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The technologies of quantum information and quantum control are rapidly improving, but full
exploitation of their capabilities requires complete characterization and assessment of processes
that occur within quantum devices. We present a method for characterizing, with arbitrarily high
accuracy, any quantum optical process. Our protocol recovers complete knowledge of the process
by studying, via homodyne tomography, its effect on a set of coherent states, that is, classical fields
produced by common laser sources. We demonstrate the capability of our protocol by evaluating
and experimentally verifying the effect of a test process on squeezed vacuum.

Construction of a complex machine re-
quires precise characterization of each
component's properties. In electronics, this

information is obtained from network analyzers,
which measure circuit response to simple oscil-
latory inputs and reveal the device transfer func-
tion. Optical quantum technologies, which can
be used to build quantum computers (1), precise
metrological systems (2), and unconditionally
secure communication (3), have similar charac-
terization requirements. In this context, we are
interested in the process associated with a quan-
tum circuit component, that is, in being able to
predict the transformation that an arbitrary quan-
tum state will undergo when subjected to the
action of the component.

A quantum process E can be represented by
a completely positive, trace-preserving linear
map (superoperator) on the linear space L(ℍ) of
all density matrices over Hilbert space ℍ. It can
be expressed as a rank-4 tensor that relates the
matrix elements of the output E(%r) and input %r
states in some basis:

[E( %r)]lk = ∑
nm

Enm
lk rnm ð1Þ

where summation is from 1 to dim ℍ.
Characterization of a process (known as quan-

tum process tomography or QPT) means find-
ing all components of the superoperator tensor.
It can be implemented by determining the out-
put state for each of the ðdim ℍÞ2 elements of a
spanning set of LðℍÞ. Such a direct approach
to QPT (4) was experimentally realized on one-
qubit teleportation (5), the Hamiltonian evolu-
tion of vibrational states of atoms in an optical
lattice (6), and is fine on a two-qubit controlled-
NOT gate (7, 8) and Bell-state filter (9). As an
alternative, ancilla-assisted QPT exploits an iso-
morphism between processes and states (10) and
has been used to characterize a controlled-NOT
gate (11) and a general single qubit gate (12, 13);

see (14) for a comparative review of ancilla-
assisted QPT.

Existing QPT suffers from serious shortcom-
ings, including either the requirement of an un-
wieldy set of input states for direct QPT or a
high-dimensional entangled input state for ancilla-
assisted QPT; these shortcomings deleteriously
affect scalability and restrict accessible systems
to very low dimension. In optics, QPT has been
applied to processes on one and two dual-rail
qubits, with postselection based on photon coin-
cidences projecting the input and output states
onto these qubit subspaces. This approach cannot
provide complete information about a state or a
process because optical losses, imperfect sources,
detector dark counts, and other imperfections lead
to departure from the qubit subspaces. Postselected
tomography can only estimate the fraction of such
phenomena by comparing the coincidence rate and
the photon production rate (9).

We introduce a scheme that enables complete
characterization of a general quantum-optical
process. We used optical homodyne tomography
followed by maximum likelihood reconstruction
to obtain full information on the process across
all photon number sectors and also the coher-
ence between sectors. The state reconstruction
algorithm provides an efficient method for com-
pensating losses in homodyne detection (15). As
inputs, we used only coherent states that are read-
ily available from a laser source, so our method
can be easily scaled up.

We experimentally tested our approach by
characterizing a quantum process that consists
of a simultaneous absorption and phase shift.
The reconstructed superoperator allows us to
predict, with a fidelity of over 99%, the effect
of the process on a squeezed vacuum.

Our method has its basis in the fact that any
density matrix can be represented as a sum of co-
herent states' density matrices (16, 17). Although
such a representation (the Glauber-Sudarshan P
function) may be highly singular, it can be arbi-
trarily closely approximated with a regular P func-
tion. By measuring the process output for many
coherent states and exploiting the linearity, we can
predict the process output for any arbitrary state.

The Glauber-Sudarshan decomposition of
a quantum state %r is given by

%r ¼ 2∫Pr(a)ja〉〈ajd2a ð2Þ
where Pr(a) is the state's P function, a is the
coherent state with mean position, and momen-
tum observables (x , p) ¼ (

ffiffiffi
2

p
Re a ,

ffiffiffi
2

p
Im a).

Weusedtheconvention[%x , %p] ¼ i, andintegration
is performed over the entire phase space. Therefore,
if we know the effect ja〉〈aj↦ %ϱ(a) ¼ E(ja〉〈aj)
of the process on all coherent states,we can predict
its effect on state %r:

E( %r) ¼ 2∫Pr(a) %ϱ(a)d2a ð3Þ
An obstacle to direct application of this ap-

proach is posed by singular behavior of the
function Pr(a). Indeed, the P function exists only
as a generalized function, more singular than the
Dirac delta function, when the corresponding
quantum state has nonclassical features (18).

