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Abstract Arguably one of the most important applications of quantum
computers is the simulation of quantum systems. In the case where the Hamil-
tonian consists of a sum of interaction terms between small subsystems, the
simulation is thought to be exponentially more efficient than classical simula-
tion. More generally, evolution under suitably specified sparse Hamiltonians
may be efficiently simulated. In recent work we have shown that the complex-
ity of simulating evolution under a Hamiltonian is very close to linear in the
evolution time. In addition, we have shown that in the general case of a sparse
Hamiltonian the complexity grows slowly with respect to the number of qubits.
In this chapter we review these results.

4.1 Introduction

An intriguing feature of quantum systems is that, in general, they are in-
efficient to simulate on classical computers. This prompted Feynman’s 1982
conjecture that quantum systems could be used to efficiently simulate other
quantum systems [1]. Later work showed that a quantum computer, if built,
could efficiently simulate general quantum systems [2, 3, 4, 5].

There are a range of other algorithms which have been developed for quan-
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tum computers. Shor’s algorithm [6] allows efficient factorization of numbers,
and could be used for breaking the most commonly used encryption. More
recently, algorithms have been found for other mathematical problems, some
of which could be used for codebreaking [7]. A more general algorithm is
Grover’s search algorithm [8]. This algorithm is designed to search for inputs
to a function that produce a desired output. The speedup is only quadratic, so
this algorithm does not give the dramatic speedup of more specialized algo-
rithms.

Of the known quantum algorithms that give exponential speedup,1 simu-
lation of physical systems has the widest applicability. It could be used, for
example, in chemistry for predicting the properties of molecules. In Refs.
[2, 3, 4, 5] the problem considered is the evolution of a system under a Hamil-
tonian. (It should be noted that our notion of simulation is distinct from the
problem of finding the ground state of Hamiltonians. In the latter case, it does
not appear to be possible to achieve an exponential speedup. The ground state
of a Hamiltonian can be used to encode a search problem [9], and Ref. [10]
shows that, in the black-box setting, it is not possible to achieve an exponential
speedup for search problems.)

In the work of Lloyd [3] it is required that the quantum system is composed
of small subsystems, and the Hamiltonian consists of a sum of interactions
which only involve a small number of subsystems. A more general situation
was considered by Aharonov and Ta-Shma (ATS) [4]. They do not require a
tensor product structure to the Hamiltonian, but require that it is sparse and
there is an efficient method of calculating the nonzero entries in a given col-
umn of the Hamiltonian. The Hamiltonians considered by Lloyd are sparse,
and are therefore included in this generalization. There are also a range of oth-
er problems which produce such Hamiltonians. These Hamiltonians can also
arise as encodings of computational problems, such as simulations of quantum
walks [11, 12, 13, 14, 15].

In our recent work [5] we improved upon the efficiency of the schemes of
ATS and Lloyd by applying the higher order integrators of Suzuki [16, 17].
Our work contains a number of results:

1. In order to simulate evolution over time t, our scheme requires a number
of steps which scales as t1+1/2k, where k is the order of the integrator
and may be chosen to be an arbitrarily large integer.

2. We found upper bounds on the error, which enable us to estimate the
optimal order k for a given evolution time t.

1Exponential speedup over the best known classical algorithms.
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3. We showed that general sublinear scaling in t is not possible. This means
that the simulation scheme using the integrators of Suzuki is close to
optimal in the evolution time.

4. We provided a superior method for decomposing the Hamiltonian into a
sum for the problem considered by ATS. This dramatically reduces the
scaling from polynomial in the number of qubits to close to constant.

In Sections 4.2 and 4.3 we review the results of Refs. [3, 4], and we review
our results from Ref. [5] in Sections 4.4 to 4.6.

4.2 Simulation method of Lloyd

The problem considered by Lloyd [3] is as follows. The quantum system is
composed of N “variables”, or subsystems, and the total Hamiltonian consists
of a sum of interaction terms

H =
m

∑
j=1

Hj. (4.1)

Each interaction term Hj acts on at most kL of the subsystems, with maximum
dimension of d j. Lloyd also allows the Hamiltonian to depend on time. The
vast majority of quantum systems have Hamiltonians of this type, because in-
teractions only occur between a small number of subsystems, not jointly over
all subsystems.

Because each Hj acts on a Hilbert space of dimension d j, the number of

operations required to simulate evolution under Hj scales as d2
j . In order to

approximate evolution under the Hamiltonian H, it is therefore desired to sim-
ulate evolution under a sequence of the individual Hamiltonians Hj. Lloyd
uses the approximation

eiHt ≈ (eiH1t/r . . .eiHmt/r)r. (4.2)

Because the number of steps required for simulation of each Hamiltonian Hj

scales as d2
j , the total number of steps scales as r ∑m

j=1 d2
j ≤ rmd2, where d =

max{d j}.
Lloyd gives the bound on the error using this approximation as

‖r(eiHt/r−1− iHt/r)‖sup. (4.3)
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Here the norm gives the maximum expectation value of the operator. Lloyd
also gives the alternative expression

eiHt = (eiH1t/r . . .eiHmt/r)r + ∑
i> j

[Hi,Hj]t
2/2r + ∑

l≥3

E(l), (4.4)

where the E(l) are bounded by ‖E(l)‖sup ≤ r‖Ht/r‖l
sup/l!. This implies that,

in order to obtain accuracy ε for simulation over time t, the number of time-
slices r needs to scale as t2m2/ε . This implies that the total number of steps
required scales as t2m3d2/ε .

