105 X{N+1}=eye(m*n)/(m*n);

106

107 % Generate list of E.

108 % Used for the approximate epigraph of the objective. These generate the

109 % 'Gateaux derivatives' of the tr(Z*(X^(1-a))) function at each X.

110 % (Here we provide a generic script that would work for any N,

111 % although for now we always start with N=0)

112 for i=0:N

113 % build E^{(i)} from X^{(i)}

114 [U,L]=eig(X{i+1});

115 for j=1:m*n

116 for k=1:m*n

117 if L(j,j)==L(k,k) D(j,k)=dFa(L(j,j),alph);

118 else D(j,k)=(Fa(L(j,j),alph)-Fa(L(k,k),alph))/(L(j,j)-L(k,k));

119 end

120 end

121 end

122 E{i+1}=U*(D.*(U'*Z*U))*U';

123 end

124

125 % symmetrize E

126 for i=1:N+1

127 E{i}=(E{i}+E{i}')/2;

128 end

129

130 % Define list of b's.
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131 % These are the values b{i}=trace(A*f(X))-trace(E*X) for each X and E.

132 for i=1:N+1

133 %b{i}=TrAB(Z,Fa(X{i},alpha))-TrAB(E{i},X{i});

134 %b{i}=TrAB(Z,Fa(X{i},alph)+X{i}*dFa(X{i},alph));

135 b{i}=TrAB(Z,(2-alpha)*Fa(X{i},alph));

136 end

137 % Make into a vector so it can be used in cvx

138 bvect=zeros([N+1,1]);

139 for i=1:N+1

140 bvect(i)=b{i};

141 end

142

143 % Start iterating until we reach the prescribed precision eps

144 % or unitl we exceed maximum number of iterations, i.e., outerCount>maxIter

145

146 % Set bestN index to point to the best upper bound out of X{i}, i=0,...,N

147 bestN=N;

148 % Re-initialize the bounds (we know something already)

149 if alph<1 c=-1;

150 else c=1;

151 lBound=c;

152 uBound=TrAB(Z*Fa(eye(m*n)/(m*n),alph));

153 % Set probSolved_flag to indicate wether the problem is solved yet

154 probSolved_flag=0;

155

156 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

157 %%%%%% Start optimization program %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

158 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

159

160 while ¬probSolved_flag && outerCount<maxIter %&& ¬status

161 % Formulate and solve the approximation SDP problem.

162 % Variables are for SDP are:
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163 % (Y,t) - where Y is positve n*m by n*m definite PPT matrix ...

with trace(Y)=1

164 % and (Y,t) is in approximation to epigraph of ...

-trace(A*log(Y))

165 % so that t≥lBound.

166 % s - s>0

167 % Main constraint is

168 % -trace(A*logm(X{i}))+trace(E{i}*X{i})-trace(E{i}*Y) ≤ t

169

170 % Use CVX to solve SDP problem

171 cvx_begin sdp quiet

172 %cvx_precision high;

173 variable t

174 variable s(N+1)

175 variable Y(m*n,m*n) hermitian

176 expression V(N+1)

177 for i=1:N+1

178 V(i)=trace(E{i}*Y);

179 end

180 minimize t

181 subject to

182 t≥lBound;

183 s≥0;

184 PartialTranspose(Y,1,[m,n])≥0;

185 trace(Y) == 1;

186 Y ≥ 0;

187 s+bvect+V==t*ones([N+1,1]);

188 cvx_end

189

190 % After SDP, use line search to find better optimal.