This can be overcome by applying a theorem
proven by Klauder (19): For any bounded op-
erator %r, there exists an operator %rL with contin-
uous and rapidly decreasing P function arbitrarily
close to %r in the trace-class norm. The Klauder
approximation is obtained as follows: We as-
sume that the Wigner function of %r belongs to
the Schwartz classS2, that is, is infinitely smooth
and rapidly decreasing (which is the case for all
physically plausible density matrices). The Fourier
transform of the operator's Glauber-Sudarshan
function Pr(a) can be expressed as (18)

P̃r(kx,kp) ¼ W̃r(kx,kp) exp
k2x þ k2p

4

 !
ð4Þ

where W̃rðkx , kpÞ is the Fourier transform of the
operator's Wigner function. The function defined
by Eq. 4 always exists and is infinitely smooth
(albeit not necessarily square integrable). We
multiply P̃rðkx , kpÞ by a regularizing function

GL(kx,kp) ¼
e−[ f (kx − L) þ f ( − kx − L) þ f (kp − L) þ f ( − kp − L)]

ð5Þ
with f( y) = y4exp(−1/y2) for y > 0, f( y) = 0 for
y ≤ 0. This regularizing function is equal to
1 in a square domain of side 2L and rapidly
drops to zero outside. The product P̃L,r(kx,kp) ¼
P̃r(kx,kp)G(kx,kp) now belongs to the Schwartz
class. Applying the inverse Fourier transform,
we obtain the new Glauber-Sudarshan function
PL,r(a), which defines the Klauder approxima-
tion %rL. By choosing L sufficiently high (20), the
operator %rL can be made to approximate %r ar-
bitrarily well (fig. S1A).

As an example, we applied the Klauder ap-
proximation to squeezed vacuum, a nonclassical
state characterized by a highly singular P func-
tion whose Fourier transform grows exponentially
with increasing kx and/or kp. We tested our pro-
tocol with a state that has a noise reduction in
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the squeezed quadrature of −1.58 dB and excess
noise in the orthogonal quadrature of 2.91 dB.
The function P̃(kx,kp) was calculated from the
state's density matrix according to Eq. 4 and sub-
sequently regularized as described above using
L = 5.2. Figure 1A shows P̃L(kx,kp) calculated
from our experimental data, and Fig. 1B dis-
plays its inverse Fourier transform PL(a). In Fig.
1, C and D, we compare the Wigner functions
of the original state and the one obtained from
the regularized P function. The two states exhib-
it a quantum fidelity of more than 0.9999.

Although the above method permits finding
the process output for an arbitrary input state, it
requires one to first determine the input state's P
function. This step can be avoided by calculat-
ing the process superoperator in the Fock basis,
so the output can be found from the input den-
sity matrix according to Eq. 1. To this end, we
express the Glauber-Sudarshan function as

Pr(a) ¼ ∑
mn
rnmPnm(a) ð6Þ

where Pnm(a) is the P function of the operator
|n〉 〈m|. We now replace these functions by their
regularized versions PL,nm(a) and rewrite Eq. 3 as

E(%r) ¼ 2∑
nm
rnm ∫PL,nm(a) %ϱ(a)d2a ð7Þ

from which we determine the process super-
operator as

Enm
lk ¼ 2∫PL,nm(a)ϱlk (a)d

2a ð8Þ

Before applying the latter result to experi-
ments, a number of practical issues have to be
addressed. First, parameter L must be chosen to
ensure proper approximation of input states. The
second issue is that, in a realistic experiment, the
measurement can be done only for coherent

states whose amplitude does not exceed a certain
maximum amax. Lastly, the experiment can only
be performed with a finite, discrete set of
coherent states. Density matrix elements ϱlk (a)
for an arbitrary a, required for calculating the
superoperator, must then be obtained by polyno-
mial interpolation. These matters are discussed in
(20).