Overall, the simulation is tractable provided the number of steps is a poly-
nomial function of the number of subsystems N. If the interactions do not
involve more than kL subsystems, then the number of interactions m is bound-
ed by NkL . If kL and d do not increase with N, then the number of steps is of
order N3kL , which is polynomial in N.

4.3 Simulation method of ATS

A more general form of simulation was considered by Aharonov and Ta-
Shma [4]. They consider simulation of an arbitrary row-sparse Hamiltonian.
That is, the Hamiltonian may be represented by a matrix with only a moderate
number of nonzero elements in each row. It is always possible to represent the
Hamiltonian by a matrix which is diagonal simply by choosing the appropriate
basis. However, in practice the Hamiltonian is provided in a certain basis and
it is not efficient to determine the diagonal representation. In the following we
will regard the Hamiltonian as a matrix, without specifying that the matrix is
just a representation of the Hamiltonian.

It is easily seen that the Hamiltonians considered by Lloyd are row-sparse.
As each interaction Hamiltonian Hj only acts on a subsystem of dimension d j,
it has no more than d j elements in each row. The overall Hamiltonian then has
no more than md elements in each row. As this scales polynomially with the
number of subsystems, the overall Hamiltonian is row-sparse.

The main difference between the problem considered by Lloyd and that con-
sidered by ATS is that for Lloyd’s problem the decomposition of the Hamilto-
nian is given, whereas all ATS assume is that there is some method of calcu-
lating the nonzero terms in the columns of the Hamiltonian.

In the case where the Hamiltonian H has at most D nonzero elements in
each row and acts upon a system of dimension no larger than 2n (so it may be
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represented on n qubits), ATS show a method for decomposing H into a sum
of no more than (D+ 1)2n6 terms

H =
(D+1)2n6

∑
j=1

Hj. (4.5)

Each Hj is 1-sparse; that is, there is no more than one nonzero element in each
row/column. This also implies that it is 2×2 combinatorially block diagonal (it
is equivalent to a 2×2 block diagonal matrix under an appropriate permutation
of the basis states).

The decomposition is essentially equivalent to the coloring problem for an
undirected graph. The nodes of the graph correspond to the basis states, and
the edges correspond to the nonzero elements of the Hamiltonian. The problem
is to color the graph such that no two edges with the same color connect the
same vertex. Each color then corresponds to a different Hamiltonian Hj.

The method ATS use for the coloring is to use the color

�j = (ν,x mod ν,y mod ν, rindH(x,y),cindH(x,y)) (4.6)

(where rindH and cindH are defined below). Here the convention is taken that
x≤ y. We are taking the color to be a vector of integers, and will use subscripts
for the different components. If x = y, ν is set as 1, otherwise it is set as the
first integer in the range [2 . . .n2] such that x �= y mod ν .

For convenience we define the function f which gives the nonzero elements
in each column. If the nonzero elements in column x are y1, . . . ,yD′ , where
D′ ≤ D, then f (x, i) = (yi,Hx,yi

) for i≤ D′, and f (x, i) = (x,0) for i > D′. We
use subscript y for the first component of f , and subscript H for the second
component of f .

We may give the definitions of cindH and rindH succinctly using this func-
tion. If Hx,y �= 0, then

fy(y,cindH(x,y)) = x, fy(x, rindH(x,y)) = y. (4.7)

That is, cindH gives the column index of x and rindH gives the row index of y.
If Hx,y = 0, then rindH(x,y) and cindH(x,y) are both taken to be zero.

Given this coloring, one wishes to determine a function which outputs the
nonzero element row number and value for each H�j

. We may give this function

as g(x,�j) = (y,(H�j
)x,y), where x is the column number, �j is the color, y is

the row number and (H�j
)x,y is the required elements. This function can be

determined in the following way. There are three cases where a nonzero result
is given:
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1. The color corresponds to the diagonal elements. We require j1 = 1 (cor-
responding to ν = 1). In addition, for consistency we require j2 = j3 = 0,
j4 = j5 and fy(x, j4) = x. Then we output y = x and (Hj)x,y = Hx,x.

2. The color corresponds to off-diagonal elements and the nonzero element
is in the lower triangle (so x < y). We require j1 > 1 (corresponding to
ν > 1) to give the off-diagonal elements. If x < y then we also require
x mod j1 = j2. For consistency, we also require fy(x, j4) mod j1 = j3,
fy( fy(x, j4), j5) = x, x < fy(x, j4) and j1 to be the first integer such that
x �= fy(x, j4) mod j1. Then y = fy(x, j4) and (H�j

)x,y = Hx,y.

3. The color corresponds to off-diagonal elements and the nonzero element
is in the upper triangle (so y < x). We require j1 > 1 (corresponding to
ν > 1) to give the off-diagonal elements. If y < x then we also require
x mod j1 = j3, and for consistency with the coloring scheme we require
fy(x, j5) mod j1 = j2, fy( fy(x, j5), j4)= x, fy(x, j5) < x and j1 is the first
integer such that x �= fy(x, j5) mod j1. Then y = fy(x, j5) and (H�j

)x,y =
Hy,x.