191 Ystart=X{bestN+1};

192 Yend=Y;

193 % set the search ray direction
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194 dY=Yend-Ystart;

195 % set the mid point and the objective derivative

196 Ynext=(Ystart+Yend)/2;

197 [U,L]=eig(Ynext);

198 for j=1:m*n

199 for k=1:m*n

200 if L(j,j)==L(k,k) D(j,k)=dFa(L(j,j),alph);

201 else D(j,k)=(Fa(L(j,j),alph)-Fa(L(k,k),alph))/(L(j,j)-L(k,k));

202 end

203 end

204 end

205 Enext=U*(D.*(U'*Z*U))*U';

206 df=trace(Enext*dY);

207 % iterate (with 'cheap' norm)

208 while (norm(Yend(:)-Ystart(:))>lineSearchEps)

209 if df<0 Ystart=Ynext;

210 else Yend=Ynext;

211 end

212 % recompute the mid point and the objective derivative

213 Ynext=(Ystart+Yend)/2;

214 [U,L]=eig(Ynext);

215 for j=1:m*n

216 for k=1:m*n

217 if L(j,j)==L(k,k) dFa(L(j,j),alph);

218 else ...

D(j,k)=(Fa(L(j,j),alph)-Fa(L(k,k),alph))/(L(j,j)-L(k,k));

219 end

220 end

221 end

222 Enext=U*(D.*(U'*Z*U))*U';

223 df=trace(Enext*dY);

224 end

225 %Use Xnext for next point in list of P
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226 Y=Ynext;

227 N=N+1;

228 X{N+1}=Y;

229 lBound=max(lBound,t);

230 if uBound>TrAB(Z,Fa(Y,alph))

231 uBound=TrAB(Z,Fa(Y,alph));

232 bestN=N;

233 end

234

235 s=sprintf(' [%d] lower bound: %e, upper bound: %e, gap: %e, ...

relGap: ...

%d%%',outerCount,lBound,uBound,uBound-lBound,round(100*(uBound-lBound)/uBound));

236 disp(s);

237

238 [U,L]=eig(X{N+1});

239 for j=1:m*n

240 for k=1:m*n

241 if L(j,j)==L(k,k) D(j,k)=dFa(L(j,j),alph);

242 else D(j,k)=(Fa(L(j,j),alph)-Fa(L(k,k),alph))/(L(j,j)-L(k,k));

243 end

244 end

245 end

246 E{N+1}=U*(D.*(U'*Z*U))*U';

247

248 % Symmetrize E

249 E{N+1}=(E{N+1}+E{N+1}')/2;

250

251

252 % Define vector of b's

253

254 b{N+1}=real(TrAB(Z,(2-alpha)*Fa(X{N+1},alph)));

255 bvect=zeros([N+1,1]);

256 for i=1:N+1

249



257 bvect(i)=b{i};

258 end

259

260 % Verify if we found a solution

261 if (uBound-lBound)<eps

262 probSolved_flag=1;

263 end

264

265 % Increment outer iteration counter

266 outerCount=outerCount+1;

267 end

268

269 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

270 %%%%%% Output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

271 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

272 % Set the output

273 %lBound=lBound+traceAlogmA(A);%trace(A*logm(A));

274 %uBound=real(uBound+traceAlogmA(A));%trace(A*logm(A));

275 Xopt=X{bestN+1};

276

277

278

279 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

280

281 function [val] = traceAlogmA(A)

282 % overloads MATLAB's trace(A*logm(A)) to accept

283 % rank-defficient positive semi-definite A

284 % by computing the limiting value

285 D=eig(A);

286 idx=find(D);

287 val=sum(D(idx).*log(D(idx)));

288

289
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290 function [val] = Fa(x,alph)

291 % Base entropy function

292 c=1;

293 if 0<alph&&alph<1

294 c=-1;

295 end

296 if ismatrix(x)

297 val = c*mpower(x,1-alph);

298 else

299 val = c*x^(1-alph);

300 end

301

302 function [val] = dFa(x,alph)

303 % Base entropy function derivative

304 c=1;

305 if 0<alph&&alph<1

306 c=-1;

307 end

308 if ismatrix(x)

309 val = c*(1-alph)mpower(x,-alph);

310 else

311 val = c*(1-alph)x^(-alph);

312 end

313

314 function [val] = TrAB(A,B)

315 % efficient trace inner product

316 At=A.';

317 if size(At)==size(B)

318 val=sum(At(:).*B(:));

319 end
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