A simplification arises for phase-symmetric
processes, in which there is no phase coherence

between the “processing unit” and input states.
In this case, if two inputs %r and %r1 are different
by an optical phase shift %U (ϕ), the states E( %r)
and E( %r1) will differ by the same phase shift:

E[ %U (ϕ)%rU%
†
(ϕ)] ¼ U%(ϕ)E( %r)U%†(ϕ) ð9Þ

Then, if we know the effect of the process on
a coherent state |a〉, we also know what happens
to |aeiϕ〉, so it is enough to perform measure-

Fig. 1. Regularized Glauber-Sudarshan
decomposition of the squeezed state.
(A) Absolute value of the regularized
Fourier transform of the squeezed vac-
uum P function. (B) Approximated P
function calculated from the inverse
Fourier transform of P̃L ,r(kx,kp). (C and
D) Wigner representations of, respec-
tively, the measured and the approxi-
mated squeezed vacuum states.
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Fig. 2. (A) Time-dependent quadrature values acquired from homodyne detection of a coherent state
with input a = 8.3. Black dots correspond to the state before the process; red dots, after the process.
The top curve shows the EOM driving voltage. (B) The Wigner function of the coherent state before and
after the process. (C and D) Wigner representations of the measured output squeezed state compared to
the one obtained from process tomography.
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ments on input coherent states with real, positive
amplitudes. For the process superoperator in the
Fock basis, the phase symmetry implies that Ekl

mn
vanishes unless k − l = m − n.

The process studied in our experiment was
electrooptical amplitude and phase modulation
of the optical field. The process was implemented
by using an electrooptical modulator (EOM) fol-
lowed by a polarizer. The field experienced mini-
mal distortion when a bias voltage V1 = 100 V
was applied to the EOM. Switching the volt-
age to V2 = 50 V produced birefringence and
thus losses at the polarizer, along with a phase
shift.

A continuous-wave Ti:Sapphire laser at 795 nm
was the coherent state source used for the device
characterization. We reconstructed the input and
output states at 11 different input amplitude levels
between a1 = 0 and a11 = 10.9. In order to keep
track of the relative phase shift, we switched the
EOM voltage between V1 and V2 every 100 ms
(Fig. 2A, top), whereas the phase of the local
oscillator was linearly scanned by a piezoelectric
transducer at 100 Hz. The homodyne photocur-
rent was recorded with an oscilloscope. To ob-
tain quadrature measurements, we integrated the
photocurrent over time intervals of 20 ns. The
bottom plot in Fig. 2A shows the recovered quad-
rature values after normalization to the vacuum
noise. The time dependence of the local oscillator
phase was recovered from the slow, sinusoidal
variation of the average homodyne photocurrent
as a function of time.

In this manner, for each input amplitude, we
sampled 50,000 phase and quadrature values for
both the input and output states and used them
to calculate density matrices by likelihood max-
imization (15, 21) (Fig. 2B). The output state
reconstruction showed a phase shift of 36° and a
loss of 34% with respect to the input state.

The interpolated experimental data have been
used to determine the process superoperator ten-
sor. We used the phase symmetry assumption

in Eq. 9, which is justified by the fact that the
EOM driver is independent from the master
laser. The elements Emm

kk of the tensor in the pho-
ton number basis are plotted in Fig. 3A. This plot
should be interpreted as follows: For a given
input Fock state |m〉, the values of Emm

kk give the
diagonal elements of the output density matrix.
For example, the single-photon state |1〉 after
passing through the EOM will be transformed
into a statistical mixture of the single-photon and
vacuum states. A theoretical prediction for the
process tensor has been calculated by using
the Bernoulli transformation to account for a
lossy channel and a phase shift superoperator;
the superoperator diagonal elements in the
Fock basis are displayed in Fig. 3B, and these
diagonal elements bear close resemblance to
the experimental result. A similar agreement was
also obtained for nondiagonal terms of the super-
operator, but it is not shown here.

For additional verification, we applied this
result to predict the effect of the device on the
squeezed vacuum state described in the previous
section. This state was produced by pumping an
optical parametric amplifier (OPA) in bow-tie
configuration with the second harmonic of the
Ti:Sapphire laser and using a periodically poled
KTiOPO4 crystal as nonlinear medium (22, 23).

The state before (Fig. 1C) and after (Fig. 2C)
the process was reconstructed by using homodyne
tomography as described above. By applying
the process superoperator to the input squeezed
state, we predict the process output (Fig. 2D). The
maximum quadrature noise variance amounted
to 2.19 dB for the measured state and 2.15 dB
for the prediction, and the minimum quadrature
noise variance was –1.07 dB for the measured
state and –0.95 dB for the prediction, correspond-
ing to a quantum fidelity of 0.9935 T 0.0002.