In all other cases the output is simply (H�j
)x,y = 0 and y = x. ATS do not

explicitly give this function, though it is implicit from their coloring method.
It is easily seen that the coloring gives at most one nonzero element in each
column. It is not possible for both cases 2 and 3 to hold, because some of the
conditions for these cases would imply that x mod j1 = j2 = j3, but j2 = j3
violates the conditions that fy(x, j4) mod j1 = j3 and j1 is the first integer such
that x �= fy(x, j4) mod j1.

After giving this coloring scheme, ATS show that it is possible to efficiently
simulate the individual H�j

. Here we summarize their method, with some minor

differences. Let the row number be y for the nonzero element in column x; then
the nonzero element in column y is in row x. We let Ũx be the approximation
of the unitary on those basis states, and mx = min{x,y} and Mx = max{x,y}.

Given that the black-box function f may be represented by a unitary Uf , it

is possible to obtain a unitary Ug for the black-box function g(x,�j) such that

Ug
∣∣x,�j,0〉=

∣∣x,�j,y,(H�j
)x,y
〉∣∣φ

x,�j

〉
, (4.8)

where
∣∣φ

x,�j

〉
represents additional ancilla states produced by the calculation.

From this it is possible to derive a unitary T�j
such that

T�j

∣∣x,0〉=
∣∣x,mx,Mx,Ũx

〉
(4.9)
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In order to remove the additional ancilla states, it is necessary to apply Ug,
copy the output, and apply U†

g . Another unitary T is then defined such that

T
∣∣v〉∣∣mx,Mx,Ũx

〉
= (Ũx

∣∣v〉)∣∣mx,Mx,Ũx
〉
. (4.10)

To simulate the unitary, one first applies T�j
to produce a state with the approx-

imation of the unitary, applies T to implement the unitary, then applies T †
�j

to

remove the extra ancilla states. Overall, Ug is applied twice and U†
g is applied

twice.
To see the action of this on basis state

∣∣x〉, let us take the action of Ũx on
∣∣x〉

to give the state α̃
∣∣mx
〉
+ β̃

∣∣Mx
〉
. Then the sequence of transformations gives

T †
�j

T T�j

∣∣x,0〉 = T †
�j

T
∣∣x,mx,Mx,Ũx

〉
= T †

�j

(
α̃
∣∣mx,mx,Mx,Ũx

〉
+ β̃

∣∣Mx,mx,Mx,Ũx
〉)

= α̃
∣∣mx,0

〉
+ β̃

∣∣Mx,0
〉
. (4.11)

From the definition, mmx = mMx
= mx and Mmx = MMx

= Mx; hence performing
T †
�j

correctly removes the additional states. It is essential that T�j
does not add

additional states which depend on x, because then it would not be possible to
perform this step.

4.4 Higher order integrators

In our work [5] we improve upon the work of Lloyd and ATS in two main
ways. We apply higher order integrators to improve the scaling of the complex-
ity with time, and we apply an improved coloring method. The higher-order
integrators of Suzuki are defined in the following way [16, 17]. The first order
integrator is

S2(λ ) =
m

∏
j=1

eHj λ/2
1

∏
j′=m

e
H

j′λ/2
, (4.12)

which is the basic Lie–Trotter product formula. The higher order integrators
are obtained via the recursion relation

S2k(λ ) = [S2k−2(pkλ )]2S2k−2((1−4pk)λ )[S2k−2(pkλ )]2 (4.13)
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with pk = (4−41/(2k−1))−1 for k > 1. Suzuki proves that [16]∥∥∥∥∥exp

(
m

∑
j=1

Hjλ

)
−S2k(λ )

∥∥∥∥∥ ∈ O(|λ |2k+1) (4.14)

for |λ | → 0. The parameter λ corresponds to −it for Hamiltonian evolution.
We can deduce from Eq. (4.14) another bound that is more quantitatively

precise. Our result is

LEMMA 4.1
Using integrators of order k ≥ 2 and dividing the time into r intervals,

we have the bound∥∥∥∥∥exp

(
−it

m

∑
j=1

Hj

)
− [S2k(−it/r)]r

∥∥∥∥∥≤ μk(2m5k−1qkτ)2k+1

(2k + 1)!r2k , (4.15)

where τ = t×max‖Hj‖, qk = ∏k
k′=2 |1−4pk′ |, κk = (2qk5k−1)−(2k+1),

μk = (1 + κk)e
δ1 [(eδ2 −1)/δ2], (4.16)

and we have the restrictions

2m5k−1qkτ/r ≤ δ1,

(1 + κk)e
δ1(2m5k−1qkτ)2k+1/[(2k + 1)!r2k] ≤ δ2. (4.17)

Before proceeding to the proof, we note that κ2 ≈ 8.2×10−5, and κk rapid-
ly approaches zero for large k. The δ1 and δ2 may be made small to obtain
tighter bounds, though this requires more stringent requirements in Eqs. (4.17).
For large k and small δ1,2, μk ≈ 1, and the upper bound is approximately

(2m5k−1qkτ)2k+1/[(2k + 1)!r2k]. We now proceed to the proof.

PROOF If we take a Taylor expansion of both terms in the left-
hand side (LHS) of Eq. (4.14), then the terms containing λ to powers
less than 2k + 1 must cancel because the expression is of order |λ |2k+1.
Terms in the Taylor expansion with λ l for l ≥ 2k + 1 contain a product
of l of the Hj terms, so

exp

(
m

∑
j=1

Hjλ

)
= S2k(λ )+

∞

∑
l=2k+1

λ l
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×
⎡⎣ Ll

∑
p=1

Cl
p

l

∏
q=1

Hjpq
+

L̄l

∑
p=1

C̄l
p

l

∏
q=1

Hjpq

⎤⎦ . (4.18)

Here Ll is the number of terms in the Taylor expansion of the exponential
at order l, and Cl

p are the constants in that expansion. The quantities
L̄l and C̄l

p are the corresponding quantities for the Taylor expansion of
the integrator S2k(λ ).

To determine a bound on the correction term, we first determine
bounds on the quantities Ll and Cl

p. Expanding (H1 + · · ·+Hm)l yields ml

terms, so Ll = ml. In addition, we have Cl
p = 1/l! from the multiplying

factor in the Taylor expansion of the exponential.
It is somewhat more complicated for the integrator. The integrator

S2(λ ) consists of a product of 2m−1 exponentials. The minus 1 comes
about because eHmλ/2× eHmλ/2 may be simplified to eHmλ . Each of the
powers in the exponentials contains multiplying factors of 1/2, except
for this central exponential where the multiplying factor is 1.

Then in using the recursion relation (4.13), the number of exponen-
tials changes according to the map x �→ 5x−4. The minus 4 is because
the exponentials at the ends are combined. This gives the total number
of exponentials as 2(m−1)5k−1 + 1. In keeping track of the multiplying
factors in the exponentials, it is convenient to keep track of the expo-
nentials at the ends and the exponentials in the center separately.

Using x and y for the maximum magnitudes of the multiplying factors
for the inner elements and outer elements, respectively, the recursion
relation gives the map x �→max{pkx, |1−4pk|x,2pky, |1−3pk|y} and y �→
pky. It turns out that the element which gives the maximum in the map
for x is always |1−4pk|x, and x always exceeds y. We therefore have the
maximum multiplying factor in the exponentials as qk = ∏k

k′=2 |1−4pk′ |.
We take k ≥ 2, because we are not concerned with the error for the low
order integrators.

The Taylor expansion for S2k(t) may be determined by expanding each
of the exponentials individually and performing the multiplication. To
place a bound on the contribution to the error from terms containing
λ l, we can replace each of the terms in this expansion with the upper
bounds on their norms. Thus the bounds may be obtained from the
expansion of

(1 + |qkΛλ |+ |qkΛλ |2/2! + . . .)2(m−1)5k−1+1, (4.19)

where Λ ≡ max‖Hj‖. This is just the expansion of exp{|qkΛλ |[2(m−
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1)5k−1 + 1]}, so the terms containing λ l may be bounded by

{|qkΛλ |[2(m−1)5k−1 + 1]}l

l!
. (4.20)

Combining this with the earlier results and using standard inequalities
gives ∥∥∥∥∥∥

∞

∑
l=2k+1

λ l

⎡⎣ Ll

∑
p=1

Cl
p

l

∏
q=1

Hjpq
+

L̄l

∑
p=1

C̄l
p

l

∏
q=1

Hjpq

⎤⎦∥∥∥∥∥∥
≤

∞

∑
l=2k+1

|λ Λ|l
l!

[
ml + ql

k[2(m−1)5k−1 + 1]l
]

≤ {|λ Λqk|[2(m−1)5k−1 + 1]}2k+1

(2k + 1)!
exp{|λ Λqk|[2(m−1)5k−1 + 1]}

+
|λ Λm|2k+1

(2k + 1)!
exp |λ Λm|. (4.21)

From this point onward the derivation differs from that in Ref. [5], which
gives a slightly weaker bound. Here we make fewer simplifications than
in [5], giving a more complicated but tighter bound.

Simplifying Eq. (4.21) gives the inequality∥∥∥∥∥exp

(
λ

m

∑
j=1

Hj

)
−S2k(λ )

∥∥∥∥∥≤ (1 + κk)e
δ1 |2m5k−1qkΛλ |2k+1

(2k + 1)!
, (4.22)

where κk = (2qk5k−1)−(2k+1), and we have the restriction |2m5k−1qkΛλ | ≤
δ1. Substituting λ = −it/r where r is an integer, and taking the power
of r, gives the error bound∥∥∥∥∥exp

(
−it

m

∑
j=1

Hj

)
− [S2k(−it/r)]r

∥∥∥∥∥
≤
[

1 +
(1 + κk)e

δ1(2m5k−1qkτ/r)2k+1

(2k + 1)!

]r

−1

≤ exp

[
(1 + κk)e

δ1(2m5k−1qkτ)2k+1

(2k + 1)!r2k

]
−1

≤ eδ2 −1
δ2

(1 + κk)e
δ1(2m5k−1qkτ)2k+1

(2k + 1)!r2k , (4.23)
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for 2m5k−1qkτ/r ≤ δ1, and in the last line we have used the restriction
(1 + κk)e

δ1(2m5k−1qkτ)2k+1/[(2k + 1)!r2k] ≤ δ2. We therefore obtain the
bound given in Eq. (4.15).