Whereas here we demonstrate our tomographic
method for single-mode inputs, multimode or
multichannel processes can be characterized by
using multimode P representation, multiple homo-

dyne detectors, and feeding product coherent
states as inputs. Our method overcomes substan-
tial limitations of previous optical QPT schemes.
Process characterization is not restricted to a
Hilbert space associated with a specific qubit
and thus reveals the imperfections of a quan-
tum information processing unit. Additionally,
it uses only coherent states as inputs, which
are readily available from the laser and whose
intensities and phases are easily manipulated.
This permits characterization of complex pro-
cesses used in quantum information processing
and communication.
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Detection of First-Order Liquid/Liquid
Phase Transitions in Yttrium
Oxide–Aluminum Oxide Melts
G. N. Greaves,1* M. C. Wilding,1 S. Fearn,1 D. Langstaff,1 F. Kargl,1 S. Cox,1 Q. Vu Van,1
O. Majérus,2 C. J. Benmore,3 R. Weber,4 C. M. Martin,5 L. Hennet6

We combine small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS)
with aerodynamic levitation techniques to study in situ phase transitions in the liquid state
under contactless conditions. At very high temperatures, yttria-alumina melts show a first-order
transition, previously inferred from phase separation in quenched glasses. We show how
the transition coincides with a narrow and reversible maximum in SAXS indicative of liquid
unmixing on the nanoscale, combined with an abrupt realignment in WAXS features related to
reversible shifts in polyhedral packing on the atomic scale. We also observed a rotary action in
the suspended supercooled drop driven by repetitive transitions (a polyamorphic rotor) from
which the reversible changes in molar volume (1.2 T 0.2 cubic centimeters) and entropy
(19 T 4 joules mole–1 kelvin–1) can be estimated.

Liquids represent some of the most familiar
everyday materials. Recognized by their
ability to flow, liquids adoptwhatever shape

contains them and in suspension form spherical
drops. They are the intermediate state between
solids and gases, and they extend over temper-
ature and pressure up to sharp phase boundaries
along which they coexist with the adjacent states.
Phase transitions across these boundaries are dis-
continuous and of first-order, involving reversible
changes in extensive thermodynamic parameters,
such as molar volume DV and entropy DS. To-
gether these parameters define the slope of the
phase boundary dT/dP = DV/DS (for instance,
the melting curve that separates the liquid from
the crystalline state). Phase boundaries themselves
can terminate at critical points if the coexistent
phases become indistinguishable, the most well-
known being the formation of fluids from their
liquid and vapor states.

The physics of phase transitions and critical
phenomena is extensive (1). It also includes the
wealth of crystalline phases within the solid state

where periodic structures can abruptly transform
under pressure and temperature into new crystal-
line states distinct in density and symmetry (2).
One of the most exciting developments in liquid
state science is the growing evidence for different
phases of the same liquid and for phase transitions
between them at characteristic temperatures and
pressures (3–7).At first glance such“polyamorphism”
is counterintuitive, as diffusion processes in a liquid
would appear to lead to the same time-averaged

aperiodic structure. However, unlike crystals, liq-
uids are characterized by temporal and spatial
fluctuations in density (1). These potentially could
be the antecedents for different self-assembled
phases distinguished by density and entropy (7),
particularly in the metastable supercooled state
where liquid flow becomes increasingly viscous
with falling temperature or increasing pressure.
As the concept of polyamorphism has developed,
the so called “two-state model” (8, 9) has proved
influential in defining the phase boundary be-
tween a low-density liquid (LDL) phase and a
high-density liquid (HDL) phase straddled by
spinodal limits. This is illustrated in Fig. 1. In
particular, there is a critical point C on the phase
boundary below which the LDL and HDL states
coexist and beyond which the liquid is single
phase. If C lies at negative pressures, a liquid/
liquid phase transition between HDL and LDL
states is expected at ambient pressure and char-
acteristic temperature TLL (Fig. 1).

Speculation about the existence of liquid
polyamorphs has its origins in the effort to better
explain negative melting curves [i.e., dT/dP < 0
(3, 5, 7–9)] for which the fusion of ice is the most
familiar (10). Even though transitions between
polyamorphic states in water have now been
well-studied (3, 11–15), controversy still exists as
to whether these are truly of first-order character
(13, 14), analogous to phase transitions in the
crystalline solid state (2), or whether they occur
via numerous intermediate glassy states (12, 15).
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Fig. 1. T/P phase boundary separating
HDL and LDL phases surrounded by spinodal
limits. Dashed curves represent calculations
from the two-state model (8, 9). Solid curves
indicate dT/dP = DVLL/DSLL, as determined
from the changes in entropy DSLL and molar
volume DVLL for supercooled AY20, with Ts
limits taken from Fig. 3C. This places the
critical point C at 1804 K and –0.31 GPa. Tm
and the HDA Tg for AY20 are also included
(26, 31), together with Tc taken from Fig. 3B
and from rapid quenching (29).
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