We can also give a bound without requiring the extra conditions. Directly
using Eq. (4.21) gives the bound∥∥∥∥∥exp

(
−it

m

∑
j=1

Hj

)
− [S2k(−it/r)]r

∥∥∥∥∥≤
(

1 +
(τm/r)2k+1

(2k + 1)!
exp(τm/r)

+
{(τqk/r)[2(m−1)5k−1 + 1]}2k+1

(2k + 1)!
exp{(τqk/r)[2(m−1)5k−1 + 1]}

)r

− 1. (4.24)

The scaling is somewhat less obvious for this expression than for Lemma 4.1.
However, this expression provides a slightly tighter bound, and does not re-
quire additional conditions.

To obtain an understanding of how tight the bounds are, consider the exam-
ple of the Hamiltonian consisting of the spin operator Jx for a spin 50 system.
In the basis of Jz eigenstates this operator is tridiagonal. It is straightforward
to decompose this Hamiltonian into a sum of two Hamiltonians which are 1-
sparse, so m = 2.

We take the example of evolution over the time period t = π/4, k = 2 and a
range of values of r. For each value of r, the actual error using the integrator
was determined, as well as the limit given by Eq. (4.24). In Ref. [5], the
alternative bound of 2(2mτ5k−1)2k+1/r2k was given. The bound using this
expression was also determined for each value of r.

The three values are plotted in Fig. 4.1. Both upper bounds are above the
actual error (as would be expected). The upper bound given by Eq. (4.24) is
only about three orders of magnitude above the actual error. In contrast, the
upper bound from Ref. [5] is many orders of magnitude larger. Thus we find
that the upper bound given here is a far tighter bound.

Next we consider the number of exponentials, Nexp, required to achieve a
certain level of accuracy. The result is as given in the following theorem:

THEOREM 4.1
When the permissible error, as measured by the trace distance between

states, is bounded by ε, Nexp is bounded by

Nexp ≤
m52k(mqkτ)1+1/2k

[(2k + 1)!ε]1/2k
, (4.25)



100 4. QUANTUM ALGORITHMS FOR HAMILTONIAN SIMULATION

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

r

er
ro

r

FIGURE 4.1: The error in approximating the evolution under the Hamiltonian
H = Jx for spin 50 using different numbers of subdivisions r. The actual error
is shown as the solid line, the bound of Eq. (4.24) is shown as the dashed line
and the bound from Ref. [5] is shown as the dotted line.

where τ = t×max‖Hj‖, k ≥ 2 is an integer, and we have the restriction
(2k + 1)!ε ≤ 1≤ 2m5k−1qkτ.

PROOF First note that placing limits on the norm of the difference
of the unitaries is equivalent to placing a limit on the trace distance
between the output states. This is because

‖U1−U2‖ ≥ ‖U1

∣∣ψ〉−U2

∣∣ψ〉‖
≥ 1

2
Tr
∣∣U1

∣∣ψ〉〈ψ |U†
1 −U2

∣∣ψ〉〈ψ |U†
2

∣∣
= D

(
U1

∣∣ψ〉〈ψ |U†
1 ,U2

∣∣ψ〉〈ψ |U†
2

)
, (4.26)

where the function D is the trace distance.
Now let us take

r =

⌈
(2m5k−1qkτ)1+1/2k

[
μk

(2k + 1)!ε

]1/2k
⌉

, (4.27)

and take δ1 = δ2 = 1. With this choice of r, the restrictions (2k +1)!ε ≤
1≤ 2m5k−1qkτ imply that Eqs. (4.17) hold. In addition, these restrictions
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mean that the magnitude of the expression in the ceiling function in Eq.
(4.27) is at least 1, so the error in approximating r by this expression is
no more than a factor of 2. In addition, the right-hand side of Eq. (4.15)
does not exceed ε, so the error is no more than ε.

Because the number of exponentials in S2k(λ ) does not exceed 2m5k−1,
we have Nexp ≤ 2m5k−1r. Taking r as in Eq. (4.27), we obtain the upper
bound on Nexp given in Eq. (4.25).

By taking k to be sufficiently large, it is possible to obtain scaling that is
arbitrarily close to linear in τ . However, for a given value of τ , taking k to
be too large will increase Nexp. We can obtain an estimate of the optimum
value of k in the following way. First replace qk with 1 in Eq. (4.25) and omit
[(2k + 1)!]1/2k from the denominator. These simplifications only increase the
bound. Now re-express Eq. (4.25) as

Nexp ≤ m2τ e2k ln5+ln(mτ/ε)/2k. (4.28)

The value of k that minimizes this expression is

k = round

[
1
2

√
log5(mτ/ε)+ 1

]
. (4.29)

Adding 1 and rounding takes account of the fact that k must take integer values.
Adopting this value of k provides the upper bound

Nexp ≤ 2m2τ e2
√

ln5 ln(mτ/ε). (4.30)

It can be shown that this result holds with the conditionsε� Tj
/T1_1 1 Tf 1 0 Td (2)1Tj
/T1_4 1 Tf 0.453 0 Td (5)m�k
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because it is not possible to perform the simulation sublinear in τ . The result
is

THEOREM 4.2

For all positive integers N there exists a 2-sparse Hamiltonian H such
that simulating the evolution of H for scaled time τ = t‖H‖= πN/2 within
precision 1/4 requires at least τ/2π black-box queries to H.

Here the situation is similar to that for the problem of ATS. There is a black-
box function which gives the nonzero elements in each column of the Hamilto-
nian, and we quantify the difficulty of the calculation by the number of black-
box queries. Note that we have not specified any limit on the dimension of H.
In fact, we will require that the number of qubits can grow at least logarith-
mically with respect to τ . It can be seen that this is essential, because if the
dimension was limited it would be possible to classically simulate the evolu-
tion by diagonalizing the Hamiltonian, and the complexity of the calculation
would not increase indefinitely with τ .

PROOF The proof is based upon simulating a Hamiltonian which
determines the parity of N bits. It has been shown that the parity of N
bits requires N/2 queries to compute within error 1/4 [18]; therefore it
is not possible to simulate a Hamiltonian which determines the parity
any more efficiently.

The Hamiltonian which we consider is based upon the Jx operator
with Jz basis states. For spin J = N/2, the matrix elements of Jx are

〈 j + 1|Jx
∣∣ j〉= 〈 j|Jx

∣∣ j + 1
〉

=
√

(N− j)( j + 1)/2, (4.32)

where state
∣∣ j〉 is an eigenstate of Jz with eigenvalue j−N/2. From

standard properties of rotation operators, e−iπJx
∣∣0〉 =

∣∣N〉 and ‖Jx‖ =
J = N/2.

In order to produce a Hamiltonian which calculates the parity of the
bits X1, . . . ,XN , we add a qubit to the basis states and define the Hamil-
tonian such that

〈l′, j + 1|H∣∣l, j
〉

= 〈l, j|H∣∣l′, j + 1
〉

=
√

(N− j)( j + 1)/2 (4.33)

for values of l and l′ such that l⊕ l′ = Xj+1 (where ⊕ is XOR). This
Hamiltonian corresponds to a graph with two disjoint lines which “cross
over” at the positions where bits Xj are 1.
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j 1 1 0 1 0 0 1X = 0

1,0

0,1 0,2 0,3 0,4 0,5 0,7 0,8

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

0,60,0
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COROLLARY 4.1
There is no general integrator for Hamiltonians of the form H = H1 +H2
such that (trace distance) error < 1/4 may be achieved with the number
of exponentials Nexp < t‖H‖/2π.

PROOF We take H as in the preceding proof. This Hamiltonian
may be expressed in the form H = H1 +H2 by taking H1 to be the Hamil-
tonian with 〈l′, j + 1|H1

∣∣l, j
〉

nonzero only for even j, and H2 to be the
Hamiltonian with 〈l′, j + 1|H2

∣∣l, j
〉

nonzero only for odd j. To determine
the nonzero elements in a column of H1 or H2 we require only one query
to the Xj. For example, for H1, if j is odd, then we perform a query to
Xj; otherwise we perform a query to Xj+1.

Both H1 and H2 are 1-sparse, and may be efficiently simulated with
only two queries to Xj. This result may be shown in the following way.
Via one call to Xj, one may calculate mx, Mx and Ũx [where the column
index x represents (l, j)]. Therefore, by standard methods one may derive
a unitary T̃p such that

T̃p
∣∣x,0〉=

∣∣x,mx,Mx,Ũx
〉∣∣φx

〉
, (4.34)

where p = 1 or 2 for H1 or H2, respectively. This is the equivalent of T�j

in Eq. (4.9), except that it produces the additional ancilla
∣∣φx
〉
.

For the theorem we assume that the parity Xj is given by a unitary
that does not produce additional ancilla states

X
∣∣ j,0〉=

∣∣ j,Xj

〉
. (4.35)

Whether we perform a query to Xj or Xj+1 will depend on whether j
is odd or even and whether p = 1 or 2. For convenience we denote the
result by Xx. The unitary T̃p may be expressed as the product of an
initial unitary, X , and a final unitary

T̃p = T̃p,2XT̃p,1. (4.36)

The unitary T̃p,2 applies to the output subsystem which contains Xx,
whereas T̃p,1 does not act on this subsystem. Let us represent by Tp the
sequence of operations T̃p,2XT̃p,1, followed by copying the outputs mx, Mx

and Ũx, and applying T̃ †
p,1T̃ †

p,2. As T̃p,1 does not act on the subsystem
which contains Xx, this sequence of operations gives the map

Tp
∣∣x,0〉=

∣∣x,mx,Mx,Ũx,Xx
〉
. (4.37)
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The definition of Xx implies that it depends on mx and Mx, but the same
value is obtained for x = mx or x = Mx. It is therefore possible to apply
the sequence T †

p T Tp to correctly apply Ũx, as in Eq. (4.10). Overall X is
applied once and X† is applied once.

Hence the simulation may be performed with the number of calls to Xj
no more than twice the number of exponentials Nexp. If Nexp < t‖H‖/2π ,
then the total number of queries to the Xj is less than t‖H‖/π . Taking
t = π and ‖H‖= N/2, the number of queries is less than N/2. However,
from the proof of Theorem 4.2 this Hamiltonian cannot be simulated over
time t = π with error less than 1/4 if the number of queries is less than
N/2. Hence error rate < 1/4 cannot be achieved with Nexp < t‖H‖/2π .

4.6 Efficient decomposition of Hamiltonian

In Section 4.3 we explained the ATS method for decomposing the Hamil-
tonian. Their method employs an efficient decomposition of a general sparse
Hamiltonian into a sum of m = (D + 1)2n6 1-sparse Hamiltonians Hj: H =
∑m

j=1 Hj. Using the standard Lie–Trotter formula the number of time-slices

r scales as m1.5. The total number of exponentials therefore scales as mr ∝
m2.5 ∝ n15 for the ATS method. This is also the scaling of the number of
black-box calls for the method of ATS. Here we show that the decomposition
can be performed much better—with a reduction to m = 6D2, so the number
of exponentials is independent of n—and at log∗ n cost as quantified by the
number of black-box calls.

The function log∗ n≡ min{r| log(r)
2

n < 2} is the iterated logarithm function
and may be regarded as being “nearly constant”. It is convenient to think
of the log∗ of a number as being the smallest height of a tower of powers

of 2 that exceeds the number. For example 65536 = 2222

so log∗ 65536 = 4,
which is the height of the tower of powers of 2, and a tower of height 5 yields
(approximately) 2× 1019728, so we can see that log∗ n is very small for all
reasonable values of n.

In Ref. [5] we showed that

LEMMA 4.2

There exists a decomposition H = ∑m
j=1 Hj, where each Hj is 1-sparse,
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such that m = 6D2 and each query to any Hj can be simulated by making
O(log∗ n) queries to H.

Here we summarize the proof; the complete proof is given in Ref. [5]. In
order to perform this decomposition, we use a more efficient graph coloring
than that used by ATS. We use the vector for the color j given by

�j = (ν, rindH(x,y),cindH(x,y)), (4.38)

for pairs where Hx,y = 0 and x ≤ y. Here rindH and cindH are defined as for
ATS, except we do not require the additional value of zero (which ATS require
for cases where Hx,y = 0). This is because we do not need colors for pairs
where there is no edge.

Just using the pair (rindH(x,y),cindH(x,y)) would not be sufficient for a
coloring. This is because it would be possible to have three row numbers w, x,
and y, such that w < x < y, y and x are the number rindH(x,y) neighbors of x
and w, respectively, and x and w are the number cindH(x,y) neighbors of y and
x, respectively. Therefore it is necessary to add the additional parameter ν . We
only require 6 alternative values for ν , so the total number of alternative values
of �j is only 6D2. In comparison ATS require a total of (D+ 1)2n6 values of �j.

The values of ν are assigned in a way which uses ideas from deterministic
coin tossing [19, 20]. First one determines a sequence of values x0

l such that
x0

0 = x, x0
1 = y, and the following pairs x0

l , x0
l+1 satisfy

(rindH(x,y),cindH(x,y)) = (rindH(x0
l ,x

0
l+1),cindH(x0

l ,x
0
l+1)). (4.39)

This sequence usually terminates very quickly. If it does not, these indices are
only determined up to x(0)

zn+1
, where zn is the number of times we must iterate

l �→ 2!log2 l" (starting at 2n) to obtain 6 or less. It can be shown that zn is
approximately log∗ n.

Next, values of x(1)
l

are determined in the following way. The first bit where

x(0)
l

differs from x(0)
l+1

is determined, and the value (for x(0)
l

) and position of

this bit are recorded as x(1)
l

. At the end of the chain, x(1)
l

is the first bit of

x(0)
l

followed by zeros. This procedure is repeated up to x(zn)
l

, and we take

ν = x(zn)
0

. It can be shown that there are only 6 possible values for x(zn)
0

, and
the value obtained for the pair (w,x) differs from that for (x,y).

To illustrate this procedure, let us consider the Hamiltonian for which a
portion of the graph is shown in Fig. 4.3. The calculation for ν for the edge
between x and y is illustrated in Table 4.1, and the corresponding calculation
for the edge between w and x is illustrated in Table 4.2. In the tables n = 18,
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ν

ν=100
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y

w

FIGURE 4.3: A portion of the graph for the example given in Tables 4.1 and
4.2. The bold labels indicate the ordering of the edges around each vertex.
Each edge is labeled by the labels at each end of the edge, and the additional
parameter ν . The values of ν for the edges (w,x) and (x,y) determined in
Tables 4.1 and 4.2 are shown. In the sequence of solid edges, each edge has
the same labels, so it is necessary for the ν to differ to ensure that adjoining
edges have distinct labels. The numbers in the first columns of Tables 4.1 and
4.2 are the binary representations of the vertex numbers given here.

so the numbers of different possible values in columns 1 to 5 are 218, 36, 12,
8, and 6. In this case zn is equal to 4, and we have therefore determined the
sequence of x(0)

l
up to x(0)

5
.

As an example of the calculation of x(1)
l

, the second bit of x(0)
0

differs from

the corresponding bit of x(0)
1

. The second bit of x(0)
0

is 0, so this is the first bit

of x(1)
0

. We subtract 1 from the bit position to obtain 1, and take the remaining

bits of x(1)
0

to be the binary representation of 1. For the case of x(0)
5

, this is the

end of the chain, so we simply take x(1)
5

to be the first bit of x(0)
5

, which is 1,
followed by zeros.
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l\p 0 1 2 3 4

0 001011100110011010 000001 0100 000 000

1 010110101010011011 000010 1100 100 100

2 011011101110101101 000000 0001 000 000

3 101011101011110100 010001 1001 100 100

4 101011101011110101 000001 0000 000 000

5 111000010110011010 100000 1000 100 100

Table 4.1 Example values of x(p)
l

under our scheme for calculating ν.
The value of ν obtained is in the upper right, and is shown in bold. For
this example n = 18 and zn = 4. The values in italics are those that may
differ from w(p)

l+1
(there are no corresponding values for the bottom row).

l\p 0 1 2 3 4

0 000010010110111001 000010 1100 100 100

1 001011100110011010 000001 0100 000 000

2 010110101010011011 000010 1100 100 001

3 011011101110101101 000000 0001 111 100

4 101011101011110100 010001 0000 000 000

5 101011101011110101 100000 1000 100 100

Table 4.2 Example values of w(p)
l

under our scheme for calculating
ν. The value of ν obtained is in the upper right, and is shown in bold.
For this example n = 18 and zn = 4. The values in italics are those which
may differ from x(p)

l−1
.
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We use the notation w(p)
l

for the values given in Table 4.2. This example

illustrates the case where the sequence of w(0)
l

(with w(0)
l

= x(0)
l−1

) ends before

the sequence of x(0)
l

. This means that w(1)
5
�= x(1)

4
, and the differences propagate

so that w(4)
2
�= x(4)

1
. However, w(4)

1
is still equal to x(4)

0
.

Now w(4)
0

gives the value of ν for the edge between w and x. Because w(4)
1

=
x(4)

0
, w(4)

1
is equal to the value of ν for the edge between x and y. The method

for calculation ensures that w(4)
1

differs from w(4)
0

, so we obtain different values
of ν for these two edges, as required.

Using this lemma, we have shown the following general theorem on the
number of black-box calls required for Hamiltonian simulation.

THEOREM 4.3
The Hamiltonian H may be simulated within error ε for time t with the
number of black-box calls

Nbb ∈ O
(
(log∗ n)d252k(d2qkτ)1+1/2k/[(2k + 1)!ε]1/2k

)
(4.40)

with τ = t‖H‖ and k an integer ≥ 2.

PROOF Overall the number of Hamiltonians H�j
in the decomposi-

tion is m = 6D2. To calculate g(x,�j), it is necessary to call the black-box
2(zn + 2) times.

Given a unitary Uf representing the black-box function f , one may
obtain a unitary operator Ug satisfying

Ug
∣∣x,�j,0〉=

∣∣x,�j,y,(H�j
)x,y
〉∣∣φ

x,�j

〉
, (4.41)

where the additional ancilla states
∣∣φ

x,�j

〉
are produced by the calculation.

As discussed in Section 4.3, the Hamiltonian H�j
may be simulated via

two applications of Ug and two applications of U†
g . As zn is of order

log∗ n, the number of black-box calls to f for the simulation of each H�j
is O(log∗ n). Using these values, along with Eq. (4.25), we obtain the
number of black-box queries as in Eq. (4.40).

In this theorem we have quantified the complexity of the calculation simply
by the number of black-box calls. It is also necessary to apply a number of
auxiliary operations in addition to each black-box call. In determining g from
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f , we must make a calculation for ν . It is necessary to perform bit comparisons
between a maximum of zn + 2 numbers in the first step, and each has n bits.
This requires O(n log∗ n) operations. In the next steps the number of bits is
O(log2 n) bits or less, which is negligible. Hence the number of auxiliary
operations is

O
(

n(log∗ n)d252k(d2qkτ)1+1/2k/[(2k + 1)!ε]1/2k
)

. (4.42)

In comparison the implicit scaling in Ref. [4] was n16.

4.7 Conclusions

It is possible to efficiently simulate physical systems provided the Hamilto-
nian for the system is sparse. Lloyd showed this in the case where the system
is composed of many small subsystems, and the Hamiltonian is a sum of in-
teraction terms between these subsystems [3]. In this case the Hamiltonian is
sparse. Aharonov and Ta-Shma [4] showed this for the case of general sparse
Hamiltonians where the Hamiltonian is not given as a sum of simple terms.
They show how to decompose the Hamiltonian into a sum of 1-sparse Hamil-
tonians.

The schemes given by Lloyd and ATS are still somewhat inefficient; the
complexity scales as t2 (for Lloyd’s method) or t1.5 (for the method of ATS).
In addition, the number of black-box calls in the method of ATS scales as the
15th power of n (the number of qubits), and uses (D + 1)2n6 Hamiltonians in
the sum. This was improved somewhat by Childs [21], who found scaling of
n2 for the number of black-box calls.

In our work we improved significantly upon these results. We applied the
higher-order integrators of Suzuki [16, 17] to reduce the scaling to t1+1/2k

for arbitrary integer k. We placed an upper limit on the error, and used this to
estimate the optimum value of k to use. In addition, we showed that this scaling
is close to optimal, because it is not possible to achieve sublinear scaling.

We also provided a superior method for decomposing the Hamiltonian into
a sum. The scaling of the number of black-box calls is effectively independent
of the number of qubits, and the total number in the sum is just 6D2, rather
than (D + 1)2n6 as for the method of ATS. The problem is analogous to de-
terministic coin tossing [19, 20], and the scaling is the same. In the case of
deterministic coin tossing this scaling was proven to be optimal. This suggests
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that the scaling is optimal, though the proof can not be directly applied to this
case.
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